
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCAN: QUAD-DIRECTIONAL SSM DIFFUSION WITH
RETRIEVAL-AUGMENTED CROSS-SCANNING FOR EF-
FICIENT TEXT-TO-IMAGE SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-image synthesis models often suffer from texture blurring, shape distor-
tion, and poor alignment with textual prompts. These issues stem from limited
spatial modeling, weak cross-modal interaction, and insufficient detail preserva-
tion. To address them, we propose DiScan, a framework combining directional
state-space modeling with retrieval-based fusion for efficient, high-fidelity syn-
thesis. First, we introduce a quad-directional SSM that jointly scans visual and
textual features across directions. It shares dynamics for parameter efficiency and
uses direction-specific projections to enhance spatial coherence and semantic con-
sistency. Second, we design a dual-stage attention module using retrieved refer-
ences. The first stage aligns prompt and image features via cross-attention. The
second modulates features through direction-aware scanning, improving structure
preservation. Third, we propose a spatial-frequency fusion block that combines
wavelet decomposition with bidirectional scanning. It captures fine textures and
enhances local details. Extensive experiments show DiScan outperforms Zigma
and USM, achieving significant FID improvements (+6.3 on CelebA-HQ, +9.95
on COCO, +0.67 on CIFAR-10) while maintaining excellent visual quality. Our
work establishes directional SSM diffusion as a scalable paradigm for efficient
high-fidelity synthesis.

1 INTRODUCTION

Diffusion models have significantly advanced text-to-image synthesis. These models can now syn-
thesize highly realistic images from complex prompts Saharia et al. (2022); Rombach et al. (2022).
Most approaches follow the latent diffusion framework, which performs the diffusion process in
a compressed latent space. This design reduces computational costs during both training and in-
ference. To improve scalability, recent works have replaced the traditional U-Net backbone with
transformer-based architectures Peebles & Xie (2023). Transformers enable more flexible modeling
and larger receptive fields. However, self-attention has quadratic complexity with respect to input
size. This limitation becomes critical when synthesizing high-resolution images Shen et al. (2021).
As a result, balancing synthesis quality with efficiency remains an open challenge.

Recently, State Space Models (SSMs) Gu et al. (2022; 2021) have gained attention for their effi-
ciency in long-sequence modeling. Mamba Gu & Dao (2023) is a notable example. It achieves
remarkable transformer-level performance while using significantly fewer resources. Its linear-time
complexity allows lower memory consumption compared to traditional attention. Although origi-
nally designed for 1D sequences, Mamba has been extended to 2D tasks and shows strong results in
classification, detection Liu et al. (2024).

Building on the efficiency of Mamba, recent works have explored its application to image synthesis.
Zigma Hu et al. (2024) integrates Mamba into diffusion models for synthesis. It adopts an efficient
row-column scanning pattern to reduce computation. However, this unidirectional scanning breaks
spatial continuity. It leads to inconsistent modeling of local structures such as object boundaries.
The issue stems from fixed tokenization paths Doruk & Ates (2025). Multi-directional variants
Fei et al. (2024b) attempt to address this, but their independent scanning limits interaction between
features. Furthermore, due to simple cross-attention mechanisms, these models struggle to align
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textual descriptions with image content. This results in object omission and attribute mismatches,
especially in complex prompts Ergasti et al. (2025), as shown in Figure 1(a).

Figure 1: Failure cases of text-to-image syn-
thesis models on MS-COCO and MM-CelebA
datasets. (a) Synthesized images show broken
structures and unrealistic body deformations. This
includes distorted limbs, misaligned faces, and
fused objects. (b) Facial synthesis results con-
tain blurred features, asymmetry, and unnatural
skin textures. These issues reflect poor align-
ment between the text prompt and generated con-
tent. High-frequency features in textures are also
poorly handled.

Following the trend of lightweight synthetic ar-
chitectures, SSM-based image synthesis mod-
els adopt spatial feature scanning over visual to-
kens to balance quality and efficiency Fei et al.
(2024a), Teng et al. (2024), Li et al. (2024).
Compared to traditional DiT Peebles & Xie
(2023) and U-ViT Bao et al. (2023), they pro-
vide higher image fidelity and improved com-
putational efficiency. These models achieve
competitive results with lower memory con-
sumption. However, their reliance on fixed spa-
tial scanning still limits their ability to capture
fine-grained structures. In particular, detailed
features such as textures and edges are often
blurred or missing. This leads to a drop in vi-
sual quality in local regions, especially those
with rich textures or detail structural variations,
as shown in Figure 1(b).

