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ABSTRACT

Graph learning plays an important role in many data mining and machine learn-
ing tasks, such as manifold learning, data representation and analysis, dimen-
sionality reduction, data clustering, and visualization, etc. For the first time,
we present a highly-scalable spectral graph densification approach (GRASPEL)
for graph learning from data. By limiting the precision matrix to be a graph-
Laplacian-like matrix in graphical Lasso, our approach aims to learn ultra-sparse
undirected graphs from potentially high-dimensional input data. A very unique
property of the graphs learned by GRASPEL is that the spectral embedding (or
approximate effective-resistance) distances on the graph will encode the simi-
larities between the original input data points. By interleaving the latest high-
performance nearly-linear time spectral methods, ultrasparse yet spectrally-robust
graphs can be learned by identifying and including the most spectrally-critical
edges into the graph. Compared with prior state-of-the-art graph learning ap-
proaches, GRASPEL is more scalable and allows substantially improving com-
puting efficiency and solution quality of a variety of data mining and machine
learning applications, such as manifold learning, spectral clustering (SC), and di-
mensionality reduction.

1 INTRODUCTION

Graph learning is playing increasingly important roles in many machine learning and data mining
applications. For example, a key step of many existing machine learning methods requires convert-
ing potentially high-dimensional data sets into graph representations: it is a common practice to
represent each (high-dimensional) data point as a node, and assign each edge a weight to encode the
similarity between the two nodes (data points). The constructed graphs can be efficiently leveraged
to represent the underlying structure of a data set or the relationship between data points (Jebara
et al., 2009; Maier et al., 2009; Liu et al., 2018). However, how to learn meaningful graphs from
large data set at scale still remains a challenging problem.

Several recent graph learning methods leverage emerging graph signal processing (GSP) techniques
for estimating sparse graph Laplacians, which show very promising results (Dong et al., 2016;
Egilmez et al., 2017; Dong et al., 2019; Kalofolias & Perraudin, 2019). For example, (Egilmez et al.,
2017) addresses the graph learning problem by restricting the precision matrix to be a graph Lapla-
cian and maximizing a posterior estimation of attractive Gaussian Markov Random Field (GMRF) 1,
while an l1-regularization term is used to promote graph sparsity; (Rabbat, 2017) provides an error
analysis for inferring sparse graphs from smooth signals; (Kalofolias & Perraudin, 2019) leverages
approximate nearest-neighbor (ANN) graphs to reduce the number of variables for optimization;
(Kumar et al., 2019) introduces a graph Laplacian learning method by imposing Laplacian spectral
constraints. However, even the state-of-the-art Laplacian estimation methods for graph learning do
not scale well for large data set due to their extremely high algorithm complexity. For example,
solving the optimization problem for Laplacian estimation in (Dong et al., 2016; Kalofolias, 2016;
Egilmez et al., 2017; Dong et al., 2019) requires O(N2) time complexity per iteration for N data
entities and nontrivial parameters tuning for controlling graph sparsity which limits their applica-
tions to only very small data sets (e. g. with up to a few thousands of data points); the method
introduced in (Carey, 2017) leverages Isomap manifold embedding (Tenenbaum et al., 2000) for
graph construction, which requires O(N3) time for manifold construction and thus does not scale to
large data set; the latest graph learning approach (Kalofolias & Perraudin, 2019) takes advantages of
ANN graphs, but it still runs very slowly for large data sets; the Laplacian estimation method with

1If the precision matrix of a GMRF is an M-matrix with all non-negative off-diagonal elements, we call it
an attractive GMRF (Slawski & Hein, 2015; Dong et al., 2019).
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spectral constraints requires a good graph structure to be provided in advance (Kumar et al., 2019),
which otherwise can be very costly when going through exhaustive graph structure searches.

This work for the first time introduces a spectral graph densification approach (GRASPEL) for
learning ultra-sparse graphs from data by leveraging the latest results in spectral graph theory (Feng,
2016; 2018; Zhao et al., 2018). GRASPEL has a close connection with prior GSP-based Lapla-
cian estimation methods (Dong et al., 2016; Kalofolias, 2016; Egilmez et al., 2017; Kalofolias &
Perraudin, 2019; Dong et al., 2019), and the graphical Lasso method (Friedman et al., 2008). By
treatingM -dimensional data points asM graph signals, GRASPEL allows efficiently solving a con-
vex problem by iterative identifying and including the most spectrally-critical edges into the latest
graph leveraging recent nearly-linear time spectral methods (Feng, 2016; 2018; Zhao et al., 2018).
Compared with prior spectral graph sparsification algorithms (Spielman & Srivastava, 2011; Feng,
2016) that aim to remove edges from a given graph while preserving key graph spectral properties,
GRASPEL aims to add edges into the graph such that the learned graphs will have spectral embed-
ding (or effective-resistance) distances encoding the distances between the original input data points.
Comparing with state-of-the-art graph learning methods, GRASPEL is more scalable for estimation
of attractive Gaussian Markov Random Fields (GMRFs) for even very large data set. We summarize
the contribution of this work as follows:

• We propose a spectral graph densification approach (GRASPEL) that allows efficient estimation
of attractive Gaussian Markov Random Fields (GMRFs) leveraging the latest spectral graph theory.

•We show that the graphical Lasso problem with a Laplacian-like precision matrix can be efficiently
solved by including spectrally-critical edges to dramatically reduce spectral embedding distortions.

• The key to achieving high efficiency is a spectral embedding scheme for finding spectrally-critical
edges, allowing each GRASPEL iteration to be completed in O(N logN) instead of O(N2) time.

