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Abstract

Generative Adversarial Imitation Learning (GAIL) provides a promising approach
to training a generative policy to imitate a demonstrator. It uses on-policy Rein-
forcement Learning (RL) to optimize a reward signal derived from an adversarial
discriminator. However, optimizing GAIL is difficult in practise, with the training
loss oscillating during training, slowing convergence. This optimization instability
can prevent GAIL from finding a good policy, harming its final performance. In this
paper, we study GAIL’s optimization from a control-theoretic perspective. We show
that GAIL cannot converge to the desired equilibrium. In response, we analyze the
training dynamics of GAIL in function space and design a novel controller that not
only pushes GAIL to the desired equilibrium but also achieves asymptotic stability
in a simplified “one-step” setting. Going from theory to practice, we propose
Controlled-GAIL (C-GAIL), which adds a differentiable regularization term on the
GAIL objective to stabilize training. Empirically, the C-GAIL regularizer improves
the training of various existing GAIL methods, including the popular GAIL-DAC,
by speeding up the convergence, reducing the range of oscillation, and matching
the expert distribution more closely.

1 Introduction

Generative Adversarial Imitation Learning (GAIL) [1] aims to learn a decision-making policy in
a sequential environment by imitating trajectories collected from an expert demonstrator. Inspired
by Generative Adversarial Networks (GANs) [2], GAIL consists of a learned policy serving as a
generator, and a discriminator distinguishing expert trajectories from generated ones. The learned
policy is optimized through Reinforcement Learning (RL) with a reward signal derived from the
discriminator. This paradigm offers distinct advantages over other imitation learning strategies such
as Inverse Reinforcement Learning (IRL), which requires an explicit model of the reward function
[3], and Behavior Cloning (BC), which suffers from a distribution mismatch during roll-outs [4].

Meanwhile, GAIL does bring certain challenges. One key issue it inherits from GANs is instability
during training [5]. GAIL presents a difficult minimax optimization problem, where the convergence
of the discriminator and the policy generator towards their optimal points is not guaranteed in general.
This problem manifests in practice as oscillating training curves and an inconsistency in matching the
expert’s performance (Fig. 1). However, recent empirical works [6–10] on GAIL mostly focus on
improving the sample efficiency and final return of the learned policy, without directly resolving the
problem of unstable training. On the other hand, theoretical works [11–14] on GAIL’s convergence
are based on strong assumptions and do not yield a practical algorithm for stabilizing training.
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Figure 1: Normalized return curves for controlled GAIL-DAC with four expert demonstrations on
five MuJoCo environments averaged over five random seeds. The x-axis represents the number of
gradient step updates in millions and the y-axis represents the normalized environment reward, where
1 stands for the expert policy return and 0 stands for the random policy return

In this paper, we study GAIL’s training stability using control theory. We describe how the generative
policy and discriminator evolve over training at timestep t with a dynamical system of differential
equations. We study whether the system can converge to the desired state where the generator
perfectly matches with the expert policy and the discriminator cannot distinguish generated from
expert trajectories. This surprisingly reveals that the desirable state is not an equilibrium of the
system, indicating that existing algorithms do not converge to the expert policy, even with unlimited
data and model capacity. In response, we study a “one-step GAIL” setting, and design a controller
that does create an equilibrium at the desired state. We theoretically prove that this controller achieves
asymptotic stability around this desired state, which means that if initialized within a sufficiently
close radius, the generator and discriminator will indeed converge to it.

Motivated by our theoretical analysis, we propose C-GAIL, which incorporates a pragmatic controller
that can be added as a regularization term to the loss function to stabilize training in practice.
Empirically we find that our method speeds up the convergence, reduces the range of oscillation in the
return curves (shown on Fig. 1), and matches the expert’s distribution more closely on GAIL-DAC
and other imitation learning methods for a suite of MuJoCo control tasks.

1.1 Related Work

Adversarial imitation learning. Inspired by GANs and IRL, Adversarial Imitation Learning
(AIL) has emerged as a popular technique to learn from demonstrations. GAIL [1] formulated the
problem as matching an occupancy measure under the maximum entropy RL framework, with a
discriminator providing the policy reward signal, bypassing the need to recover the expert’s reward
function. Several advancements were subsequently proposed to enhance performance and stability.
For instance, AIRL [6] replaced the Shannon-Jensen divergence of GAIL by KL divergence. Baram
et al. [15] explored combining GAIL with model-based reinforcement learning. DAC [9] utilized a
replay buffer to remove the need for importance sampling and address the issue of absorbing states.
Other empirical works such as [7–10, 16] helped improve the sample efficiency and final return of
GAIL. In contrast, our work focuses on the orthogonal direction of training stability.

Meanwhile, the convergence behaviors of AIL have also been investigated theoretically. Chen et al.
[11] proved that GAIL convergences to a stationary point (not necessarily the desired state). The
convergence to the desired state has only been established under strong assumptions such as i.i.d.
samples and linear MDP [12, 13] and strongly concave objective functions [14]. However, existing
theory has not analyzed the convergence behavior to the desired state in a general setting, and has
so far not presented practically useful algorithms to improve GAIL’s convergence. Our analysis
in Sec. 3.2 show that GAIL actually cannot converge to the desired state under general settings.
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Additionally, our proposed controller achieves not only a theoretical convergence guarantee, but also
empirical improvements in terms of convergence speed and range of oscillation.

Control theory in GANs. Control theory has recently emerged as a promising technique for studying
the convergence of GANs. Xu et al. [17] designed a linear controller which offers GANs local
stability. Luo et al. [18] utilized a Brownian motion controller which was shown to offer GANs
global exponential stability. However, for GAIL, the policy generator involves an MDP transition,
which results in a much more complicated dynamical system induced by a policy acting in an
MDP rather than a static data generating distribution. Prior theoretical analysis and controllers are
therefore inapplicable. We adopt different analysis and controlling techniques, to present new stability
guarantee, controller, and theoretical results for the different dynamical system of GAIL.

