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Abstract

Spatial expressions in situated communication can be ambiguous, as their meanings
vary depending on the frames of reference (FoR) adopted by speakers and listeners.
While spatial language understanding and reasoning by vision-language models
(VLMs) have gained increasing attention, potential ambiguities in these models are
still under-explored. To address this issue, we present the COnsistent Multilingual
Frame Of Reference Test (COMFORT), an evaluation protocol to systematically
assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art
VLMs using COMFORT. Despite showing some alignment with English conventions
in resolving ambiguities, our experiments reveal significant shortcomings of VLMs:
notably, the models (1) exhibit poor robustness and consistency, (2) lack the
flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-
specific or culture-specific conventions in cross-lingual tests, as English tends to
dominate other languages. With a growing effort to align vision-language models
with human cognitive intuitions, we call for more attention to the ambiguous nature
and cross-cultural diversity of spatial reasoning.

1 Introduction

Even a simple spatial expression like “the basketball to the right of the car” may have multiple
interpretations. People may use different frames of reference [FoR; 34, 22, inter alia] to resolve
ambiguity about the underlying coordinate system, as illustrated in Figure 1a. The diversity of
conventions across languages and cultures further complicates this ambiguity—different languages
employ different conventions in choosing one FoR among multiple competing options. As shown in
Figure 1b, speakers may project themselves onto the ball or consider an imaginary listener facing
them [63]. These ambiguities are not easily resolvable based solely on linguistic expressions [64, 37].
We refer to Appendix A.1 for more background and related works.

Our main research question is not new: Do vision-language models represent space, and how?
Several benchmarks [31, 38] have been developed for this purpose, consisting of text-image pairs
where objects may or may not follow certain spatial relations. However, the aforementioned spatial
ambiguities remain largely under-explored when studying VLM-based spatial language understanding
and reasoning. We emphasize that FoRs are crucial to studying spatial cognition across modalities, as
they provide a foundational framework for understanding how spatial relationships are perceived,
interpreted, and communicated [35].
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(a) Frame of Reference (FoR)

Is the basketball to the right of the car?
● Yes, from the camera’s viewpoint
● Yes, from the woman’s viewpoint
● Yes, from the car’s viewpoint

(b) Coordinate Transformation

The ball to the left/right/
front/back of the blue ball.
● Translated: A/B/C/D
● Rotated: B/A/D/C
● Reflected: A/B/D/C
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Right
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Front Front

Right Right

(c) Spatial Continuity

Is the red ball to the 
right of the blue ball?

E.g., Hausa E.g., Tamil E.g., English

Figure 1: In situated communication, spatial language understanding and reasoning are often ambigu-
ous, leading to varying interpretations among people from different cultural backgrounds. Specifically:
(a) different frames of reference can result in different interpretations of the same spatial expression;
(b) speakers of different languages may use distinct coordinate frames for non-fronted reference
objects; and (c) spatial relations extend beyond exact axes to include acceptable regions.

To fill this gap, we present COnsistent Multilingual Frame Of Reference Test (COMFORT), a framework
that systematically evaluates the spatial reasoning capabilities of VLMs, emphasizing consistency
in understanding ambiguous and disambiguated spatial expressions. COMFORTintroduces (1) a set of
spatial reasoning tasks instantiated by synthetic 3D images and corresponding text describing spatial
relations and (2) metrics to evaluate the robustness and consistency of the model responses. We extend
the setup to multilingual settings by evaluating models in 109 languages across 170 regions worldwide.
We find that VLMs show alignment with English conventions in spatial language understanding when
resolving ambiguities. However, they (1) are still far from achieving robustness and consistency, (2)
lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to linguistic and cultural
conventions in cross-lingual tests, as English tends to dominate other languages. With a growing
effort to align vision-language models with human cognition, we highlight the ambiguous nature of
spatial language and call for increased attention to cross-cultural diversity in spatial reasoning.

2 Consistent Multilingual Frame of Reference Test (COMFORT)

We introduce the COnsistent Multilingual Frame Of Reference Test (COMFORT), a new evaluation
protocol with dataset, tasks, and comprehensive metrics, to study VLM behaviors in spatial language
reasoning with FoR-related ambiguity. This protocol accommodates spatial continuity and various
ambiguities, drawing insights from several well-defined metrics to assess performance and prediction
consistency. Given our primary focus on the analytical inquiry of models’ linguistic competence (i.e.,
spatial knowledge encoded in the latent representations) rather than performance (i.e., behavioral
evaluation) only [68, 60],2 we additionally develop better evaluation and consistency metrics to
deepen our understanding of model capabilities.

• COMFORT-CAR: When the relatum is fronted, as examples in Figure 1a, multiple FoRs are possible
to interpret the reference system.

• COMFORT-BALL: When the relatum is non-fronted, as examples in Figure 1b, we focus on the
ambiguity of conventions to determine its coordinate transformation for egocentric relative FoR.

A language prompt (Table 4) queries whether a spatial relation r ∈ R is satisfied by a referent-
relatum pair in the image under FoR f ∈ F (Figure 3) in language ℓ ∈ L. This work also
examines models using queries with no FoR specified; therefore, a test case in COMFORTis de-
fined as a 4-tuple in S × R × (F ∪ {∅}) × L. While there are many spatial relations in daily
languages, we primarily focus on four canonical directions; that is, the considered relation set
R = {to the left of, to the right of, in front of, behind}. COMFORTcovers |L| = 109 languages world-
wide; however, we use English as an example to describe the data synthesis and evaluation processes
for simplicity and clarity, and refer readers to Appendix A.2 for more details.

3 Empirical Experiments and Main Findings

In principle, COMFORT can be applied to all VLMs, whether multilingual or monolingual. We note
that most existing open-source VLMs are English-based language models; therefore, we begin our

2Here, we use the terms competence and performance analogically to Chomsky [15].
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Model
Egocentric Intrinsic Addressee Aggregated

Acc% (↑) εcos
×102(↓) Acc% (↑) εcos

×102(↓) Acc% (↑) εcos
×102(↓) Acc% (↑) εcos

×102(↓)
InstructBLIP-7B 47.2(+0.0) 43.5(+1.7) 47.2(+0.0) 42.3(+0.0) 47.2(+0.0) 43.6(+1.3) 47.2(+0.0) 43.1(+1.0)
InstructBLIP-13B 47.2(+0.0) 43.8(+0.3) 47.2(+0.0) 43.2(+1.5) 47.2(+0.0) 42.9(+1.1) 47.2(+0.0) 43.3(+1.0)
mBLIP-BLOOMZ 51.9(−0.9) 55.4(+7.7) 49.8(−3.0) 54.2(+5.8) 49.6(−3.2) 55.8(+8.7) 50.4(−2.4) 55.1(+7.4)
GLaMM 47.2(−10.6) 23.3(−0.7) 47.2(+0.8) 44.2(−6.9) 47.2(−2.8) 42.8(−6.1) 47.2(−4.2) 36.8(−4.6)
LLaVA-1.5-7B 55.2(−2.6) 18.4(−3.0) 48.3(+4.7) 45.7(−4.1) 48.2(−5.0) 43.4(−1.0) 50.6(−1.0) 35.8(−2.7)
LLaVA-1.5-13B 51.6(−15.0) 23.9(+3.1) 47.3(+0.8) 45.0(−0.7) 47.5(−3.8) 38.9(−4.2) 48.8(−6.0) 35.9(−0.6)
XComposer2 85.6(−7.0) 18.8(+3.0) 51.0(+0.5) 51.0(−3.3) 53.2(−0.6) 49.8(−1.6) 63.3(−2.4) 39.9(−0.6)
MiniCPM-V 72.4(−4.8) 24.6(−2.1) 49.9(−2.6) 47.8(−3.7) 52.9(−0.5) 45.1(−6.2) 58.4(−2.6) 39.2(−4.0)
GPT-4o 78.3(+4.6) 28.1(−7.0) 53.4(−1.9) 44.6(−6.3) 49.1(−5.7) 44.9(−6.4) 60.3(−1.0) 39.2(−6.6)

Table 1: The accuracy and cosine region parsing errors of VLMs when explicitly prompted to
follow each frame of reference are provided (cam/rel/add). The values in parentheses indicate the
performance change relative to the scenario with no perspective (nop) prompting.