• For the first time, we introduce a novel convergence criterion for graph learning tasks based on
graph spectral stability: when the maximum embedding distortion becomes small enough, or
equivalently when graph spectra become sufficiently stable, GRASPEL iterations can be terminated.

• Our experiment results show that the graphs learned from high-dimensional data using GRASPEL
can lead to more efficient and accurate spectral clustering (SC) as well as dimensionality reduction.

2 BACKGROUND OF GRAPH LEARNING VIA LAPLACIAN ESTIMATION

Given M observations on N data entities in a data matrix X = [x1, ..., xM ] ∈ RN×M , each column
vector of X can be considered as a signal on a graph. For example, the USPS data set including
9, 298 images of handwritten digits with each image having 256 pixels will result in a feature matrix
X ∈ RN×M with N = 9, 298 and M = 256. The recent GSP-based graph learning methods (Dong
et al., 2016) estimate graph Laplacians from X for achieving the following desired characteristics:

Smoothness of Graph Signals. The graph signals corresponding to the real-world data should
be sufficiently smooth on the learned graph structure: the signal values will only change gradually
across connected neighboring nodes. The smoothness of a signal x over an undirected graph G =
(V,E,w) can be measured with the following Laplacian quadratic form:

x>Lx =
∑

(p,q)∈E

wp,q(x (p)− x (q))
2
, (1)

where L = D −W denotes the Laplacian matrix of graph G with D and W denoting the degree
and the weighted adjacency matrices of G, and wp,q denotes the weight for edge (p, q). The smaller
value of (1) indicates the smoother signals across the graph. To quantify the smoothness (Q) of a set
of signals X over graph G, the following matrix trace can be computed (Kalofolias, 2016):

Q(X,L) = Tr(X>LX), (2)

where Tr(•) denotes the matrix trace.

Sparsity of the Estimated Graph (Laplacian). Graph sparsity is another critical consideration in
graph learning. One of the most important motivations of learning a graph is to use it for downstream
data mining or machine learning tasks. Therefore, desired graph learning algorithms should allow
better capturing and understanding the global structure (manifold) of the data set, while producing
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sufficiently sparse graphs that can be easily stored and efficiently manipulated in the downstream
algorithms, such as graph clustering, partitioning, dimension reduction, data visualization, etc. To
this end, the graphical Lasso algorithm (Friedman et al., 2008) has been proposed to learn the struc-
ture in an undirected Gaussian graphical model using l1 regularization to control the sparsity of the
precision matrix. Given a sample covariance matrix S and a regularization parameter β, graphical
Lasso targets the following convex optimization task:

max
Θ

: log det(Θ)− Tr(ΘS)− β‖Θ‖1, (3)

over all non-negative definite precision matrices Θ. The first two terms together can be interpreted
as the log-likelihood under a Gaussian Markov Random Field (GMRF). ‖ • ‖ denotes the entry-wise
l1 norm, so β‖Θ‖1 becomes the sparsity promoting regularization term. This model tries to learn the
graph structure by maximizing the penalized log-likelihood. When the sample covariance matrix S
is obtained from M i.i.d ( independent and identically distributed) samples X = [x1, ..., xM ] where
X ∼ N(0, S) has an N -dimensional Gaussian distribution with zero mean, each element in the pre-
cision matrix Θi,j encodes the conditional dependence between variables Xi and Xj . For example,
Θi,j = 0 implies that the corresponding variables Xi and Xj are conditionally independent, given
the rest. However, the log-determinant problems are very computationally expensive. The emerg-
ing GSP-based methods infer the graph by adopting the criterion of signal smoothness (Kalofolias,
2016; Dong et al., 2016; Egilmez et al., 2017; Kalofolias & Perraudin, 2019). However, their ex-
tremely high complexities do not even allow for learning graphs with even a few thousands of nodes
. Furthermore, these methods require nontrivial parameters tuning for achieving good performance.

3 GRASPEL: GRAPH SPECTRAL LEARNING AT SCALE

Similar to recent GSP-based Laplacian estimation methods, GRASPEL aims to more efficiently
solve the following convex problem for estimation of attractive GMRFs (Dong et al., 2019; Lake &
Tenenbaum, 2010) that is also similar to the graphical Lasso problem (Friedman et al., 2008):

max
Θ

: log det(Θ)− 1

M
Tr(X>ΘX)− β‖Θ‖1, (4)

where Θ = L + 1
σ2 I , L denotes the set of valid graph Laplacian matrices, I denotes the identity

matrix, and σ2 > 0 denotes prior feature variance. It can be shown that the three terms in (4) are
corresponding to log det(Θ), Tr(ΘS) and β‖Θ‖1 in (3), respectively. When each column vector
in the data matrix X 2 is treated as a graph signal vector, there is a close connection between our
formulation and the graphical Lasso problem. Since Θ = L + 1

σ2 I correspond to symmetric and
positive definite (PSD) matrices (or M matrices) with non-positive off-diagonal entries, this formu-
lation will lead to the estimation of attractive GMRFs (Dong et al., 2019; Slawski & Hein, 2015). In
case thatX is non-Gaussian, (4) can be understood as Laplacian estimation based on minimizing the
Bregman divergence between positive definite matrices induced by the function Θ 7→ − log det(Θ)
(Slawski & Hein, 2015).