2 Preliminaries

We start by formally introducing our problem setting, as well as necessary definitions and theorems
relating to the stability of dynamical systems represented by Ordinary Differential Equations (ODEs).

2.1 Problem Setting

Consider a Markov Decision Process (MDP), described by the tuple ⟨S,A,P, r, p0, γ⟩, where S is
the state space, A is the action space, P(s′|s, a) is the transition probability function, r(s, a) is the
reward function, p0 is the probability distribution of the initial state s0, and γ ∈ [0, 1] is the discount
factor. We work on the γ-discounted infinite horizon setting, and define the expectation with respect
to a policy π ∈ Π as the (discounted) expectation over the trajectory it generates. For some arbitrary
function g we have Eπ[g(s, a)] ≜ E[Σ∞

n=0γ
ng(sn, an)], where an ∼ π(an|sn), s0 ∼ p0, sn+1 ∼

P(sn+1|sn, an). Note that we use n to represent the environment timestep, reserving t to denote
the training timestep of GAIL. For a policy π ∈ Π, We define its (unnormalized) state occupancy
ρπ(s) =

∑∞
n=0 γ

nP (sn = s|π). We denote Qπ(s, a) = Eπ[logD(s̄, ā)+λ log π(ā|s̄)|s0 = s, a0 =
a] and the advantage function Aπ(s, a) = Qπ(s, a)− Eπ[Q

π(s, a)]. We assume the setting where
we are given a dataset of trajectories τE consisting of state-action tuples, collected from an expert
policy πE . We assume access to interact in the environment in order to learn a policy π, but do not
make use of any external reward signal (except during evaluation).

2.2 Dynamical Systems and Control Theory

In this paper, we consider dynamical systems represented by an ODE of the form

dx(t)

dt
= f(x(t)), (1)

where x represents some property of the system, t refers to the timestep of the system and f is a
function. The necessary condition for a solution trajectory {x(t)}t≥0 converging to some steady state
value is the existence of an ‘equilibrium’.
Definition 2.1. (Equilibrium) [19] A point x̄ is an equilibrium of system (1) if f(x̄) = 0. Such an
equilibrium is also called a fixed point, critical point, or steady state.

Note that a dynamical system is unable to converge if an equilibrium does not exist. A second
important property of dynamical systems is ‘stability’. The stability of a dynamical system can be
described with Lyapunov stability criteria. More formally, suppose {x(t)}t≥0 is a solution trajectory
of the above system (1) with equilibrium x̄, we define two types of stability.
Definition 2.2. (Lyapunov Stability) [20] System (1) is Lyapunov Stable if given any ϵ > 0, there
exists a δ > 0 such that whenever ∥x(0)− x̄∥ ≤ δ, we have ∥x(t)− x̄∥ < ϵ for 0 ≤ t ≤ ∞.
Definition 2.3. (Asymptotic Stability) [20] System (1) is asymptotic stable if it is Lyapunov stable,
and there exists a δ > 0 such that whenever ∥x(0)− x̄∥ ≤ δ, we have limt→∞∥x(t)− x̄∥ = 0.

Note that a dynamical system can be Lyapnuov stable but not asymptotic stable. However, every
asymptotic stable dynamical system is Lyapnuov stable.

The field of control theory has studied how to drive dynamical systems to desired states. This can
be achieved through the addition of a ‘controller’ to allow influence over the dynamical system’s
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evolution, for example creating an equilibrium at some desired state, and making the dynamical
system stable around it.
Definition 2.4. (Controller) [21] A controller of a dynamical system is a function u(t) such that

dx(t)

dt
= f(x(t)) + u(t). (2)

The equilibrium and stability criteria introduced for dynamical system (1), equally apply to this
controlled dynamical system (2). In order to analyze the stability of a controller u(t) of the controlled
dynamical system given an equilibrium x̄, the following result will be useful.
Theorem 2.5. (Principle of Linearized Stability) [22] A controlled dynamical system (2) with
equilibrium x̄ is asymptotically stable if all eigenvalues of J(f(x̄) + u(t)) have negative real parts,
where J(f(x̄) + u(t)) represents the Jacobian of f(x(t)) + u(t) evaluated at x̄.
Corollary 2.6. If J(f(x̄) + u(t)) has positive determinant and negative trace, all its eigenvalues
have negative real parts and the system is asymptotically stable.

3 Analyzing GAIL as a Dynamical System

In this section, we study the training stability of GAIL through the lens of control theory. We derive
the differential equations governing the training process of GAIL, framing it as a dynamical system.
Then, we analyze the convergence of GAIL and find that it cannot converge to the desired equilibrium
due to the entropy term. For simplicity, we limit the theoretical analysis to the original GAIL[1]
among many variants [6–10], while the controller proposed in the next section is general.

3.1 GAIL Dynamics

GAIL consists of a learned generative policy πθ : S → A and a discriminator Dω : S ×A → (0, 1).
The discriminator estimates the probability that an input state-action pair is from the expert policy,
rather than the learned policy. GAIL alternatively updates the policy and discriminator parameters, θ
and ω. (The parameter subscripts are subsequently dropped for clarity.) The GAIL objective [1] is
Eπ[log(D(s, a))] + EπE

[log(1−D(s, a))]− λH(π), where πE is the expert demonstrator policy,
π is the learned policy, and H(π) ≡ Eπ[− log π(a|s)] is its entropy. Respectively, the objective
functions for the discriminator and policy (to be maximized and minimized respectively) are,

VD(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))]

Vπ(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]. (3)

To describe GAIL as a dynamical system, we express how π and D evolve during training. For the
analysis to be tractable, we study the training dynamics from a variational perspective, by directly
considering the optimization of π and D in their respective function spaces. This approach has been
used in other theoretical deep learning works [2, 5, 23] to avoid complications of the parameter space.

