
Under review as a conference paper at ICLR 2024

SEARCH-ADAPTOR: TEXT EMBEDDING CUSTOMIZA-
TION FOR INFORMATION RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Text embeddings extracted by pre-trained Large Language Models (LLMs) have
significant potential to improve information retrieval and search. Beyond the zero-
shot setup in which they are being conventionally used, being able to take advantage
of the information from the relevant query-corpus paired data has the power to
further boost the LLM capabilities. In this paper, we propose a novel method,
Search-Adaptor, for customizing LLMs for information retrieval in an efficient
and robust way. Search-Adaptor modifies the original text embedding generated
by pre-trained LLMs, and can be integrated with any LLM, including those only
available via APIs. On multiple English and multilingual retrieval datasets, we
show consistent and significant performance benefits for Search-Adaptor – e.g.,
more than 5.2% improvements over the Google Embedding APIs in nDCG@10
averaged over 14 BEIR datasets.

1 INTRODUCTION

Information retrieval can be broadly considered as the task of searching for information via querying
a corpus database that might consist many different types of data, such as documents, webpages
or logs. There are wide range of applications across many industries, including retail, healthcare,
and finance, with a significant portion of the world’s economy is built on. Particularly, language
modeling is the key part of information retrieval as in most cases, query and corpus data are in text
form. Large language models (LLMs) have demonstrated significant achievements for a variety of
text processing tasks, including question answering, summarization, and mathematical reasoning
(1; 2; 3). One critical enabler for the success on these has been transforming raw text into meaningful
representations that preserve semantic meanings in the representation space (4). For a wide range of
applications, from recommendations to anomaly detection, tasks are defined as explicit operations on
the learned representations. This makes the quality of the text mapping into embeddings become of
paramount importance. For information retrieval, a common approach has been to directly utilize the
text embeddings, where relevant corpora can be ranked based on the similarity between queries and
corpus (5; 6).

Various LLMs have been proposed to extract embeddings from raw text, including the Sentence
T5 (7), OpenAI embedding APIs (8) and Google embedding APIs (9). However, one fundamental
limitation of pre-trained LLMs is that they cannot utilize paired samples in the form of (positive
query-corpus pairs), if they exist. Even with a small number of paired samples, those samples
are expected to significantly improve information retrieval capabilities. In this paper, we focus on
customizing LLMs to obtain superior embeddings for information retrieval applications using those
paired samples. Fig. 1 overviews text embedding customization for superior retrieval.

Full fine-tuning (10) can be the straightforward way of utilizing the paired query-corpus information.
However, if the number of paired samples is small, tuning all the weights of a model might yield
overfitting and poor generalization (11), especially in the presence of distribution shifts. In addition,
full fine-tuning can be costly from a computational perspective as it requires large memory. There
are multiple parameter-efficient fine-tuning methods such as prompt tuning (12; 13), LoRA (14),
partial fine-tuning (15), and various adapters (16; 17). Those models only fine-tune a subset of the
parameters in LLMs, which reduces the risks of overfitting and provides computational gains. As a
common bottleneck, all of these methods need full access to the LLM’s parameters to fine-tune the
model, which may not be possible with API-based LLMs.

1

Under review as a conference paper at ICLR 2024

Retrieval with custom embeddingsGeneric retrieval

Text queries Corpus set

LLM
encoder

LLM
encoder

Similarity & Sort
(e.g., Approximate

Nearest Neighbors)

Retrieved Corpus

Text queries Corpus set

Customized
LLM encoder

Customized
LLM encoder

Similarity & Sort
(e.g., Approximate

Nearest Neighbors)

Retrieved Corpus

Query
corpus pairs

Figure 1: Comparison between generic retrieval (blue) and retrieval with embedding customization
(purple). Search-Adaptor modifies the pre-trained LLM embeddings (using positive query-corpus
pairs) so that they are customized on the given dataset. Note that Search-Adaptor does not require
full access to the LLM parameters.

We propose a novel adaptation approach, Search-Adaptor, that places a small adapter network
(customized for the given dataset) on top of fixed LLMs to modify the pre-trained text embeddings.
We introduce a novel differentiable ranking loss that can directly utilize the information of positive
query and corpus pairs. In addition, we include multiple regularizers to improve generalization in
this small data regime where without intervention the pre-trained LLMs would lead to catastrophic
forgetting. One major advantage of Search-Adaptor is that it does not require access to the parameters
of the pre-trained LLMs – only the inference outputs of the model are needed. Commercial embedding
APIs that show state-of-the-art performance usually do not provide access to their model parameters.
In such cases, Search-Adaptor can still be used to further improve those API-based embedding models,
in contrast to alternative methods such as full fine-tuning and parameter-efficient fine-tuning. We
demonstrate the efficacy of Search-Adaptor across 14 BEIR datasets (18) and 17 multilingual datasets
(MIRACL (19)) with Google and OpenAI embedding APIs, applying the Search-Adaptor on top.
In addition, we evaluate Search-Adaptor’s performance improvements with 2 different Sentence T5
models (7) that provide full access to their parameters. Overall, Search-Adaptor provides consistent
and significant improvements over alternatives. The contributions of this paper can be summarized as
follows.

• We propose a novel adaptation framework for information retrieval applications that can
significantly improve the pre-trained large language embedding models.
• We introduce a novel ranking loss and multiple regularizers that reduce overfitting and

forgetting and thereby improve the retrieval performance even with the small data regime.
• We provide consistent and significant improvements for retrieval performance with a range

of datasets (from 1K to 500K positive query-corpus training data pairs).