3.1 THEORETICAL BACKGROUND

Express the Laplacian matrix as
L =

∑
(p,q)∈E

wp,qep,qe
>
p,q (5)

where ep ∈ RN denotes the standard basis vector with all zero entries except for the p-th entry being
1, and ep,q = ep − eq . Consider the objective function F in (4):

F = log det(Θ)− 1

M
Tr(X>ΘX)− β‖Θ‖1, (6)

which can be further simplified as follows by substituting (5) into (6):

F =

N∑
i=1

log(λi + 1/σ2)− 1

M

Tr(X>X)

σ2
+

∑
(p,q)∈E

wp,q‖X>ep,q‖22

− 4β
∑

(p,q)∈E

wp,q, (7)

2For each of the N row vectors X(i, :) ∈ R1×M where i = 1, ..., N , the following two-step data pre-
processing will be performed: (1) X(i, :) = X(i, :)− µi, where µi denotes the sample mean of X(i, :); then
S = XX>

M
, which results in Tr(ΘS) = 1

M
Tr(X>ΘX). (2) Feature normalization by X = X/‖X‖2 .

3



Under review as a conference paper at ICLR 2021

where the Laplacian eigenvectors corresponding to the ascending eigenvalues λi are denoted by ui
for i = 1, ..., N , satisfying:

Lui = λiui. (8)
Taking the partial derivative with respect to the weight wp,q of edge (p, q) leads to:

∂F

∂wp,q
=

N∑
i=2

1

λi + 1/σ2

∂λi
∂wp,q

− 1

M
‖X>ep,q‖22 − 4β, (9)

Since the last two terms in (9) are all fixed (constant) values for a given data matrix X where β
can be considered as an additional offset added to all data pairs (candidate edges), we can drop the
third term by simply setting β = 0, which will not impact the ranking of candidate edges in graph
learning. The above simplification implies the second term alone will effectively penalize graph
density for estimating Laplacian-like precision matrix: including more edges will result in a greater
trace Tr(X>ΘX). The spectral perturbation analysis in Theorem 1 (Appendix) will lead to:

∂λi
∂wp,q

=
(
u>i ep,q

)2
. (10)

If we construct a subspace matricesUr for spectral graph embedding by using the first r−1 weighted
nontrivial Laplacian eigenvectors as follows:

Ur =

[
u2√

λ2 + 1/σ2
, ...,

ur√
λr + 1/σ2

]
, (11)

then by setting β = 0, (9) can be rewritten as follows:

∂F

∂wp,q
≈ ‖U>r ep,q‖22 −

1

M
‖X>ep,q‖22 = zembp,q −

1

M
zdatap,q , (12)

where zembp,q = ‖U>r ep,q‖22 and zdatap,q = ‖X>ep,q‖22 denote the `2 distances in the spectral embed-
ding space and the original data space, respectively. We note that using a larger r for constructing
Ur will allow more accurate estimation of ∂F

∂wp,q
, but at a higher computational cost.

3.2 GRAPH LEARNING VIA SPECTRAL DENSIFICATION

If a candidate edge (p, q) has a relatively large ∂F
∂wp,q

value, it is considered as a spectrally-critical
edge, since it will significantly impact (7) and have large spectral embedding distortions defined as

ηp,q = M
zembp,q

zdatap,q

, (13)

Subsequently, (12) can be further simplified as follows:

∂F

∂wp,q
≈
(

1− 1

ηp,q

)
zembp,q , (14)

which implies that including the candidate edges with greater ηp,q and zembp,q values into the latest
graph will allow a faster convergence of (4) in gradient descent (GD), as long as ηp,q > 1 holds.

The proposed approach. When σ2 → +∞ and r → N , the spectral embedding distance
zembp,q becomes the effective-resistance distance Reffp,q , and the scaled spectral embedding distortion
ηp,q
M = wp,qR

eff
p,q becomes the edge leverage score for spectral graph sparsification (Spielman &

Srivastava, 2011) if each edge weight is computed by wp,q = 1
zdata
p,q

. Prior research proves that for
every undirected graph a spectrally sparsified graph with O(N logN) edges can be computed by
sampling each edge according to its effective resistance (Spielman & Srivastava, 2011); on the con-
trary, GRASPEL can be regarded as a spectral graph densification procedure that aims to include
O(N logN) spectrally-critical edges with large spectral embedding distortions. Therefore, the
graphical Lasso problem with Laplacian-like precision matrix can be efficiently solved via a spec-
tral graph densification procedure that iteratively includes the most spectrally-critical edges into the
latest graph so that the distortion in the graph spectral embedding space can be drastically mitigated.
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Figure 1: The overview of the proposed GRASPEL framework.

Consequently, a unique feature of GRASPEL is that the spectral embedding (effective-resistance)
distances on the learned graph will encode the `2 distances between the original data points, which
is key to many manifold learning and dimensionality reduction problems (Belkin & Niyogi, 2003;
Carey, 2017). We note that the proposed GRASPEL algorithm shares some similar features as the
general stagewise algorithm (Tibshirani, 2015): as the step size goes to zero the sequence of for-
ward stagewise estimates will exactly coincide with the lasso path. Consequently, GRASPEL will
produce an approximate solution to the original graphical Lasso problem when using a rather small
step size (e.g. adding only one edge with a small edge weight in each GRASPEL iteration).

Convergence analysis. The global optimal solution can be obtained when (14) becomes zero or
there exists no edge with η > 1 for inclusion to the latest graph. Consequently, the convergence
of GRASPEL iterations can be determined based on graph spectral stability: when the maximum
embedding distortion η becomes small enough (e.g. ηmax ≤ tol), or equivalently when graph
spectra become sufficiently stable, the GRASPEL iterations can be terminated.