Model Obj F1 (↑) Acc% (↑) εcos
×102 (↓) εhemi

×102 (↓) σ×102 (↓) η×102 (↓) csym
×102 (↓) copp

×102 (↓)

BALL CAR BALL CAR BALL CAR BALL CAR BALL CAR BALL CAR BALL CAR BALL CAR

InstructBLIP-7B 66.7 66.7 47.2 47.2 43.9 43.5 57.8 56.4 26.7 30.5 48.4 43.4 17.2 16.9 16.6 22.6
InstructBLIP-13B 67.3 50.3 47.2 47.2 43.0 43.8 55.5 55.9 27.1 36.8 48.2 46.4 17.3 17.0 21.0 21.9
mBLIP-BLOOMZ 99.1 33.3 47.5 51.9 52.1 55.4 62.1 65.6 43.7 48.6 54.1 60.7 29.1 30.1 33.8 42.0
GLaMM 100.0 99.8 47.2 47.2 33.0 23.3 45.2 37.6 29.9 23.4 45.0 28.4 10.1 9.4 13.7 14.6
LLaVA-1.5-7B 100.0 88.6 63.2 55.2 20.7 18.4 33.7 32.5 25.2 20.0 23.5 21.8 5.8 5.4 8.3 10.7
LLaVA-1.5-13B 100.0 98.6 55.3 51.6 25.7 23.8 37.6 37.1 19.3 20.8 24.9 29.9 7.0 5.8 9.3 10.8
XComposer2 100.0 95.3 92.4 85.6 20.0 18.8 21.1 26.3 19.2 15.3 13.7 22.9 9.0 6.5 10.5 12.0
MiniCPM-V 66.8 81.5 81.0 72.4 22.4 24.6 32.8 35.8 19.2 19.2 29.8 22.7 10.1 9.2 12.4 14.9
GPT-4o 100.0 94.5 89.2 78.3 27.4 28.1 27.5 35.0 20.9 24.0 43.1 38.8 14.1 13.3 14.2 16.7
Random (30 trials) 50.0 50.9 46.3 58.7 28.3 26.6 42.5 44.2
Always “Yes” 50.0 47.2 61.2 68.7 0.0 0.0 0.0 100.0

Table 2: A comprehensive evaluation of VLMs in egocentric relative FoR with reflected transfor-
mation, using an explicit camera perspective (cam) prompt, is conducted. The metrics considered
include object hallucination (F1-score), accuracy (Acc), region parsing error (ε), prediction noise (η),
standard deviation (σ), and consistency (c).

experiments on English conventions, where both relative and intrinsic FoRs are available, but there is
a conventional preference for a relative FoR combined with a reflected coordinate transformation
in the relative FoR [see 35, Table 5.4]. We further extend our setup to multilingual settings by
evaluating models in 109 languages across 170 regions worldwide. To cover a variety of VLMs
with different capabilities and training approaches, we evaluate the following models: InstructBLIP
(7B/13B) [16], LLaVA v1.5 (7B/13B) [39], InternLM-XComposer2 (7B) [19], MiniCPM-Llama3-V
v2.5 (8B) [29, 73], GLaMM (7B) [56], mBLIP-BLOOMZ-7B [24], GPT-4o [49].

Firstly, we find that most VLMs prefer reflected coordinate transformation convention and
egocentric relative frame of reference, as detailed in Section A.6.

3.1 VLMs Fail to Adopt Alternative Frames of Reference Flexibly

We now address the research question: can VLMs adopt different FoRs when perspectives are
explicitly specified to disambiguate spatial expressions? We again use COMFORT-CAR; however,
instead of using the no-perspective prompt (nop), we require VLMs to follow one FoR by explicitly
specifying the perspective (cam/rel/add) in the textual prompts (Table 4). Table 1 shows the results
in accuracy and εcos and the performance compared to when no perspective is specified, and Table 9
in the appendix gives the complete evaluation. We find that all models, including the strong ones like
GPT-4o and InternLM-XComposer2, show close-to-chance performance (50% accuracy) when being
prompted to use the intrinsic or addressee-centered relative FoRs. Compared to the same probing
setup without a perspective specified (nop), we find generally marginal improvements in region
parsing error (ε), whereas the accuracy decreases. Overall, the results indicate that while VLMs can
comprehend scenes using egocentric relative FoR, they struggle to adapt flexibly to alternative FoRs.

3.2 Spatial Representations in VLMs Are Not Robust and Consistent
In this section, we further ask: are spatial representations in VLMs robust and consistent? The
considered metrics include accuracy (Acc), region parsing error (ε), prediction noise (η), standard
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Language English Tamil Hausa
Intrinsic 50.9 52.0 54.0

Ego-Rel
Ref. 35.8 40.4 41.0
Rot. 57.3 55.2 56.1
Tran. 53.7 51.1 53.0

Add-Rel
Ref. 58.8 52.2 52.8
Rot. 51.3 52.9 55.3
Tran. 56.1 56.1 56.1

GPT-4o Prefer Ego-Ref. Ego-Ref. Ego-Ref.
Human Prefer Ego-Ref. Ego-Rot. Ego-Trans.

0.6

0.3 0.6

εcos (Relative)

εcos (Intrinsic)

English

Hausa

Tamil

Figure 2: A visualization of the world map that displays the preference of each region for using the
intrinsic FoR over the relative FoR. The plot is based on the top three spoken languages in each region,
as reported by The World Factbook [8], and averages the cosine parsing error (εcos, ↓), weighted by
the speaking population. We present a quantitative comparison of English, Tamil, and Hausa, with the
best-performing FoR marked in bold and the convention preferred by human speakers underlined.

deviation (σ), and consistency (c) as defined in Section 2. One commonly considered possibility
that VLMs underperform is that they suffer from object hallucination, where they misperceive
objects in the scenes [36, 13]. Following the object probing setups, we prompt the VLMs to inquire
about the presence of an existing object and a non-existing object in the scene, and compute the
F1-score (Table 2). We find that the BLIP models suffer from severe object hallucinations, which
contribute to their underperformance in the previous evaluation. Many VLMs, despite showing decent
performance metrics in terms of spatial understanding and reasoning accuracy, demonstrate a lack of
robustness and consistency. For example, the spatial opposite consistency (copp) of GPT-4o is not
significantly better than 30 random trials. In contrast, VLMs that have undergone supervised fine-
tuning on spatial relation tasks have a more robust and consistent spatial representation. For instance,
InternLM-XComposer2 and MiniCPM-V (on the COMFORT-BALLtask, with no object hallucinations)
show improved performance. On the other hand, although GLaMM is mechanistically grounded to
objects and exhibits minimal object hallucination, its spatial understanding capability is poor. This
suggests that improving visual entity grounding helps in recognizing individual objects but does not
automatically translate to better spatial understanding between multiple objects.

3.3 A Cross-lingual and Cross-cultural Evaluation of Frame of Reference

All previous experiments are centered around English; however, individuals from diverse multilingual
and cultural backgrounds may adopt different preferences and conventions to select their FoR in
resolving ambiguities [45, 50, 5, 48]. Our next research question naturally arises: Does multilingual
VLMs faithfully follow the preferences and conventions (associated with different languages)
to select the FoR? To extend the study of preferred FoR from English to a multilingual setting, we
evaluate 109 languages worldwide to investigate whether each language shows a preferred FoR. We
translate the English prompts into the target languages using the Google Cloud Translate API. Given
that the open-source language models either lack strong multilingual capabilities or underperform in
previous evaluations, we study this problem on the GPT-4o model [49]. We follow the setup similar
to Section A.6.2, but only evaluate the images corresponding to the four canonical directions using
the nop prompt. For each language, we compute εcos for each FoR and coordinate transformation.
Figure 2 presents a visualization of the world map, displaying the preference of each region for using
the (object-centered) intrinsic FoR over the relative FoR, where the latter corresponds to a low εcos

value. Table 10 summarizes the results for all languages tested.

Nearly all tested languages demonstrate a preference towards the relative FoR, except several
underrepresented languages, such as Konkani, Kurdish, and Amharic, which exhibit near-random
performance without a significant preference. In Figure 2, we present a classic comparison between
English, Tamil, and Hausa similar to that of Levinson [35], with the best-performing FoR marked
in bold, and the preferred convention by humans underlined. Although human speakers of these
languages have different preferred coordinate transformation conventions, the English convention of
reflected projection is observed for both Tamil and Hausa. Although, for example, Hausa permits an
English-like interpretation of front-back relations, this interpretation is generally less favored and may
confuse Hausa speakers [28]. This raises concerns that English may dominate the FoR preference
conventions of other languages in multilingual VLMs.
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A Appendix

A.1 Extended Background and Related Work

The recent success of large language models has sparked breakthroughs in multi-modalities, leading
to the development of many vision-language models [VLMs; 12, 49, 58, inter alia]. With some
benchmarks developed to evaluate the downstream performance of these models [40, 75], there has
been growing excitement around evaluations and analyses inspired by human cognitive capabilities
such as referential grounding [42], compositional reasoning [44], visual illusions [76, 26], and theory
of mind [30]. One direction among them that captures significant attention is spatial language
understanding and reasoning, leading to several benchmarks [31, 38] and enhanced models [10, 14].

Indeed, spatial cognition is a crucial part of human cognitive capability, developed since infancy
and continuing through the elementary school years [65, 67]. Language is closely intertwined with
spatial cognition, with each contributing to the acquisition of the other [27, 57, 53, 52, 25]. While
spatial language and non-linguistic spatial representations in memory are closely correlated and share
foundational properties, they are, to some extent, divergent—spatial conventions are not consistently
preserved across different languages or tasks, and humans demonstrate flexibility in using multiple
coordinate systems for both non-linguistic reasoning and linguistic expressions [47, 63]. Thus, spatial
language is inherently ambiguous, and as we quote:

Languages just do turn out to use fundamentally different semantic parameters in their categorization
of spatial relations—different coordinate systems, different principles for constructing such
coordinate systems, yielding different categorizations of ‘same’ and ‘different’ across spatial scenes.

Stephen C. Levinson (2003)

A.1.1 Spatial Language and Spatial Representation

Some projective terms, such as the English words front, back, right, and left, convey meanings of
spatial relations [21]. These terms articulate the spatial relation between two entities within a desig-
nated frame of reference (FoR), often involving one entity as the reference object (relatum/ground)
and another target object (referent/figure) that is positioned relative to the relatum along a specific
axis/direction [34, 22]. In situated communication, speech act participants (e.g., an addressee) may
also be considered [17]. To determine acceptable uses of various spatial relations, existing theories
suggest that people fit spatial templates, which are centered on the relatum and aligned with the FoR
[41], to parse out regions of acceptability of certain directions [23, 7].

