
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel universal gradient method for solving convex optimization problems.
Our algorithm—Dual Averaging with Distance Adaptation (DADA)—is based on the clas-
sical scheme of dual averaging and dynamically adjusts its coefficients based on observed
gradients and the distance between iterates and the starting point, eliminating the need
for problem-specific parameters. DADA is a universal algorithm whose convergence rate
adapts to the local behavior of the objective around its minimizer, through bounds on its
local growth. This leads to a single method with explicit, problem-dependent guaran-
tees across a broad range of models, including nonsmooth Lipschitz functions, Lipschitz-
smooth functions, Hölder-smooth functions, functions with high-order Lipschitz deriva-
tive, quasi-self-concordant functions, and (L0, L1)-smooth functions. Crucially, DADA
is applicable to both unconstrained and constrained problems, even when the domain is
unbounded, without requiring prior knowledge of the number of iterations or desired ac-
curacy.

1 INTRODUCTION

Gradient methods are among the most popular and efficient algorithms for solving optimization problems
arising in machine learning, as they are highly adaptable and scalable across various settings (Bottou et al.,
2018). Despite their popularity, these methods face a significant challenge of selecting appropriate hyper-
parameters, particularly stepsizes, which are critical to the performance of the algorithm. Hyperparameter
tuning is one of the standard approaches to address this issue but is a time-consuming and resource-intensive
process, especially as models become larger and more complex. Consequently, the cost of training these
models has become a significant concern (Sharir et al., 2020; Patterson et al., 2021).

Typically, line-search techniques have been used to select stepsizes for optimization methods, and they are
provably efficient for certain function classes, such as Hölder-smooth problems (Nesterov, 2015). However,
in recent years, several so-called parameter-free algorithms have been developed which do not utilize line
search (Orabona & Tommasi, 2017; Cutkosky & Orabona, 2018; Carmon & Hinder, 2022; Ivgi et al., 2023;
Khaled et al., 2023; Mishchenko & Defazio, 2024). Notably, one strategy involves dynamically adjusting
stepsizes based on estimates of the initial distance to the optimal solution (Carmon & Hinder, 2022; Ivgi
et al., 2023; Khaled et al., 2023). Another approach leverages lower bounds on the initial distance combined
with the Dual Averaging (DA) scheme (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2024). How-
ever, these methods primarily focus on nonsmooth Lipschitz or, in some cases, Lipschitz-smooth functions.
Some of these methods also come with additional limitations, such as requiring bounded domain assump-
tions (Khaled et al., 2023) or failing to extend to constrained optimization problems (Defazio & Mishchenko,
2023; Mishchenko & Defazio, 2024).

To formalize the discussion, we consider the following optimization problem:

f∗ := min
x∈Q

f(x), (1)

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Method Universal Constraints Unbounded domain No search Stochastic

DoG (Ivgi et al., 2023) ✗ ✓ ✓ ✓ ✓
DoWG (Khaled et al., 2023) ✗ ✓ ✗ ✓ ✗
Bisection Search (Carmon & Hinder, 2022) ✗ ✓ ✓ ✗ ✓
Prodigy (Mishchenko & Defazio, 2024) ✗ ✗ ✗ ✓ ✗
D-Adaptation (Defazio & Mishchenko, 2023) ✗ ✗ ✗ ✓ ✗
UGM (Nesterov, 2015) ✓(*) ✓ ✓ ✗ ✗
DADA (Ours) ✓ ✓ ✓ ✓ ✗

✓(*) Note that UGM uses a different definition of universality. They call their method universal because it works for Hölder-smooth
functions, which are only a subset of the functions we consider.

Table 1: A comparison of different adaptive algorithms to solve (1). “Universal” means the algorithm simultaneously
works for multiple problem classes without the need for choosing different parameters for each of these function classes.
“Constraints” means the algorithm can be applied to constrained problems. “Unbounded domain” means the algorithm can
be applied to problems with unbounded feasible sets. “Stochastic” indicates that the algorithm is analyzed in the stochastic
setting. “No search” means the algorithm does not use an internal search procedure.

whereQ ⊆ Rd is a nonempty closed convex set, and f : Rd → R∪{+∞} is a proper closed convex function
that is subdifferentiable on Q. We assume that Q is a simple set, meaning that it is possible to efficiently
compute the projection onto Q. We also assume problem (1) has a solution x∗ ∈ int dom f . The starting
point in our methods is denoted by x0.

Contributions. In this paper, we introduce Dual Averaging with Distance Adaptation (DADA), a novel
universal gradient method for solving (1). Building on the classical framework of weighted DA (Nesterov,
2005b), DADA incorporates a dynamically adjusted estimate of D0 := ∥x0 − x∗∥, inspired by recent tech-
niques from (Ivgi et al., 2023; Carmon & Hinder, 2022) and further developed in (Khaled et al., 2023),
without requiring prior knowledge of problem-specific parameters. Furthermore, our approach applies to
both unconstrained problems and those with simple constraints, possibly with unbounded domains. This
makes DADA a powerful tool across a wide range of applications.

We start, in Section 2, by presenting our method and outline its foundational structure based on the DA
scheme (Nesterov, 2005b). Our main theoretical result, Theorem 1, establishes convergence guarantees for
a broad range of function classes.

To demonstrate the versatility and effectiveness of DADA, in Section 3, we provide complexity esti-
mates across several interesting function classes: nonsmooth Lipschitz functions, Lipschitz-smooth func-
tions, Hölder-smooth functions, quasi-self-concordant (QSC) functions, functions with Lipschitz high-order
derivative, and (L0, L1)-smooth functions. These results underscore DADA’s ability to deliver competitive
performance without knowledge of class-specific parameters.

Related work. The development of parameter-free first-order methods has received increasing attention
in both optimization and machine learning. A central goal in this line of work is to design algorithms whose
performance does not depend on prior knowledge of problem’s specific parameters, such as smoothness
constants, Lipschitz parameters, or distance to the minimizer—quantities that are rarely known in practice.