Complexity analysis. Comparing with the state-of-the-art graph construction methods (Dong et al.,
2016; Kalofolias, 2016; Egilmez et al., 2017; Dong et al., 2019; Kalofolias & Perraudin, 2019) which
require at least O(N2) time in each iteration, (14) allows each GRASPEL iteration to identify the
most spectrally-critical edges in O(N logN) time: given the subspace projection matrix Ur in (12)
that can be computed in nearly-linear time leveraging our latest Laplacian eigensolver (Zhao et al.,
2018), the spectral embedding distortion (ηp,q) of each candidate edge (p, q) can be estimated in
constant time; then (11) allows identifying the most spectrally-critical edges in almost nearly-linear
time by limiting the search within only the candidate edge connections between a small number of
the top and bottom sorted nodes according to the 1-D spectral embedding using the Fiedler vector.

4 DETAILED STEPS IN GRASPEL

Overview. GRASPEL will iteratively identify and add the most spectrally-critical edges into the
latest graph so that the spectral embedding distortion can be greatly mitigated, until no such edges
can be found (as illustrated in Figure 1). The detailed GRASPEL algorithm flow for graph learning
has been described in Algorithm 1 in the Appendix, and summarized into the following key steps:

• Step 1: Initial graph construction. GRASPEL first constructs an ultra-sparse kNN graph
to approximate the local manifold of a given data set. An extra step of spectral sparsification
(Spielman & Srivastava, 2011; Feng, 2019) may be adopted to further simplify the graph.

• Step 2: Spectral graph embedding. GRASPEL extracts low-dimensional vector repre-
sentations (e.g. vs for node S in Figure 1) using scalable spectral graph embedding.

• Step 3: Spectrally-critical edge identification. GRASPEL identifies the most spectrally-
critical edges with the greatest distortions, and include them into the latest graph.
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• Step 4: Spectral stability checking. The GRASPEL iterations are terminated when the
embedding distortions become sufficiently small, or equivalently when the graph spectra
(e.g. the first few Laplacian eigenvalues and eigenvectors) become adequately stable.

Step 1: Initial graph construction. As aforementioned, (approximate) kNN graphs can be con-
structed as the initial graph, since they can be obtained efficiently (Muja & Lowe, 2009), while being
able to approximate the local data proximity (Roweis & Saul, 2000). However, the optimal k value
(the number of nearest neighbors) is usually problem dependent and can be very difficult to find. In
this work, GRASPEL will start with creating an (approximate) kNN graph using a relatively small
k value (e.g. k = 2 ), which will suffice for approximating the local structure of the manifold, and
strive to iteratively improve the approximation of the global manifold structure by adding a small
portion of spectrally-critical edges through solving the proposed convex problem in (4). In addi-
tion, spectral sparsification (Spielman & Srivastava, 2011; Feng, 2019) can be leveraged to further
simplify the initial kNN graph (Wang & Feng, 2017).

Step 2: Spectral graph embedding. Spectral graph embedding directly leverages the first few
nontrivial eigenvectors for projecting nodes onto low-dimensional space (Belkin & Niyogi, 2003).
The eigenvalue decomposition of Laplacian matrix is usually the computational bottleneck in spec-
tral graph embedding, especially for large graphs (Shi & Malik, 2000; Von Luxburg, 2007; Chen
et al., 2011). To achieve good scalability, nearly-linear time Laplacian solvers (Koutis et al., 2010)
or multilevel Laplacian solvers (Zhao et al., 2018) can be exploited for much faster eigenvector
(eigenvalue) computations without loss of accuracy.

Step 3: Spectrally-critical edge identification. Once Laplacian eigenvectors are available for
the latest graph, through the following phases GRASPEL will identify spectrally-critical edges by
looking at each candidate edge’s embedding distortion defined in (13), while the following theorem
can be derived for quantifying each candidate edge’s impact on the first few Laplacian eigenvalues.

Theorem 1 The perturbation of the i-th Laplacian eigenvalue λi and the total relative spectral
perturbation of the first r Laplacian eigenvalues due to the inclusion a candidate edge (p, q) can be

estimated by δλi = δwp,q
(
u>i ep,q

)2
and ∆r =

r∑
i=2

δλi

λi
= δwp,q‖U>r ep,q‖22 ∝ ηp,q , respectively.

Proof: See the Appendix.

Phase A: candidate edge identification with Fiedler vectors. Our approach for identifying spectrally-
critical edges starts with sorting nodes according to the Fiedler vector that can be computed in
nearly-linear time leveraging fast Laplacian solvers (Koutis et al., 2010; Spielman & Teng, 2014).
This scheme is equivalent to including only the first nontrivial Laplacian eigenvector into Ur (r = 2)
in (11) for spectral graph embedding. Subsequently, we can search candidate edge connections
between the top and bottom few nodes in the 1D sorted node array. According to (14), only a small
portion of node pairs with large embedding distances needs to be examined as candidate edges.

Phase B: embedding distortion estimation with multiple eigenvectors. With the first r Laplacian
eigenvectors computed in the previous spectral embedding step, each node of the latest graph will
be associated with an r-dimensional embedding vector, which allows the spectral embedding distor-
tion of each candidate (spectrally-critical) edge to be quickly estimated. As discussed in Section 3.2,
the spectral embedding distances computed with the first r eigenvectors can well approximate the
effective-resistance distance thus the gradient in the proposed optimization task (9). Only the can-
didate edges with top embedding distortions will be added into the latest graph. Since the distances
approximated using the first few eigenvectors will be the lower bounds of the effective-resistance
distances, the lower bound of embedding distortions due to such an approximation can be estimated.