We start by considering optimizing Eq. (3) with functional gradient descent with discrete iterations in-
dexed by m: Dm+1(s, a) = Dm(s, a)+β ∂VD(Dm,πm)

∂Dm(s,a) , and πm+1(a|s) = πm(a|s)−β ∂Vπ(Dm,πm)
∂πm(a|s) ,

where β is the learning rate, m the discrete iteration number, ∂VD(Dm,πm)
∂Dm(s,a) (similarly for ∂Vπ(Dm,πm)

∂πm(a|s) )

is the functional derivative [24] defined via ∂VD(Dm, πm) =
∫ ∂VD(Dm,πm)

∂Dm(s,a) ∂Dm(s, a) ds da,
which implies the total change in VD upon variation of function Dm is a linear superposition [25] of
the local changes summed over the whole range of (s, a) value pairs.

We then consider the limit β → 0, where discrete dynamics become continuous (‘gradient flow’)
dDt(s,a)

dt = ∂VD(Dt,πt)
∂Dt(s,a)

, and dπt(a|s)
dt = −∂Vπ(Dt,πt)

∂πt(a|s) . Formally, we consider the evolution of the
discriminator function Dt : S ×A → R and the policy generator πt : S → A over continuous time t
rather than discrete time m. We derive the training dynamic of GAIL in the following theorem.
Theorem 3.1. The training dynamic of GAIL takes the form (detailed proof in Appendix Lemma C.2)

dDt(s, a)

dt
=

ρπt
(s)πt(a|s)
Dt(s, a)

− ρπE
(s)πE(a|s)

1−Dt(s, a)
, (4)

dπt(a|s)
dt

= −ρπt
(s)Aπt(s, a). (5)
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3.2 On the Convergence of GAIL

Now, we study the optimization stability of GAIL using the dynamical system Eq. (5). The desirable
outcome of the GAIL training process, is for the learned policy to perfectly match the expert policy,
and the discriminator to be unable to distinguish between the expert and learned policy.
Definition 3.2. (Desired state) We define the desired outcome of the GAIL training process as the
discriminator and policy reaching D∗

t (s, a) =
1
2 , π

∗
t (a|s) = πE(a|s).

We are interested in understanding whether GAIL converges to the desired state. As discussed
in Sec. 2.2, the desired state should be the equilibrium of the dynamical system Eq. (5) for such
convergence. According to Def. 2.1, the dynamical system should equal to zero at this point, but we
present the following theorem (proved in Proposition C.3 and C.5):
Theorem 3.3. The training dynamics of GAIL does not converge to the desired state, and we have

dD∗
t (s, a)

dt
=

ρπ∗
t
(s)π∗

t (a|s)
D∗

t

− ρπE
(s)πE(a|s)
1−D∗

t

= 0,
dπ∗

t (a|s)
dt

= −ρπ∗
E
(s)Aπ∗

E (s, a) ̸= 0. (6)

Hence, the desired state is not an equilibrium, and GAIL will not converge to it. Since dπ∗
t (a|s)
dt ̸= 0,

even if the system is forced to the desired state, it will drift away from it. We find that the non-
equilibrium result is due to the entropy term λH(π), and an equilibrium could be achieved by simply
setting λ = 0 (Corollary C.4). However, the entropy term is essential since it resolves the exploration
issue and prevents over-fitting. Therefore, we aim to design a controller that not only keeps the
entropy term but also improves the theoretical convergence guarantee.

4 Controlled GAIL

Having shown in Section 3 that GAIL does not converge to the desired state, this section considers
adding a controller to enable the convergence. We design controllers for both the discriminator and
the policy. We show that this controlled system converges to the desired equilibrium and also achieves
asymptotic stability in a simplified “one-step” setting.

4.1 Controlling the Training Process of GAIL

Establishing the convergence for GAIL is challenging since the occupancy measure ρπ involves an
expectation over the states generated by playing the policy π for infinite many steps. We simplify the
analysis by truncating the trajectory length to one: we only consider the evolution from timestep n to
n + 1. We refer this simplified setting as “one-step GAIL”, and the convergence guarantee of our
proposed algorithm will be established in this simplified setting. Let p(s) be the probability of the
state at s on timestep n. The objectives for the discriminator and the policy can then be simplified as,

ṼD(D,π) =

∫
a

∫
s

p(s)π(a|s) logD(s, a) + πE(a|s) log(1−D(s, a)) ds da,

Ṽπ(D,π) =

∫
a

∫
s

p(s)π(a|s) logD(s, a) + λp(s)π(a|s) log π(a|s) ds da.

The gradient flow dynamical system of these functions is,

dDt(s, a)

dt
=

p(s)πt(a|s)
Dt(s, a)

+
p(s)πE(a|s)
Dt(s, a)− 1

, (7)

dπt(a|s)
dt

= −p(s)(logDt(s, a) + λ log πt(a|s) + λ). (8)

With this “one-step” simplification, the GAIL dynamics now reveal a clearer structure. For a given
(s, a) pair, the change of D(s, a) and π(a|s) only depends on D(s, a), π(a|s), p(s) and πE(a|s) for
the same (s, a) pair, without the need to access function values of other (s, a) pairs. Therefore, we
can decompose Eq. (7) & (8), which are ODEs of functions, into a series of ODEs of scalar values.
Each ODE only models the dynamics of two scalar values (D(s, a), π(a|s)) for a particular (s, a)
pair. We will add controller to the scalar ODEs, to asymptotically stabilize their dynamical system.
Proving that each scalar ODE is stable suggests that the functional ODE will also be stable. Note that
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such decomposition is not possible without the “one-step” simplification, since the evolution of D
and π for all (s, a) pairs is coupled through ρπ(s) and Aπ(s, a) in Eq. (5).