Classical approaches to removing stepsize tuning include techniques such as Polyak’s stepsize rule (Polyak,
1987) and doubling schedules (Streeter & McMahan, 2012). While effective in certain settings, these strate-
gies either rely on access to the optimal value or introduce additional overhead through repeated restarts.
In contrast, more recent parameter-free methods aim to achieve near-optimal performance without requiring
such auxiliary procedures.

A large group of recent parameter-free methods is based on AdaGrad-type conditioning (Duchi et al., 2011).
These methods adaptively accumulate squared gradient norms to adjust the effective stepsize. This idea

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

underlies several recent distance-adaptation algorithms, including DoG (Ivgi et al., 2023), DoWG (Khaled
et al., 2023), D-Adaptation (Defazio & Mishchenko, 2023), and Prodigy (Mishchenko & Defazio, 2024).
Although these algorithms achieve parameter-free convergence guarantees for nonsmooth Lipschitz or
Lipschitz-smooth objectives, their theoretical rates does not automatically adapt to broader families of con-
vex functions. We summarize the main properties of the algorithms we compare against in Table 1.

Beyond AdaGrad-type schemes, coin-betting algorithms (Orabona & Pál, 2016) provide adaptive guarantees
in online and stochastic optimization by treating learning as a sequential investment game. In a different
direction, Carmon and Hinder (Carmon & Hinder, 2022) propose a bisection-based SGD routine that adapts
to the unknown smoothness or distance-to-optimum by iteratively solving simpler subproblems. Both coin-
betting and bisection approaches are orthogonal to ours but share the goal of eliminating learning rate tuning
through adaptation mechanisms.

Another universal method worth noting is Nesterov’s Universal Gradient Method (UGM) (Nesterov, 2015),
which achieves optimal rates for Hölder-smooth functions via adaptive line search. While UGM is often
described as “universal,” its scope is limited to smoothness-varying settings and does not extend to broader
function classes such as quasi-self-concordant or high-order smooth functions. Moreover, its reliance on
internal line search procedures makes it less practical in constrained or composite problems.

Notation. In this text, we work in the space Rd equipped with the standard inner product ⟨·, ·⟩ and the
general Euclidean norm ∥x∥ := ⟨Bx, x⟩1/2, where B is a fixed symmetric positive definite matrix. The
corresponding dual norm is defined in the standard way as ∥s∥∗ := max∥x∥=1⟨s, x⟩ = ⟨s,B−1s⟩1/2. Thus,
for any s, x ∈ Rd, we have the Cauchy-Schwarz inequality |⟨s, x⟩| ≤ ∥s∥∗∥x∥. The Euclidean ball of
radius r > 0 centered at x ∈ Rd is defined as B(x, r) := {y ∈ Rd : ∥y − x∥ ≤ r}. For a convex
function f : Rd → R ∪ {+∞}, we denote its effective domain as dom f := {x ∈ Rd : f(x) < +∞}. The
subdifferential of f at a point x ∈ dom f is denoted by ∂f(x), and ∇f(x) ∈ ∂f(x) denotes a subgradient.

2 DADA METHOD

Measuring the quality of solution. Given an approximate solution x ∈ Q to problem (1) and an arbitrary
subgradient ∇f(x) ∈ ∂f(x), we measure the suboptimality of x by the distance from x∗ to the hyperplane
{y : ⟨∇f(x), x− y⟩ = 0}:

v(x) :=
⟨∇f(x), x− x∗⟩

∥∇f(x)∥∗
(≥ 0) . (2)

This objective is meaningful because minimizing v(x) also reduces the corresponding function residual
f(x) − f∗. Indeed, there exists the following simple relationship between v(x) and the function residual
(Nesterov, 2018, Section 3.2.2) (see also Lemma 3 for the short proof):

f(x)− f∗ ≤ ω(v(x)), (3)

where

ω(t) := max
x∈B(x∗,t)

f(x)− f∗ (4)

measures the local growth of f around the solution x∗. Note that inequality (3) is nontrivial only when
B(x∗, v(x)) ⊆ dom f .

By bounding ω(t), we can derive convergence-rate estimates that simultaneously apply to a broad range of
problem classes (we discuss several examples in Section 3).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Algorithm 1 General Scheme of DA

Input: x0 ∈ Q, number of iterations T ≥ 1, coefficients (ak)
T−1
k=0 , (βk)

T
k=1 with nondecreasing βk

for k = 1, . . . , T do
Compute arbitrary gk ∈ ∂f(xk)

xk = argminx∈Q

{∑k−1
i=0 ai⟨gi, x− xi⟩+ βk

2
∥x− x0∥2

}
Output: x∗

T = argminx∈{x0,...,xT−1} f(x)

The method. Our algorithm is based on the general scheme of DA (Nesterov, 2005b) shown in Algo-
rithm 1. Using a standard (sub)gradient method with time-varying coefficients is also possible but requires
either short steps by fixing the number of iterations in advance, or paying an extra logarithmic factor in the
convergence rate (Nesterov, 2018, Section 3.2.3).

The classical method of Weighted DA (WDA) selects the coefficients ak = D̂0

∥gk∥∗
and βk = Θ(

√
k), where

D̂0 is a user-defined estimate of D0. The convergence is guaranteed for any value of D̂0 but one must pay
a multiplicative cost of ρ2, where ρ := max{ D̂0

D0
, D0

D̂0
}, if the parameter D0 is unknown. This cost can

be significantly high if D0 is not known almost exactly. To address this issue, we propose DADA, which
reduces the cost to a logarithmic term, log2 ρ, offering a substantial improvement.

Specifically, our approach utilizes the following coefficients:

ak =
r̄k

∥gk∥∗
, βk = c

√
k + 1 , r̄k := max{ max

1≤t≤k
rt, r̄}, rt := ∥x0 − xt∥, (5)

where r̄ > 0 is a parameter and c is a certain constant to be specified later. In what follows, we assume
w.l.o.g. that gk ̸= 0 for all 0 ≤ k ≤ T −1 since otherwise the exact solution has been found, and the method
could be successfully terminated before making T iterations.