Ambiguities in frame of reference. The choice of perspectives may lead to different FoRs, where
Levinson [35] has identified three main types of FoR: absolute, intrinsic, and relative. The absolute
FoR uses cardinal directions, such as north and south, as fixed bearings. The intrinsic FoR aligns
the origin with the relatum, describing the referent’s position relative to the relatum’s inherent
orientation. The relative FoR positions a viewer (egocentric or addressee) as the origin, focusing
on the observer’s intrinsic perspective. Liu et al. [37] have highlighted the ambiguities in situated
communication among three variations of intrinsic and relative FoRs (Figure 3): the egocentric
relative, the addressee-centered relative, and the object-centered intrinsic FoRs.3 When not specified,
these FoRs are not easily distinguishable based solely on their linguistic expressions [64]. To resolve
the ambiguity, individuals from diverse linguistic and cultural backgrounds adopt different preferences
and conventions in choosing FoRs [45, 50, 5, 4, 48].

Ambiguities in relative FoRs. The variations of relative FoRs form another source of ambiguity.
After putting the origin of the coordination system on the viewer, multiple strategies specifying how
to transform the axes can be considered (Figure 1b). Different languages use different transformation
conventions to resolve the ambiguity of the front-back and left-right of a relatum [35, 63], including:
(1) translated projection (e.g., Hausa) where the coordinate frame of the speaker is directly applied,
(2) rotated projection (e.g., Tamil), where the coordinate frame of the speaker is transformed with
a 180-degree rotation, and (3) reflected projection (e.g., English), where only the front-back axis is
reversed.

3We exclude the absolute FoR from our study as it introduces little ambiguity [37].
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Origin Frame of Reference Example (English)

Camera
(Preferred)

Egocentric
Relative FoR

(From the camera’s viewpoint,)
the ball is behind the car.

Addressee Addressee-Centered
Relative FoR

(From the woman’s viewpoint,)
the ball is to the left of the car.

Reference Object-Centered
Intrinsic FoR

(From the car’s viewpoint,)
the ball is to the right of the car.

Addressee Referent/Figure

Relatum/Ground

Figure 3: An illustrative example of how a frame of reference (FoR) specifies the reference system
when describing the spatial relation between a target object (i.e., the ball) and a reference object (i.e.,
the car). When the FoR is not explicitly specified, English prefers an egocentric relative FoR, i.e.,
“the ball is behind the car.” We study FoRs that lead to ambiguity [37].

Distractor

Camera poseObject size

Object color

180° 270° 

90° 0°

BALL - in front of

(a) Sample images from COMFORT-BALL. The 4 images
on the left are selected every 90° interval along the
rotational path out of 36 images. The 4 images on the
right illustrate variations with a distractor, different
object colors, sizes, or camera poses.

Bed Bench Bicycle 

Chair Dog 

Duck Horse Laptop 

Sofa 

CAR - in front of

0° 90° 

180° 270° 

(b) Sample images from COMFORT-CAR. The 4 images
on the left are selected every 90° interval along the
rotational path out of 36 images. The 9 images on
the right are sample images of each variation with
different relatum objects.

Figure 4: Examples from the COMFORT-BALL and COMFORT-CAR datasets.

A.1.2 Spatial Understanding in Vision-Language Models

Large language models (LLMs) have exhibited strong adaptability that extends beyond text, encom-
passing 2D and 3D vision [66, 2, 70], their affordances in the physical embodiment [20, 54, 74],
and various other modalities [72]. Especially, a variety of vision-language models (VLM) have
been developed by visual instruction tuning on paired text-image data [16, 39, 19]. With supervised
fine-tuning using entity-phrase mappings in text-image pairs, grounded VLMs have been developed
for fine-grained vision-language understanding at both the region [11, 3, 71, 51] and pixel level
[33, 69, 56, 77].

Spatial understanding is known to be challenging even for state-of-the-art VLMs and is receiving
increasing attention [1]. Besides using spatial language understanding modules [55], recent works
such as SpatialVLM [10] and SpatialRGPT [14] improve spatial reasoning in VLMs by leveraging
3D VQA or scene graph data for supervised fine-tuning. Several benchmarks have been developed
to evaluate spatial reasoning in VLMs. The Visual-Spatial Reasoning (VSR) [38] dataset
contains 66 types of spatial relations in real text-image pairs. SpatialRGPT-Bench [14] builds on
3D annotations for indoor, outdoor, and simulated environments, focusing on 3D spatial cognition.
What’sUp [31] curates images that vary only in the spatial relations of objects while keeping the
object identity fixed, allowing for controlled evaluation. Still, these benchmarks consist of text-image
pairs where objects may or may not indicate certain spatial relations. They overlook ambiguities
related to the frame of reference, lack spatial continuity, and do not propose metrics to evaluate the
robustness and consistency of spatial reasoning.

A.2 Dataset Details

A.2.1 Dataset Configurations

The entire data generation pipeline produces 720 English test cases in COMFORT-BALL, and 57.6k
English test cases in COMFORT-CAR. For COMFORT-BALL: 1 object combination × 5 variants × 4
relations × 36 angles = 720 test cases. For COMFORT-CAR: 20 object combinations × 5 variants × 4
relations × 36 angles × 4 prompts = 57,600 test cases. The table below lists all possible variants and
configurations for the dataset, and we describe our dataset configuration in detail as follows.
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Test Case Setup Possible Variants

Scene S

COMFORT-BALL: Relatum: red ball; Referent: blue ball; 36 samples uniformly collected
along a rotational path.
COMFORT-CAR: Relatum: basketball; Referent: horse, car, bench, laptop, rubber duck,
chair, dog, sofa, bed, bicycle; Addressee: woman; 36 samples uniformly collected along a
rotational path.

Spatial Relation R to the left of, to the right of, in front of, behind
Frame of Reference F egocentric relative, addressee-centered relative, object-centered intrinsic
Language L See Table 10.

Table 3: A test case in COMFORTis defined as a 4-tuple in S × R × (F ∪ {∅}) × L. This table
enumerates all possible variants and configurations of the dataset.

A.2.2 List of Evaluated Languages

We started with 132 candidate languages supported by Google Translate API.4 We removed 23
languages from our multilingual evaluation due to their failure to adhere to instructions for generating
“yes” and “no” predictions, or because they did not pass the back-translation test for quality control:
Aymara, Bambara, Croatian, Dhivehi, Dogri, Ewe, Guarani, Hmong, Kyrgyz, Luganda, Malayalam,
Meiteilon (Manipuri), Mizo, Odia (Oriya), Punjabi, Quechua, Samoan, Tatar, Telugu, Tigrinya,
Uyghur, Xhosa, Yoruba.

A.2.3 Task Formulation

Following the setups in object hallucination evaluation [36, 13], we formulate the task as a spatial
relation inference problem. In this task, a VLM M is presented with an RGB image ximg and a
textual question xquery. The image shows the egocentric perception of a scene s ∈ S, where S is the
set of possible scenes in which the referent moves along a rotational trajectory with a constant radius
from the relatum. In contrast to fixing the referents on the standard canonical axes, this setup better
mirrors the spatial continuity in common real-world scenarios.

A.2.4 Scene Setup

In COMFORT, there are configurations determined by whether the relatum has an intrinsic semantic
front:
• COMFORT-BALL: When the relatum is non-fronted (e.g., Figure 1b), we focus on the ambiguity of

FoR conventions associated with different languages. The split involves an observer’s egocentric
perception of a referent (e.g., a red ball) and a non-fronted relatum (e.g., a blue ball). We further
randomize the dataset with object-level (colors, sizes, and shapes) and scene-level variations
(camera positions and distractors) to consider more diverse yet reasonable settings (Figure 4a).

• COMFORT-CAR: When the relatum is fronted (e.g., Figure 1a), multiple FoRs can be explicitly
adopted to interpret the scene. A COMFORT-CARimage, therefore, involves the egocentric perception
of a referent, a fronted relatum, and an additional human addressee. One can interpret the spatial
relations using either the Camera, Addressee, or Relatum (C/A/R) as the origin to resolve the
reference frame ambiguity. COMFORT-CARhas a set of 10 realistic objects in a typical household or
outdoor scene, including horse, car, bench, laptop, rubber duck, chair, dog, sofa, bed, and bicycle,
all of which have a clear semantic front. We use a basketball as the referent and vary the relatum.
In addition to these objects, we include a human addressee in the scene. To disentangle different
FoRs as much as possible, we let the addressee face right, and let the relatum face either left or
right in the rendered images from the rendering camera’s perspective (Figure 4b).

A.2.5 Language Query Setup

Given a pair of referent [A] and a relatum [B], together with a spatial relation of interest, the query
is posed as “Is [A] [relation] [B]?” Depending on whether or not and which FoR is specified, the
query is appended after four different perspective prompts (Table 4): no perspective (nop), camera
perspective (cam), addressee perspective (add), and relatum perspective (rel). We only query from
the camera egocentric perspective (cam) for COMFORT-BALL, focusing on the ambiguity introduced by
variations of the relative FoR. For COMFORT-CAR, we use all four possible language prompts to study
how ambiguity in the reference system is resolved. Overall, for English, the above data generation

4https://cloud.google.com/translate
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Origin Prompt Template
nop Is [A] [relation] [B]?

cam
From the camera’s viewpoint,

is [A] [relation] [B]?

add
From the [addressee]’s viewpoint,

is [A] [relation] [B]?

rel
From the [relatum]’s viewpoint,

is [A] [relation] [B]?