2 RELATED WORKS

Pre-trained LLMs for zero-shot retrieval. LLMs to extract general text embeddings are commonly
used in both academia and industry. AI solution providers like Google (9) and OpenAI have

2

Under review as a conference paper at ICLR 2024

productionized general text embeddings that can be directly used via simple APIs for zero-shot
retrieval applications. In addition, multiple previous works introduce new general text embedding
models with various pre-training methods and datasets. GTE (20) proposes a multi-stage pre-training
of embedding models with diverse naturally paired text datasets. E5 (5) pre-trains the embedding
models by weakly-supervised contrastive learning, utilizing consistency-based filter to generate
high quality text pairs for pre-training. Note that Search-Adaptor can be applicable on top of any
pre-trained LLM embedders to customize their embeddings for superior retrieval performances.

Embedding customization. Instead of using one unified model for zero-shot retrieval, the embed-
dings can be customized for each dataset or task. Instruction-based embedding customization is one
popular method. TART (21) builds a retrieval system that adapts the retrieval based on the instruction.
Different retrieval tasks (e.g., code, question, or answer) are given as the instruction to further improve
dense embedding retrieval. InstructOR (22) integrates the task and domain descriptions prior to the
input to fine-tune the embeddings for retrieval. However, these do not directly utilize the provided
positive query and corpus pairs. Full or parameter-efficient fine-tuning (such as LoRA (14) and (IA)3
(23)) can also be considered for embedding customization. Pre-trained LLMs can be fine-tuned
with contrastive loss using positive query-corpus paired data. Promptagator (24) utilizes in-context
learning to generate synthetic query-corpus pairs using a few number of original query-corpus pairs,
and subsequently using those synthetic pairs to fine-tune the pre-trained LLMs. However, all these are
only applicable when there is full access to the parameters of pre-trained LLMs, which is often not
possible for state-of-the-art commercial text embedding models. On the other hand, Search-Adaptor
can be applied without full access to the LLM parameters.

3 PROBLEM FORMULATION

We formulate the retrieval problem with a given query-corpus paired dataset. Assume a query
set denoted as Q = {q1, ..., qN} ∈ Q and a corpus set denoted as C = {c1, ..., cM} ∈ C. Each
positive relationship between a query and corpus is represented as the triplet rij = (qi, cj , yij)
with yij > 0 as the strength of the relationship between qi and cj . We treat all other triplets as
negative relationships (yij = 0). The set of all query-corpus relationships is denoted as R =
{(qi, cj , yij)}i=1:N,j=1:M = Rp ∪ Rn, where Rp = {(qi, cj , yij) ∈ R|yij > 0} is the set of
positive relationships andRn = {(qi, cj , yij) ∈ R|yij = 0} is the set of negative relationships. Note
that yij can either be binary or continuous.

The retrieval system aims to find the relationship between the given query (qi) and corpus (cj) such
that the predicted relationship is highly correlated with the ground truth relationship (yij). The
scoring function f : Q×C → R takes queries and corpus data as inputs and outputs a score estimate
on the relationship between them. The optimal score is the one that has the same order as the ground
truth relationship for each query.

4 METHODS: SEARCH-ADAPTOR

We next describe our proposed method, Search-Adaptor, to customize embeddings extracted from the
pre-trained LLMs. In the following subsections, we introduce the ranking loss that is directly utilized
for Search-Adaptor training. Then, we present two regularizers that help avoid overfitting on training
data. Fig. 2 describes the entire block diagrams of Search-Adaptor.

4.1 ADAPTING FIXED LLMS

Real-world limitations arise when tuning the embedding model: it can be very costly and one often
does not have access to the parameters and the gradients of the pre-trained model (for example, it may
only be available via an inference API). This motivates the need for an adaptation method that can
operate with fixed pre-trained embedding models, such as the ones that are only accessible via APIs
for inference via prompting. To this end, we propose Search-Adaptor, which modifies embeddings
extracted from pre-trained LLMs for superior search and information retrieval.

Consider the query and corpus embeddings extracted using the pre-trained embedding model E:
QE = {qe1, ..., qeN} ∈ Rd and CE = {ce1, ..., ceN} ∈ Rd where qei = E(qi) and cej = E(cj).
Note that both query and corpus embeddings are in the same embedding space.

3

Under review as a conference paper at ICLR 2024

LLM Encoder
(e.g., ST5-XL)

Query Embedding

Query
Adapter

Adapted Query
Embedding

LLM Encoder
(e.g., ST5-XL)

Corpus Embedding

Corpus
Adapter

Adapted Corpus
Embedding

Recovery loss
(Regularizer)

Cosine
Similarity

Ranking loss
(Supervised training)

S
kip connection

S
ki

p
co

nn
ec

tio
n

Adapted Relevance
Scores

Recovery loss
(Regularizer)

Prediction loss
(Regularizer)

Query
Predictor

Predicted Query
Embedding

Query
Embedding

Query (text) Corpus (text)

Query-Corpus
Relevance

Figure 2: Block diagram of Search-Adaptor. Yellow-colored blocks are given inputs; grey colored
blocks are fixed LLM encoders (e.g., a text embedding API); blue-colored blocks are additional
trainable building blocks; red-colored blocks are for loss computations. At inference, only query and
corpus adapters are utilized and the query predictor can be discarded.

The objective of Search-Adaptor is to modify embeddings extracted from pre-trained LLMs in
a way that maximizes retrieval performance. The learnable adaptation function is defined as f :
Rd → Rd, which maps the original embedding to a new embedding that is more favorable for
retrieval applications. The modified embeddings are denoted as Q̂E = {q̂e1, ..., q̂eN} ∈ Rd and
ĈE = {ĉe1, ..., ĉeM} ∈ Rd where q̂ei = f(qei) and ĉej = f(cej). The relevance scores between
modified query and corpus embeddings are defined as follows:

ŝij = Cosine-Similarity(q̂ei, ĉej) =
q̂ei · ĉej
||q̂ei||||ĉej ||

.