As we can see, the main difference between WDA and DADA, is that the latter dynamically adjusts its
estimate ofD0 by exploiting rt, the distance between xt and the initial point x0. This idea has been explored
in recent works (Carmon & Hinder, 2022; Ivgi et al., 2023), which similarly utilize rt in various ways. Other
methods also attempt to estimate this quantity using alternative strategies, based on DA and the similar
principle of employing an increasing sequence of lower bounds for D0 (Defazio & Mishchenko, 2023;
Mishchenko & Defazio, 2024).

The convergence guarantees for our method are provided in the result below:

Theorem 1. Consider Algorithm 1 for solving problem (1) using the coefficients from (5) with c >
√
2.

Then, for any T ≥ 1 and v∗T := min0≤k≤T−1 v(xk), it holds that

f(x∗T)− f∗ ≤ ω(v∗T),

and

v∗T ≤ eD√
T

log
eD̄

r̄
, (6)

where D̄ := max{r̄, 2c
c−

√
2
D0} and D :=

√
2(cD0 +

1
c D̄). Consequently, for a given δ > 0, it holds that

v∗T ≤ δ whenever T ≥ Tv(δ), where

Tv(δ) :=
e2D2

δ2
log2

eD̄

r̄
.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Let us provide a proof sketch for Theorem 1 here and defer the detailed proof to Appendix B. We begin by
applying the standard result for DA (Lemma 5), which holds for any choice of coefficients ak and βk:

k−1∑
i=0

aivi∥gi∥∗ +
βk
2
D2

k ≤ βk
2
D2

0 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗,

where Di = ∥xi − x∗∥ and vi = v(xi) for all i ≥ 0. Use the specific choices for ak and βk as defined in
(5), we obtain (see Lemma 6):

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1. (7)

Dropping the nonnegative r̄ivi from the left-hand side, we can show by induction that r̄k is uniformly
bounded (see Lemma 7):

r̄k ≤ D̄,

where D̄ is the constant from Theorem 1. This bound is crucial to our analysis, as we need to eliminate r̄k−1

from the right-hand side of (7). Achieving this requires selecting the coefficients precisely as defined in (5),
which is the primary difference compared to the standard DA method (Nesterov, 2005b). Next, using the
inequality D2

0 −D2
k ≤ 2rkD0, we get
k−1∑
i=0

r̄ivi ≤ c
√
k + 1rkD0 +

√
k

c
r̄2k−1 ≤

(
cD0 +

1

c
D̄
)
r̄k
√
k + 1.

After establishing this, the rest of the proof follows straightforwardly by dividing both sides by
∑k−1

i=0 r̄i and
applying the following inequality (valid for any nondecreasing sequence r̄k, see Lemma 2):

min
1≤k≤T

r̄k∑k−1
i=0 r̄i

≤
(r̄Tr̄0)

1
T log er̄T

r̄0

T
.

This gives us

v∗T ≤ D√
T

(
D̄

r̄

) 1
T

log
eD̄

r̄
,

which is almost (6) except for the extra factor of (D̄r̄)
1
T . This extra factor, however, is rather weak as it

can be upper bounded by a constant (say, e ≡ exp(1)) whenever T ≥ log D̄
r̄ . The case of T ≤ log D̄

r̄ is
not interesting since then (6) holds trivially because, for any k ≥ 0, in view of (2) and Lemma 7, we have
vk ≤ Dk ≤ D. According to Theorem 1, our method converges for any c >

√
2. To obtain the smallest

complexity bound (up to logarithmic factors), the value that minimizes this bound is c = 2
√
2. A more

detailed discussion of this choice is provided in Appendix C.

3 UNIVERSALITY OF DADA: EXAMPLES OF APPLICATIONS

Let us demonstrate that our method is universal in the sense that it simultaneously works for multiple prob-
lem classes without the need for choosing different parameters for each of these function classes. For
simplicity, we assume that ∇f(x∗) = 0 (this happens, in particular, when our problem (1) is unconstrained)
and measure the ϵ-accuracy in terms of the function residual. This assumption is made only to keep the
discussion of the different function classes as clean and readable as possible, and it also reflects an important
practical setting (unconstrained problems, or constrained problems with x∗ in the interior ofQ). The general
constrained case, where ∇f(x∗) may be nonzero, is covered by the results in Appendix D. We also assume,
for simplicity, that the objective function satisfies all necessary inequalities on the entire space, but all our
results still hold if they are satisfied only locally at x∗ (see Appendix D). To simplify the notation, we also
denote log+ t := 1 + log t and D̄0 := max{r̄, ∥x0 − x∗∥}, where r̄ is the parameter of our method.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Nonsmooth Lipschitz functions. This function class is defined by the inequality

|f(x)− f(y)| ≤ L0∥x− y∥

for all x, y ∈ Rd. For this problem class, DADA requires at most (see Corollary 10)

O

(
L2
0D̄

2
0

ϵ2
log2+

D̄0

r̄

)
oracle calls to reach ϵ-accuracy, which matches the standard complexity of (sub)gradient methods (Nesterov,
2005b; 2018), up to an extra logarithmic factor. Note that a polylogarithmic factor in D̄0

r̄ appears in the
complexity bounds of all distance-adaptation methods (Defazio & Mishchenko, 2023; Ivgi et al., 2023;
Khaled et al., 2023; Mishchenko & Defazio, 2024).

Lipschitz-smooth functions. Another important class of functions are those with Lipschitz gradient:

∥∇f(x)−∇f(y)∥∗ ≤ L1∥x− y∥

for all x, y ∈ Rd. In this case, the complexity of our method is (see Corollary 13)

O

(
L1D̄

2
0

ϵ
log2+

D̄0

r̄

)
.