Step 4: Spectral stability checking. In this work, we propose to evaluate the edge embedding
distortions with (13) for checking the spectral stability of the learned graph. If there exists no ad-
ditional edge that has an embedding distortion greater than a given tolerance level (tol), GRASPEL
iterations can be terminated. It should be noted that choosing different tolerance levels will result
in graphs with different densities. For example, choosing a smaller distortion tolerance will require
more edges to be included so that the resultant spectral embedding distances on the learned graph
can more precisely encode the distances between the original data points. In practice, even for
very large data set GRASPEL converges very quickly when starting with an initial 2NN or uNN
(ultra-sparse nearest-neighbor) graph (Wang & Feng, 2017).
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5 EXPERIMENTS

In this section, extensive experiments have been conducted to evaluate the performance of
GRASPEL for a variety of public domain data sets (see the Appendix A.3 for detailed setting and
evaluation metrics). In Sections A.6.1 and A.6.2 (see Appendix), we report additional experimen-
tal results for spectral clustering and dimensionality reduction (tSNE) applications leveraging the
proposed GRASPEL approach. Since this work primarily focuses on learning graphs from high-
dimensional data points, the proposed method can be orthogonal to existing research related to deep
learning based spectral clustering methods: an autoencoder can be first applied to transform the
input data into more optimal features that can subsequently become the input of GRASPEL for
learning graphs in spectral clustering. For fair comparisons with other state-of-the-art graph learn-
ing methods, we directly use the raw data as input without any additional pre-processing steps.
The following experiments are performed using MATLAB R2020b running on a Laptop with 10th
Intel(R) Core(TM) i5 CPU and 8GB RAM.

5.1 EXPERIMENT SETUP

When applying Algorithm 1 to our data sets for the graph learning tasks shown in this section, we
randomly sample candidate edges that connect between the top and bottom 0.05|V | (ε = 0.05)
nodes in the 1D sorted array according to the Fiedler vector, which allows GRASPEL to quickly
identify the most spectrally-critical edges. Note that choosing a smaller ε value will allow more
efficient edge sampling for estimating global graph (manifold) structural properties, while choosing
a greater ε value will require more samples but may lead to better preservation of mid-to-short range
graph (manifold) structural properties. When estimating the spectral distortion of each candidate
edge we compute the first r = 2 to 10 Laplacian eigenvectors for the spectral graph embedding
step. We set the edge sampling ratio to be ζ = 0.001 and add one edge (s = 1) to the latest graph
in each GRASPEL iteration. σ = 1E3 in (11) has been used for computing Θ in all experiments.
Clustering Accuracy (ACC) and Normalized Mutual Information (NMI) values (see definitions in
the Appendix) are used for evaluating the spectral clustering results.

5.2 EXPERIMENT RESULTS
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Figure 2: Objective function changes (top figure) and
maximum spectral distortions (bottom figure) during
GRASPEL iterations.

Spectral stability checking. In Figure 2, we
show how the objective function defined in (6)
would change during the GRASPEL iterations
when starting with (a) a 2NN graph, and (b)
an ultra-sparse nearest neighbor (uNN) graph
for the USPS data set. Only the first 50 Lapla-
cian eigenvalues are computed for evaluating
(6). The uNN graph is obtained by spectrally
sparsifying a 5NN graph using the GRASS al-
gorithm (with a relative condition number of
30) (Feng, 2019). We set the distortion toler-
ance to be tol = 1 for both cases and demon-
strate the results for the first 30 GRASPEL it-
erations. As observed in Figure 2, (6) grows
rapidly within the first 10 iterations when start-
ing with the 2NN graph, which indicates the
GRASPEL iterations allows quickly converg-
ing to a graph with relatively stable graph spec-
tra 3; (b) achieves a greater objective function
value after 30 iterations when comparing with
(a), which is mainly due to the much sparser
structure of the initial uNN graph. Therefore,
for very large data sets a spectral sparsifica-
tion procedure can be performed before going
through GRASPEL iterations for further im-
proving graph sparsity and thus runtime effi-

3GRASPEL starts to experience negligible gradient values after 10 iterations and can not identify additional
spectrally-critical candidate edges with large embedding distortions.
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Figure 3: The first few Laplacian eigenvalues and 3D spectral drawings of the 2NN graph in figures
(a) and (b), and the GRASPEL-learned graphs in figures (c) to (f).

ciency in graph learning tasks. However, it may be challenging to choose a good k for creating
the initial kNN graph that will be further spectrally sparsified: choosing a too large k will result in
very dense initial graph even after spectral sparsification, whereas choosing a small k may lead to
slower convergence.

Spectral embedding distortion. We also show how the proposed scheme for spectral stability
checking can be applied based on the embedding distortion metric defined in (13). GRASPEL
iterations can be terminated when there exists no candidate edge that has a spectral embedding
distortion greater than a given tolerance level (e.g. η ≥ tol). As shown in Figure 2, for the USPS
data set GRASPEL adds one additional edge in each iteration and requires only 11 iterations to
effectively mitigate the maximum embedding distortion by over 2, 600×.

Spectral embedding results. In Figure 3, we show the first few Laplacian eigenvalues and 3D
spectral drawings of the graphs learned with different distortion tolerance levels for a subset (in-
cluding all the 24, 462 handwritten digits from 0 to 6) of the MNIST data set (see Appendix for
details) and the test set of the Fashion MNIST data set including 10, 000 article images from style
0 to 9 (Xiao et al., 2017). When creating the 3D spectral drawing layouts, each entry of the first
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Figure 4: The Pearson correlation coefficients computed with the effective-resistance distances ob-
tained on the 3NN graph (left), 4NN graph (middle) and the graph learned by GRASPEL (right).

three nontrivial Laplacian eigenvectors (u2, u3, u4) corresponds to the x, y and z coordinates of
each node (data point), respectively. The ground-truth label of each data point is shown using its
corresponding color. The edges have been omitted in the graph layouts to better reveal the structure
of the data points (manifolds). Different embedding distortion tolerance levels are considered in our
experiment. Starting from an initial 2NN graph, by adding one edge in each iteration GRASPEL
has dramatically mitigated the spectral embedding distortions from by adding only a few additional
edges into the initial 2NN graph. By examining the first few Laplacian eigenvalues, we notice that
the initial 2NN graph of the MNIST data set has nine connected components (that equals the number
of zero eigenvalues), while with 10 extra edges added via GRASPEL iterations, a well-connected
graph can be formed for approximately preserving the structure of the original data set. For the
MNIST data set we also observe relatively large gaps between the 6th and 7th eigenvalues, indicat-
ing that the intrinsic dimensionality of the GRASPEL-learned graphs (manifolds) is approximately
five, whereas for the Fashion MNIST data set the intrinsic dimensionality is approximately six.