Table 4: The origins of each coordinate
system and the corresponding prompt
templates for querying the FoR given a
referent-relation-relatum triple.

θ

θ: deviation angle

Conventional Front

Conventional Right

Figure 5: A red ball
with a deviation angle
θ = 90° relative to the
conventional front (En-
glish) of the blue ball.
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angle

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ili

ty

Figure 6: The raw probability
p(θ) in gray, normalized proba-
bility p̂(θ) in black, and two ref-
erence probability λhemi(θ) and
λcos(θ) in purple and red.

pipeline leads to 720 test cases in COMFORT-BALL, and 57.6k test cases in COMFORT-CAR. The same
method for dataset synthesis can be generalized to any other language; however, for computational
efficiency, we only include the scenes corresponding to the four most prototypical directions (i.e.,
left, right, front, and back) in our multilingual analysis.

A.3 Metrics

Quantitatively assessing the spatial understanding and reasoning capabilities of models is challenging
for two reasons. First, the physical world is continuous, and spatial relations may extend beyond
the precise canonical front-back and left-right axes. As noted by Carlson-Radvansky and Logan [7],
there exists regions of acceptability where, for instance, an object slightly to the front-left might
still be considered being “in front.” Second, as Dentella et al. [18] pointed out, language models are
biased towards affirmative responses. However, the intermediate representations may be sensitive to
variations in input and, to some extent, align with human perceptions of spatial cues. Based on these
concerns and findings, we introduce multiple metrics to evaluate the models’ competence to enable
more nuanced analyses in addition to accuracy that measures performance.

Unless further clarified, we adopt a right-handed coordinate system with the thumb pointing upwards
when describing angles. We define the deviation angle θ ∈ (−180°, 180°] as the angular displacement
from the canonical direction r to the vector connecting the relatum and target. For example, in
Figure 5, the deviation angle of canonical right from canonical front is θ = 90°. Following Carlson-
Radvansky and Logan [7], we define the acceptable region for a spatial relation r as the 180-degree
hemisphere centered at the corresponding canonical direction. For a VLM M and a test case indexed
by i, we let Pi(response;M) denote the probability of response ∈ {Yes,No} assigned by M, and
abbreviate it as Pi(response) if there is no confusion.

Accuracy. Given a spatial relation r in the textual prompt, we assess whether the assigned response
probabilities correspond to whether the referent lies within the acceptable region defined by the
relatum and r. Formally, we define the local probability of the model responding ‘Yes’ by pi =
Pi(Yes)/ [Pi(Yes) + Pi(No)]. We consider the inference correct if (1) the scene falls into the
acceptability region and pi > 0.5 or (2) the scene falls out of the acceptability region and pi ≤ 0.5.

Region Parsing Error. To mitigate the known bias towards affirmative answers, where the expectation
of pi is generally higher than 0.5, we normalize it across all image-prompt pairs, resulting in the
normalized probability

p̂i :=
pi −minj pj

maxj pj −minj pj
.

We adopt the root mean square error (RMSE) between the normalized acceptance probability p̂ and
reference probability threshold λref that represents the actual regions of acceptability,

εref =

√√√√ 1

n

n∑
i=1

(p̂i − λref)2,

where λref denotes the reference of the assigned probability, analogically to ground-truth labels in
machine learning terms.

13



(a) An illustration of the spatial symmetry with respect to
the (conventional) front. As the red ball rotates around the
blue ball, spatial symmetry consistency ensures that each
symmetric pair, with different deviation angles θ and −θ,
has the same probability of being identified as the front.

behind leftin front of right

(b) Antonyms for spatial opposite consistency,
e.g., When evaluating if the red ball is to the left of
the blue ball, spatial opposite consistency ensures
the probability of accepting a sample as left equals
the probability of identifying it as not right.

Figure 7: Illustrations for the consistency metrics defined in COMFORT.

We introduce two analytically and geometrically motivated proposals defining λref, λhemi and λcos,
based on hemispheres and cosine of angles, respectively. First, the hemisphere-based reference λhemi

is defined as

λhemi(θ) :=

{
1 if θ ∈ (−90°, 90°)
0 if θ ∈ (−180°,−90°] ∪ [90°, 180°].

Here, θ = 0° corresponds to the most prototypical spatial relation, and θ = 180° corresponds to the
opposite. Intuitively, λhemi = 1 denotes the test case falls into the acceptable region defined by the
textual prompt, and otherwise not.

The second reference is derived from the cosine of the deviation angle. Matching the range of the
cosine function to that of probability, i.e., [0, 1], we define the cosine-based reference λcos(θ) by

λcos(θ) := [cos(θ) + 1]/2.

Figure 6 shows an example of the vanilla probability curve p(θ) from LLaVA-v1.5-7B [39], normal-
ized probability curve p̂(θ), and two reference curves λhemi(θ) and λcos(θ). We report both εhemi(θ)
and εcos(θ) in experiments. We also note that in human spatial cognition, the regions of acceptability
are neither mutually exclusive 90° quadrants nor overlapping 180° hemispheres, as they vary across
individuals and depend on the situational context [23]. We discuss the limitations of this design in
Section B.4.

A.4 Robustness Metrics

Standard deviation. In COMFORT, some images depict variations of the same scene, sharing identical
spatial relations between the referent and the object but differing in terms of object colors, sizes, or
distractors. When the spatial relation and the query text remain unchanged, an ideal model should
have consistent predictions for all variations. To measure the robustness of the model prediction,
we report the average standard deviation of the predicted probability p̂i across all deviation angles
σ := avgθσ(θ).

Prediction noise. Since our data is generated through interpolation, ideally, if a model well
understands spatial relations, the probability curve with respect to the deviation angle should be
low-frequency (i.e., smooth) rather than high-frequency (i.e., noisy). Therefore, we measure the noise
by the RMSE, denoted by η, between the predicted probability and a Butterworth Low Pass Filter
[LPF; 6]:

η :=

√√√√ 1

n

n∑
i=1

[p̂i − LPF(p̂i)]2.

A smaller value of η indicates that the probability curve is smoother, which is more desirable.

A.5 Consistency Metrics

Spatial symmetric consistency. A critical aspect of consistent spatial reasoning is geometric
symmetry. As our tested target object rotates around the relatum in a circular path that is spatially
symmetric, we expect the probabilities of an ideal VLM to consistently reflect geometric symmetry
(Figure 7a). For a pair of test cases, indexed by i and j, that have the same configurations but opposite
deviation angles, i.e., θi + θj = 0°, we define the symmetry consistency:

csym :=

√
2

n− 2

∑
i,j

(p̂i − p̂j)2.
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Model Back εcos (↓) Front εcos (↓) Left εcos (↓) Right εcos (↓) Aggregated Preferred
Same Rev. Same Rev. Same Rev. Same Rev. Tran. Rot. Ref.

InstructBLIP-7B 45.6 39.0 31.6 52.0 37.2 48.0 47.5 37.8 40.5 44.2 43.9 -
InstructBLIP-13B 40.9 45.5 46.0 37.4 43.4 44.9 45.6 41.6 44.0 42.3 43.0 -
mBLIP 51.2 53.7 51.2 47.9 52.4 53.5 54.6 46.8 52.3 50.5 52.1 -
GLaMM 58.3 33.3 43.9 42.9 38.3 51.8 17.3 63.7 39.5 47.9 33.0 Ref.
LLaVA-1.5-7B 54.0 32.9 59.1 24.8 11.9 70.0 13.0 68.5 34.5 49.0 20.7 Ref.
LLaVA-1.5-13B 61.8 19.2 56.0 27.7 31.7 61.8 24.3 64.3 43.4 43.2 25.7 Ref.
XComposer2 73.2 17.9 74.5 20.7 20.1 80.9 21.3 81.1 47.3 50.1 20.0 Ref.
MiniCPM-V 70.9 21.9 64.3 26.9 19.7 74.1 21.1 73.3 44.0 49.1 22.4 Ref.
GPT-4o 75.7 28.2 73.6 32.0 24.3 80.8 25.1 80.8 49.7 55.5 27.4 Ref.
Table 5: Preferred coordinate transformation mapping from the egocentric viewer (camera) to the
relatum in the relative FoR. The cosine region parsing errors εcos are computed against both the Same
and Reversed directions relative to the egocentric viewer’s coordinate system. For example, native
English speakers typically prefer a Reflected transformation, which maintains the lateral (left/right)
axis but reverses the sagittal (front/back) axis relative to the viewer (Figure 1). We determine the
preferred transformation based on the aggregated performance, with “-” for no significant preference.

Spatial opposite consistency. Similarly, we expect the probabilities of an ideal VLM to consistently
reflect geometric opposition (Figure 7b). For example, the probability that a sample is accepted by
the spatial relation “to the left” should be identical to the probability that it is rejected by “to the
right.” For a pair of opposite spatial relation r, opp(r) ∈ R with the same configurations including
the deviation angles θi, the opposition consistency is given as:

copp :=

√√√√ 1

n

n∑
i=0

(p̂ri + p̂
opp(r)
i − 1)2.