This coincides with the standard complexity of the (nonaccelerated) gradient method on Lipschitz-smooth
functions (Nesterov, 2018, Section 3) up to an extra logarithmic factor.

Note that the complexity of DADA is slightly worse than that of the classical gradient method with line
search (Nesterov, 2015), which achieves a complexity bound of O

(L1D
2
0

ϵ + log
∣∣L1

L̂1

∣∣), where L̂1 is the initial
guess for L1. The difference is that the logarithmic factor in the latter estimate appears in an additive way
instead of multiplicative.

Hölder-smooth functions. The previous two examples are subclasses of the more general class of Hölder-
smooth functions. It is defined by the following inequality:

∥∇f(x)−∇f(y)∥∗ ≤ Hν∥x− y∥ν

for all x, y ∈ Rd, where ν ∈ [0, 1] and Hν ≥ 0. Therefore, for ν = 0, we get functions with bounded
variation of subgradients (which contains all Lipschitz functions) and for ν = 1 we get Lipschitz-smooth
functions.

The complexity of DADA on this problem class is (see Corollary 16)

O

([
Hν

ϵ

] 2
1+ν

D̄2
0 log

2
+

D̄0

r̄

)
.

This is similar to the O
([

Hν

ϵ

] 2
1+νD2

0 + log
∣∣ H 2

1+ν
ν

L̂ϵ
1−ν
1+ν

∣∣) complexity of the universal (nonaccelerated) gradient

method with line search (GM-LS) (Nesterov, 2015), where L̂ is the parameter of the method. Again, the
complexity of GM-LS is slightly better since the logarithmic factor is additive (and not multiplicative).
However, GM-LS is not guaranteed to work (well) on other problem classes such as those we consider next.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Functions with Lipschitz high-order derivative. This class is a generalization of the Lipschitz-smooth
class. Functions in this class are p times differentiable, and have the property that their pth derivative (p ≥ 2)
is Lipschitz, i.e., for all x, y ∈ Rd, we have

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥,

where the ∥·∥ norm in the left-hand side is the usual operator norm of a symmetric p-linear opeator: ∥A∥ =
maxh∈Rd : ∥h∥=1∥A[h]p∥. For example, the pth power of the Euclidean norm is an example of a function
in this class (see (Rodomanov & Nesterov, 2019)). The complexity of DADA on this problem class is (see
Corollary 19)

O

([
max
2≤i≤p

[
p

i!

∥∇if(x∗)∥∗
ϵ

] 2
i

+

[
Lp

p! ϵ

] 2
p+1
]
D̄2

0 log
2
+

D̄0

r̄

)
.

Although line-search gradient methods might be better for Hölder-smooth problems, to our knowledge, they
are not known to attain comparable bounds on this function class.

Quasi-self-concordant (QSC) functions (Bach, 2010). A function f is called QSC with parameter M ≥
0 if it is three times continuously differentiable and the following inequality holds for any x, u, v ∈ Rd:

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥. (8)

For example, the exponential, logistic, and softmax functions are QSC; for more details and other examples,
see (Doikov, 2023). When applied to a QSC function, our method has the following complexity (Corol-
lary 23):

O

([
M2D̄2

0 +
∥∇2f(x∗)∥D̄2

0

ϵ

]
log2+

D̄0

r̄

)
.

In terms of comparisons, second-order methods, such as those explored in (Doikov, 2023), are more powerful
for minimizing QSC functions, as they leverage additional curvature information. Their complexity bound,
in terms of queries to the second-order oracle, isO(MD̂0 log

F0

ϵ +log D̂0g0
ϵF0

), where F0 = f(x0)−f∗, D̂0 is
the diameter of the initial sublevel set, and g0 = ∥∇f(x0)∥∗ (see (Doikov, 2023, Corollary 3.4)). However,
each iteration of these methods is significantly more expensive.

To our knowledge, the QSC class has not been previously studied in the context of first-order methods. The
only other first-order methods for which one can prove similar bounds are the nonadaptive variants of our
scheme, namely the normalized gradient method (NGM) from (Nesterov, 2018, Section 5) and the recent
improvement of this algorithm for constrained problems (Nesterov, 2024).

(L0, L1)-smooth functions. As introduced in (Zhang et al., 2020), a function f is said to be (L0, L1)-
smooth if for all x ∈ Rd, we have

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗.

The complexity of DADA on this class is (see Corollary 26)

O

([
L2
1D̄

2
0 +

L0D̄
2
0

ϵ

]
log2+

D̄0

r̄

)
.

Up to the extra logarithmic factor, this matches the complexity of NGM from (Vankov et al., 2024), with
the distinction that their approach is less robust to the initial guess of D0. Specifically, the penalty for
underestimating it in the latter method is a multiplicative factor of ρ2 :=

D2
0

r̄2 while in our method this factor
is logarithmic: log2+ ρ.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Number of oracle calls

10 3

10 2

10 1

f(x
* k
)

f*
p = 2.0, d = 10000

WDA
UGM
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

f(x
* k
)

f*

p = 4.0, d = 10000
WDA
UGM
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

10 11

10 9

10 7

10 5

10 3

10 1

f(x
* k
)

f*

p = 6.0, d = 10000
WDA
UGM
DoG
Prodigy
DADA

Figure 1: Comparison of different methods on the worst-case function.

4 EXPERIMENTS

To evaluate the efficiency of our proposed method, DADA, we conduct a series of experiments on convex
optimization problems. Our goal is to demonstrate the effectiveness of DADA in achieving competitive
performance across various function classes without any hyperparameter tuning.

We compare DADA against state-of-the-art distance-adaptation algorithms, namely, DoG (Ivgi et al., 2023)
and Prodigy (Mishchenko & Defazio, 2024), using their official implementations without any modifications.
We also consider the Universal Gradient Method (UGM) from (Nesterov, 2015) and the classical Weighted
Dual Averaging (WDA) method (Nesterov, 2005b). For UGM, we choose the initial value of the line-search
parameter L0 = 1 and set the target accuracy to ϵ = 10−6. For WDA, we use the coefficients ak = D0

∥gk∥∗

and βk =
√
k, where D0 = ∥x0 − x∗∥.