Search-Adaptor consists of the following components (see Fig. 2 for details):

• Adaptation function f . This function is used to modify the query and corpus embeddings.
We add a skip connection to f so that it can only learn the residual between the original
and adapted embeddings as follows: q̂ei = qei + f(qei) and ĉej = cei + f(cei). Note that
we use the shared adapter for both query and corpus (see Sec. 6 for ablation studies). The
ranking loss, reconstruction loss, and prediction loss are used to train f .
• Query predictor p. This function is used to predict the query embedding using the adapted

corpus embedding. The prediction loss is used to train p.

At inference, we only use the adaptation functions (f) to modify the query and corpus embeddings.
We then compute the cosine similarity between the modified query and corpus embeddings to estimate
the relevance between query and corpus. Query predictor is not used at inference.

4.2 RANKING OBJECTIVE

As explained in Sec. 3, the objective of the retrieval is to predict the correct order of the relevance
between queries and corpus. Therefore, the most critical part is to properly design the ranking loss.

4

Under review as a conference paper at ICLR 2024

We propose a ranking loss as follows:

LRank =

N∑
i=1

M∑
j=1

M∑
k=1

I(yij > yik)× (yij − yik)× log(1 + e(sik−sij)),

where I(yij > yik) is an indicator function that is equal to 1 if yij > yik and 0 other-
wise. The pre-trained embedding model is denoted as E, which converts raw text into embed-
dings. The relevance score between query text (qi) and corpus text (cj) is defined as sij =
Cosine-Similarity(E(qi), E(cj)).

The ranking loss penalizes the model more when it predicts a lower score for a pair of query and
corpus that has a higher ground truth relevance (i.e., sij < sik even though yij > yik). The amount of
penalization is proportional to the difference in ground truth relevance (yij − yik) and the difference
in estimated scores log(1 + e(sik−sij)). Note that log(1 + e(sik−sij)) can be replaced with any
monotonic function such as linear function. In general, the ranking loss encourages the model to
predict higher scores for pairs of query and corpus that have a higher ground truth relevance. Table 5
shows a comparison of this ranking loss to alternatives and demonstrates its effectiveness.

4.3 REGULARIZATION

Introducing proper inductive biases via regularization is important to improve adaptation from
pre-trained LLM embeddings without forgetting too much information from the pre-trained LLMs.
Towards this end, we propose two regularization methods:

Recovery. To increase generalizability, we postulate avoiding modification of the adapted embedding
too far away from the original embedding. As such, we minimize the difference between the original
and adapted embeddings using a recovery regularizer, which is calculated as follows:

LRecovery =
1

N

N∑
i=1

||q̂ei − qei||1 +
1

M

M∑
j=1

||ĉei − cei||1

where q̂ei is the adapted query embedding and qei is the original query embedding. Similarly, ĉei is
the adapted corpus embedding and cei is the original corpus embedding. The recovery regularizer
encourages the adapted embeddings to be not too far from the original embeddings.

Prediction. Intuitively, if the query and corpus are highly relevant, we can use the corpus to predict
the query. Building upon this intuition, we propose a regularizer in the form of prediction loss
between the query and corpus, calculated as follows:

LPred =
1∑N

i=1

∑M
j=1 yij

N∑
i=1

M∑
j=1

yij × ||q̂ei − p(ĉej)||1

where p : Rd → Rd is a function that predicts the query given the corpus, and yij is a weight that
is assigned to the loss if the query and corpus are correlated. The prediction loss encourages the
model to predict the query well given the corpus, especially if the query and corpus are correlated.
Note that we do not include the prediction function from query to corpus because usually corpora are
significantly longer than queries which would render the task challenging.

4.4 TRAINING

Using the proposed ranking loss, recovery loss, and prediction loss, we optimize the adaptation
function f and prediction function p by minimizing the following loss function:

f∗, p∗ = argmin
f,p
LRank(f) + αLRecovery(f) + βLPred(f, p),

where α ≥ 0 and β ≥ 0 are hyper-parameters that control the relative importance of the different loss
terms. In the experiments, we tune these hyper-parameters based on validation set (α ∈ {0.0, 0.1, 1.0}
and β ∈ {0.0, 0.01, 0.1}). Table 5 shows the results of ablation studies on the effectiveness of the
different loss terms. All hyper-parameters are provided in Appendix Sec. C.

5

Under review as a conference paper at ICLR 2024

Note that the ranking loss compares all possible pairs between queries and corpus which needs NM2

times computations per one epoch (M >> N). For efficient computation, we randomly subsample
the corpus for each query batch. While doing so, we always include the corpus which has positive
relevance to queries in that batch.

5 EXPERIMENTS

We evaluate the performance of Search-Adaptor in multiple scenarios on numerous datasets. We
demonstrate that Search-Adaptor is model-agnostic, applying it both on top of API-based LLMs
(merely via access to Google & OpenAI APIs) and open-sourced LLMs (Sentence T5 models (7)).
We also demonstrate that it is data-agnostic by evaluating Search-Adaptor on both English and
non-English multilingual datasets.

5.1 EXPERIMENTAL SETTINGS

We first consider the 14 retrieval datasets from the BEIR repository (25) to evaluate the performance
in English data, with corpus sizes ranging from 3.6K to 8.8M, and training pairs ranging from 0.7K
to 532K. For the datasets with only test data (e.g., Arguana, SciDocs), we split the data into disjoint
train and test sets with a 50/50 ratio, based on the sorted query IDs. We also use MIRACL (26) which
consists of 17 multilingual datasets including Japanese, Chinese, French, and Indonesian. More
details can be found in Appendix A.