To tackle the aforementioned issues, we present
DiScan, a novel text-to-image synthesis frame-
work with three targeted innovations. First, we
design a Shared-Projection Directional State-
Space (SP-DSS) Fusion mechanism to improve
spatial continuity and visual-text alignment.
This component scans visual features along
four orthogonal directions. During this process,
it jointly integrates text embeddings with visual
tokens. We share parameters across directional
pathways to reduce redundancy and improve training efficiency. At the same time, we use direction-
specific projection layers. These layers encode unique spatial information and maintain feature di-
versity. As a result, the model gains a more complete understanding of object shapes, textures, and
orientations. Second, we introduce a Dual-Phase Retrieval-Augmented Conditioning (DP-RAG)
module to address object deformation and poor alignment. This module retrieves structural cues
from reference data, such as object layout or pose. It then modulates intermediate features in two
stages. The first stage performs semantic alignment between the text prompt and the retrieved struc-
ture. The second stage applies geometric conditioning to guide spatial arrangement. By decoupling
structure injection into two steps, we avoid introducing noise and preserve the integrity of fine ob-
ject structures. Third, we incorporate a Unified Spectral-Spatial Co-Processing (USS-CP) block to
capture high-frequency details. These blocks operate at selected layers of the network. They first
perform frequency decomposition to extract texture-related signals. Then, spatial analysis modules
refine visual patterns such as edges and contours. A unified state-transition operation combines both
types of information. This enhances the model’s ability to retain detailed textures, which are often
blurred or lost in traditional methods. Together, these three components enable DiScan to produce
high-quality, semantically aligned images with realistic structures and textures.

In summary, Our principal contributions are:

• We propose a novel multi-directional fusion architecture that jointly scans image and text
features through parameter-shared state-space dynamics, effectively reducing redundancy
while enhancing cross-modal alignment and spatial consistency in synthesized images.

• We design a dual-phase retrieval conditioning framework that first aligns semantic content
and then injects structural cues, preserving object shapes and layouts without introducing
artifacts from direct feature fusion.

• We introduce an integrated spectral-spatial enhancement module that combines wavelet-
based frequency decomposition with directional scanning, addressing the loss of texture
and fine details in high-frequency regions.
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Figure 2: (a) Overview of our proposed Discan framework. (b) One Discan block. (c) Overall
architecture of the DP-RAG module. (d) Overall architecture of the USS-CP module.

• We achieve state-of-the-art synthesis performance among SSM-based methods, with no-
table gains in both quality and efficiency, including +9.95 FID on COCO and +6.3 FID on
CelebA-HQ.

2 RELATED WORK

2.1 STATE SPACE MODEL (SSM).

Transformers have shown strong performance in vision tasks Dosovitskiy et al. (2021), but their
quadratic complexity limits efficiency. State Space Models (SSMs) Gu et al. (2022; 2021) offer
linear-time computation. Mamba Gu & Dao (2023) improves SSMs with input-dependent dynamics
and achieves high performance in tasks like classification, detection, and segmentation Botti et al.
(2025); Guo et al. (2024); Liu et al. (2024). Zigma Hu et al. (2024) and Dimba Fei et al. (2024b)
extend Mamba to diffusion, reducing computation cost. However, existing variants often suffer from
semantic misalignment and structure distortion. We address this with multi-directional fusion and
structure-aware retrieval to enhance spatial consistency and object accuracy.

2.2 SPATIAL-FREQUENCY METHODS.

SSM-based text-to-image models scan spatial tokens to improve quality and lower cost Fei et al.
(2024a); Teng et al. (2024); Li et al. (2024). They outperform transformer baselines in memory
and fidelity. However, spatial-only scanning fails to capture fine textures and sharp edges. Hybrid
methods from other domains show that combining spatial and frequency features improves detail
recovery and efficiency Liu et al. (2022; 2023); Yao et al. (2022). Recent works integrate frequency
into SSMs using Fourier or wavelet techniques Patro & Agneeswaran (2024); Zou et al. (2024).
Inspired by this, we design a spectral-spatial fusion module for diffusion. It improves texture quality
and object boundaries by combining frequency decomposition and spatial modeling.
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3 PRELIMINARIES

3.1 STATE SPACE MODEL (SSM).

State Space Models (SSMs) model sequences by simulating continuous systems through linear
ODEs. For an input x(t) ∈ R, SSMs maintain a latent state h(t) ∈ RN evolving over time, pro-
ducing output y(t) ∈ R. They achieve linear complexity via recurrent state propagation, unlike
transformers’ quadratic scaling. Continuous dynamics are:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

where A,B,C,D are learnable parameters. These equations are typically discretized using zero-
order hold (ZOH), allowing efficient step-wise recurrence. To enhance input adaptability, Mamba
Gu & Dao (2023) introduces input-conditioned dynamics by making key parameters depend on the
current input:

Bk = WBxk, Ck = WCxk, ∆k = W∆xk, (2)
where WB ,WC ,W∆ are learnable projection matrices. This design enables Mamba to selectively
modulate transitions based on content, improving context awareness while maintaining linear-time
complexity. It is particularly effective for modeling long-range dependencies in high-resolution
synthesis tasks.

3.2 WAVELET TRANSFORMATION.

Wavelet transforms (WT) excel in simplicity and efficiency among frequency transformation meth-
ods. By preserving spatial structure, WT decomposes images into low-frequency approximations
(LL) and high-frequency detail components (LH , HL, HH) capturing vertical, horizontal, and di-
agonal edges. Haar wavelets, the most common WT variant, apply basic low-pass and high-pass
filtering to extract different frequency bands. These operations divide an image into four subbands,
which represent coarse structure and fine details from multiple directions. The transformation is
fully reversible, allowing exact reconstruction through the inverse wavelet process.