For each method, we plot the best function value among all the test points generated by the algorithm against
the number of first-order oracle calls. We set the starting point to x0 = (1, . . . , 1) and select the initial guess
for the distance to the solution as r̄ = δ(1 + ∥x0∥). This choice ensures a fair comparison between DADA
and DoG (Ivgi et al., 2023), as DoG employs a similar initialization strategy. In all experiments, we fix
δ = 10−6. Additionally, we conduct a separate experiment to evaluate the sensitivity of DADA to the choice
of δ.

We have several experiments on different problem classes. However, due to space constraints, we present
only a single representative experiment in this section. The remaining experiments can be found in Ap-
pendix E.

Worst-case function. As an example of a function with Lipschitz high-order derivative, we consider the
following worst-case problem from (Doikov et al., 2024):

min
x∈Rd

{
f(x) :=

1

p

d−1∑
i=1

|x(i) − x(i+1)|p + 1

p
|x(d)|p

}
, (9)

where p ≥ 2, and x(i) is the ith element of x. The optimal point in this problem is x∗ = 0.

As illustrated in Fig. 1, nearly all methods exhibit similar performance when p = 2, except for Prodigy
whose convergence becomes slow after a few initial iterations. While Prodigy eventually reaches a similar
accuracy to the best methods, it is much slower at the beginning of the process. As p increases, our method
converges significantly faster than DoG. We suspect that this improvement arises because our method adapts
to the high-order smoothness of the function, whereas DoG’s convergence rate remains unchanged and does
not take advantage of this property.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

In contrast, both DADA and UGM demonstrate stable and consistent performance across different values of
p, with DADA performing slightly better than UGM.

5 DISCUSSION

Comparison with recent distance-adaptation methods. Let us briefly compare our method with several
recently proposed parameter-free algorithms, namely, DoG (Ivgi et al., 2023), DoWG (Khaled et al., 2023),
D-Adaptation (Defazio & Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2024).

To begin, we clarify the key differences between our method and other existing gradient methods using
the distance-adaptation technique. One immediate difference is that we use DA instead of the classical
(sub)gradient method employed by DoG. We could also instantiate our approach using the standard sub-
gradient method instead of DA. However, doing so would either require fixing the number of iterations in
advance or would worsen the overall complexity by an additional polylogarithmic factor in the target accu-
racy. However, the most significant difference lies in how the sequence of gradients is handled. In contrast to
existing distance-adaptation methods, which follow the AdaGrad (Duchi et al., 2011) principle of accumu-
lating squared gradient norms, our method simply normalizes gk by its own norm. This modification makes
our method universal, ensuring that v∗T —the distance from x∗ to the supporting hyperplane—converges to
zero, which is not known to be the case for DoG, even for deterministic problems.

Both DoG and DoWG employ a similar approach to estimate D0 = ∥x0 − x∗∥ and achieve comparable
convergence rates for Lipschitz-smooth and nonsmooth functions. Similarly to our approach, DoWG con-
siders only the deterministic case, but with an additional assumption of the bounded feasible set. They have
a different definition of universality, considering only Lipschitz-smooth and nonsmooth settings.

Furthermore, to the best of our knowledge, these D-Adaptation and Prodigy have not been extended to
constrained optimization. Nonetheless, their methods yield notable results in experiments, demonstrating
strong empirical performance.

It is important to emphasize that the advantage of our method over DoG does not lie in guaranteeing conver-
gence. Indeed, (Ivgi et al., 2023, Theorem 1) shows that DoG asymptotically converges to a minimizer for
any convex function, with a complexity of Õ

(L2
RD̄2

0

ϵ2

)
, where LR = maxx∈B(x0,R)∥∇f(x)∥∗ for R = 3D̄0,

and ϵ denotes the target accuracy in the function value. However, this complexity bound has a critical
drawback—it remains inversely proportional to ϵ2 across all function classes, which is not the case for our
method. For illustration, consider the setting where f has an L2-Lipschitz Hessian. Further, assume for
simplicity that the problem is unconstrained and that ∥∇2f(x∗)∥ is zero (or negligibly small). In this case,

the above complexity bound for DoG becomes1 Õ
(L2

2D̄
6
0

ϵ2

)
, which is substantially worse than Õ

(L2/3
2 D̄2

0

ϵ2/3

)
for DADA (see Corollary 19). Thus, in comparison to DoG, our method provides significantly stronger effi-
ciency guarantees and exhibits automatic acceleration under favorable conditions for a considerably broader
family of function classes.

Conclusion. We proposed DADA, a new adaptive and universal optimization method that extends the
classical Dual Averaging algorithm with a novel distance adaptation mechanism. Our method achieves
competitive rates across a wide class of convex problems—including Lipschitz, Lipschitz-smooth, Hölder-
smooth, quasi-self-concordant (QSC), and (L0, L1)-smooth functions—without requiring parameter tuning
or knowledge of smoothness constants. In contrast to recent approaches such as DoG, DoWG, D-Adaptation,
and Prodigy, DADA seamlessly accommodates both constrained and unconstrained settings, and does so
without requiring restarts or line searches.

1Here, we use the fact that for functions with Lipschitz Hessian, LR = L∗
1R+ L2

2
R2, where L∗

1 = ∥∇2f(x∗)∥.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

DADA provides a unified and adaptive framework for convex optimization with convergence guarantees un-
der minimal assumptions. Future work includes extending DADA to stochastic and nonconvex optimization,
and evaluating its empirical performance in large-scale learning tasks.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384 – 414,
2010. doi: 10.1214/09-EJS521. URL https://doi.org/10.1214/09-EJS521.