Based on the above discussion, we now consider the stability of a system of ODEs for two scalar
variables (D(s, a), π(a|s)). With s, a given, we simplify the notation as x(t) := Dt(s, a), y(t) :=
πt(s|a), E := πE(a|s), c := p(s), so each scalar ODE can be rewritten as,

dx(t)

dt
=

cy(t)

x(t)
+

cE

x(t)− 1
,
dy(t)

dt
= −c log x(t)− cλ log y(t)− cλ. (9)

We showed earlier that the GAIL dynamic in Eq. (5) does not converge to the desired state. Similarly,
neither does our simplified ‘one-step’ dynamic in Eq. (9) converge to the desired state. We now
consider the addition of controllers to push our dynamical system to the desired stated. Specifically,
we consider linear negative feedback control [26], which can be applied to a dynamical system to
reduce its oscillation. We specify our controlled GAIL system as,

dx(t)

dt
=

cy(t)

x(t)
+

cE

x(t)− 1
+ u1(t) (10)

dy(t)

dt
= −c log x(t)− cλ log y(t)− cλ+ u2(t), (11)

where u1(t) and u2(t) are the controllers to be designed for the discriminator and policy respectively.
Since the derivative of the discriminator with respect to time evaluated at the desired state (Def. 3.2)
already equals zero, the discriminator is already able to reach its desired state. Nevertheless, the
discriminator can still benefit from a controller to speed up the rate of convergence – we choose a
linear negative feedback controller for u1(t) to push the discriminator towards its desired state. On
the other hand, the derivative of the policy generator evaluated at its desired state in Eq. (9) does not
equal zero. Therefore, u2(t) should be set to make Eq. (11) equal to zero evaluated at the desired
state. We have designed it to cancel out all terms in Eq. (9) at this desired state, and also provide
feasible hyperparameter values for an asymptotically stable system. Hence, we select u1(t) and u2(t)
to be the following functions,

u1(t) = −k(x(t)− 1

2
), (12)

u2(t) = cλ logE + c log
1

2
+ cλ+ α

y(t)

E
− α, (13)

where k, α are hyperparameters. Intuitively, as k gets larger, the discriminator will be pushed harder
towards the optimal value of 1/2. This means the discriminator would converge at a faster speed but
may also have a larger radius of oscillation.

4.2 Analyzing the Stability of Controlled GAIL

In this section, we apply Theorem 2.5 to formally prove that the controlled GAIL dynamical system
described in Eq. (10) & (11) is asymptotically stable (Def. 2.3) and give bounds with λ, α, and k.

For simplicity, let us define z(t) = (x(t), y(t))⊤, and a function f such that f(z(t)) is the vector[ cy(t)
x(t) +

cE
x(t)−1−k

(
x(t)− 1

2

)
, c log 1

2+cλ logE−cλ log y(t)−c log x(t)+α y(t)
E −α

]⊤
. Therefore,

our controlled training dynamic of GAIL in Eq. (10) and Eq. (11) can be transformed to the following
vector form

d(z(t)) = f(z(t))dt. (14)
Theorem 4.1. Let assumption 4.2 hold. The training dynamic of GAIL in Eq. (14) is asymptotically
stable (proof in Appendix D).
Assumption 4.2. We assume α, k ∈ R, k > 0, 8c2λ − 8cα − 4c2 + ckλ − kα > 0, and
k2+32c(−cλ+α)

32c < 0.

Proof sketch. The first step in proving asymptotic stability of the system in Eq. (14), is to verify
whether our desired state is an equilibrium (Def. 2.1). We substitute the desired state, z∗(t) =
( 12 , E)⊤, into system (14) and verify that d(z∗(t)) = f(z∗(t)) = 0. We then find the linearized
system about the desired state d(z(t)) = J(f(z∗(t)))z(t)dt. Under Assumption 4.2, we show that
det(J(f(z∗(t)))) > 0 and trace(J(f(z∗(t)))) < 0. Finally we invoke Theorem 2.5 and Corollary
2.6 to conclude that the system in Eq. (14) is asymptotically stable.
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Algorithm 1 The C-GAIL algorithm

1: Input: Expert trajectory τE sampled from πE , initial parameters θ0, and ϕ0 for generator and
discriminator.

2: repeat
3: Sample trajectory τ from πθ.
4: Update discriminator parameters ϕ with gradient from,

Êτ

[
logD(s, a)− k

2

(
D(s, a)− 1

2

)2]
+ ÊτE

[
log(1−D(s, a))− k

2

(
D(s, a)− 1

2

)2]
5: Update policy parameters θ with Vπ(D,π) in Eq. 3
6: until Stopping criteria reached

5 A Practical Method to Stabilize GAIL

In this section, we extend our controller from the “one-step” setting back to the general setting and
instantiate our controller as a regularization term on the original GAIL loss function. This results in
our proposed variant C-GAIL; a method to stabilize the training process of GAIL.

Since the controllers in Eq. (13) are defined in the dynamical system setting, we need to integrate
these with respect to time, in order to recover an objective function that can be practically optimized
by a GAIL algorithm. Recalling that VD(D,π) and Vπ(D,π) are the original GAIL loss functions for
the discriminator and policy (Eq. (3)), we define V ′

D(D,π) and V ′
π(D,π) as modified loss functions

with the integral of our controller applied, such that

V ′
D(D,π) = VD(D,π)− Eπ,πE

[
k

2
(D(s, a)− 1

2
)2
]
,

V ′
π(D,π) = Vπ(D,π) + Eπ,πE

[
α

2

π2(a|s)
πE(a|s)

+ (c log
1

2
+ cλ log πE(a|s) + cλ− α)π(a|s)

]
.

Note that the training dynamics with these loss functions are identical to Eq. (10-13) with guaranteed
stability under the ‘one-step’ setting.