4 PROPOSED METHOD

4.1 OVERALL ARCHITECTURE

We propose DiScan, a novel text-to-image synthesis framework. It leverages state-space models
for efficient long-range dependency modeling and introduces directional scanning to improve cross-
modal synthesis. As illustrated in Figure 2(a), our architecture integrates three core innovations: (i)
a multi-directional state-space fusion backbone for joint text-visual representation learning, (ii) a
retrieval-augmented geometric conditioning module for structural consistency, and (iii) a spectral-
spatial co-processing unit for high-frequency texture refinement.

Given an input text prompt T , the textual embedding is obtained via linear projection Et = Wt(T ),
where Wt is a learnable projection matrix. For visual input, we use DC-AE Chen et al. (2025) to
extract latent features efficiently. The input image I ∈ RH×W×3 is first projected, then encoded as:

Ev = DC-AE(Wv(I)) ∈ R
H
32×

W
32×d, (3)

where Wv denotes a learnable linear projection that maps pixel values to a d-dimensional space.

4.2 SP-DSS FUSION

Shared Projection for Cross-Modal Alignment. Unlike Zigma’s convolution-only design Hu et al.
(2024), which overlooks text semantics, our parameter-shared state-space framework achieves effi-
cient cross-modal alignment in Figure 2(b). Given text embeddings Et ∈ RLt×d and visual embed-
dings Ev ∈ RH

32×
W
32×d, we refine each modality as:

Zt = SiLU(Conv1d(Lineart(Et))),Zv = SiLU(Conv2d(Linearv(Ev))), (4)

where Conv1d and Conv2d process text and vision features separately. This retains modality struc-
ture, which Zigma lacks during fusion. The parameterization comprises:
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(1)Shared Dynamics Parameters: For each scanning direction i ∈ {1, 2, 3, 4}, system matrices
A(i) ∈ Rn×n and discretization factors ∆(i) ∈ Rn are defined with sequence length L = Lt + Lv

modeling cross-modal state transitions:
A(i),∆(i) for i = 1, 2, 3, 4. (5)

These parameters are universally shared across both textual and visual modalities.

(2) Direction-Specific Projections: For each direction i ∈ {1, 2, 3, 4}, we compute modality-
specific parameters from refined features Zt and Zv:[

B
(i)
t C

(i)
t X

(i)
t

]
= W

(i)
t (Zt),

[
B

(i)
v C

(i)
v X

(i)
v

]
= W (i)

v (Zv), (6)

where W
(i)
t and W

(i)
v are learnable direction-specific projections for text and vision, respectively.

The final directional parameters are concatenated across modalities:

[B(i),C(i),X(i)] = concat([B(i)
t ,B(i)

v ], [C
(i)
t ,C(i)

v ], [X
(i)
t ,X(i)

v ]), (7)
where the fused parameters are processed by the SSM layer, followed by layer normalization and
output projection. The output is split into text/visual components Ot,Ov , each enhanced through
gated modulation:

O′
k = σ(γk)⊙Ok + βk, k ∈ {t, v}, (8)

where γk, βk are modality-specific affine parameters, establishing bidirectional grounding-text con-
strains visual structure synthesis while visual context refines language understanding-with only
O(L) complexity.

Figure 3: The 2D-selective scan with a 3×3
example image.

Bias-Free Multi-Directional Feature Fusion
Mechanism. Conventional unidirectional scanning
imposes spatial inductive bias by privileging specific
traversal orders. To achieve isotropic feature inte-
gration, we design a quadrangular scanning protocol
that processes sequences along four orthogonal
directions as shown in Figures 3. For each direction
i ∈ {1, 2, 3, 4}, the transformation and fusion are
computed as:

Y(i) = SSMθi(P
(i)), Y =

4∑
i=1

R−1
i (Y(i)), (9)

where θi = {A,∆,B(i),C(i),X(i)} contains direction-specific parameters (with A and ∆ shared),
and R−1

i are inverse permutation operators restoring spatial coordinates. This symmetric fusion
eliminates directional priors while preserving spatial coherence through bidirectional traversals, en-
hancing cross-modal alignment.

4.3 DP-RAG MODULE

Semantic Priming via Cross-Attention. To align text with references, we apply cross-attention
priming as shown in Figure 2(c). The input text embedding Et ∈ RLt×d and the reference feature
Fref ∈ RHr×Wr×c are used. We project Et to queries and flatten Fref into a sequence to compute
keys and values:

Q = Wq(Et), F̄ref = Flatten(Fref), K = Wk(F̄ref), V = Wv(F̄ref), (10)
We then compute Aprim via standard scaled dot-product attention between Q, K, and V, which
builds semantic links between text and visual features, serving as guidance for later spatial align-
ment.