Jeremy R Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
networks and the stability of learning. In arXiv:2002.03432, 2020.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018. URL https://doi.org/10.1137/16M1080173.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Proceedings of Thirty Fifth Conference on
Learning Theory, volume 178, pp. 2360–2389, 2022. URL https://proceedings.mlr.press/
v178/carmon22a.html.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in Ba-
nach spaces. In Annual Conference Computational Learning Theory, 2018. URL https://api.
semanticscholar.org/CorpusID:3346292.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In Proceedings
of the 40th International Conference on Machine Learning, volume 202, pp. 7449–7479, 2023. URL
https://proceedings.mlr.press/v202/defazio23a.html.

Nikita Doikov. Minimizing quasi-self-concordant functions by gradient regularization of Newton method,
2023. URL https://arxiv.org/abs/2308.14742.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized Newton method.
SIAM Journal on Optimization, 34(1):27–56, 2024. doi: 10.1137/22M1519444. URL https://doi.
org/10.1137/22M1519444.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL http://jmlr.
org/papers/v12/duchi11a.html.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size
schedule. In Proceedings of the 40th International Conference on Machine Learning, pp. 14465–14499,
2023. URL https://arxiv.org/pdf/2302.12022.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An efficient universal parameter-
free gradient descent method. In Advances in Neural Information Processing Systems, volume 36,
pp. 6748–6769, 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations (ICLR), 2015.

Zijian Liu and Zhengyuan Zhou. Stochastic nonsmooth convex optimization with heavy-tailed noises. ArXiv,
abs/2303.12277, 2023. URL https://api.semanticscholar.org/CorpusID:257663403.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner. In
Proceedings of the 41st International Conference on Machine Learning, volume 235, pp. 35779–35804,
2024. URL https://proceedings.mlr.press/v235/mishchenko24a.html.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:127–152,
2005a.

11

https://doi.org/10.1214/09-EJS521
https://doi.org/10.1137/16M1080173
https://proceedings.mlr.press/v178/carmon22a.html
https://proceedings.mlr.press/v178/carmon22a.html
https://api.semanticscholar.org/CorpusID:3346292
https://api.semanticscholar.org/CorpusID:3346292
https://proceedings.mlr.press/v202/defazio23a.html
https://arxiv.org/abs/2308.14742
https://doi.org/10.1137/22M1519444
https://doi.org/10.1137/22M1519444
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/pdf/2302.12022
https://proceedings.neurips.cc/paper_files/paper/2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:257663403
https://proceedings.mlr.press/v235/mishchenko24a.html

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120:
221–259, 2005b. URL https://api.semanticscholar.org/CorpusID:14935076.

Yurii Nesterov. Universal gradient methods for convex optimization problems. Mathematical Programming,
152:381–404, 2015. URL https://api.semanticscholar.org/CorpusID:18062781.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770. URL https://api.semanticscholar.org/CorpusID:
14935076.

Yurii Nesterov. Primal subgradient methods with predefined step sizes. Journal of Optimization Theory and
Applications, 2024. doi: 10.1007/s10957-024-02456-9. URL https://arxiv.org/abs/2308.
14742.

Francesco Orabona and Dániel Pál. Coin betting and parameter-free online learning. Advances in Neural
Information Processing Systems (NeurIPS), 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through coin
betting. In Neural Information Processing Systems, 2017. URL https://api.semanticscholar.
org/CorpusID:6762437.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training, 2021. URL https:
//arxiv.org/abs/2104.10350.

Boris T. Polyak. Introduction to Optimization. Optimization Software, Inc, 1987.

Anton Rodomanov and Yurii Nesterov. Smoothness parameter of power of Euclidean norm. Journal of Op-
timization Theory and Applications, 185:303–326, 2019. URL https://api.semanticscholar.
org/CorpusID:198968030.

Anton Rodomanov, Xiaowen Jiang, and Sebastian U. Stich. Universality of AdaGrad stepsizes for stochastic
optimization: Inexact oracle, acceleration and variance reduction. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
rniiAVjHi5.

Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training NLP models: A concise overview, 2020.
URL https://arxiv.org/abs/2004.08900.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning (ICML), 2018.

Matthew Streeter and H Brendan McMahan. No-regret algorithms for unconstrained online convex opti-
mization. In Conference on Learning Theory (COLT), pp. 1–11, 2012.

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U. Stich. Optimiz-
ing (l0, l1)-smooth functions by gradient methods, 2024. URL https://arxiv.org/abs/2410.
10800.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. In
arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Reducing bert pre-training time from 3 days to 76
minutes. In arXiv:1904.00962, 2019.

12

https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:18062781
https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:14935076
https://arxiv.org/abs/2308.14742
https://arxiv.org/abs/2308.14742
https://api.semanticscholar.org/CorpusID:6762437
https://api.semanticscholar.org/CorpusID:6762437
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://api.semanticscholar.org/CorpusID:198968030
https://api.semanticscholar.org/CorpusID:198968030
https://openreview.net/forum?id=rniiAVjHi5
https://openreview.net/forum?id=rniiAVjHi5
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training:
A theoretical justification for adaptivity. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=BJgnXpVYwS.

13

https://openreview.net/forum?id=BJgnXpVYwS

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A AUXILIARY RESULTS

The following result has been established in prior works such as (Liu & Zhou, 2023, Lemma 30). We include
the proof here for the reader’s convenience.
Lemma 2. Let (di)∞i=0 be a positive nondecreasing sequence. Then for any T ≥ 1,

min
1≤k≤T

dk∑k−1
i=0 di

≤
(dT

d0
)

1
T log edT

d0

T
.

Proof. Let Ak := 1
dk

∑k−1
i=0 di for each k ≥ 0 (so that A0 = 0). Then, for each k ≥ 0, we have

dk+1Ak+1 − dkAk = dk,

which implies that

dk
dk+1

= Ak+1 −
dk
dk+1

Ak = Ak+1 −Ak +

(
1− dk

dk+1

)
Ak.