While V ′
D(D,π) can be computed directly, the inclusion of πE , the expert policy, in V ′

π(D,π) is
problematic – the very goal of the algorithm is to learn πE , and we do not have access to it during
training. Hence, in our practical implementations, we only use our modified loss V ′

D(D,π) to update
the discriminator, but use the original unmodified policy objective Vπ(D,π) for the policy. In other
words, we only add the controller to the discriminator objective VD(D,π). This approximation has
no convergence guarantee, even in the one-step setting. Nevertheless, the control theory-motivated
approach effectively stabilizes GAIL in practice, as we shall see in Sec. 6. Intuitively, C-GAIL pushes
the discriminator to its equilibrium at a faster speed by introducing a penalty controller centered at 1

2 .
With proper selection of the hyperparameter k (ablation study provided in Appendix E), the policy
generator is able to train the discriminator at the same pace, leading GAIL’s training to converge
faster with a smaller range of oscillation, and match the expert distribution more closely.

Our C-GAIL algorithm is listed in Alg. 1. It can be implemented by simply adding a regularization
term to the discriminator loss. Hence, our method is also compatible with other variants of GAIL, by
straightforwardly incorporating the regularization into their discriminator objective function.

6 Evaluation

This section evaluates the benefit of integrating the controller developed in Section 4 with popular
variants of GAIL. We test the algorithms on their ability to imitate an expert policy in simulated
continuous control problems in MuJoCo [27]. Specifically, we consider applying our controller to
two popular GAIL algorithms – both the original ‘vanilla’ GAIL [1] and also GAIL-DAC [9], a
state-of-the-art variant which uses a discriminator-actor-critic (DAC) to improve sample efficiency
and reduce the bias of the reward function. Additionally, we include supplementary experiments
compared with other GAIL variants such as Jena et al. [7] and Xiao et al. [8] in appendix F.
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Figure 2: State Wasserstein distance (lower is better) between expert and learned policies, over
number of gradient step updates. Our controlled variant matches the expert distribution more closely.

6.1 Experimental Setup

We incorporate our controller in vanilla GAIL and GAIL-DAC, naming our controlled variants
C-GAIL and C-GAIL-DAC. We leverage the implementations of Gleave et al. [28] (vanilla GAIL)
and Kostrikov et al. [9] (GAIL-DAC). Gleave et al. [28] also provide other common imitation learning
frameworks – BC, AIRL, and dataset aggregation (DAgger) [29] – which we also compare to.

For C-GAIL-DAC, we test five MuJuCo environments: Half-Cheetah, Ant, Hopper, Reacher and
Walker 2D. Our experiments follow the same settings as Kostrikov et al. [9]. The discriminator
architecture has a two-layer MLP with 100 hidden units and tanh activations. The networks are
optimized using Adam with a learning rate of 10−3, decayed by 0.5 every 105 gradient steps. We
vary the number of provided expert demonstrations: {4, 7, 11, 15, 18}, though unless stated we report
results using four demonstrations. We assess the normalized return over training for GAIL-DAC and
C-GAIL-DAC to evaluate their speed of convergence and stability, reporting the mean and standard
deviation over five random seeds. The normalization is done with 0 set to a random policy’s return
and 1 to the expert policy return.

In addition to recovering the expert’s return, we are also interested in how closely our policy
generator’s and the expert’s state distribution are matched, for which we use the state Wasserstein
[30]. This requires samples from two distributions, collected by rolling out the expert and learned
policy for 100 trajectories each. We then use the POT library’s ‘emd2’ function [31] to compute the
Wasserstein distance, using the L2 cost function with a uniform weighting across samples.

To evaluate C-GAIL, we follow the experimental protocol from Gleave et al. [28], both for GAIL
and other imitation learning baselines. These are evaluated on Ant, Hopper, Swimmer, Half-Cheetah
and Walker 2D. For C-GAIL, we change only the loss and all other GAIL settings are held constant.
We assess performance in terms of the normalized return. We use this set up to ablate the controller
strength hyperparameter of C-GAIL (Appendix E), varying k ∈ {0.1, 1, 10} (ablation study of α
is not included since our algorithm only involves controller for the discriminator in practice). Our
experiments are conducted on a single NVIDIA GeForce GTX TITAN X.

Table 1: Mean and standard deviation for returns of various IL algorithms and environments

Ant Half Cheetah Hopper Swimmer Walker2d
Random −349± 31 −293± 36 −53± 62 3± 8 −18± 75
Expert 2408± 110 3465± 162 2631± 19 298± 1 2631± 112

Controlled GAIL 2411± 21 3435± 50 2636± 8 298± 0 2633± 12
GAIL 2087± 187 3293± 239 2579± 85 295± 3 2589± 121

BC 1937± 227 3465± 151 2830± 265 298± 1 2672± 95
AIRL −121± 28 1837± 218 2536± 142 269± 8 1329± 134

DAgger 3027± 187 1693± 74 2751± 11 344± 2 2174± 132
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6.2 Results

We compare GAIL-DAC to C-GAIL-DAC in Figure 1 (return), 2 (state Wasserstein), and 3 (con-
vergence speed). Figure 1 shows that C-GAIL-DAC speeds up the rate of convergence and reduces
the oscillation in the return training curves across all environments. For instance, on Hopper, C-
GAIL-DAC converges 5x faster than GAIL-DAC with less oscillations. On Reacher, the return of
GAIL-DAC continues to spike even after matching the expert return, but this does not happen with
C-GAIL-DAC. On Walker 2D, the return of GAIL-DAC oscillates throughout training, whereas our
method achieves a higher return at has reduced the range of oscillation by more than 3 times. For
Half-Cheetah, our method converges 2x faster than GAIL-DAC. For Ant environment, C-GAIL-DAC
reduces the range of oscillations by around 10x.