A.6 Additional Results, Figures and Tables

A.6.1 Most VLMs Prefer Reflected Coordinate Transformation Convention

In this section, we address the research question: do VLMs have a preferred coordinate trans-
formation convention, and if so, what is it? Experiments are conducted on COMFORT-BALLusing
the camera perspective prompt (cam) that explicitly specifies an egocentric relative FoR (Table 5).
Table 7 in the appendix shows the complete evaluation including εhemi and εcos.

We observe that almost all VLMs demonstrate a clear preference over the reflected transformation
similar to English, except the BLIP series. Still, some models are also affected by the ambiguity
of multiple transformation conventions. With the textual prompting specifying a relation, at θ = 0,
GPT-4o and LLaVA-1.5-13B show a sharp drop of performance and a significant variance for behind
and right, respectively (Figure 8), indicating that some models are sensitive to other transformations.

A.6.2 Most VLMs Prefer Egocentric Relative Frame of Reference

We now attempt to answer the research question: do VLMs have a preferred frame of reference,
and if so, what is it? We conduct our study on COMFORT-CARusing the no perspective prompt (nop)
that deliberately leaves the FoR ambiguous. When calculating the performance with respect to relative
FoRs (either egocentric or addressee-centered), we assume a reflected coordinate transformation
convention. Table 6 shows the results of preferred FoR in English measured by the region parsing
error εcos, and Table 8 in the appendix shows the complete evaluation including both εhemi and εcos.
Almost all VLMs demonstrate a significant preference for the egocentric relative FoR similar to
English, again, except for the BLIP series. Additionally, the models’ performances are inconsistent
across different spatial relations—models generally perform better in the lateral directions (left and
right) than the sagittal ones (front and behind), even in competitive industry models like GPT-4o.
For instance, GLaMM does not show a very strong preference when resolving ambiguities along the
sagittal axes, but it demonstrates a significant preference when resolving lateral ambiguity.
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Model Back εcos (↓) Front εcos (↓) Left εcos (↓) Right εcos (↓) Aggregated Prefer
Ego. Int. Add. Ego. Int. Add. Ego. Int. Add. Ego. Int. Add. Ego. Int. Add.

InstructBLIP-7B 41.0 38.6 38.6 40.9 46.9 46.9 45.6 32.5 51.9 39.6 51.2 31.8 41.8 42.3 42.3 -
InstructBLIP-13B 32.9 34.4 34.4 52.5 48.5 48.5 47.8 56.2 27.8 40.6 27.6 56.6 43.5 41.7 41.8 -
mBLIP-BLOOMZ 52.2 53.2 53.2 45.3 44.6 44.6 47.8 47.6 48.1 45.4 48.4 42.4 47.7 48.4 47.1 -
GLaMM 28.0 49.1 49.1 30.0 40.2 40.2 14.0 56.8 41.5 13.7 53.0 46.6 21.4 49.8 44.4 Ego.
LLaVA-1.5-7B 20.9 43.0 43.0 34.5 32.6 32.6 13.4 53.5 47.4 14.3 53.6 49.3 20.8 45.7 43.1 Ego.
LLaVA-1.5-13B 31.9 38.8 38.8 24.8 57.1 57.1 11.7 51.1 51.1 27.5 57.4 48.7 24.0 51.1 48.9 Ego.
XComposer2 12.7 49.3 49.3 15.2 48.3 48.3 18.8 61.2 53.7 16.5 58.4 54.5 15.8 54.3 51.4 Ego.
MiniCPM-V 34.2 40.7 40.7 35.5 53.4 53.4 18.0 53.9 58.4 19.0 58.1 52.7 26.7 51.5 51.3 Ego.
GPT-4o 38.3 36.7 36.7 43.1 50.2 50.2 34.7 59.3 56.5 24.3 57.3 61.7 35.1 50.9 51.3 Ego.

Table 6: Preferred frame of reference in VLMs. Models’ Cosine Region Parsing Errors εcos are
computed against the Intrinsic FoR (relatum origin), Egocentric relative FoR (camera origin), and
Addressee-centric relative FoR (addressee origin). English typically prefers an egocentric relative
FoR. We determine the preferred FoR based on the aggregated performance, with “-” indicating no
significant preference.

Back Front

Same Reversed Same Reversed

Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102

InstructBLIP-7B 47.2 58.4 45.6 47.2 53.8 39.0 47.2 47.5 31.6 47.2 64.6 52.0
InstructBLIP-13B 47.2 55.9 40.9 47.2 56.6 45.5 47.2 60.0 46.0 47.2 53.0 37.4
mBLIP 56.1 60.2 51.2 47.2 64.8 53.7 51.1 61.4 51.2 47.8 58.0 47.9
GLaMM 47.2 71.1 58.3 47.2 46.3 33.3 47.2 55.4 43.9 47.2 55.9 42.9
LLaVA-1.5-7B 47.2 66.7 54.0 47.2 47.0 32.9 47.2 71.0 59.1 47.2 36.4 24.8
LLaVA-1.5-13B 47.2 73.8 61.8 47.2 36.3 19.2 42.8 67.3 56.0 51.7 39.1 27.7
XComposer2 13.3 84.5 73.2 90.0 26.3 17.9 15.0 85.8 74.5 85.0 31.6 20.7
MiniCPM-V 13.9 84.1 70.9 80.6 35.6 21.9 26.1 77.0 64.3 75.0 35.3 26.9
GPT-4o 16.7 87.3 75.7 87.8 30.3 28.2 25.6 82.4 73.6 80.0 40.2 32.0

Left Right

Same Reversed Same Reversed

Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102

InstructBLIP-7B 47.2 51.5 37.2 47.2 61.6 48.0 47.2 61.4 47.5 47.2 52.0 37.8
InstructBLIP-13B 47.2 54.2 43.4 47.2 57.0 44.9 47.2 58.1 45.6 47.2 52.5 41.6
mBLIP 47.2 59.8 52.4 47.2 64.2 53.5 47.8 65.7 54.6 47.8 56.4 46.8
GLaMM 47.2 48.9 38.3 47.2 65.5 51.8 79.4 29.8 17.3 15.0 76.2 63.7
LLaVA-1.5-7B 47.2 25.3 11.9 47.2 83.4 70.0 47.2 26.0 13.0 47.2 80.9 68.5
LLaVA-1.5-13B 62.8 39.1 31.7 31.7 76.8 61.8 91.1 35.8 24.3 8.9 79.3 64.3
XComposer2 97.8 11.3 20.1 3.3 95.6 80.9 96.7 15.2 21.3 3.3 95.8 81.1
MiniCPM-V 86.1 27.7 19.7 9.4 88.1 74.1 82.2 32.7 21.1 12.2 87.0 73.3
GPT-4o 94.4 20.4 24.3 11.1 92.6 80.8 94.4 19.0 25.1 11.1 92.8 80.8

Aggregated
Translated Rotated Reflected Preferred Transform

Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102 Acc% εhemi
×102 εcos

×102

InstructBLIP-7B 47.2 54.7 40.5 47.2 58.0 44.2 47.2 57.8 43.9 Not Significant
InstructBLIP-13B 47.2 57.1 44.0 47.2 54.8 42.3 47.2 55.5 43.0 Not Significant
mBLIP 50.6 61.8 52.3 47.5 60.9 50.5 47.5 62.1 52.1 Not Significant
GLaMM 55.3 51.3 39.5 39.2 61.0 47.9 55.3 45.2 33.0 Reflected
LLaVA-1.5-7B 47.2 47.3 34.5 47.2 61.9 49.0 47.2 33.7 20.7 Reflected
LLaVA-1.5-13B 61.0 54.0 43.4 34.9 57.9 43.2 63.2 37.6 25.7 Reflected
XComposer2 55.7 49.2 47.3 45.4 62.3 50.1 92.4 21.1 20.0 Reflected
MiniCPM-V 52.1 55.4 44.0 44.3 61.5 49.1 81.0 32.8 22.4 Reflected
GPT-4o 57.8 52.3 49.7 47.5 64.0 55.5 89.2 27.5 27.4 Reflected

Table 7: The full results for testing the preferred coordinate transformation mapping from the viewer
to the relatum in the relative frame of reference.

B Discussion and Conclusions

B.1 Do vision-language models represent space and how?

