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Abstract. Detecting genetic aberrations is crucial in cancer diagnosis,
typically through fluorescence in situ hybridization (FISH). However,
existing FISH image classification methods face challenges due to signal
variability, the need for costly manual annotations and fail to adequately
address the intrinsic uncertainty. We introduce a novel approach that
leverages synthetic images to eliminate the requirement for manual an-
notations and utilizes a joint contrastive and classification objective for
training to account for inter-class variation effectively. We demonstrate
the superior generalization capabilities and uncertainty calibration of our
method, which is trained on synthetic data, by testing it on a manually
annotated dataset of real-world FISH images. Our model offers supe-
rior calibration in terms of classification accuracy and uncertainty quan-
tification with a classification accuracy of 96.7% among the 50% most
certain cases. The presented end-to-end method reduces the demands
on personnel and time and improves the diagnostic workflow due to its
accuracy and adaptability. All code and data is publicly accessible at:
https://github.com/SimonBon/FISHing.

Keywords: FISH imaging · contrastive learning · gene aberration · un-
certainty estimation · aleatoric uncertainty · synthetic data

1 Introduction

Evaluating genetic aberrations is crucial in cancer diagnostics, including breast
[22], lung cancer [25] or neuroblastoma [2]. Fluorescence in situ hybridization
(FISH) followed by fluorescence microscopy, allows for the visualization of gene
copies in cell nuclei. Fluorophore-labeled probes are employed to bind to DNA
sequences of a gene of interest (target) and a reference gene and are imaged using
distinct wavelengths. FISH signals manifest as red and green spots in an RGB
color scheme, with the nucleus stained blue as illustrated in Fig. 1A for HER2
in breast cancer and Fig. 1B for MYCN in neuroblastoma risk stratification [7].

https://github.com/SimonBon/FISHing
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Fig. 1: FISH-image patches with stained cell nuclei in blue image channel for
row A and B. A: HER2 (target) as red signals, CEN17q (reference) as green
signals. B: Synthetic images of MYCN FISH, MYCN (target) as green signals,
NMI (reference) as red signals, showing diagnostic classes: MYCN Normal (cN ),
Gain (cG), and Amplified (cA) along real world image examples. n indicates the
number of MYCN signals.

Challenges: Assessing gene copy number in FISH images requires expert
manual evaluation to count the signals. It is a tedious and subjective process,
which embodies inherent uncertainty, particularly when signal proximity or clus-
ter formation complicates the precision of gene copy number determinations (see
Fig. 1A). This necessitates multiple expert reviews, leading to increasing costs
and time.

Related Work: Current FISH image analysis approaches, including machine
and deep learning[11,9,29,5], aim at direct spot identification or appearance stan-
dardization for easier application of traditional methods like thresholding or
gradient techniques [4,15,26]. While certain methods excel with images having
clear spot-like signals, they falter with FISH image variability, especially in case
of gene amplifications lacking defined spot appearances (see Fig. 1B n=20). In
[31] a RetinaNet-based dual-network approach has been devised for HER2 sta-
tus identification in breast cancer. It classifies nuclei and signals independently,
but inaccurately estimates gene copy counts in clusters, defaulting to a fixed
number - not necessarily mirroring reality - and inadequately addresses predic-
tion uncertainty. In [12] a two-stream model is introduced by combining whole
image and spot information, for FISH image classification, requiring minimal
manual annotations, but raising questions about detection reliability and lack
of uncertainty quantification. In [14] point clouds were applied to represent lo-
calization patterns in synthetic single molecule FISH images effectively, yet this
method demands pre-extraction of point positions, limiting its direct applicabil-
ity to imaging data. To date, no studies have successfully integrated uncertainty
modeling into FISH classification.
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Contribution: Our work provides four major contributions: (i) An innovative
methodology for the precise classification of single-cell FISH images, leveraging
synthetic data to bypass the need for costly manual annotations. (ii) A technique
for generating the aforementioned synthetic FISH images. (iii) An innovative
strategy for embedding inter-class variation into classification through a con-
trastive learning-based joint objective. (iv) Our approach enables the accurate
quantification of classification uncertainty, demonstrating its concordance with
human expert judgment and its applicability in the diagnostic processes.