In addition to matching the expert’s return faster and with more stability, Figure 2 shows that C-GAIL-
DAC also more closely matches the expert’s state distribution than GAIL-DAC, with the difference
persisting even towards the end of training for various numbers of expert trajectories. Toward the
end of training, the state Wasserstein for C-GAIL-DAC is more than two times smaller than the state
Wasserstein for GAIL-DAC on all five environments.

Figure 3 shows that these improvements hold for differing numbers of provided demonstrations. It
plots the number of gradient steps for GAIL-DAC and C-GAIL-DAC to reach 95% of the max-return
for vaious numbers of expert demonstrations. Our method is able to converge faster than GAIL-DAC
regardless of the number of demonstrations.

Hyperparameter sensitivity. We evaluate the sensitivity to the controller’s hyperparameter k using
vanilla GAIL. Figure 4 (Appendix E) plots normalized returns. For some environments, minor gains
can be found by tuning this hyperparameter, though in general for all values tested, the return curves
of C-GAIL approach the expert policy’s return earlier and with less oscillations than GAIL. This is
an important result as it shows that our regularizer can easily be applied by practitioners without the
need for a fine-grained hyperparameter sweep.

Other imitation learning methods. Table 1 benchmarks C-GAIL against other imitation learning
methods, including BC, AIRL, and DAgger, some of which have quite different requirements to
the GAIL framework. The table shows that C-GAIL is competitive with many other paradigms,
and in consistently offers the lowest variance between runs of any method. Moreover, we include
supplementary experiments compared with Jena et al. [7] and Xiao et al. [8] in appendix F.

7 Discussion & Conclusion

This work helped understand and address the issue of training instability in GAIL using the lens of
control theory. This advances recent findings showing its effectiveness in other adversarial learning
frameworks. We formulated GAIL’s training as a dynamical system and designed a controller that
stabilizes it at the desired state, encouraging convergence to this point. We showed theoretically
that our controlled system achieves asymptotic stability under a “one-step” setting. We proposed a
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Figure 3: Number of gradient step updates (in millions) required to reach 95% of the max-return for
various numbers of expert trajectories on MuJoCo environments averaged over five random seeds.
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practical realization of this named C-GAIL, which reaches expert returns both faster and with less
oscillation than the uncontrolled variants, and also matches their state distribution more closely.

Whilst our controller theoretically converges to the desired state, and empirically stabilizes training,
we recognize several limitations of our work. In our description of GAIL training as a continuous
dynamical system, we do not account for the updating of generator and discriminator being discrete
as in practice. In our practical implementation of the controller, we only apply the portion of the loss
function acting on the discriminator, since the generator portion requires knowing the likelihood of
an action under the expert policy (which is precisely what we aim to learn!). We leave it to future
work to explore whether estimating the expert policy and incorporating a controller for the policy
generator brings benefit.
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A Broader impact

This work has provided an algorithmic advancement in imitation learning. As such, we have been
cognisant of various issues such as those related to learning from human demonstrators – e.g. privacy
issues when collecting data. However, this work avoids such matters by using trained agents as the
demonstrators. More broadly, we see our work as a step towards more principled machine learning
methods providing more efficient and stable learning, which we believe in general has a positive
impact.

B Basics of Functional Derivatives

We provide some background on functional derivatives, which are necessary for the derivations in
Appendix C. For a more rigorous and detailed introduction, please refer to the Appendix D of [32].

Definition B.1. (functionals) We define a functional F [y] : f −→ R to be an operator that takes a
function y(x) and returns a scalar value F [y].

Definition B.2. (functionals derivatives) We consider how much a functional F [y] changes when we
make a small change hη(x)|h→0 to the function. If we have∫

∂F

∂y
(x)η(x) dx = lim

h→0

F (y + hη)− F (y)

h
=

dF (y + hη)

dh

∣∣∣∣
h=0

,

such that

F (y + hη) = F (y) + h

∫
∂F

∂y
(x)η(x) dx+O(h2),

then ∂F
∂y is called the functional derivative of F with respect to function y.

Theorem B.3. (chain rule) If the function y is controlled by some weights θ can be rewritten as yθ.
We have

∂F (yθ)

∂θ
=

∫
∂F

∂y
(x)

∂yθ
∂θ

(x)dx.

C Detailed Theoretical Analysis of General GAIL

max
D

VD(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))] (15)

min
π

Vπ(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]. (16)

Lemma C.1. Given that πθ is a parameterized policy. Define the training objective for entropy-
regularized policy optimization as

J(θ) = Eπθ
[r(s, a)]− λEπθ

[− log πθ(a|s)].

Its gradient satisfies

∂

∂θ
J(θ) = Eπθ

[
∂ log πθ(a|s)

∂θ
Qπθ (s, a)] = Eπθ

[
∂ log πθ(a|s)

∂θ
Aπθ

E (s, a)],

where Qπθ (s, a) and Aπθ (s, a) are defined as

Qπθ (s, a) := Eπθ
[r(s̄, ā)+λ log πθ(ā|s̄)|s0 = s, a0 = a], Aπθ (s, a) := Qπθ (s, a)−Eπθ

Qπθ (s, a).
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Proof.