We use nDCG@10 as the main metric for the retrieval performance (see Appendix B for more details).
For model selection, we further divide the training data into disjoint training and validation datasets
with an 80/20 ratio and select the model with the highest validation nDCG@10 metric.

We consider both API-based and open-sourced LLMs. As the API-based LLM, we use OpenAI
embedding API (8) and Google embedding API (9). As the open-sourced LLM, we use Sentence T5
models1 of two different sizes.

5.2 ADAPTING WITH API-BASED LLMS

Datasets
Google Embedding API OpenAI Embedding API

Zero-shot Search- Gains Zero-shot Search- Gains
Adaptor (%) Adaptor (%)

NFCorpus 0.3794 0.3829 0.92% 0.3750 0.3785 0.93%
SciFact 0.7075 0.7931 12.10% 0.7221 0.7904 9.46%
Arguana 0.5308 0.7047 32.76% 0.5885 0.6493 10.33%
SciDocs 0.1887 0.2135 13.14% 0.2003 0.2158 7.74%

FiQA 0.4901 0.5224 6.59% 0.4366 0.4410 1.01%
Trec-Covid 0.7278 0.7530 3.46% 0.7224 0.7733 7.05%

Webis Touche 2020 0.2491 0.3339 34.04% 0.2590 0.3312 27.88%
Quora 0.8614 0.8765 1.75% 0.8830 0.8869 0.44%

NQ 0.5205 0.5485 5.38% - -
DBPedia 0.4038 0.4051 0.32% - -

HotPotQA 0.6443 0.6839 6.15% - -
Fever 0.8252 0.8566 3.81% - -

Climate-fever 0.2272 0.3204 41.02% - -
MSMARCO 0.2922 0.3177 8.73% - -

Table 1: Performance improvements with Search-Adaptor for two API-based LLMs. The embedding
dimensions of Google (gecko@latest) and OpenAI APIs (text-embedding-ada-002) are 768 and 1536,
respectively.

One of the biggest advantages of Search-Adaptor is that it can be applied on top of any API-based
LLM – without having access to the parameters of LLMs, Search-Adaptor can further improve

1https://tfhub.dev/google/sentence-t5/st5-base/1

6

https://tfhub.dev/google/sentence-t5/st5-base/1

Under review as a conference paper at ICLR 2024

the retrieval performance. This is particularly important as the state-of-the-art LLMs are actually
API-based models (owned by companies).

As can be seen in Table 1, we demonstrate the retrieval performance improvements on top of
API-based text embedding models across 14 datasets from the BEIR repository. On average, Search-
Adaptor achieves 0.0475 and 0.0349 nDCG@10 improvements for both Google and OpenAI text
embedding APIs. For some datasets, the improvements are quite significant indeed – e.g., 0.1739
with Arguana, 0.0856 with Scifact datasets.

< 2M Corpus >= 2M Corpus

Dataset Zero-shot Search- Gain Dataset Zero-shot Search- Gain
Adaptor (%) Adaptor (%)

Bengali 0.6641 0.7141 7.54% Persian 0.5026 0.5229 4.04%
Hindi 0.5250 0.5286 0.69% Arabic 0.6324 0.6809 7.67%

Swahili 0.6717 0.7156 6.54% Chinese 0.4673 0.5242 12.18%
Telugu 0.7407 0.7999 7.99% Spanish 0.4774 0.5031 5.38%
Thai 0.6422 0.7109 10.70% French 0.3813 0.4286 12.40%

Yoruba 0.7709 0.8506 10.34% Japanese 0.5373 0.5689 5.88%
Indonesian 0.4465 0.5000 11.98% Russian 0.5283 0.5426 2.71%

Korean 0.5593 0.6051 8.19% Germany 0.4809 0.4826 0.35%
Finnish 0.6646 0.6863 3.27%

Average 0.6317 0.6790 7.49% Average 0.5009 0.5317 6.15%

Table 2: Performance improvements with Search-Adaptor on top of the Google embedding APIs
(gecko-multilingual@latest) for non-English data.

Search-Adaptor is also applicable on non-English data. In Table 2, Search-Adaptor shows consistent
performance improvements on top of Google Embedding API across 17 different languages (on
average 0.0396 nDCG@10 improvement). For some languages, it is particularly significant, e.g. the
improvement is 0.687 for Thai. These overall highlight Search-Adaptor being a model-agnostic and
data-agnostic approach.

5.3 ADAPTING WITH OPEN-SOURCED LLMS

Beyond API-based LLMs, Search-Adaptor can also be applied to open-sourced LLMs. In this
section, we use Sentence T5-Base model as the open-sourced LLM to demonstrate the performance
improvements.

Datasets Zero-shot Search-Adaptor Fine-tuning

NFCorpus 0.3100 0.3258 0.3501
SciFact 0.5237 0.7255 0.7542
Arguana 0.3646 0.5501 0.6239
SciDocs 0.1393 0.1657 0.1640

FiQA 0.4064 0.4416 0.4557
Trec-Covid 0.5990 0.6986 0.4178

Webis Touche 2020 0.2291 0.3393 0.1844
Quora 0.7484 0.8664 0.7817

Average 0.4151 0.5141 0.4151

Table 3: Performance improvements with Search-Adaptor on top of open-sourced embedding model.

In Table 3, Search-Adaptor shows consistent improvements over zero-shot ST5-Base model. On
average, it shows 0.1010 nDCG@10 improvements which is much larger than the improvements for
with Google and OpenAI embedding APIs. With the open-sourced LLMs, we can utilize fine-tuning
methods as the alternative of Search-Adaptor (even though its training cost is much higher). The

7

Under review as a conference paper at ICLR 2024

experimental results show that on average, fine-tuning performances are indeed worse than Search-
Adaptor performance for the considered benchmarks. Surprisingly, the performance of fine-tuning
method is much worse than the zero-shot baseline (e.g., for Trec-Covid, Webis Touche 2020) which
can be attributed to overfitting and poor generalization (11).