Structural Propagation via Cross-Mamba Modulation. Building on semantic anchors Aprim ∈
RLt×d, we apply cross-mamba to guide visual features Ev ∈ Rh×w×d with geometric priors. Visual
content is projected as C = Wc(Ev), while Aprim is transformed as:

Fdown = Conv2d(Aprim),B = Wb(Fdown),X = Wx(Fdown), (11)
where C encodes spatial content, and B,X provide structure-aware modulation. These parameters
are subsequently used in the SSM module to integrate geometric structure. This alleviates object
deformation and misalignment by incorporating structural priors from reference data through de-
coupled semantic and geometric conditioning.
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Figure 4: Qualitative comparison on the MM-CeleBA and MS-COCO dataset. The input text de-
scriptions are given in the first row and the corresponding synthesized images from different methods
are shown in the same column.

4.4 USS-CP BLOCK

Frequency-Space Decomposition with Directional DWT. To resolve texture-structure trade-offs,
directional DWT decomposition processes intermediate features F ∈ RC×H×W via Haar wavelets
in Figure 2(d):

{FLL,FLH,FHL,FHH} = DWT(F), (12)

where FLL captures low-frequency structural contours, and FLH,FHL,FHH encode high-frequency
textures along horizontal/vertical/diagonal axes. This separates global shape priors from local tex-
tures, overcoming spatial-only scanning limitations. Subbands are processed via parallel directional
scanning for frequency-specific texture synthesis.

Cross-Mamba Enhanced Texture Synthesis. To fuse spatial and spectral features, a dual-path
cross-mamba architecture processes spatial features Fsp and wavelet subbands Ffreq. Two state-
space projections are computed with shared dynamics but cross-modality parameters:

Csp = Wc(Fsp), [Bfreq,Xfreq] = Wbx(Ffreq),

Ya = SSMΘa
(Xfreq), Θa = {A,∆,Bfreq,Csp},

Yb = SSMΘb
(Xsp), Θb = {A,∆,Bsp,Cfreq},

Y = Wfuse([Ya;Yb]),

(13)

where Cfreq,Bsp,Xsp are similarly obtained via linear projections. Cross-parameterization allows
spatial features to guide frequency synthesis, while spectral cues regularize spatial structure. This
enhances the preservation of fine textures and boundaries by jointly modeling spatial layouts and
high-frequency signals, mitigating the blurring effects seen in conventional generation pipelines.

4.5 INFERENCE STRATEGY.

DiScan employs dual retrieval pathways: one retrieves the most semantically aligned reference im-
age via CLIP text-image similarity; the other fetches the top text description through CLIP text-text
similarity and its paired image. Both use top-1 retrieval to augment structural conditioning via the
dual-phase module.
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Table 1: Performance comparison on MM-
CelebA datasets. Our method can outperform
the baseline and can achieve even better results

Methods MultiModal-CelebA-256

FID5k ↓ FDD5k ↓ KID5k ↓
Sweep 158.1 75.9 0.1690

Zigzag-1 65.7 47.8 0.0510
Zigzag-2 54.7 45.5 0.0410
Zigma 45.5 26.4 0.0110
USM 13.6 17.3 0.0051

MM-DiT 16.6 20.3 0.0088
DiScant2i 22.1 16.8 0.0040
DiScant2t 7.3 4.7 0.0022

Table 2: Performance comparison on MS-
COCO datasets. Our method consistently out-
performs the baseline.

Methods MS-COCO2014

Images FID5k ↓
Sweep 400K × 256 195.10

Zigzag-1 400K × 256 73.10
VisionMamba 400K × 256 60.20

Zigma 400K × 256 41.80
USM 400K × 8 39.10

MM-DiT 150K × 256 29.26
DiScant2i 150K × 256 25.37
DiScant2t 150K × 256 19.31

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct comprehensive training and evaluation on three benchmark datasets widely
adopted in text-to-image synthesis research:

• MM-CelebA-HQ Xia et al. (2021) extends the CelebA-HQ dataset with multimodal an-
notations, containing 30,000 high-fidelity celebrity facial images. Each image is paired
with semantic-rich textual descriptions, providing granular control for attribute-driven fa-
cial generation.

• MS-COCO2014 Lin et al. (2014) leverages the multimodal subset of the COCO dataset,
comprising approximately 330,000 diverse natural scene images. Crucially, each image in-
cludes 5 human-annotated captions detailing object interactions and contextual semantics,
enabling robust evaluation of complex text-to-scene synthesis.

• CIFAR-10 Krizhevsky et al. (2009) serves as a stress-test benchmark with 50,000 low-
resolution images (32×32) across 10 object categories. We synthesize minimalistic textual
prompts (e.g., “a photo of a [class]”) to evaluate model performance under constrained
visual-textual alignment scenarios.

Table 3: Performance comparison on
CIFAR-10 datasets.