2 Material & Methods

The proposed work consists of two modules. First, we introduce "FISHPainter"
a method offering users the flexibility to create FISH images with desired signal
characteristics and second, a novel contrastive learning (CL) approach for genetic
aberration classification incorporating the uncertainty of classification without
manual annotations.

FISHPainter: To address the data sparsity in the field of FISH imaging,
especially given its extensive applications across various gene targets and di-
agnostic use cases, we propose FISHPainter. This tool generates synthetic im-
ages, giving users complete control over the modeled FISH modality and data
distribution, thereby creating a diverse and well-populated image space, which
real-world images, with their prevalence biases, are not sure to provide. Impor-
tantly, FISHPainter enables the population of image spaces for cases that lie on
the boundaries of different diagnostic categories, which in turn is expected to
improve uncertainty estimation in these critical areas.
FISHPainter involves the following steps: (i) Selecting a cell nucleus background
from a predefined library to place at the center of an RGB image patch in the
blue channel. (ii) Defining positions for signals in the red and green channel,
distinguishing between individual and clustered signals — the former randomly
placed within the nucleus, and the latter formed by adding signals near a cen-
tral point, all represented as 2D-Gaussian distributions with user-defined sizes.
3) Applying non-affine transformations to signals to vary appearances. Fig. 1B
illustrates generated patches, with n indicating the number of green signals.
Implementation available at: https://github.com/SimonBon/FISHPainter

Synthetic Contrastive Learning: Studies show that classification methods
based solely on Cross Entropy (CE) inaccurately gauge uncertainty, leading to
overconfidence [27,1]. Alternative techniques, including Ensembles [17], Monte-
Carlo Dropout [10], and Multi-Head models [19], aim to enhance uncertainty
estimation, though they face scalability issues due to their high computational
requirements. CL has been recognized for its capacity to incorporate uncertainty
into data representations [30,3,16]. Our method, inspired by [28,21], infers pre-
diction uncertainty from softmax outputs of high-quality latent representations
of FISH images, jointly training the network’s backbone and classification head
using CL. Acknowledging that class label-based representations often miss class

https://github.com/SimonBon/FISHPainter
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variability and therefore inherent uncertainty, our model integrates both class
labels and visual similarity into its latent representation, using CE and CL loss.
This approach accounts for the levels of intra-class variation by combining NT-
Xent [24] and CE in the loss function:

L = −

log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)︸ ︷︷ ︸
Contrastive

+λ

(
C∑

c=1

yc log(ŷi,c) +
C∑

c=1

yc log(ŷj,c)

)
︸ ︷︷ ︸

CE for Positive Pair (i, j)

 (1)

In Eq. 1, N is the batch size, zi and zj are the projected embeddings of two
augmented views i and j of a patch, τ is the temperature parameter, and λ is
the classification loss weight. C is the class count, yc and ŷ·,c are the target and
predicted probabilities for class c, respectively and sim the similarity metric .

In Fig. 2 the model training using the loss function introduced in Eq. 1 is shown:
First, for generating input images X and target labels Y with FISHPainter, a
set of user-defined signal configurations Q are utilized. The resulting images
are augmented with transformations t sampled from a set of transformations
T , producing views Xi and Xj . These views are embedded by the network’s
backbone (blue) into the representation space R. This representation is fed into
the projector (orange) to obtain an embedding Z, on which the contrastive loss is
calculated, and into the classification head (green), producing a class prediction
Ŷ for CE loss computation using the target label Y .