6 DISCUSSIONS

6.1 SMALL LLMS WITH EMBEDDING CUSTOMIZATION OUTPERFORM ZERO-SHOT LARGE
LLMS

LLM inference can be costly with high latency, that can constitute bottlenecks for real-world deploy-
ments. The cost and latency of LLM inference are highly dependent on the LLM model size. We
demonstrate that Search-Adaptor can achieve better or comparable retrieval performances even with
much smaller LLM models in comparison to zero-shot retrieval systems.

Base LLMs ST5-Base ST5-Large

Datasets Zero-shot Search-Adaptor Zero-shot Search-Adaptor

NFCorpus 0.3100 0.3258 0.3354 0.3410
SciFact 0.5237 0.7255 0.5801 0.7530
Arguana 0.3646 0.5501 0.2662 0.4770
SciDocs 0.1393 0.1657 0.1618 0.1850

FiQA 0.4064 0.4416 0.4785 0.5028
Trec-covid 0.5990 0.6986 0.6471 0.7082

Webis Touche 2020 0.2291 0.3393 0.2624 0.3408
Quora 0.7484 0.8664 0.7560 0.9705

Average 0.4151 0.5141 0.4607 0.5223

Table 4: The performances of Search-Adaptors applied on top of 2 pre-trained LLM encoder:
Sentence-T5 models: (i) ST5-Base (110M parameters) and (ii) ST5-Large (335M parameters) in
terms of nDCG@10.

In Table 4, Search-Adaptor with ST5-Base model (110M parameters) performs much better than ST5-
Large (335M parameters). Search-Adaptor can achieve better results with much smaller encoders,
which can significantly decrease the serving cost and latency of retrieval systems. It also reiterates
the generalizability of Search-Adaptor across different LLMs.

6.2 ABLATION STUDIES

Search-Adaptor proposes multiple innovations to improve the adaptation performance. In this
subsection, we quantify the contributions of proposed constituents to the retrieval performance on
various datasets with as ST5-Base as the base embedding model.

In Table 5, we would like to understand the source of gains in the Search-Adaptor approach. So, we
make various modifications to the Search-Adaptor: (i) different architecture, (ii) different regulariza-
tion, (iii) different losses. First, using different losses makes the biggest performance degradation
which represents the importance of our ranking loss function. In addition, if we use separate adapters
for query and corpus, it also makes a noticeable performance drop. This shows the importance
of “shared embedding space” between query and corpus for the retrieval application. Lastly, skip
connection, two regularization functions also bring additional performance gains but the impact is
lower than our ranking losses.

More specifically on the lower part of Table 5, we shows the impact of the proposed ranking loss in
comparison to alternatives (30). We compare the proposed ranking loss with four popular alternatives:
(i) point-wise sigmoid cross entropy, (ii) contrastive loss (27), (iii) softmax cross entropy (28) and
(iv) RankNet loss (29). As can be seen in Table 5, with the proposed ranking loss (Original Search-
Adaptor), it shows significant performance improvements in comparison to the alternative ranking
losses.

8

Under review as a conference paper at ICLR 2024

NFCorpus SciFact Arguana SciDocs FiQA Trec-covid

Zero-shot 0.3100 0.5237 0.3646 0.1393 0.4064 0.5990
Original Search-Adaptor 0.3258 0.7255 0.5501 0.1657 0.4416 0.6986

Architectural modifications

Without skip connection 0.3243 0.6465 0.5110 0.1579 0.4133 0.6380
With separate adapters 0.3047 0.5488 0.3659 0.1463 0.3977 0.6148

Regularization

Without prediction loss 0.3235 0.6501 0.5456 0.1642 0.4078 0.6177
Without reconstruction loss 0.3245 0.6491 0.5439 0.1637 0.4127 0.6551

Alternative losses

Sigmoid cross entropy 0.3026 0.5917 0.4912 0.1567 0.4052 0.6702
Contrastive loss (27) 0.3046 0.5316 0.4822 0.1449 0.4091 0.6723

Softmax cross entropy (28) 0.3097 0.5452 0.4874 0.1346 0.4121 0.6549
RankNet loss (29) 0.3119 0.5511 0.4699 0.1599 0.4155 0.6428

Table 5: Ablation studies with variants of Search-Adaptor. We first modify regularizers and architec-
tures of the original Search-Adaptor. Then, we only replace the proposed ranking loss with alternative
ranking losses (30).

7 CONCLUSIONS

Pre-trained LLMs have shown great potential in a variety of downstream tasks. In this paper, we focus
on pushing the capabilities of LLMs for information retrieval and search. We propose a canonical
efficient adaptation method, Search-Adaptor, that can also be applied to LLMs available only via APIs.
We demonstrate that Search-Adaptor significantly and consistently improves retrieval performance
across diverse regimes of training data size, encoder type, and corpus set. Important future directions
include generalizing the adaptation method to include partial tuning of the embedding models, as
well as extensions to multi-modal data.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[2] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling language modeling with pathways,”
arXiv preprint arXiv:2204.02311, 2022.

[3] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li,
X. V. Lin, et al., “Opt: Open pre-trained transformer language models,” arXiv preprint
arXiv:2205.01068, 2022.

[4] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al., “Training language models to follow instructions with human feedback,”
Advances in Neural Information Processing Systems, vol. 35, pp. 27730–27744, 2022.

[5] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder, and F. Wei, “Text
embeddings by weakly-supervised contrastive pre-training,” arXiv preprint arXiv:2212.03533,
2022.

[6] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave, “To-
wards unsupervised dense information retrieval with contrastive learning,” arXiv preprint
arXiv:2112.09118, 2021.