∂

∂θ
J(θ) =

∂

∂θ
Eπθ

[r(s, a)]− λEπθ
[− log πθ(a|s)]

=
∂

∂θ

∫
ρπθ

(s)πθ(a|s)r(s, a)dads+ λ
∂

∂θ

∫
ρπθ

(s)πθ(a|s) log πθ(a|s)dads

=

∫
∂ρπθ

(s)πθ(a|s)
∂θ

r(s, a)dads+ λ

∫
∂ρπθ

(s)πθ(a|s)
∂θ

log πθ(a|s)dads+ λ

∫
ρπθ

(s)πθ(a|s)
∂ log πθ(a|s)

∂θ
dads

=

∫
∂ρπθ

(s)πθ(a|s)
∂θ

[r(s, a) + λ log πθ(a|s)]dads+ λ

∫
ρπθ

(s)πθ(a|s)
1

πθ(a|s)
∂πθ(a|s)

∂θ
dads

=

∫
∂ρπθ

(s)πθ(a|s)
∂θ

[r(s, a) + λ log πθ(a|s)]dads+ λ

∫
ρπθ

(s)
∂

∂θ

∫
πθ(a|s)dads

=

∫
∂ρπθ

(s)πθ(a|s)
∂θ

[r(s, a) + λ log πθ(a|s)]dads

=
∂Eπθ

[r(s, a) + λ log πθ′(a|s)]
∂θ

|θ′=θ

The above derivation suggests that we can view the entropy term as an additional fixed reward
r′(s, a) = λ log πθ(a|s). Applying the Policy Gradient Theorem, we have

∂

∂θ
J(θ) = Eπθ

[
∂ log πθ(a|s)

∂θ
Qπθ (s, a)] = Eπθ

[
∂ log πθ(a|s)

∂θ
Aπθ (s, a)],

where Qπθ is similar to the classic Q-function but with an extra “entropy reward” term.

Lemma C.2. The functional derivatives for the two optimization objectives

VD(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))]

Vπ(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)]
respectively satisfy

∂VD

∂D
=

ρπ(s)π(a|s)
D(s, a)

− ρπE
(s)πE(a|s)

1−D(s, a)
.

∂Vπ

∂π
= ρπ(s)A

π(s, a).

where Aπ follows the same definition as in Lemma C.1.

Qπ(s, a) := Eπ[logD(s̄, ā)+λ log π(ā|s̄)|s0 = s, a0 = a], Aπ(s, a) := Qπ(s, a)−Eπ(a|s)Q
π(s, a).

Proof. Regarding ∂VD

∂D , by definition of Eπ we have

VD(D,π) =

∫
ρπ(s)π(a|s) logD(s, a)dads+

∫
ρπE

(s)πE(a|s) log(1−D(s, a))dads

according to the chain rule [25] of functional derivative, we have

∂VD

∂D
=

ρπ(s)π(a|s)
D(s, a)

− ρπE
(s)πE(a|s)

1−D(s, a)

Regarding ∂Vπ

∂π , suppose π is parameterized by θ. The chain rule for functional derivative states

∂Vπ

∂θ
=

∫
∂Vπ

∂π

∂π

∂θ
dads.
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According to Lemma C.1, we have
∂Vπ

∂θ
=Eπ[

∂ log π(a|s)
∂θ

Aπ(s, a)]

=

∫
ρπ(s)π(a|s)

∂ log π(a|s)
∂θ

Aπ(s, a)dads

=

∫
ρπ(s)

∂π(a|s)
∂θ

Aπ(s, a)dads.

Therefore, we have
∂Vπ

∂π
= ρπ(s)A

π(s, a) = ρπ(s)[Q
π(s, a)− EπQ

π(s, a)].

Proposition C.3. The constrained optimization problem

min
π

Vπ(D,π) = Eπ[logD(s, a)]− λEπ[− log π(a|s)] s.t.

∫
π(a|s) = 1

does not converge when π = πE and D(s, a) = 1
2 for ∀s, a. Namely,

∂Vπ

∂π
|π(s,a)=πE(s,a),D(s,a)= 1

2
̸= 0.

When π = πE and D(s, a) = 1
2 , we have

Qπ(s, a) =EπE [λ log πE(ā|s̄)− log 2|s0 = s, a0 = a]

=

∞∑
n=0

γn

∫
p(sn = s̄|s0 = s, a0 = a)

∫
πE(ā|s̄)[λ log πE(ā|s̄)− log 2]dāds̄

=−
∞∑

n=0

γn

∫
p(sn = s̄|s0 = s, a0 = a)[λH(πE(·|s̄)) + log 2]ds̄

Aπ(s, a) =Qπ(s, a)− EπQ
π(s, a)

=

∞∑
n=0

γn[p(sn = s̄|s0 = s)− p(sn = s̄|s0 = s, a0 = a)]λH(πE(·|s̄))

According to Lemma C.2,

∂Vπ

∂π
= ρπE

(s)AπE (s, a) = ρπE
(s)AπE (s, a)

Recall that we have AπE (s, a) =
∑∞

n=0 γ
n[pπE

(sn = s̄|s0 = s) − pπE
(sn = s̄|s0 = s, a0 =

a)]λH(πE(·|s̄)). Since πE can by any policy distribution determined by the expert dataset, H(πE(·|s̄))
can be any value for various s and a. Additionally, for different actions a1 ̸= a2, we cannot guarantee
pπE

(sn = s̄|s0 = s, a0 = a1) = pπE
(sn = s̄|s0 = s, a0 = a2). Thus ∂Vπ

∂π is not a constant and
relies on action a. AπE (s, a) = 0 cannot hold, and thus ∂Vπ

∂π ̸= 0.

Corollary C.4. This is a corollary of Proposition C.3. When π(s, a) = πE(s, a), D(s, a) = 1
2 , and

the entropy term is excluded from the GAIL objective, we find, ∂Vπ

∂π = 0.

Proof. Exclusion of the entropy term can be achieved by setting λ = 0. Then we have,
∂Vπ

∂π
=ρπE

(s)AπE (s, a) (17)

=ρπE
(s)

∞∑
n=0

γn[p(sn = s̄|s0 = s)− p(sn = s̄|s0 = s, a0 = a)]λH(πE(·|s̄)) (18)

=0 (19)
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Proposition C.5. The optimization problem

max
D

VD(D,π) = Eπ[logD(s, a)] + EπE
[log(1−D(s, a))]

converges when π = πE and D(s, a) = 1
2 for ∀s, a. Namely,

∂VD

∂D
|π(s,a)=πE(s,a),D(s,a)= 1

2
= 0.