Uncertainty: Uncertainty estimation is crucial in medical artificial intelli-
gence applications [23]. Epistemic uncertainty helps to identify out-of-distribution
(OOD) samples [28], while aleatoric uncertainty addresses inherent data uncer-
tainties, such as ambiguous signal quality. In this work our main focus lies on
aleatoric uncertainty, which we will refer to in the following as uncertainty. In-

FISHPainterQ

X Contrastive

CE

X i R i Z i

X j R j Z jConfig

Views Representation Embedding

Classification

Y j

Y i

Image

Target

Image Generation

Y

Fig. 2: Configuration of signals Q is input to FISHPainter, producing image X
and label Y . Image X is augmented with transformations t sampled from set T
to create views Xi and Xj . These views are embedded into representation space
R and projected to Z. Contrastive loss is calculated on Z. R is also used by the
classification layer to predict Ŷ , on which CE loss is computed.
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spired by [21], we model aleatoric uncertainty Hnorm(.) using normed entropy
using Eq. 2:

Hnorm(Ŷ ) =
H(Ŷ )−Hmin (α,C)

log(C)
(2)

Where H(·) denotes the entropy function, Ŷ represents the softmax output of
the model, C is the number of classes, and Hmin(α,C) indicates the minimum
entropy for label smoothing value α, which is calculated as follows:

Hmin (α,C) = H

([
1− α,

(
α

C − 1

)
0

,

(
α

C − 1

)
1

, . . . ,

(
α

C − 1

)
C−1

])
(3)

3 Experimental Setup

The performance of the proposed method is evaluated on the task of classifying
MYCN gene aberrations in neuroblastoma [2] with the following three classes:
MYCN Normal (cN ) - showing 2 green and 2 red signals (2:2 - MYCN :NMI
ratio), MYCN Gain (cG) - showing 3-7 (green) and 2 (red) and MYCN Amplifi-
cation (cA) with ≥ 8 (green) and 2 (red), as shown in Fig. 1B. We therefore set
C = 3 in Eq. 2 and Eq. 3.

Data Setup 1: In experiment 1 the generalisation from synthetic FISH data
training to real world FISH image classification is analysed using a training
dataset of 30,000 synthetic images (10,000 each of cN , cG and cA) utilizing
"FISHPainter" (see configurations Q in Supplementary Fig. ??A). We used a
60% training, 20% validation, and 20% testing split. Additionally, we employ
an expert annotated real-world single-cell MYCN FISH dataset containing 1814
single-nuclei image patches, obtained from 2 cN , 2 cG and 2 cA cell lines, and use
it to assess model generalization in experiment 1, and uncertainty calibration
in experiment 3. The following set of augmentations T were chosen to model
variations in microscopic images: rotations, flipping, scaling, blurring, channel-
specific intensity adjustments, noise, and gradient additions (see parameters and
examples in Supplementary Fig. ??B).

Data Setup 2: In experiment 2 the aim is to assess the method’s ability to
detect in distribution (ID) and OOD samples. The synthetic training dataset
serves as the reference, while the 1814 expert annotated real-world FISH images
are considered in-distribution (Real World ID). For OOD analysis we use an in-
house immunofluorescence dataset (OOD), similar yet distinct from FISH (see
Fig. ??C) in targeting cell surface proteins instead of genetic sequences.

Data Setup 3: In experiment 3, we focused on assessing how well the model
matches human uncertainty by utilizing annotations of ten experts on a set of
1210 synthetic single-cell FISH images with predefined number of green signals.
Images were annotated either cN , cG or cA. Accuracy was measured across all
images, while human uncertainty was calculated per image using normalized
entropy on the expert annotations.
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Method Implementation: We implemented our approach utilizing two sets
of augmentations T having different intensity levels: Ours Heavy, which applies
stronger augmentations, and Ours Light, with lighter augmentations (details see
Supplementary Fig. ??B). Both utilize the following parameters: A ResNet-18
[13] backbone modified to reduce the representation space dimension to 128 with
a two-layer 64-dimension projection head for CL training [6]. Classification relied
on 2 fully connected layers with 128 features, 0.25 dropout, and ReLU activation.
The loss function included cosine similarity, 0.05 temperature, 0.5 as λ, and 0.01
as label smoothing (α). We used a Cosine Annealing learning rate scheduler
with 5 warmup steps and a 25-epoch cycle, setting learning rate minimum and
maximum at 0.00001 and 0.001 respectively, and a batch size (N) of 128.