Methods CIFAR-10

Type FID5w ↓
DDPM U-Net 3.27
EDM U-Net 2.10

GenViT Transformer 20.20
U-ViT Transformer 2.87
DiM SSM 2.76
DiS SSM 3.17

Ours SSM 2.09

Implementation Details. To ensure architectural consis-
tency with contemporary models, our framework adopts
identical core configurations: a 24-layer deep architec-
ture with 768-dimensional embedding spaces. All experi-
ments employ the AdamW optimizer with a fixed learning
rate of 1× 10−4 for parameter updates. For MM-CelebA
and MS-COCO datasets, models were trained for 150K
iterations at 256× 256 resolution, while CIFAR-10 train-
ing of 500K iterations. Image synthesis utilizes stochastic
differential equations (SDE) with 25 sampling steps dur-
ing inference.

Evaluation Metrics. We employ three complementary
metrics: FID Heusel et al. (2017) and KID Bińkowski
et al. (2018) (measuring distributional similarity on 5k
real/synthetic images), supplemented by FDD Hu et al.
(2024) to better address FID’s perceptual limitations.
FDD leverages DINOv2 features Oquab et al. (2024) for enhanced semantic and structural align-
ment with human evaluation.

Baseline Methods. Our approach is compared with state-of-the-art models including: ZigMa Hu
et al. (2024) (DiT-style Zigzag diffusion) and its variants Zigzag-1/2; Sweep-based methods; Vision-
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Mamba Zhu et al. (2024) (vision state-space model); USM Ergasti et al. (2025) (U-shape diffusion);
MM-DiT Esser et al. (2024) (multimodal Rectified Flow diffusion); classical diffusion models DiS
Fei et al. (2024a) (state-space backbone) and DiM Teng et al. (2024) (Diffusion Mamba for HR
image synthesis); and transformer architectures U-ViT-S/2 Bao et al. (2023), GenViT Yang et al.
(2022) and DDPM Ho et al. (2020).

Figure 5: Image synthesis results of DiScan on
CIFAR-10.

Figure 6: Visualization of the comparison be-
tween single-direction scanning (top) and four-
directional fusion (bottom).

5.2 COMPARISONS

Table 4: Comparison of Semantic Fidelity
(CLIPScore) and Perceptual Quality (NIQE)

Methods MultiModal-CelebA-256

CLIPScore5k ↑ NIQE5k ↓
Zigma 21.02 8.33

MM-DiT 22.24 6.31
Ours 22.43 6.18

Qualitative Results. We compare our method
with state-of-the-art (SOTA) baseline methods, as
shown in Figures 4 and 5. Visual comparisons re-
veal critical limitations in baseline methods: Zigma
exhibits inconsistent text alignment and structural
distortions-synthesized faces partially match de-
scriptions but objects display chaotic arrangements
(1st row). MM-DiT suffers from facial blurring arti-
facts and impoverished diversity, with rigid compo-
sitions failing to preserve object integrity (2nd row).
While USM enhances visual richness, it compro-
mises semantic fidelity—objects deviate from tex-
tual guidance (3rd row, 8th col). In contrast, DiScan maintains precise attribute control for facial
features , enriches scenes with dynamic elements , and preserves structural coherence across entities.
Notably on CIFAR-10, our model accurately synthesizes small-scale features.

Figure 7: Visual Ablation Study for the Pro-
posed USS-CP Method.

Quantitative Results. DiScan demonstrates su-
perior performance across all benchmarks, achiev-
ing state-of-the-art metrics on MM-CelebA, MS-
COCO, and CIFAR-10, as shown in Table 1, 2 and
3. On MM-CelebA, our DiScant2t variant reduces
FID to 7.3, improves FDD to 4.7, and lowers KID
to 0.0022. For MS-COCO, DiScant2t achieves FID
19.31 at equivalent computational cost, outperform-
ing MM-DiT and USM. On CIFAR-10, DiScan sets
a new record with FID 2.09, surpassing all SSM-
based competitors including DiM and transformer-
based U-ViT-S/2, validating its efficiency in low-
resolution domains. The results demonstrate the per-
formance advantage of our proposed method.

Analysis of Semantic Fidelity and Texture Detail. We present quantitative results on MultiModal-
CelebA-256 in Table 4, comparing our method against Zigma and MM-DiT. Our approach achieves
the highest CLIPScore, reflecting improved cross-modal alignment through our multi-directional
fusion architecture. Simultaneously, the best NIQE score demonstrates superior perceptual quality,
attributed to our spectral-spatial enhancement module that preserves fine details. These results vali-
date the effectiveness of our innovations in jointly optimizing semantic fidelity and visual realism.
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Analysis of Directional Fusion Comparisons. We compare single-direction scanning with our pro-
posed four-directional fusion. As shown in Fig. 6, single-direction results suffer from noticeable dis-
tortions and inconsistent structures, while multi-directional fusion consistently yields sharper faces,
better-preserved shapes, and improved spatial alignment. This clearly demonstrates the effectiveness
of directional fusion in enhancing visual fidelity.

5.3 ABLATION STUDY

5.4 COMPARISONS

Table 5: Ablation studies on architecture at Multi-
Modal-CelebA-HQ datasets.