9

Under review as a conference paper at ICLR 2024

[7] J. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang, “Sentence-t5: Scalable
sentence encoders from pre-trained text-to-text models,” arXiv preprint arXiv:2108.08877,
2021.

[8] “Openai text embedding.” https://platform.openai.com/docs/guides/
embeddings/embeddings.

[9] “Google cloud text embedding.” https://cloud.google.com/vertex-ai/docs/
generative-ai/embeddings/get-text-embeddings.

[10] J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” arXiv
preprint arXiv:1801.06146, 2018.

[11] Y. Lin, L. Tan, H. Lin, Z. Zheng, R. Pi, J. Zhang, S. Diao, H. Wang, H. Zhao, Y. Yao, et al.,
“Speciality vs generality: An empirical study on catastrophic forgetting in fine-tuning foundation
models,” arXiv preprint arXiv:2309.06256, 2023.

[12] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt
tuning,” arXiv preprint arXiv:2104.08691, 2021.

[13] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” arXiv
preprint arXiv:2101.00190, 2021.

[14] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora:
Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.

[15] E. B. Zaken, S. Ravfogel, and Y. Goldberg, “Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models,” arXiv preprint arXiv:2106.10199, 2021.

[16] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly, “Parameter-efficient transfer learning for nlp,” in International Conference
on Machine Learning, pp. 2790–2799, PMLR, 2019.

[17] A. Rücklé, G. Geigle, M. Glockner, T. Beck, J. Pfeiffer, N. Reimers, and I. Gurevych, “Adap-
terdrop: On the efficiency of adapters in transformers,” arXiv preprint arXiv:2010.11918,
2020.

[18] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych, “Beir: A heterogenous bench-
mark for zero-shot evaluation of information retrieval models,” arXiv preprint arXiv:2104.08663,
2021.

[19] X. Zhang, N. Thakur, O. Ogundepo, E. Kamalloo, D. Alfonso-Hermelo, X. Li, Q. Liu, M. Reza-
gholizadeh, and J. Lin, “Making a miracl: Multilingual information retrieval across a continuum
of languages,” arXiv preprint arXiv:2210.09984, 2022.

[20] Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, and M. Zhang, “Towards general text embeddings
with multi-stage contrastive learning,” arXiv preprint arXiv:2308.03281, 2023.

[21] A. Asai, T. Schick, P. Lewis, X. Chen, G. Izacard, S. Riedel, H. Hajishirzi, and W.-t. Yih,
“Task-aware retrieval with instructions,” arXiv preprint arXiv:2211.09260, 2022.

[22] H. Su, J. Kasai, Y. Wang, Y. Hu, M. Ostendorf, W.-t. Yih, N. A. Smith, L. Zettlemoyer,
T. Yu, et al., “One embedder, any task: Instruction-finetuned text embeddings,” arXiv preprint
arXiv:2212.09741, 2022.

[23] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel, “Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning,” Advances in
Neural Information Processing Systems, vol. 35, pp. 1950–1965, 2022.

[24] Z. Dai, V. Y. Zhao, J. Ma, Y. Luan, J. Ni, J. Lu, A. Bakalov, K. Guu, K. B. Hall, and M.-W. Chang,
“Promptagator: Few-shot dense retrieval from 8 examples,” arXiv preprint arXiv:2209.11755,
2022.

[25] “Beir data repository.” https://github.com/beir-cellar/beir.

10

https://platform.openai.com/docs/guides/embeddings/embeddings
https://platform.openai.com/docs/guides/embeddings/embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://github.com/beir-cellar/beir

Under review as a conference paper at ICLR 2024

[26] “Miracl data repository.” https://project-miracl.github.io/.

[27] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave, “Unsuper-
vised dense information retrieval with contrastive learning,” arXiv preprint arXiv:2112.09118,
2021.

[28] S. Bruch, X. Wang, M. Bendersky, and M. Najork, “An analysis of the softmax cross entropy
loss for learning-to-rank with binary relevance,” in Proceedings of the 2019 ACM SIGIR
international conference on theory of information retrieval, pp. 75–78, 2019.

[29] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender,
“Learning to rank using gradient descent,” in Proceedings of the 22nd international conference
on Machine learning, pp. 89–96, 2005.

[30] Z. Qin, L. Yan, H. Zhuang, Y. Tay, R. K. Pasumarthi, X. Wang, M. Bendersky, and M. Najork,
“Are neural rankers still outperformed by gradient boosted decision trees?,” 2021.

[31] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir techniques,” ACM
Transactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

[32] J. Ni, C. Qu, J. Lu, Z. Dai, G. H. Ábrego, J. Ma, V. Y. Zhao, Y. Luan, K. B. Hall, M.-W. Chang,
et al., “Large dual encoders are generalizable retrievers,” arXiv preprint arXiv:2112.07899,
2021.

11

https://project-miracl.github.io/

Under review as a conference paper at ICLR 2024

A DATA STATISTICS

A.1 BEIR DATASETS

Datasets The number of The number of The number of
train pairs test pairs corpus

NFCorpus 110575 12334 3.6K
SciFact 919 339 5K
Arguana 703 703 8.67K
SciDocs 14972 14956 25K

FiQA 14166 1706 57K
Trec-Covid 35460 30876 171K

Webis Touche 2020 1077 1137 382K
Quora 7626 15675 523K

NQ 2097 2104 2.68M
DBPedia 5673 43515 4.63M

HotPotQA 170000 14810 5.23M
Fever 140085 7937 5.42M

Climate-fever 2299 2382 5.42M
MSMarco 532751 9260 8.84M

Table 6: The statistics of the BEIR datasets (sorted by the number of corpus).