Resistance-distance correlation. In the last, for the full USPS data set we evaluate graph learning
quality by checking if the effective-resistance distances on the learned graph will properly encode
the `2 distances between the original data points. To this end, we randomly pick up 1, 000 node
pairs and compute their effective-resistance distances. To avoid picking up nearby nodes, we first
sort nodes according to the Fiedler vector and then choose the node pairs (ntop, nbot) from the
node sets Ntop and Nbot formed with the top and bottom 5%|V | nodes, respectively. Then, these
resistance distances are compared with the corresponding `2 distances between the original data
points by checking the Pearson correlation coefficient. In Figure 4, we observe that the effective-
resistance distances on the graph learned via 100 GRASPEL iterations (27 seconds) have the highest
correlation (R = 0.352) with the `2 distance between the original data points, while the 3NN or 4NN
graphs with much greater edge density only achieve R = 0.063 and R = 0.093, respectively. It is
also observed that increasing k from 3 to 4 for constructing the kNN graph can improve the resistance
correlation but not necessarily the spectral clustering quality (e.g. NMI and ACC metrics), whereas
the graph learned by GRASPEL achieves the best results in all aspects.

6 CONCLUSION

In this work, we present a highly-scalable spectral graph densification approach (GRASPEL) for
graph learning from data. By limiting the precision matrix to be a graph-Laplacian-like matrix
in graphical Lasso, GRASPEL can always efficiently learns sparse undirected graphs from high-
dimensional input data by identifying and including the most spectrally-critical edges into the latest
graph. A unique feature of the graphs learned by GRASPEL is that the effective-resistance distances
will encode the similarities of the original data points. Compared with state-of-the-art graph learning
approaches, GRASPEL is more scalable and always leads to substantially improved computing
efficiency and solution quality for spectral clustering (SC) and dimensionality reduction tasks.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Let L ∈ RN×N denote the Laplacian matrix of an undirected graph, and ui denote the i-th eigen-
vector of L corresponding to the i-th eigenvalue λi that satisfies:

Lui = λiui, (15)

then we have the following eigenvalue perturbation analysis:

(L+ δL) (ui + δui) = (λi + δλi) (ui + δui) , (16)

where a perturbation δL = δwp,qep,qe
>
p,q that implies a new edge connection is applied to L, result-

ing in perturbed eigenvalues and eigenvectors λi + δλi and ui + δui for i = 1, ..., N , respectively.

Keeping only the first-order terms leads to:

Lδui + δLui = λiδui + δλiui. (17)

Write δui in terms of the original eigenvectors ui for for i = 1, ..., N :

δui =

N∑
i=1

αiui. (18)

Substituting (18) into (17) leads to:

L

N∑
i=1

αiui + δLui = λi

N∑
i=1

αiui + δλiui. (19)

Multiplying u>i to both sides of (19) results in:

u>i L

N∑
i=1

αiui + u>i δLui = λiu
>
i

N∑
i=1

αiui + δλiu
>
i ui. (20)

Since ui for for i = 1, ..., N are unit-length, mutually-orthogonal eigenvectors, we have:

u>i L

N∑
i=1

αiui = αiu
>
i Lui, λiu

>
i

N∑
i=1

αiui = αiu
>
i λiui. (21)

Substituting (15) into (21), we have:

αiu
>
i Lui = αiu

>
i λiui. (22)

According to (21), we have:

u>i

N∑
i=1

αiui = λiu
>
i

N∑
i=1

αiui. (23)

Substituting (23) into (20) leads to:

u>i δLui = δλiu
>
i ui = δλi. (24)

Then the eigenvalue perturbation δλi due to δL is given by:

δλi = δwp,q
(
u>i ep,q

)2
. (25)
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The total relative perturbation of the first r eigenvalues due to the inclusion of edge (p, q) becomes:

∆r =

r∑
i=2

δλi
λi

= δwp,q‖U>r ep,q‖22 = δwp,qz
emb
p,q , (26)

where zembp,q denotes the spectral embedding distance between p and q when Ur is formed with the
first r − 1 weighted nontrivial eigenvectors as defined in (11). If each edge weight is computed by
δwp,q = 1

zdata
p,q

with zdatap,q = ‖X>ep,q‖22, as long as we can find a spectrally-critical edge with large

∆r =
zemb
p,q

zdata
p,q

= 1
M ηp,q , or equivalently spectral embedding distortion, including this edge into the

current graph will significantly perturb the first r − 1 Laplacian eigenvalues.

A.2 ALGORITHM FLOW

Algorithm 1 The GRASPEL Algorithm Flow
Input: A data matrix (X = [x1, ...xM ] ∈ RN×M ) with N data points in M -dimensional,
embedding distortion tolerance (1 ≤ tol), window size for edge sampling (0 < ε ≤ 50%), edge
sampling ratio (0 < ζ ≤ 1), and the number of edges to be selected in each iteration (0 < s).
Output: The spectrally-learned graph G.