Methods MultiModal-CelebA-256

FID5k ↓ FDD5k ↓ KID5k ↓
Baseline 84.4 60.6 0.0768

+ SP-DSS 15.7 24.7 0.0074
+ DP-RAG 22.7 16.9 0.0048
+ USS-CP 22.1 16.8 0.0040

Effectiveness of SP-DSS. The integration of
our shared-projection directional state-space
fusion (SP-DSS) significantly enhances cross-
modal alignment, as clearly shown by MM-
CelebA. When replacing Zigma’s convolu-
tional scanning and cross-attention with SP-
DSS and training for the same steps, FID im-
proves from 84.4 to 15.7, FDD drops from 60.6
to 24.7, and KID decreases from 0.0768 to
0.0074. As shown in Table 5 and Figure 8, re-
moving this module disrupts text-image seman-
tic coherence, further validating the critical role
in synchronizing linguistic concepts with visual
structure through parameter-shared directional scanning.

Figure 8: Visual ablation study for the SP-DSS.

Effectiveness of DP-RAG. The dual-phase
retrieval-augmented conditioning (DP-RAG)
module critically enhances structural fidelity,
as strongly evidenced by its impact on MM-
CelebA metrics. Adding DP-RAG to the SP-
DSS foundation reduces FDD by 31% and KID
by 35% , though FID increases correspondingly
from 15.7 to 22.7 due to heightened structural
constraints limiting sample diversity. As shown
in Table 5, This further confirms DP-RAG’s ef-
ficacy in anchoring subject consistency without
direct feature injection bottlenecks.

Effectiveness of USS-CP. The unified spectral-
spatial co-processing (USS-CP) module signifi-
cantly enhances high-frequency texture fidelity,
as demonstrated by its impact. Adding USS-
CP to the DP-RAG foundation improves KID
by 17% while maintaining optimal FDD (16.8) and slightly reducing FID. As shown in Table 5 and
Figure 7, removing USS-CP causes critical texture degradation—due to inadequate high-frequency
component integration. This validates USS-CP’s role in harmonizing wavelet-domain texture syn-
thesis with spatial structure through unified state transitions, eliminating artifacts while preserving
stochastic details.

6 CONCLUSIONS

We present DiScan, a state-space model-based text-to-image framework redefining cross-modal syn-
thesis via three innovations: 1) Multi-directional fusion harmonizes text-visual semantics using
parameter-shared quadrangular scanning to eliminate spatial bias; 2) Dual-phase retrieval condi-
tioning ensures geometric consistency through hierarchical semantic-to-geometric modulation; 3)
Integrated spectral-spatial enhancement elevates texture fidelity via unified frequency-space co-
processing, resolving structure-detail trade-offs. This establishes new fidelity standards, enabling
unprecedented complex-scene accuracy with linear complexity while optimizing semantic align-
ment, structural consistency, and textural richness.

9
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7 ETHICS STATEMENT

This work has been conducted in accordance with the ICLR Code of Ethics. Our research does not
involve human subjects, sensitive personal information, or personally identifiable data. All datasets
employed in this study are publicly available, well-documented, and widely adopted in the research
community, ensuring both accessibility and reproducibility. In preparing our experiments, we have
carefully reviewed the terms of use and licensing conditions of these datasets, and we have taken
steps to ensure that intellectual property rights and community norms are respected.

We are aware of potential societal impacts that may arise from advances in AI research, including
challenges related to fairness, bias, security, and possible misuse of generative models. While our
method is primarily designed to improve technical performance and enable deeper understanding of
multimodal learning, we stress that such technologies should always be applied responsibly, with
attention to ethical, social, and legal boundaries.

To promote transparency and reproducibility, we have made deliberate efforts to clearly document
our training configurations, evaluation protocols, and experimental setups. We believe that such
practices are essential not only for advancing scientific rigor but also for fostering responsible inno-
vation in artificial intelligence.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken a series of careful steps in both methodol-
ogy and documentation. First, we provide a anonymized implementation of our system, which can
be accessed at the following link: [https://anonymous.4open.science/r/Discan-F7FB/].

Our study employs retrieval-augmented generation (RAG) techniques, where retrieval is performed
using CLIP similarity as the retrieval metric. Specifically, we compute cosine similarity between
input queries and candidate features, and we select the Top-1 retrieved image or text as the corre-
sponding reference. This ensures that the retrieval process is robust and can handle entirely unseen
image–text pairs from the dataset. The retrieved features are then integrated into the model via a
retrieval input module, which facilitates downstream reasoning and improves performance on chal-
lenging scenarios.

For image feature representation, we leverage the DC-AE model, specifically for ”mit-han-lab/dc-
ae-f32c32-sana-1.1”. This model serves as a latent-space feature compressor, which effectively
reduces the dimensionality of image representations while preserving semantic content. Addition-
ally, we adopt random cropping and rotation augmentations during training to mitigate overfitting,
ensuring that our model generalizes beyond specific patterns in the training data.