A.2 MIRACL DATASETS

Datasets The number of The number of The number of
train pairs test pairs corpus

Yoruba (yo) 959 229 49043
Swahilli (sw) 9359 5092 131924
Bengali (bn) 16754 4206 297265

Hindi (hi) 11668 3494 506264
Telugu (te) 18608 1606 518079
Thai (th) 21293 7573 542166

Indonesian (id) 41358 9668 1446315
Korean (ko) 12767 3057 1486752
Finnish (fi) 20350 12008 1883509
Arabic (ar) 25382 29197 2061414
Persian (fa) 21844 6571 2207172
Chinese (zh) 13113 3928 4934368

Japanese (ja) 34387 8354 6953614
Russian (ru) 33921 13100 9543918
Spanish (es) 21531 6443 10373953
French (fr) 11426 3429 14636953

Germany (de) 2526 628 15866222

Table 7: The statistics of the MIRACL datasets (sorted by the number of corpus).

B METRICS

For tasks that involve retrieving information, normalized discounted cumulative gain (nDCG) (31) is a
standard metric for evaluating performance. To define nDCG, we first consider discounted cumulative
gain (DCG):

DCG(y, s) =
∑
i

2yi

log2(rank(si) + 1)
,

12

Under review as a conference paper at ICLR 2024

where s is the relevance score computed by the model and y is the ground truth label. nDCG is then
defined as nDCG(y, s) = DCG(y,s)

DCG(y,y) , where the denominator assumes the optimal case where the
ranking of the scores (s) are exactly the same as the ranking of the ground truth label (y). nDCG@k
is a widely used variation of nDCG where only the top k scores are considered. In this paper, we use
nDCG@10 as our main retrieval metric.

C HYPER-PARAMETERS

We summarize the hyper-parameters used to train Search-Adaptor. In all experiments, we utilized
the fixed hyper-parameters that enable to apply Search-Adaptor without extensive hyper-parameter
tuning.

Hyper-parameters Fixed values

Recovery loss coefficient (α) {0.0, 0.1, 1.0}
Prediction loss coefficient (β) {0.0, 0.01, 0.1}

Batch size for training 128
Maximum number of training iterations 2000

Patience for early stopping 125
Learning rates 0.001

Optimizer Adam
Negative pair subsampling ratio (compared with positive pairs) 10

Table 8: Hyper-parameters used to train Search-Adaptor in all experiments.

D ADDITIONAL EXPERIMENTS

We include the additional results of Search-Adaptor with GTR-Large2 (32) as the base embedding
models. As can be seen in Table. 9, the results are consistent with the above results that Search-
Adaptor shows consistent and significant improvements on top of the GTR-Large model.

Datasets GTR-Large Model

Zero-shot Search-Adaptor Gains (%)

NFCorpus 0.3148 0.3242 2.99%
SciFact 0.5331 0.7469 40.11%
Arguana 0.5139 0.6360 23.76%
SciDocs 0.1657 0.1687 1.81%

FiQA 0.4069 0.4265 4.82%
Trec-Covid 0.6912 0.7481 8.23%

Webis Touche 2020 0.2723 0.3227 18.51%
Quora 0.8428 0.8795 4.35%

Average 0.4676 0.5315 13.68%

Table 9: Performance improvements with Search-Adaptor on top of GTR-Large embedding model.

E QUALITATIVE ANALYSIS

First, we compute the cosine similarity between query and corpus, before and after Search-Adaptor
training. Then, we plot the cosine similarity between relevant / irrelevant query corpus pairs.

As can be seen in Fig. 3, after Search-Adaptor training, the distribution differences between relevant
and irrelevant pairs’ cosine similarity are larger which means that we can identify the relevant corpus
per each query better.

2https://huggingface.co/sentence-transformers/gtr-t5-large

13

https://huggingface.co/sentence-transformers/gtr-t5-large

Under review as a conference paper at ICLR 2024

0.4 0.5 0.6 0.7 0.8
Cosine similarity

0

5

10

15

20

25

Nu
m

be
r o

f q
ue

ry
-c

or
pu

s p
ai

rs

Relevant query-corpus pairs
Irrelevant query-corpus pairs

(a) Score distribution before Search-Adaptor

0.2 0.0 0.2 0.4 0.6 0.8
Cosine similarity

0

5

10

15

20

25

30

35

Nu
m

be
r o

f q
ue

ry
-c

or
pu

s p
ai

rs

Relevant query-corpus pairs
Irrelevant query-corpus pairs

(b) Score distribution after Search-Adaptor

Figure 3: Cosine similarity score distributions before and after Search-Adaptor.

To further understand the distribution difference of query / corpus embeddings before and after
Search-Adaptor training, we plot tSNE graphs of query and corpus embeddings.

80 60 40 20 0 20 40 60 80
100

75

50

25

0

25

50

75

(a) tSNE analysis before Search-Adaptor

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

(b) tSNE analysis after Search-Adaptor

Figure 4: tSNE distributions before and after Search-Adaptor. Red represents query embedding and
blue represents corpus embedding.

Fig. 4 shows the impact of Search-Adaptor. The left figure shows that the original query and corpus
embeddings are quite distinct. Most query embeddings are located in the restricted region. On the
other hand, after training with Search-Adaptor, query embedding distribution is observed to better
overlap with the corpus embedding distribution, which could result in more robust retrieval.

We further investigate the success and failure cases of Search-Adaptor in comparison to the zero-shot
baseline. Bold represents the relevant corpus to the query.

As can be seen in Table. 10 and 11, in failure cases, Search-Adaptor still can retrieve the relevant
corpus in the top-3 corpus but the ranking is lower than the baseline. For the success cases, Search-
Adaptor can retrieve the correct corpus even though the baseline is completely failed. Quantitatively,
with 300 test samples, there are 9 cases where Search-Adaptor can retrieve the correct corpus in top-3
but Baseline cannot retrieve any correct corpus in top-3. But there is no case for the opposite.