Summing up these identities for all 0 ≤ k ≤ T − 1, we get

ST :=

T−1∑
k=0

dk
dk+1

= AT +

T−1∑
k=0

(
1− dk

dk+1

)
Ak ≤ A∗

T (1 + T − ST),

where A∗
T = max0≤k≤T Ak ≡ max1≤k≤T Ak and we have used the fact that (di)∞i=0 is nondecreasing.

Hence,

A∗
T ≥ ST

1 + T − ST
.

Applying now the AM-GM inequality and denoting γT = (d0

dT
)

1
T (∈ (0, 1]), we can further estimate ST ≥

TγT , giving us

A∗
T ≥ TγT

1 + T (1− γT)
.

Thus,

min
1≤k≤T

dk∑k−1
i=0 di

=
1

A∗
T

≤
1
γT

(1 + T (1− γT))

T
.

Estimating further T (1 − γT) ≤ −T log γT ≡ log 1
γT
T

and substituting the definition of γT , we get the
claim.

The following lemma is a classical result from (Nesterov, 2018, Lemma 3.2.1).
Lemma 3. Let x ∈ dom f be such that f is subdifferentiable on x. Then, we have f(x) − f∗ ≤ ω(v(x)),
where ω(·) and v(·) are defined as in (2) and (4) (with ∇f(x) being an arbitrary subgradient from ∂f(x)).

Proof. Let x̄ denote the orthogonal projection of x∗ onto the supporting hyperplane
{y : ⟨∇f(x), x− y⟩ = 0}:

x̄ = x∗ + v(x)
∇f(x)

∥∇f(x)∥∗
.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Then, ⟨∇f(x), x̄− x⟩ = 0, and ∥x̄− x∗∥ = v(x). Therefore,

f(x) ≤ f(x̄) + ⟨∇f(x), x̄− x⟩ = f(x̄),

and hence,

f(x)− f∗ ≤ f(x̄)− f∗ ≤ ω(∥x̄− x∗∥) = ω(v(x)).

Lemma 4. Consider the nonnegative sequence (dk)
∞
k=0 that satisfies, for each k ≥ 0,

dk+1 ≤ max{dk, R+ γdk},
where 0 ≤ γ < 1 and R ≥ 0 are certain constants. Then, for any k ≥ 0, we have

dk ≤ max

{
1

1− γ
R, d0

}
.

Proof. We use induction to prove that dk ≤ D for a certain constantD to be determined later. To ensure that
this relation holds for k = 0, we need to choose D ≥ d0. Let us now suppose that our relation has already
been proved for some k ≥ 0 and let us prove it for the next index k+ 1. Using the induction hypothesis and
the given inequality, we obtain

dk+1 ≤ max{dk, R+ γdk} ≤ max{D,R+ γD}.
To prove that the right-hand side is ≤ D, we need to ensure that R + γD ≤ D, which means that we need
to choose D ≥ 1

1−γR. Combining this requirement with that from the base of induction, we see that we can
choose D = max{ 1

1−γR, d0}.

B PROOF OF THEOREM 1

Lemma 5. In Algorithm 1, for any 1 ≤ k ≤ T , it holds that
k−1∑
i=0

ai⟨gi, xi − x∗⟩+ βk
2
∥xk − x∗∥2 ≤ βk

2
∥x0 − x∗∥2 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗,

where β0 is an arbitrary coefficient in (0, β1].

Proof. For any 0 ≤ k ≤ T , define the function ψk(x) as follows:

ψk(x) :=

k−1∑
i=0

ai⟨gi, x− xi⟩+
βk
2
∥x− x0∥2,

so that ψ0(x) =
β0

2 ∥x − x0∥2 (with β0 as defined in the statement). Note that ψk is a βk-strongly convex
function and xk is its minimizer. Hence, for any x ∈ Q and 0 ≤ k ≤ T , we have

ψk(x) ≥ ψ∗
k +

βk
2
∥x− xk∥2, (10)

where ψ∗
k := ψk(xk). Consequently,

ψ∗
k+1 = ψk+1(xk+1) = ψk(xk+1) + ak⟨gk, xk+1 − xk⟩+

βk+1 − βk
2

∥xk+1 − x0∥2

≥ ψ∗
k +

βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩+

βk+1 − βk
2

∥xk+1 − x0∥2

≥ ψ∗
k +

βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩ ≥ ψ∗

k − a2k
2βk

∥gk∥2∗.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Telescoping these inequalities and using the fact that ψ∗
0 = 0, we obtain

ψ∗
k ≥ −

k−1∑
i=0

a2i
2βi

∥gi∥2∗.

Combining this inequality with the definition of ψk and (10), we thus obtain

k−1∑
i=0

ai⟨gi, x∗ − xi⟩+
βk
2
∥x0 − x∗∥2 = ψk(x

∗) ≥ ψ∗
k +

βk
2
∥xk − x∗∥2

≥ −
k−1∑
i=0

a2i
2βi

∥gi∥2∗ +
βk
2
∥xk − x∗∥2.

Rearranging, we get the claim.

Lemma 6. Consider Algorithm 1 using the coefficients defined in (5). Then, the following inequality holds
for all 1 ≤ k ≤ T :

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1,

where Dk = ∥xk − x∗∥ and vi := v(xi).

Proof. Applying Lemma 5 and the definition of vi, we obtain

k−1∑
i=0

aivi∥gi∥∗ +
βk
2
D2

k ≤ βk
2
D2

0 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗.

Substituting our choice of the coefficients given by (5), we get

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +
1

2c

k−1∑
i=0

r̄2i√
i+ 1

≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1,

where we have used the fact that r̄k is nondecreasing and
∑k−1

i=0
1√
i+1

≤ 2
√
k.

Lemma 7. Consider Algorithm 1 using the coefficients defined in (5) and assume that c >
√
2. Then, we

have the following inequalities for all 0 ≤ k ≤ T :

r̄k ≤ D̄, Dk ≤ D0 +

√
2

c
D̄,

where D̄ := max
{
r̄, 2c

c−
√
2
D0

}
and Dk := ∥xk − x∗∥.