Baselines: We compared our method against bigFISH [15] and a pretrained
spot detection RetinaNet [18] model from [12], with a classification head fine-
tuned on our synthetic training datasets. Additionally, we used three baselines,
all employing a ResNet-18 backbone: (i) ResNet+CE: trained using only
CE loss, and two baselines using CL with NT-Xent loss and cosine similarity
[24], (ii) CL+Detached: pretrained with contrastive loss, then froze the back-
bone and fine-tuned only the classification head with CE, (iii) CL+Attached:
pretrained with contrastive loss, then fine-tuned both the backbone and the clas-
sification head with CE. The set of augmentations T for all baselines can be seen
in Fig. ??B. Fig. ?? shows a schematic illustration of each baseline’s training
schemes.

4 Results

Experiment 1: The ablation study assesses augmentation effectiveness us-
ing classification accuracy across the synthetic test split and the real-world data
(Data Setup 1). We compared the use of all augmentations to no augmentations
and employed a leave-one-out approach, omitting one augmentation at a time
(see Table 1). Augmentations have a minor effect on test split accuracy—94.3%
without augmentations versus 94.6% with them. Yet, for real-world datasets,
augmentations significantly boost generalization, increasing accuracy from 40.6%
to 87.8% without affine transformations, underscoring their critical role in bridg-
ing the synthetic and real-world accuracy gap. Gradient and noise augmentations
show the greatest impact when ommited (see Table 1 column Grad&Noise).

Experiment 2: The detection of OOD and ID samples is visually evaluated
using Data Setup 2. Fig. 3A shows a UMAP [20] of the final latent represen-
tation of Ours Heavy (see Fig. ?? for other baselines). The real-world dataset
significantly overlaps with the synthetic training dataset, showing strong general-
ization, while the majority of OOD samples occupy a distinct area of the feature
space, making them easily separable from ID data. Fig. ??C shows OOD samples
embedded in an ID latent region, illustrating signals that could be mistaken for
clustered MYCN signals.
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Augmentations Augmentations Omitted

None All Affine Blur Flip Grad. Noise Int. Grad&Noise

Synth. Test Set 94.3 94.6 94.7 95.1 95.2 94.7 95.2 96.0 94.9
Real World 40.6 86.1 87.8 85.4 87.2 80.5 80.8 86.7 45.0

Table 1: Classification accuracies (in %) for the synthetic test set and the manu-
ally annotated real-world dataset. Int.: intensity scaling, Grad.: image gradient.
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Fig. 3: A: 2D latent space visualization of Ours Heavy on the synthetic training
dataset (blue), the real world test dataset (yellow) and the OOD dataset (red).
B: Comparison of model to human certainty when classifying synthetic FISH
images with set number of green signals. C: Accuracy results and the distribution
of remaining classes, conditioned on certainty (example: at 0.8 certainty ∼ 78%
data remaining with ∼ 93% overall accuracy).

Experiment 3: Accuracy of ten human annotators and our model on Data
Setup 1 is presented in Table 2. Our method achieves 90.5% accuracy, close to
the top annotator’s 90.6% and exceeds the expert average by 2%. Fig. 3B shows
the alignment between model-generated aleatoric uncertainty, calculated follow-
ing Eq. 2 and inter-expert agreement, highlighting similar uncertainty patterns
between our model and the annotators, especially around 8 green signals, which
is the classification border between cA and cG.
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Annotator 1 2 3 4 5 6 7 8 9 10 Combined
mean ± std