14

Under review as a conference paper at ICLR 2024

Query Baseline Retrieval Search-Adaptor Retrieval

Suboptimal nutri-
tion is not predictive
of chronic disease

Maternal and child undernutrition: con-
sequences for adult health and human
capital

Global, regional, and national com-
parative risk assessment of 79 be-
havioural, environmental and occupa-
tional, and metabolic risks or clus-
ters of risks, 1990–2015: a systematic
analysis for the Global Burden of Dis-
ease Study 2015

Effect of women’s nutrition before and
during early pregnancy on maternal and
infant outcomes: a systematic review.

Dietary quality among men and women
in 187 countries in 1990 and 2010: a
systematic assessment

Dietary quality among men and women
in 187 countries in 1990 and 2010: a
systematic assessment

Biomarkers of endothelial dysfunction
and risk of type 2 diabetes mellitus.

The PRR MDA5 is a
sensor of RNA virus
infection.

Ribose 2-O-methylation provides a
molecular signature for the distinction
of self and non-self mRNA dependent
on the RNA sensor Mda5

Immune signaling by RIG-I-like re-
ceptors.

Immune signaling by RIG-I-like re-
ceptors.

Ribose 2-O-methylation provides a
molecular signature for the distinction
of self and non-self mRNA dependent
on the RNA sensor Mda5

RIG-I-mediated antiviral responses
to single-stranded RNA bearing
5’-phosphates.

RIG-I-mediated antiviral responses
to single-stranded RNA bearing
5’-phosphates.

A deficiency of vi-
tamin B12 increases
blood levels of ho-
mocysteine.

Preventing coronary heart disease: B vi-
tamins and homocysteine.

Folic acid improves endothelial func-
tion in coronary artery disease via
mechanisms largely independent of
homocysteine lowering.

Effect of homocysteine lowering on mor-
tality and vascular disease in advanced
chronic kidney disease and end-stage
renal disease: a randomized controlled
trial.

Randomized trial of folic acid supple-
mentation and serum homocysteine
levels.

Hyperhomocysteinemia and atheroscle-
rotic vascular disease: pathophysiology,
screening, and treatment. off.

The effect of folic acid supplementation
on plasma homocysteine in an elderly
population.

Table 10: Success cases: Examples of query and top-3 retrieved documents where relevant documents
are ranked higher in Search-Adaptor in comparison to baseline. Top-3 retrieved documents’ titles are
listed above.

15

Under review as a conference paper at ICLR 2024

Query Baseline Retrieval Search-Adaptor Retrieval

Antibiotic induced alterations
in the gut microbiome reduce
resistance against Clostridium
difficile

Antibiotic-induced shifts in the
mouse gut microbiome and
metabolome increase suscepti-
bility to Clostridium difficile
infection

Precision microbiome reconstitu-
tion restores bile acid mediated re-
sistance to Clostridium difficile

Precision microbiome reconstitu-
tion restores bile acid mediated re-
sistance to Clostridium difficile

Antibiotic-induced shifts in the
mouse gut microbiome and
metabolome increase suscepti-
bility to Clostridium difficile
infection

Role of gut commensal microflora
in the development of experimental
autoimmune encephalomyelitis.

Microbiome-driven allergic lung in-
flammation is ameliorated by short-
chain fatty acids

The genomic aberrations
found in matasteses are very
similar to those found in the
primary tumor.

Evolution of metastasis revealed
by mutational landscapes of
chemically induced skin cancers

Intratumor heterogeneity and
branched evolution revealed by
multiregion sequencing.

Molecular characterization of en-
dometrial cancer: a correlative
study assessing microsatellite in-
stability, MLH1 hypermethylation,
DNA mismatch repair protein ex-
pression, and PTEN, PIK3CA,
KRAS, and BRAF mutation analy-
sis.

Diverse tumorigenic pathways in
ovarian serous carcinoma.

Deregulated DNA polymerase beta
induces chromosome instability
and tumorigenesis.

Evolution of metastasis revealed
by mutational landscapes of
chemically induced skin cancers

Incidence rates of cervical can-
cer have increased due to na-
tionwide screening programs
based primarily on cytology to
detect uterine cervical cancer.

Mass screening programmes and
trends in cervical cancer in Fin-
land and the Netherlands.

The effect of mass screening on in-
cidence and mortality of squamous
and adenocarcinoma of cervix uteri.

The effect of mass screening on in-
cidence and mortality of squamous
and adenocarcinoma of cervix uteri.

Mass screening programmes and
trends in cervical cancer in Fin-
land and the Netherlands.

Efficacy of human papillomavirus
testing for the detection of inva-
sive cervical cancers and cervi-
cal intraepithelial neoplasia: a ran-
domised controlled trial.

Efficacy of human papillomavirus
testing for the detection of inva-
sive cervical cancers and cervi-
cal intraepithelial neoplasia: a ran-
domised controlled trial.

Table 11: Failure cases: Examples of query and top-3 retrieved documents where relevant documents
are ranked higher in baseline in comparison to Search-Adaptor. Top-3 retrieved documents’ titles are
listed above.

16

	Introduction
	Related Works
	Problem Formulation
	Methods: Search-Adaptor
	Adapting fixed LLMs
	Ranking objective
	Regularization
	Training

	Experiments
	Experimental settings
	Adapting with API-based LLMs
	Adapting with open-sourced LLMs

	Discussions
	Small LLMs with embedding customization outperform zero-shot large LLMs
	Ablation studies

	Conclusions
	Data Statistics
	BEIR datasets
	MIRACL datasets

	Metrics
	Hyper-parameters
	Additional Experiments
	Qualitative Analysis