It is insufficient to answer this question by simply querying the model with text-image pairs and
comparing the output with a fixed ground truth. We must, at least, query the models with awareness
of the ambiguity in FoRs, which is essential in determining how the scenes in the physical world
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Back Front

Egocentric Intrinsic Addressee Egocentric Intrinsic Addressee

Acc% εhemi
×102 ε

cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102

InstructBLIP-7B 47.2 51.4 41.0 47.2 53.0 38.6 47.2 53.0 38.6 47.2 54.2 40.9 47.2 60.7 46.9 47.2 60.7 46.9
InstructBLIP-13B 47.2 43.5 32.9 47.2 48.9 34.4 47.2 48.9 34.4 47.2 66.5 52.5 47.2 61.1 48.5 47.2 61.1 48.5
mBLIP-BLOOMZ 52.8 62.1 52.2 52.8 63.9 53.2 52.8 63.9 53.2 52.8 56.4 45.3 52.8 55.5 44.6 52.8 55.5 44.6
GLaMM 47.2 45.6 31.9 47.2 51.0 38.8 47.2 51.0 38.8 47.2 37.9 24.8 47.2 69.6 57.1 47.2 69.6 57.1
LLaVA-1.5-7B 49.2 41.6 28.0 47.5 60.3 49.1 47.5 60.3 49.1 48.6 43.2 30.0 48.6 52.9 40.2 48.6 52.9 40.2
LLaVA-1.5-13B 50.8 36.8 20.9 48.6 54.7 43.0 48.6 54.7 43.0 47.2 46.5 34.5 47.2 47.3 32.6 47.2 47.3 32.6
XComposer2 91.4 25.0 12.7 53.6 59.9 49.3 53.6 59.9 49.3 87.8 26.6 15.2 55.0 59.3 48.3 55.0 59.3 48.3
MiniCPM-V 66.4 46.5 34.2 60.8 51.3 40.7 60.8 51.3 40.7 57.5 45.0 35.5 50.8 64.6 53.4 50.8 64.6 53.4
GPT-4o 64.2 49.1 38.3 66.4 45.4 36.7 66.4 45.4 36.7 58.1 54.8 43.1 53.6 61.0 50.2 53.6 61.0 50.2

Left Right

Egocentric Intrinsic Addressee Egocentric Intrinsic Addressee

Acc% εhemi
×102 ε

cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102

InstructBLIP-7B 47.2 59.0 45.6 47.2 45.3 32.5 47.2 62.0 51.9 47.2 53.1 39.6 47.2 61.7 51.2 47.2 45.3 31.8
InstructBLIP-13B 47.2 59.7 47.8 47.2 70.2 56.2 47.2 39.6 27.8 47.2 53.6 40.6 47.2 39.5 27.6 47.2 70.8 56.6
mBLIP-BLOOMZ 52.8 58.2 47.8 52.8 59.7 47.6 52.8 58.4 48.1 52.8 57.7 45.4 52.8 60.6 48.4 52.8 53.8 42.4
GLaMM 75.8 22.3 11.7 46.4 62.0 51.1 52.5 62.3 51.1 60.8 41.8 27.5 44.7 68.5 57.4 53.1 58.7 48.7
LLaVA-1.5-7B 76.7 25.6 14.0 33.9 68.2 56.8 64.4 52.7 41.5 56.4 28.5 13.7 44.2 64.6 53.0 52.5 57.3 46.6
LLaVA-1.5-13B 81.7 23.7 13.4 42.2 65.0 53.5 57.2 58.5 47.4 86.7 26.8 14.3 47.8 64.0 53.6 52.2 59.9 49.3
XComposer2 95.0 18.8 18.8 45.6 70.5 61.2 54.4 64.0 53.7 96.1 17.1 16.5 47.8 68.1 58.4 52.2 64.6 54.5
MiniCPM-V 93.3 20.4 18.0 52.2 64.3 53.9 47.8 68.0 58.4 91.7 22.6 19.0 46.1 68.3 58.1 53.9 62.5 52.7
GPT-4o 78.6 42.1 34.7 48.1 69.4 59.3 51.9 65.8 56.5 93.9 21.8 24.3 52.8 67.0 57.3 47.2 71.0 61.7

Aggregated
Egocentric Intrinsic Addressee Preferred FoR

Acc% εhemi
×102 ε

cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102

InstructBLIP-7B 47.2 54.4 41.8 47.2 55.2 42.3 47.2 55.2 42.3 Not Significant
InstructBLIP-13B 47.2 55.8 43.5 47.2 54.9 41.7 47.2 55.1 41.8 Not Significant
mBLIP-BLOOMZ 52.8 58.6 47.7 52.8 59.9 48.4 52.8 57.9 47.1 Not Significant
GLaMM 57.8 36.9 24.0 46.4 62.8 51.1 50.0 60.4 48.9 Egocentric Relative
LLaVA-1.5-7B 57.7 34.7 21.4 43.5 61.5 49.8 53.3 55.8 44.4 Egocentric Relative
LLaVA-1.5-13B 66.6 33.5 20.8 46.5 57.7 45.7 51.3 55.1 43.1 Egocentric Relative
XComposer2 92.6 21.9 15.8 50.5 64.4 54.3 53.8 61.9 51.4 Egocentric Relative
MiniCPM-V 77.2 33.7 26.7 52.5 62.1 51.5 53.3 61.6 51.3 Egocentric Relative
GPT-4o 73.7 42.0 35.1 55.2 60.7 50.9 54.8 60.8 51.3 Egocentric Relative

Table 8: The full results for testing the preferred frame of reference in VLMs.

Back Front

Egocentric Intrinsic Addressee Egocentric Intrinsic Addressee

Acc% εhemi
×102 ε

cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102

InstructBLIP-7B 47.2 56.4 45.1 47.2 54.3 41.2 47.2 56.0 42.8 47.2 56.2 42.0 47.2 56.4 43.6 47.2 56.3 43.3
InstructBLIP-13B 47.2 49.2 38.1 47.2 54.0 40.4 47.2 53.8 40.9 47.2 63.0 49.8 47.2 58.6 46.2 47.2 59.7 47.6
mBLIP-BLOOMZ 52.9 65.4 55.3 52.4 64.7 54.8 50.8 66.3 57.1 52.6 66.2 56.3 52.1 63.8 52.8 53.1 67.1 58.9
GLaMM 47.2 46.2 32.7 47.2 54.8 42.4 47.2 62.6 49.9 47.2 40.4 25.3 47.2 55.1 41.6 47.2 51.0 38.3
LLaVA-1.5-7B 49.0 41.6 27.6 47.4 56.3 45.7 46.2 66.7 55.0 47.5 39.4 25.2 47.4 52.9 39.8 47.2 41.1 27.5
LLaVA-1.5-13B 47.2 38.3 22.4 47.2 53.2 41.1 47.2 52.1 39.9 47.2 48.8 36.8 47.2 54.7 41.2 47.2 41.9 26.8
XComposer2 65.4 40.6 26.0 52.2 57.9 47.0 54.0 58.5 47.5 86.9 27.0 17.1 52.1 58.9 47.8 53.1 57.8 46.6
MiniCPM-V 55.7 48.6 36.0 46.9 57.7 45.9 53.8 47.4 36.3 54.7 45.9 35.0 52.2 58.4 45.9 52.2 58.5 46.9
GPT-4o 69.0 41.3 28.7 59.7 50.0 37.7 56.4 48.7 36.0 58.6 52.5 40.3 52.1 57.4 45.1 48.3 60.0 46.9

Left Right

Egocentric Intrinsic Addressee Egocentric Intrinsic Addressee

Acc% εhemi
×102 ε

cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102 Acc% εhemi

×102 ε
cos
×102

InstructBLIP-7B 47.2 56.3 43.3 47.2 56.0 43.0 47.2 57.9 47.1 47.2 56.8 43.5 47.2 52.9 41.5 47.2 54.4 41.0
InstructBLIP-13B 47.2 58.0 46.2 47.2 61.7 48.7 47.2 46.5 33.8 47.2 53.5 41.1 47.2 49.8 37.6 47.2 62.6 49.4
mBLIP-BLOOMZ 51.4 65.6 55.4 46.4 67.0 56.4 47.2 64.6 54.8 50.7 65.3 54.4 48.2 63.5 52.8 47.2 62.9 52.3
GLaMM 47.2 29.6 16.9 47.2 57.7 45.8 47.2 53.7 41.5 47.2 34.3 18.3 47.2 58.7 47.1 47.2 53.2 41.6
LLaVA-1.5-7B 64.9 23.7 12.1 50.4 60.2 48.9 49.9 56.3 45.3 59.3 25.2 8.7 47.9 59.8 48.5 49.6 56.7 45.7
LLaVA-1.5-13B 47.2 29.2 18.3 47.2 59.5 47.0 47.2 53.5 41.2 64.7 32.1 17.9 47.4 61.6 50.7 48.5 58.6 47.8
XComposer2 95.6 18.4 16.4 49.7 64.8 54.5 54.0 62.4 51.3 94.4 19.2 15.7 49.9 64.9 54.8 51.8 64.3 53.8
MiniCPM-V 89.4 24.2 13.3 50.4 60.9 50.0 52.1 60.6 49.9 89.9 24.3 14.2 50.1 60.6 49.5 53.3 58.0 47.3
GPT-4o 91.7 24.0 22.8 52.5 60.1 48.6 46.7 59.9 47.6 93.9 22.1 20.5 49.2 59.4 47.0 45.1 61.0 49.1

Table 9: The full results for benchmarking perspective-taking performance in VLMs.

are mapped to spatial expressions [35]. Our experiments confirm that many VLMs are equipped
with reasonable spatial representations through vision-language training alone; in particular, most
VLMs clearly prefer the egocentric relative FoR with reflected projection, aligning with English
conventions. However, our results also show these representations lack robustness and consistency
in a continuous space. Similar experimental setups can yield widely varying performance across
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Code Language Intrinsic Egocentric Addressee Code Language Intrinsic Egocentric Addressee
Ref. Rot. Tran. Ref. Rot. Tran. Ref. Rot. Tran. Ref. Rot. Tran.