Ours
Heavy

Accuracy [%] 89.3 90.3 88.0 84.7 88.3 89.0 89.0 88.9 86.9 90.6 88.5 ± 1.6 90.5

Table 2: Comparison of Ours Heavy and human annotator accuracy

We assess the Expected Calibration Error (ECE) [8] including positive ECE
(overconfidence) and negative ECE (underconfidence). Fig. 4A shows our ap-
proach’s ECE results using annotated real-world data from Data Setup 1 com-
pared to the baselines. Fig. 4B presents the calibration diagram, featuring a
curve indicating data distribution across certainty levels for Ours Heavy. The
calibration diagram for baseline methods is visualized in Fig. ??. Our method
is well calibrated with the highest overall and negative ECE using heavy aug-
mentations and the lowest positive ECE using light augmentations. In Fig. ??
instances of high model uncertainty are presented highlighting ambiguity, par-
ticularly when classifying cN and cG (A), where distinguishing between 2 or 3
MYCN signals is subjective, and between cG and cA (B), where determining the
exact MYCN copy number is challenging. This affirms that model-generated-
and human- uncertainty align, given that these instances are inherently ambigu-
ous and their classification ultimately relies on subjective judgment.
Fig. 3C shows the accuracy and class distribution for Ours Heavy conditioned on
certainty thresholds, excluding samples below the threshold. Initially, uncertain
samples from cG are removed, followed by uncertain cN samples, and finally cA
cases. This indicates that cA cases are easier to classify due to their distinct
visual differences from cG or cN (compare n=20 with n=2 and n=5 in Fig. 1B).
Conditioning plots for all baselines are shown in Fig. ??.
Table 3 shows accuracy scores for each baseline at different remaining sample
percentages, conditioned on the yielded aleatoric certainty, calculated following
Eq. 2. Since bigFISH and RetinaNet do not provide uncertainties, their accuracy
is measured only at 100%. Accuracy values indicate they cannot compete with
models that do not rely on spot signals. The CL+Attached model performs well
with 88.3% accuracy at 100% data but becomes unstable for higher certainty
values (see 20% - 5%). Notably, Ours Light shows 90.3% accuracy at 95% data
retention, and Ours Heavy achieves 98.9% accuracy at 30% of the most certain
samples, further increasing to 100% at 5%. ResNet+CE exhibits overconfidence,
reaching maximum certainty for the top 40% of samples but only achieving 95.6%
accuracy, highlighting its overconfidence, which is also observable in ECE plot
of Fig. ??A. In contrast, Ours Heavy improves accuracy as the conditioning be-
comes more stringent. We hypothesize that the performance difference between
Ours Heavy and Ours Light is due to a more restricted feature space under
the contrastive loss in Ours Heavy. This leads to poorer cluster separation in
the embedding space, but better calibration, particularly for positive ECE and
overconfidence. Additionally, we observe that lighter augmentation intensity im-
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Fig. 4: A: ECE, positive ECE, and negative ECE comparison between our
method and all baseline approaches on real world data. B: Calibration chart
for Ours Heavy, showing the sample distribution across certainty bins.

proves class cluster separation in the embedding space, but this results in poorer
calibration by not adequately representing the transition between classes.

Percentage of remaining data
Model Type 100% 95% 90% 75% 50% 40% 30% 20% 15% 10% 5%

bigFISH [15]

A
cc

ur
ac

ie
s

[%
] 59,4 not applicable

RetinaNet [12] 71,9 not applicable
ResNet+CE 86,4 88,5 90,8 94,7 95,6 95,6 - - - - -
CL+Detached 73 73,8 75,3 80,4 89 93,3 96,2 98,1 97,8 97,2 98,9
CL+Attached 88,3 90,1 91,4 94,1 96,3 96,7 96,7 95,6 94,7 92,7 93,1
Ours Light 88,3 90,3 91,7 95,2 96,0 96,4 96,2 96,9 98,2 97,9 100
Ours Heavy 85,6 87,4 89,6 93,8 96,7 97,5 98,9 99,2 99,3 99,4 100

Table 3: Accuracy comparisons between our method and baseline models after
excluding the most uncertain samples, based on conditioning on certainty. "-"
indicates that all data has been removed, so accuracy can not be calculated.

5 Conclusion

We introduced an adaptable, end-to-end methodology for classifying FISH single-
cell images without manual annotations using "FISHPainter", which only re-
quires a clear class definition. A key aspect of our approach is the use of synthetic
data for training, enabling us to densely model the image space of FISH images.
Our results demonstrate that FISH-specific augmentations are essential for tran-
sitioning from synthetic training to real-world test settings. By using synthetic
FISH images with appropriate augmentations and incorporating cross-entropy
into the contrastive loss, our method produces a well-calibrated model. This in-
tegration of uncertainty is crucial for advancing digital pathology diagnostics,
providing more reliable and interpretable results.
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