We also report all datasets used in our experiments, which are publicly available and widely adopted
in the community. To facilitate replication, we provide a complete description of dataset preprocess-
ing steps, including image normalization procedures, and the precise filtering rules applied. Further-
more, hyperparameter settings, including learning rate schedules, batch sizes, optimizer choices, and
random seeds, are fully disclosed. Multiple experimental runs were conducted to verify the stability
of results.

To enhance transparency, we detail the computational infrastructure used in our experiments, includ-
ing GPU/CPU models, memory specifications, and operating systems. This ensures that reviewers
and future researchers can align their environments with ours. We further include ablation studies
to examine the contribution of different components, thereby enabling a more fine-grained under-
standing of how each design choice influences performance.

In summary, reproducibility has been a central priority of our research. We provide (i) anonymized
source code, (ii) documentation of datasets and preprocessing steps, (iii) hyperparameter settings
and random seeds. Together, these efforts in line with the ICLR guidelines on research transparency
and reproducibility.
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Appendix
The Use of Large Language Models (LLMs)
In accordance with the ICLR policy on the use of large lan-
guage models, we confirm that no large language models
were employed in the ideation, research, or writing of this
work. Any text, code, or experimental results presented in
this paper were entirely generated and validated by the au-
thors without reliance on LLMs.

Computational Environment
We summarize the hardware and software environment used
in our experiments in Table 1.

Component Specification
GPU Model NVIDIA RTX 4090 (24GB)
CPU Model Intel Core i7-14700 (28 cores)
Memory 32GB
Operating System Ubuntu 22.04.5 LTS

Table 1: Hardware and software setup used.

Training Configurations
The training configurations for MS-COCO and MM-CelebA
are summarized in Table 2.

MS-COCO 256 MultiModal-CelebA
Autoencoder f 32 32
z-shape 32× 8× 8 32× 8× 8
Patch size 1 1
Channels 768 768
Depth 24 24
Optimizer AdamW AdamW
Batch size 256 64
Learning rate 1e-4 1e-4
Weight decay 0 0
EMA rate 0.9999 0.9999
Warmup steps 0 0

Table 2: Configurations for MS-COCO and MM-CelebA.

Cross-Mamba computation
We formalize the computational framework of Cross-
Mamba, which enables synergistic fusion of spatial and
spectral features through dual-path state-space modeling.
Let Fsp ∈ RLs×d and Ffreq ∈ RLf×d denote spatial and
spectral feature sequences, respectively. The dual-path SSM
transformations are governed by:

Path A:Ya = SSMΘa
(Xfreq),Θa = {A,∆,Bfreq,Csp},

Path B:Yb = SSMΘb
(Xsp),Θb = {A,∆,Bsp,Cfreq}.

(1)
where A ∈ RN×N and ∆ ∈ R are shared parameters main-
taining consistent state dynamics. The cross-modal projec-
tions are defined as:

Csp = Linearc(Fsp),Bfreq,Xfreq = Linearbx(Ffreq),

Cfreq = Linearc(Ffreq),Bsp,Xsp = Linearbx(Fsp).
(2)

Discretizing the continuous SSM via zero-order hold yields:

Ā =exp(∆A), B̄freq = (∆A)−1(e∆A − I)Bfreq,

B̄sp = (∆A)−1(e∆A − I)Bsp.
(3)

The recurrent forms for time step k are:

h
(a)
k = Āh

(a)
k−1 + B̄freqx

(freq)
k , y

(a)
k = Csph

(a)
k ,

h
(b)
k = Āh

(b)
k−1 + B̄spx

(sp)
k , y

(b)
k = Cfreqh

(b)
k ,

(4)

Expanding the recurrence reveals the attention-like formula-
tion:

Ya = Csp

Lf∑
j=1

 Lf∏
k=j+1

Āk

 B̄freq,jXfreq,j ,

Yb = Cfreq

Ls∑
j=1

 Ls∏
k=j+1

Āk

 B̄sp,jXsp,j .

(5)

Applying the exponential property
∏

exp(Mk) =
exp(

∑
Mk):

Ya = Csp

Lf∑
j=1

exp

 Lf∑
k=j+1

∆kA

 B̄freq,jXfreq,j ,

Yb = Cfreq

Ls∑
j=1

exp

 Ls∑
k=j+1

∆kA

 B̄sp,jXsp,j .

(6)

The final fusion integrates both paths through linear projec-
tion:

Y = Linearfuse ([Ya;Yb]) ,= Wf [Ya∥Yb] + bf . (7)

This establishes bidirectional co-modulation: Spatial fea-
tures Fsp guide spectral synthesis via Csp in Path A, while
spectral features Ffreq regularize spatial generation via Cfreq
in Path B. The shared state transition matrix A ensures co-
herent integration of complementary representations while
maintaining linear complexity O(L).

Structure-Aware Transfer Computation
To better understand how our Cross-Mamba module prop-
agates structural priors from text to visual features, we for-
mulate its computation as a structure-aware transformation
process. This builds on a state-space formulation adapted
from (Ali, Zimerman, and Wolf 2025), where SSM dynam-
ics simulate attention-like interactions via parameterized re-
currence.