Proof. According to the chain rule of functional derivative, we have

∂VD

∂D
=

∂Eπ[logD] + EπE
[log(1−D)]

∂D

= Eπ[
1

D
]− EπE

[
1

1−D
]

= EπE
[
1

D
− 1

1−D
]

= EπE
[2− 2]

= 0

D Proof of Theorem 4.1

Theorem D.1. Let assumption 4.2 holds. The training dynamic of GAIL in Eq. (14) is asymptotically
stable.

Proof. To analyze the convergence and stability behavior of system 14, first we need to verify
definition 2.1 to make sure our goal functions are equilibrium points. Then we apply theorem 2.5 to
prove system 14 is asymptotically stable. Notice that z∗(t) = ( 12 , E)⊤, then we substitute this goal
function to system 14

d(z∗(t)) = f(z∗(t)) = 0

We the compute the linearized system near the goal function such that

d(z(t)) = J(f(z∗(t)))z(t)dt, (20)

where J is the Jacobian of function f . Therefore,

J(f(z∗(t))) =

(
− cy(t)

x(t)2 − cE
(x(t)−1)2 − k c

x(t)

− c
x(t) − cλ

y(t) +
α
E

)
( 1
2 ,E)

, (21)

which after evaluation becomes

J(f(z∗(t))) =
(
−8cE − k 2c

−2c −cλ+α
E

)
(22)

Then we compute the determinate and trace of J(f(z∗(t))), which

det(J(f(z∗(t)))) =
(8c2λ− 8cα− 4c2)E + (ckλ− kα)

E
(23)

trace(J(f(z∗(t)))) =
−8cE2 − kE − cλ+ α

E
(24)

Since E = πE(a|s) has range [0, 1], therefore we have det(J(f(z∗(t)))) > 0, if

ckλ− kα > 0 (25)

8c2λ− 8cα− 4c2 + ckλ− kα > 0 (26)
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The graph of trace(J((f(z∗(t))))) is also a downward hyperbola with middle point
(−k
16c ,

k2+32c(−cλ+α)
32c ). Therefore, trace(J((f(z∗(t))))) < 0, if

k2 + 32c(−cλ+ α)

32c
< 0. (27)

Note that this implies ckλ− kα > 0, since

k2 + 32c(−cλ+ α)

32c
< 0 (28)

k2

32c
− cλ+ α < 0 (29)

− k2

32c
+ cλ− α > 0 (30)

cλ− α >
k2

32c
> 0. (31)

As a result, system 14 is asymptotically stable if assumptions 4.2 hold.
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E Ablation on k
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Figure 4: Normalized returns curves for controlled GAIL with k = 0.1, k = 1, and k = 10 on
MuJoCo environments, where on the y-axis, 1 represents expert policy return and 0 represents random
policy return
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F Comparison with Other IL Methods

BC+GAIL WAIL GAIL-DAC Ours
Expert Trajectories 200 4 4 4

Half-Cheetah 4558.09 ± 89.50 3660.49 ± 217.60 5097.51 ± 62.93 5102.32 ± 5.80
Hopper 3554.35 ± 165.7 3573.74 ± 12.98 3521.14 ± 36.81 3586.24 ± 8.78
Reacher -7.98 ± 2.66 -9.81 ± 3.23 -10.56 ± 5.61 -8.61 ± 1.46

Ant 3941.69 ± 944.67 4173.97 ± 213.46 3268.29 ± 1301.12 4239.40 ± 42.81
Walker2d 6799.93 ± 387.85 5274.72 ± 981.72 4558.99 ± 302.64 5912.83 ± 146.58

Table 2: Return for each environment on various GAIL algorithms.

BC+GAIL WAIL GAIL-DAC Ours
Expert Trajectories 200 4 4 4

Half-Cheetah 0.73M 15.24M 0.13M 0.08M
Hopper 30.36M 74.11M 0.51M 0.06M
Reacher 0.68M 10.84M 0.02M 0.01M

Ant 0.52M 98.50M 0.92M 0.34M
Walker2d 1.26M 79.48M 0.43M 0.41M

Table 3: Number of Iterations needed to reach 95% of return

Expert DiffAIL C-DiffAIL
Hopper 3402 3382.03± 142.86 3388.28± 41.23

HalfCheetah 4463 5362.25± 96.92 4837.34± 30.58
Ant 4228 5142.60± 90.05 4206.64± 36.52

Walker2d 6717 6292.28± 97.65 6343.89± 33.67
Table 4: Final reward with 1 trajectory in diffusion-based GAIL [2], both vanilla and controlled
variant. Mean and standard deviation over five runs
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G Comparison in Atari tasks

Expert (PPO) GAIL C-GAIL
BeamRider 2637.45± 1378.23 1087.60± 559.09 1835.27± 381.84

Pong 21.32± 0.0 −1.73± 18.13 0.34± 8.93
Q*bert 598.73± 127.07 −7.27± 24.95 428.87± 12.72

Seaquest 1840.26± 0.0 1474.04± 201.62 1389.47± 80.24
Hero 27814.14± 46.01 13942.51± 67.13 23912.73± 32.69

Table 5: Final reward in five Atari tasks. Mean and standard deviation over ten runs
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state our contribution and scope clearly in the abstract and introduction.
Overall, we asymptotically stabilize the training process of GAIL and achieve a faster rate
of convergence, smaller range of oscillation and match the expert distribution more closely.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our paper in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide our assumptions in Section 2 and Assumption 4.2. Our complete
proofs are provided in Section C and D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the implementation of our method in Algorithm 1. Additionally,
we submit an additional zip file to reproduce our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit an additional zip file to reproduce our experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify our settings in Section 6.1, and we provide an ablation study on
hyperparameters in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the error bars in Figure 1 and 3. The methodology for their
calculation is included in their respective captions and Section 6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on computer resources in Section 6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research comforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts of our work in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not think our paper poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all the original papers we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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