af Afrikaans 50.9 33.7 57.8 49.2 56.6 55.5 57.5 ku Kurdish 56.5 49.5 54.4 53.1 53.1 55.2 54.0
ak Akan 51.8 39.6 52.2 48.8 50.4 50.6 53.8 la Latin 52.2 43.9 49.8 55.5 55.1 50.8 56.6

am Amharic 52.1 47.4 60.7 50.9 56.8 54.2 57.6 lb Luxembourgish 54.7 35.6 57.6 50.3 58.6 53.0 59.9
ar Arabic 55.7 35.8 59.0 51.0 56.6 55.8 59.8 ln Lingala 52.6 45.7 50.3 59.4 54.6 51.3 58.0
as Assamese 51.6 40.8 55.3 51.6 48.8 52.8 56.0 lo Lao 55.8 40.1 55.0 53.7 54.7 55.7 55.5
az Azerbaijani 49.8 41.9 56.2 51.6 50.7 52.4 55.5 lt Lithuanian 54.4 35.5 58.3 51.6 57.4 56.5 59.1
be Belarusian 54.4 39.7 61.7 46.5 51.1 51.9 58.9 lv Latvian 55.8 35.5 57.7 53.8 57.9 58.7 58.8
bg Bulgarian 56.9 32.8 56.0 51.4 55.7 55.6 58.9 mai Maithili 52.7 39.8 55.1 49.9 51.2 50.6 56.5

bho Bhojpuri 51.5 42.8 58.3 47.5 52.3 51.4 56.5 mg Malagasy 47.1 37.1 52.2 48.1 53.1 50.9 53.5
bn Bengali 55.8 34.5 57.1 50.2 53.8 56.1 57.4 mi Maori 52.0 36.6 58.5 47.6 52.0 51.9 58.1
bs Bosnian 55.1 35.2 58.5 49.6 54.3 53.1 59.4 mk Macedonian 54.8 37.0 59.1 49.5 56.5 56.0 58.1
ca Catalan 55.6 34.7 56.9 53.0 56.0 56.4 59.7 mn Mongolian 54.1 36.7 56.8 47.4 54.7 53.6 54.7

ceb Cebuano 52.9 40.0 52.7 54.9 55.3 49.5 60.3 mr Marathi 52.9 34.5 55.0 48.3 51.7 52.4 55.4
ckb Sorani 50.4 36.1 53.3 50.6 50.3 52.0 56.3 ms Malay 54.2 33.1 55.8 50.5 55.9 55.4 57.9
co Corsican 57.6 35.4 57.4 54.3 58.8 58.8 59.7 mt Maltese 53.4 37.5 56.1 49.2 50.8 53.8 55.5
cs Czech 56.4 35.7 58.2 52.4 57.0 58.5 58.0 my Myanmar 54.9 39.3 58.7 51.8 54.2 56.1 58.1
cy Welsh 55.1 36.7 59.5 48.7 54.9 54.8 58.5 nb Norwegian 55.1 34.7 57.0 52.1 58.1 57.6 57.3
da Danish 54.9 33.0 55.2 53.1 57.6 58.3 56.9 ne Nepali 53.1 39.4 58.4 47.3 52.9 54.1 54.0
de German 55.7 36.2 58.4 52.8 56.9 56.6 60.3 nl Dutch 51.7 34.5 56.3 48.3 53.5 51.6 57.8
el Greek 54.4 34.4 57.1 52.2 57.1 57.5 57.7 nso Sepedi 53.8 42.6 51.0 57.1 46.3 54.2 53.7
en English 50.9 35.8 57.3 53.7 58.8 51.3 58.8 ny Nyanja 53.7 34.5 56.6 48.0 54.4 52.8 56.7
eo Esperanto 58.0 34.3 56.4 54.6 58.2 58.2 60.2 om Oromo 51.1 43.5 57.3 50.6 54.9 54.8 52.9
es Spanish 56.9 36.2 58.1 53.3 57.0 58.5 59.0 pl Polish 55.8 32.9 55.8 52.5 55.1 55.1 59.5
et Estonian 53.7 35.1 56.0 51.7 55.0 54.8 58.5 ps Pashto 53.0 34.6 57.4 48.9 53.7 54.6 57.4
eu Basque 56.8 34.3 56.8 53.2 56.7 57.1 59.5 pt Portuguese 56.3 35.9 58.2 51.9 59.1 59.3 57.6
fa Persian 55.8 32.1 55.3 49.8 54.4 53.8 58.0 ro Romanian 57.1 34.8 57.0 53.8 58.2 58.6 59.1
fi Finnish 53.9 33.7 56.7 50.8 56.3 56.1 57.6 ru Russian 56.2 36.9 58.8 53.0 56.8 56.3 60.8

fil Filipino 50.9 31.1 54.1 49.2 54.3 54.0 55.7 rw Kinyarwanda 53.2 35.2 56.7 48.9 54.4 54.1 57.2
fr French 58.0 35.2 57.4 53.7 58.6 58.5 59.4 sa Sanskrit 51.9 41.2 54.1 51.9 51.7 56.4 51.6
fy Frisian 53.9 38.2 58.9 49.6 53.4 53.2 59.2 sd Sindhi 51.3 40.3 56.5 49.1 54.8 49.8 57.4
ga Irish 54.0 33.2 55.3 49.2 52.7 55.7 53.9 si Sinhala 52.4 38.4 54.6 48.6 53.4 51.5 56.6
gd Scots Gaelic 53.9 35.4 58.5 49.6 54.7 55.8 58.1 sk Slovak 56.1 37.7 57.1 54.7 57.2 56.7 59.8
gl Galician 56.6 37.1 59.0 53.4 57.9 57.9 60.0 sl Slovenian 55.8 36.5 59.3 49.5 53.9 54.3 58.9

gom Konkani 51.1 53.1 55.5 50.5 52.5 54.9 51.8 sn Shona 56.0 34.7 56.0 52.2 54.8 55.6 58.5
gu Gujarati 52.6 36.6 54.2 50.9 55.5 55.3 53.8 so Somali 53.7 34.3 56.4 48.2 50.0 51.6 58.4
ha Hausa 54.0 41.0 56.1 53.0 52.8 55.3 56.1 sq Albanian 53.6 35.1 56.4 49.0 52.6 50.3 60.1

haw Hawaiian 55.3 42.2 62.1 51.5 60.5 56.2 60.8 sr Serbian 55.4 34.5 57.2 50.9 52.5 55.0 58.8
he Hebrew 56.5 36.4 58.8 52.5 57.1 56.5 60.3 st Sesotho 53.9 38.4 55.4 51.0 51.3 54.4 55.8
hi Hindi 52.5 37.8 56.6 49.1 54.5 54.6 54.2 su Sundanese 51.3 36.7 55.0 50.0 53.7 50.4 57.7
ht Haitian Creole 56.1 36.0 58.3 53.6 58.4 58.2 59.6 sv Swedish 54.0 33.5 56.7 51.7 55.8 56.3 58.2
hu Hungarian 55.2 35.0 57.5 50.7 56.1 56.8 56.7 sw Swahili 55.3 34.2 56.8 52.4 57.2 56.5 58.4
hy Armenian 52.2 35.4 56.7 48.8 53.6 52.5 57.2 ta Tamil 52.0 40.4 55.2 51.1 52.2 52.9 54.6
id Indonesian 55.9 35.6 58.1 52.2 57.1 57.8 58.1 tg Tajik 55.7 36.7 57.7 49.7 55.4 56.6 56.3
ig Igbo 54.5 33.8 56.7 47.4 53.6 53.2 55.3 th Thai 55.5 35.4 57.9 50.8 56.2 57.8 57.3

ilo Ilocano 50.8 44.6 46.7 58.9 48.9 57.0 48.7 tk Turkmen 52.3 45.3 59.0 51.5 52.6 51.2 59.1
is Icelandic 55.9 34.2 57.0 52.2 56.5 58.0 57.3 tr Turkish 55.3 33.6 56.3 50.8 56.2 57.0 56.3
it Italian 56.8 35.6 57.6 53.6 57.9 58.2 59.6 ts Tsonga 49.4 44.6 50.0 53.7 53.3 51.5 53.6
ja Japanese 54.7 34.5 56.9 50.4 54.4 55.9 57.3 uk Ukrainian 56.6 36.1 58.8 50.1 56.8 55.7 59.7
jv Javanese 53.5 35.3 57.7 51.0 55.7 54.8 58.9 ur Urdu 52.3 34.6 56.7 49.7 54.0 55.1 57.0
ka Georgian 51.1 34.8 54.3 50.6 52.0 54.0 55.3 uz Uzbek 52.6 34.5 56.4 48.1 51.7 53.2 56.6
kk Kazakh 52.6 36.5 58.8 50.4 54.0 56.1 56.9 vi Vietnamese 53.9 34.6 58.5 48.6 55.7 56.1 56.8

km Khmer 55.6 37.6 60.2 50.5 56.9 56.6 59.3 yi Yiddish 56.7 36.5 57.9 53.5 56.8 57.3 60.0
kn Kannada 52.3 40.8 53.2 49.5 49.6 51.9 53.4 zh Yoruba 54.6 35.5 58.3 51.4 56.9 57.2 57.8
ko Korean 53.6 36.5 59.1 49.7 53.3 53.5 59.8 zu Chinese 55.6 35.9 57.7 53.1 55.3 56.5 60.2
kri Krio 58.3 36.2 57.1 51.2 56.1 53.2 60.2

Table 10: The full results for the cross-lingual and cross-cultural evaluation of the preferred frame of
reference in VLMs.

different spatial relations—for example, GPT-4 shows minimal preferences for the egocentric relative
FoR along the sagittal axis but a significant preference along the lateral one (Table 6). As a result,
VLMs demonstrate unsatisfactory consistency in their spatial performance (Table 2). Future work is
necessary to improve the consistency and robustness of spatial representations in these models.