1: Construct an initial 2NN graph G using approximate kNN algorithms.
2: while ηmax ≥ tol do
3: Embed the latest graph G using its Fiedler vector and sort the nodes into a 1D array Inode;
4: Obtain node set Ntop ( Nbot) by including only the top (bottom) dεNe nodes in Inode;
5: Sample each of the ds/ζe edges by randomly choosing one node from Ntop and another node

from Nbot;
6: Form an edge set Esel using edges with large distortions (η ≥ tol) and set the largest edge

embedding distortion as ηmax.
7: if |Esel| ≥ s then
8: Add the top s edges with largest η from Esel into G;
9: else

Add all the edges in Esel into G;
10: end if
11: end while
12: Return the learned graph G.

Algorithm 2 Spectral Clustering Algorithm
Input: A graph G = (V,E,w) and the number of clusters r.
Output: Clusters C1...Cr .

1: Compute the adjacency matrix A, and diagonal matrix D;
2: Obtain the unnormalized Laplacian matrix L=D-A;
3: Compute the eigenvectors u1,...ur that correspond to the bottom r nonzero eigenvalues of L;
4: Construct Ur ∈ RN×r , with r eigenvectors of L stored as columns;
5: Perform k-means algorithm to partition the rows of Ur into r clusters and return the result.

A.3 DATA SETS DESCRIPTION

COIL20: the data set contains 1, 440 gray-scale images of 20 objects, and each object on a turntable
has 72 normalized gray-scale images taken from different degrees. The image size is 32x 32 pixels.

PenDigits: the data set consists of 7,494 images of handwritten digits from 44 writers, using the
sampled coordination information. Each digit is represented by 16 attributes.

USPS: the data set includes 9, 298 scanned hand-written digits from 0 to 9 on the envelops from
U.S. Postal Service with 256 attributes.

MNIST: the data set consists of 70,000 images of handwritten digits. Each image has 28-by-28
pixels in size. This database can be found at website (http://yann.lecun.com/exdb/mnist/).
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A.4 COMPARED ALGORITHMS

Standard kNN: the most widely used affinity graph construction method. Each node is connected
to its k nearest neighbors.

Consensus of kNN (cons-kNN) (Premachandran & Kakarala, 2013): adopts the state-of-the-art
neighborhood selection methods to construct the affinity graphs. It selects strong neighborhoods to
improve the robustness of the graph by using the consensus information from different neighbor-
hoods in a given kNN graph.

LSGL (Kalofolias & Perraudin, 2019): a method to automatically select the parameters of the model
introduced in (Kalofolias, 2016) given a desired graph sparsity level. The default settings have been
used in our experiments.

A.5 EVALUATION METRIC

(1) The ACC metric measures the agreement between the clustering results generated by clustering
algorithms and the ground-truth labels. A higher value of ACC indicates better clustering quality.
The ACC can be computed by:

ACC =

n∑
j=1

δ(yi,map(ci))

n
, (27)

where n is the number of samples in the data set, yi is the ground-truth label provided by the data
sets, and ci is clustering result obtained from the algorithm. δ(x, y) is a delta function defined
as: δ(x, y)=1 for x = y, and δ(x, y)=0, otherwise. map(•) is a permutation function that maps
each cluster index ci to a ground truth label, which can be realized using the Hungarian algorithm
(Papadimitrou & Steiglitz, 1982).

(2) The NMI metric is in the range of [0, 1], while a higher NMI value indicates a better matching
between the algorithm generated result and ground truth result. For two random variables P and Q,
normalized mutual information is defined as (Strehl & Ghosh, 2002):

NMI =
I(P,Q)√
H(P )H(Q)

, (28)

where I(P,Q) denotes the mutual information between P and Q, while H(P ) and H(Q) are en-
tropies of P and Q. In practice, the NMI metric can be calculated as follows (Strehl & Ghosh,
2002):

NMI =

k∑
i=1

k∑
j=1

ni,j log(
n·ni,j

ni·nj
)√

(
k∑
i=1

nilog ni

n )(
k∑
j=1

nj log
nj

n )

, (29)

where n is the number of data points in the data set, k is the number of clusters, ni is the number of
data points in cluster Ci according to the clustering result generated by algorithm, nj is the number
of data points in class Cj according to the ground truth labels provided by the data set, and ni,j
is the number of data points in cluster Ci according to the clustering result as well as in class Cj
according to the ground truth labels.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

A.6.1 GRAPH LEARNING FOR SPECTRAL CLUSTERING (SC)

The classical spectral clustering (SC) algorithm (see Algorithm 2 in the Appendix) first constructs
a kNN graph where each edge weight encodes similarities between different data points (entities);
then SC calculates the eigenvectors of the graph Laplacian matrix and embeds data points into low-
dimensional space (Belkin & Niyogi, 2003); in the last, k-means algorithms are used to partition
the data points into multiple clusters. The performance of SC strongly depends on the quality of
the underlying graph (Guo, 2015). In this section, we apply GRASPEL for graph construction,
and show the learned graphs can result in drastically improved efficiency and accuracy in SC tasks.
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Since the SC algorithm has intrinsic randomness, the clustering result in each run is different. So
the reported numbers in our results have been averaged over 20 runs.