We start from the standard SSM update:

hk = Ākhk−1 + B̄kxk,yk = Ckhk. (8)

To integrate structure from the semantic anchor A prim,
we map the intermediate parameters as:

Ci = WC(xi),∆k = ReLU(W∆(xk)),

Āk = exp(∆k ·A), B̄j = ∆j ·WB(xj).
(9)



We then rewrite the output at timestep i as the accumu-
lated contribution from all previous positions:

yi =

i∑
j=1

Ci

 i∏
k=j+1

Āk

 B̄jxj , (10)

This can be interpreted as directional modulation, where
the structural role of each xj is gated by B̄j and modu-
lated by state recurrence Āk. The final update mimics cross-
attention:

yi = Qi ·Hi,j ·Kj · xj , (11)
where:

Qi = WC(xi),Kj = ReLU(W∆(xj) ·WB(xj)),

Hi,j = exp

 i∑
k=j+1

W∆(xk) ·A

 .
(12)

This shows that the output yi can be seen as modulated
retrieval over prior positions, where structural priors are en-
coded in Kj , and state propagation is captured by Hi,j . Im-
portantly, Qi determines how content (i.e., current spatial
features) interacts with these priors.

By making B,∆ dependent on structure (xj = Fdown)
and C on content (xi = Ev), the SSM transition simulates a
structure-aware transformation that aligns visual layout with
semantic references. This explains how our Cross-Mamba
module transfers reference-aligned priors while preserving
directional modulation and spatial coherence.

SP-DSS Fusion modal code
The SP-DSS Fusion module integrates textual and visual
information through a multi-directional state-space frame-
work, as outlined in Algorithm 1. It first concatenates the
two feature streams and applies a shared linear layer to
derive global dynamic parameters (A,∆) that summarize
common temporal or spatial dependencies across modali-
ties. The model then launches four directional scans; in each
scan $i$, separate projections create modality-specific pa-
rameters (B(i),C(i),X(i)), which are fed into a structured
state-space model SSM θ i. These directional outputs are
spatially restored viaR i−1 and summed, ensuring that both
local and long-range cues are captured from every orienta-
tion.

DC-AE Inference Pipeline
We use a pre-trained DC-AE (Diffusion-Compatible Au-
toEncoder) model from the Diffusers library to compress
and reconstruct images in Algorithm 2. The input image is
first normalized and converted to a tensor. It is then encoded
into a latent representation using the encoder module of DC-
AE. The latent vector is decoded back into image space by
the decoder.

More qualitative examples
We present our generated samples of MS-COCO in Figure
1, MM-CelebA-HQ-256 in Figure 2, Cifar-10 in Figure 3.

Algorithm 1: SP-DSS Fusion with Quadrangular Scanning
Input: Text features Zt, Visual features Zv

Parameter: Specific affine parameters γt, βt, γv, βv

Output: Enhanced features O′
t,O

′
v

1: Zfused ← Concat[Zt;Zv] {Sequence length L = Lt +
Lv}

2: A,∆ ← Linearshared(Zfused) {Shared dynamics param-
eters}

3: Y ← 0 {Initialize output accumulator}
4: for i = 1 to 4 do
5: B

(i)
t ,C

(i)
t ,X

(i)
t ← Lineardir i(Zt)

6: B
(i)
v ,C

(i)
v ,X

(i)
v ← Lineardir i(Zv)

7: B(i) ← Concat[B(i)
t ,B

(i)
v ]

8: C(i) ← Concat[C(i)
t ,C

(i)
v ]

9: X(i) ← Concat[X(i)
t ,X

(i)
v ]

10: Y(i) ← SSMθi(X
(i)) {θi = {A,∆,B(i),C(i)}}

11: Y ← Y + R−1
i (Y(i)) {Spatial restoration and ag-

gregation}
12: end for
13: Y ← LayerNorm(Y)
14: Y ← Linearproj(Y)
15: Ot,Ov ← Split(Y, [Lt, Lv])
16: O′

t ← σ(γt)⊙Ot + βt {Text modulation}
17: O′

v ← σ(γv)⊙Ov + βv {Visual modulation}
18: return O′

t,O
′
v

Algorithm 2: Image Processing via DC-AE
Input: Image I
Model: Pretrained Autoencoder DC-AE
Output: Reconstructed image Î

1: DC-AE← LoadModel(”XXX”)
2: Itensor ← Normalize(ToTensor(I), µ=0.5, σ=0.5)
3: Itensor ← Itensor[None] {Add batch dimension}
4: Itensor ← Itensor.to(cuda)
5: z ← DC-AE.encode(Itensor).latent {Encode im-

age to latent}
6: Îtensor ← DC-AE.decode(z).sample {Decode la-

tent to reconstructed image}
7: Îtensor ← Îtensor × 0.5 + 0.5 {Denormalize to [0,1]}
8: SaveImage(̂Itensor, ”demo dc ae.png”)
9: return Î



Figure 1: Uncurated generated samples of MS-COCO.



Figure 2: Uncurated generated samples of MM-CelebA-HQ-256.



Figure 3: Uncurated generated samples of CIFAR-10.
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