Our research also aligns with the growing trend of grounding linguistic analysis in rich modalities
representing the real world [9, 62]. Language is not text in isolation; its meaning is significantly
enriched when grounded in real-world contexts. For example, the ambiguity of spatial terms, as
discussed in this paper, becomes meaningful only when combined with FoRs, and these FoRs are
much more intuitively illustrated when visual cues are available. We advocate for future work that
extends linguistic analysis to more grounded settings.

B.2 Perspective taking as a prerequisite of human-like spatial reasoning
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Figure 8: At θ = 0, some models show sensitivity
to multiple conventions.

Most languages support multiple FoRs.5 The
ability to understand and reason about space
from a non-egocentric perspective is an impor-
tant foundation of the Theory of Mind, a basic
building block of our situated communication
skill that allows us to infer others’ mental states
[43]. One of our key findings is that VLMs still
struggle to adopt alternative FoRs flexibly, even
when provided with explicit perspective-taking
instructions (Section 3.1). We hypothesize that
this phenomenon may come from a reporting bias in the image-text datasets available on the internet—
it is natural to take the reflected relative FoR to view images presented on a screen, but this does
not always apply in real-world applications. To address this issue, we suggest future work extend
the current 2D VLMs to the 3D domain, by considering camera poses and multiview data [70] for
training.

B.3 Cross-cultural conventions in cross-lingual spatial understanding

The conventions for resolving spatial ambiguities are not uniform, as individuals from diverse
linguistic and cultural backgrounds select their FoR differently. Cultural conventions can even be
transmitted as individuals are exposed to other languages. Interestingly, Bohnemeyer et al. [5]
found that among native speakers of Indigenous languages (with various preferences in FoRs), those
more proficient in Spanish tend to use the reflected relative FoR (Spanish convention) more in their
native language. This phenomenon has led to their Linguistic Transmission Hypothesis: “Using any
language or linguistic variety – independently of its structures – may facilitate the acquisition of
cultural practices of nonlinguistic cognition shared among the speakers of the language.” Analogously,
our experiment raises important concerns that English may dominate the FoR preference conventions
of other languages in multilingual VLMs. This is not surprising, as current training recipes for
multilingual multimodal language models heavily rely on machine-translated captions [12, 24].
However, this practice can be problematic. For instance, Hausa prefers an interpretation where the
“front” aligns with the English concept of “back,” [28], where this approach may lead to English
conventions overshadowing those of other languages. At a high level, this issue is not limited to
spatial reasoning—for example, Shi et al. [61] have demonstrated that English is always the best
chain-of-thought language for math reasoning with multilingual LLMs, no matter what language is
used for the problem description. To enable similar linguistic transmission in AI models, exposure to
naturally generated multilingual data is crucial [59].

B.4 Limitations and Future Work

The acceptance regions. Using cosine and hemisphere as acceptance regions is analytical but
might not capture some human cognitive biases. In reality, regional angles might not be uniformly
distributed per relation, nor are they exactly 90 degrees. These angles vary across individuals and
cultures [23].

Spatial relations. This work primarily focuses on the most basic types of spatial relations (front-
back and left-right). However, many other relations exist, such as away from and near [41, 38].
Additionally, not all languages possess terms for “left,” “right,” “front,” and “back.” Some languages,
like Guugu Yimithirr, use only absolute frames of reference instead [35].

Camera angle and occlusion. Currently, there is minimal occlusion, and the camera angle is high.
Languages may differ in whether the speaker emphasizes these factors, such as the preference to use
“behind” in cases of occlusion [35].

Pragmatic aspect of spatial cognition. Many conversational and pragmatic aspects of spatial
cognition are simplified in this work, such as F-Formation [32] and human-robot interaction [37]. For
example, in human-robot interaction settings, users prefer an addressee-centered frame of reference
to facilitate the robot’s comprehension of referents [46].

5Some languages, in very rare cases, have only one available spatial frame of reference. For example, Guugu
Yimithirr exclusively uses the absolute FoR [35].
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Multilingual prompts. In this work, we used machine-translated text to construct the multilingual
portion of the dataset. Although we verified data quality through back translation, incorporating
human annotations in the future would be a valuable future step.

B.5 List of Evaluated Languages

We started with 132 candidate languages supported by Google Translate API.6 We removed 23
languages from our multilingual evaluation due to their failure to adhere to instructions for generating
“yes” and “no” predictions, or because they did not pass the back-translation test for quality control:
Aymara, Bambara, Croatian, Dhivehi, Dogri, Ewe, Guarani, Hmong, Kyrgyz, Luganda, Malayalam,
Meiteilon (Manipuri), Mizo, Odia (Oriya), Punjabi, Quechua, Samoan, Tatar, Telugu, Tigrinya,
Uyghur, Xhosa, Yoruba.

B.6 Visualizations of Region Parsing Error
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Figure 9: ε visualization: (a-e) correspond to εhemi, and (f-j) correspond to εcos.

B.7 Computing Resources

English evaluations require one NVIDIA A40 GPU (48GB). Multilingual evaluations require OpenAI
and Google Cloud APIs and it can run on CPU with stable internet connection.

6https://cloud.google.com/translate
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Figure 10: All prediction plots for each model on COMFORT-BALL using the camera perspective prompt
(cam). The raw probability p(θ) in gray, normalized probability p̂(θ) in black, and the reference
probability pcos(θ) of cam in red.
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Figure 11: All prediction plots for each model on COMFORT-CAR using the camera perspective prompt
(cam). The raw probability p(θ) in gray, normalized probability p̂(θ) in black, and the reference
probabilities pcos(θ) of cam in red, add in orange, rel in blue. To avoid overlapping reference
probabilities of add and rel, we use plots on COMFORT-CAR with relatum facing left for left and right
relations and COMFORT-CAR with relatum facing right for front and behind relations.
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Figure 12: All prediction plots for each model on COMFORT-CAR using the addressee perspective
prompt (add). The raw probability p(θ) in gray, normalized probability p̂(θ) in black, and the
reference probabilities pcos(θ) of cam in red, add in orange, rel in blue. To avoid overlapping
reference probabilities of add and rel, we use plots on COMFORT-CAR with relatum facing left for left
and right relations and COMFORT-CAR with relatum facing right for front and behind relations.
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Figure 13: All prediction plots for each model on COMFORT-CAR using the relatum perspective prompt
(rel). The raw probability p(θ) in gray, normalized probability p̂(θ) in black, and the reference
probabilities pcos(θ) of cam in red, add in orange, rel in blue. To avoid overlapping reference
probabilities of add and rel, we use plots on COMFORT-CAR with relatum facing left for left and right
relations and COMFORT-CAR with relatum facing right for front and behind relations.
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Figure 14: All prediction plots for each model on COMFORT-CAR without perspective prompt (nop).
The raw probability p(θ) in gray, normalized probability p̂(θ) in black, and the reference probabilities
pcos(θ) of cam in red, add in orange, rel in blue. To avoid overlapping reference probabilities of
add and rel, we use plots on COMFORT-CAR with relatum facing left for left and right relations and
COMFORT-CAR with relatum facing right for front and behind relations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The claims made in the paper are supported by the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to the page limit, we include the limitations in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper has enough information to reproduce the results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: The data and code will be released publicly upon acceptance.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We have the necessary details for understanding the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: There’s no training component in our paper and we evaluate logits from the language
decoder in vision-language models (VLMs) without sampling so they are deterministic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We include this in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.

28



• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research was conducted in full compliance with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Yes, our paper has positive societal impacts as we value pluralistic alignment towards
multilingualism.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [No]
Justification: Our paper does not train new models.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

29

https://neurips.cc/public/EthicsGuidelines


• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: The existing assets used in this paper are properly credited and respected.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new dataset introduced in the paper is well documented.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments and research with human
subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

30

paperswithcode.com/datasets


Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments and research with human
subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

31


	Introduction
	Consistent Multilingual Frame of Reference Test (COMFORT)
	Empirical Experiments and Main Findings
	VLMs Fail to Adopt Alternative Frames of Reference Flexibly
	Spatial Representations in VLMs Are Not Robust and Consistent
	A Cross-lingual and Cross-cultural Evaluation of Frame of Reference

	Appendix
	Extended Background and Related Work
	Spatial Language and Spatial Representation
	Spatial Understanding in Vision-Language Models

	Dataset Details
	Dataset Configurations
	List of Evaluated Languages
	Task Formulation
	Scene Setup
	Language Query Setup

	Metrics
	Robustness Metrics
	Consistency Metrics
	Additional Results, Figures and Tables
	Most VLMs Prefer Reflected Coordinate Transformation Convention
	Most VLMs Prefer Egocentric Relative Frame of Reference


	Discussion and Conclusions
	Do vision-language models represent space and how?
	Perspective taking as a prerequisite of human-like spatial reasoning
	Cross-cultural conventions in cross-lingual spatial understanding
	Limitations and Future Work
	List of Evaluated Languages
	Visualizations of Region Parsing Error
	Computing Resources