We show comprehensive results of SC using four graph learning (construction) methods in Table 1
and Table 2. The runtime reported in Table 2 includes the total time for eigendecomposition of
the Laplacian matrix and k-means clustering. The graph density (|E|/|V |) results are also shown in
Table 3. In Table 4, the runtime of the consensus method includes the time for consensus information
calculation and edge pruning, while the runtime of GRASPEL includes the total time for spectral
graph densification. As observed, GRASPEL can consistently achieve the state-of-the-art results in
SC: the GRASPEL learned graphs have led to significantly better SC accuracy (ACC), much lower
graph densities and much shorter graph learning time.

Table 1: ACC and NMI results
ACC(%)/ NMI

Data Set Standard k-NN Consensus LSGL GRASPEL
COIL20 75.72/0.86 81.60/0.90 85.49/0.95 86.46/0.94

PenDigits 74.36/0.79 71.08/0.79 74.53/0.77 82.40/0.79
USPS 64.31/0.79 68.54/0.81 81.50/0.84 91.50/0.89

MNIST 64.20/0.74 - - 74.63/0.78

Table 2: SC Runtime Results
Spectral clustering time (seconds)

Data Set Standard k-NN Consensus LSGL GRASPEL
COIL20 0.03 0.03 0.08 0.02

PenDigits 0.18 0.16 4.42 0.17
USPS 0.72 0.56 7.05 0.28

MNIST 252.59 - - 3.06

Table 3: Graph density results
Graph density (|E|/|V |)

Data Set Standard k-NN Consensus LSGL GRASPEL
COIL20 6.12 5.06 11.99 1.39

PenDigits 6.76 6.70 186.52 2.96
USPS 7.30 6.58 29.97 1.70

MNIST 7.46 - - 1.72

Table 4: Graph learning (construction) time results
Graph construction time (seconds)

Data Set Consensus LSGL GRASPEL
COIL20 2.43 13.56 0.29

PenDigits 172.51 1085.43 2.04
USPS 574.28 2074.78 3.37

MNIST - - 208.89

In Figures 5 and 6, additional SC results have been provided for the USPS and the Pendigit data sets
by comparing two embedding distortion tolerance levels (tol = 100 and tol = 10). Not surpris-
ingly, when starting with initial 2NN graphs a few GRASPEL iterations have already dramatically
improved SC results: the normalized mutual information (NMI) has been improved from 0.612 to
0.888 for the USPS data set, and from 0.04 to 0.840 for the Pendigit data set; The spectral clustering
accuracy (ACC) has been improved from 40.4% to 91.5% for the USPS data set, and from 15.2% to
89.4% for the Pendigit data set.

Since the number of zero Laplacian eigenvalues equals to the connected components in the learned
graph, we observe that GRASPEL can always identify O(q) spectrally-critical edges added to the
initial 2NN graph so that its q connected components immediately get stitched into a connected
graph for both test cases.
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Figure 5: The first 20 Laplacian eigenvalues (top) and 3D spectral drawings (bottom) of the 2NN
graph in figures (a) and (b), and the GRASPEL-learned graphs in figures (c) to (f).
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Figure 6: The first 50 Laplacian eigenvalues (top) and 3D spectral drawings (bottom) of the 2NN
graph in figures (a) and (b), and the GRASPEL-learned graphs in figures (c) to (f).
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Figure 7: Multilevel t-SNE visualization results.

Discussion. The superior performance of GRASPEL is due to the following reasons: 1) In tradi-
tional kNN graphs, all the nodes have the same degrees; as a result, the clustering may strongly
favor balanced cut, which may lead to improper cuts in high-density regions of the graph. In con-
trast, GRASPEL always learns ultra-sparse graphs that only include edges with the largest impact to
graph spectral (structural) properties; as a result, the corresponding cuts will always occur in proper
regions of the graph, which enables to handle even unbalanced data. 2) Recent work (Garg et al.,
2018) shows the fundamental connections between spectral properties of graphs associated with data
and the inherent robustness to adversarial examples. Since GRASPEL identifies candidate edges by
leveraging spectral graph properties, the learned graph structure will also be robust to input noises
(perturbations).

A.6.2 GRAPH LEARNING FOR DIMENSIONALITY REDUCTION (DR)

The t-Distributed Stochastic Neighbor Embedding (t-SNE) has become one of the most popular vi-
sualization tools for high-dimensional data analytic tasks (Maaten & Hinton, 2008; Linderman &
Steinerberger, 2017). However, its high computational cost limits its applicability to large scale
problems. An substantially improved t-SNE algorithm has been introduced based on tree approxi-
mation (Van Der Maaten, 2014). However, for large data set the computational cost can still be very
high.

A multilevel t-SNE algorithm has been proposed in (Zhao et al., 2018) leveraging spectral graph
coarsening as a pre-processing step applied to the original kNN graph. A much smaller set of
representative data points can be then selected from the coarsened graph for t-SNE visualization. In
this work, we use GRASPEL to learn sparse graphs that can be further reduced into much smaller
ones using spectral graph coarsening. Then more efficient t-SNE visualization can be achieved based
on the sampled data points corresponding to the nodes in the coarsened graphs.
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In our experiments, we first construct initial graphs by applying a spectral sparsification procedure
to the 5NN graphs of both the MNIST and USPS data sets. Then a spectral graph coarsening
procedure (Zhao et al., 2018) has been applied to create a hierarchy of coarse-level graphs. The
t-SNE visualization can be obtained by directly using the data points corresponding to the nodes on
the coarsest graph. Figure 7 shows the visualization and runtime results of the standard t-SNE (with
tree-based acceleration) (Van Der Maaten, 2014) and the multilevel t-SNE algorithm (Zhao et al.,
2018) based on graphs learned by GRASPEL. When using a 5X graph reduction ratio, t-SNE can
be dramatically accelerated (12.8X and 7X speedups for MNIST and USPS data sets, respectively)
without loss of visualization quality.
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