Proof. Both bounds are clearly valid for k = 0, so it suffices to consider only the case when 1 ≤ k ≤ T .

Applying Lemma 6, dropping the nonnegative r̄ivi from the left-hand side and rearranging, we obtain

D2
k ≤ D2

0 +
2
√
k

c2
√
k + 1

r̄2k−1 ≤ D2
0 +

2

c2
r̄2k−1.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Consequently,

Dk ≤ D0 +

√
2

c
r̄k−1. (11)

Therefore,

rk ≡ ∥xk − x0∥ ≤ Dk +D0 ≤ 2D0 +

√
2

c
r̄k−1.

Hence,

r̄k ≡ max{r̄k−1, rk} ≤ max

{
r̄k−1, 2D0 +

√
2

c
r̄k−1

}
.

Since k ≥ 1 was allowed to be arbitrary, we can apply Lemma 4 to conclude that

r̄k ≤ max

{
r̄,

2

1−
√
2
c

D0

}
= max

{
r̄,

2c

c−
√
2
D0

}
≡ D̄.

This proves the first part of the claim.

Substituting the already proved bound on r̄k into (11), we obtain the claimed upper bound on Dk.

We are now ready to prove the main result.

Proof of Theorem 1. Let T ≥ 1 be arbitrary. According to Lemma 3 and the fact that ω(·) is nondecreasing,
we can write

f(x∗T)− f∗ = min
0≤k≤T−1

[f(xk)− f∗] ≤ min
0≤k≤T−1

ω(vk) = ω(v∗T),

where vk := v(xk) and v∗T := min0≤k≤T−1 vk. This proves the first part of the claim.

Let us now estimate the rate of convergence of v∗T . To that end, let us fix an arbitrary 1 ≤ k ≤ T . In view of
Lemma 6, we have

k−1∑
i=0

r̄ivi ≤
c
√
k + 1

2
(D2

0 −D2
k) +

√
k

c
r̄2k−1,

where Dk = ∥xk − x∗∥. Note that

D2
0 −D2

k ≡ ∥x0 − x∗∥2 − ∥xk − x∗∥2 = (∥x0 − x∗∥ − ∥xk − x∗∥)(∥x0 − x∗∥+ ∥xk − x∗∥)
≤ 2∥xk − x0∥∥x0 − x∗∥ ≡ 2rkD0.

Therefore, we can continue as follows:
k−1∑
i=0

r̄ivi ≤ c
√
k + 1rkD0 +

√
k

c
r̄2k−1 ≤

(
cD0 +

1

c
r̄k−1

)√
k + 1 r̄k

≤
(
cD0 +

1

c
D̄
)√

k + 1 r̄k = D

√
k + 1

2
r̄k,

where the second inequality is due to the fact that r̄k = max{r̄k−1, rk}, the final inequality is due to
Lemma 7, and the constants D̄ and D are as defined in the statement. Hence,

v∗k ≡ min
0≤i≤k−1

vi ≤
∑k−1

i=0 r̄ivi∑k−1
i=0 r̄i

≤ r̄k∑k−1
i=0 r̄i

D

√
k + 1

2
.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Letting now k∗ = argmin1≤k≤T
r̄k∑k−1
i=0 r̄i

and using Lemma 2, we obtain

v∗T ≤ v∗k∗ ≤
D
√

k∗+1
2

T

(r̄T
r̄

) 1
T

log
er̄T
r̄

≤ D√
T

(
D̄

r̄

) 1
T

log
eD̄

r̄
,

where we have used the fact that k∗+1 ≤ T +1 ≤ 2T (since 1 ≤ k∗ ≤ T) and that r̄T ≤ D̄ (see Lemma 7).
This proves (6) in the case when T ≥ log D̄

r̄ since then we can further bound (D̄r̄)
1
T ≡ exp(1

T log D̄
r̄) ≤ e.

On the other hand, by the definition of vk and Lemma 7, we always have the following trivial inequality for
any 0 ≤ k ≤ T − 1:

vk ≡ ⟨∇f(xk), xk − x∗⟩
∥∇f(xk)∥∗

≤ Dk ≤ D0 +

√
2

c
D̄ ≤ D.

This means that (6) is also satisfied in the case when T ≤ log D̄
r̄ since then eD√

T
log eD̄

r̄ ≥ D√
T
log D̄

r̄ ≥
D
√
T ≥ D (we still consider T ≥ 1). The proof of (6) is now finished.

The final part of the claim readily follows from (6).

C HOW TO CHOOSE THE CONSTANT c

According to Theorem 1, our method converges for any c >
√
2. However, the choice of c can influence

the constant factor in the complexity of DADA. Hence, our goal here is to find the optimal constant c that
minimizes Tv(δ). To determine this c, let r̄ be sufficiently small, so that

D̄ ≡ max
{
r̄,

2c

c−
√
2
D0

}
=

2c

c−
√
2
D0.

Then, disregarding the logarithmic factors, due to their minimal impact on the complexity of our method,
we can determine the optimal constant c that minimizes

D ≡
√
2
(
cD0 +

1

c
D̄
)
=

√
2
(
c+

2

c−
√
2

)
D0.

This is the value

c = 2
√
2. (12)

For this optimal choice of c, we get D̄ = max{r̄, 4D0} and D = 4D0 + 1
2D̄, so the complexity of our

method given by Theorem 1 is

Tv(δ) =
e2(4D0 +

1
2D̄)2

δ2
log2

eD̄

r̄
.

D CONVERGENCE OF DADA ON VARIOUS PROBLEM CLASSES

In this section, we analyze the complexity of DADA across different problem classes. To achieve this, we
first establish bounds on the growth function:

ω(t) = max
x∈B(x∗,t)

f(x)− f∗,

and determine the threshold t such that ω(t) ≤ ϵ for a given ϵ. Subsequently, we combine these results with
the complexity bound T (δ) derived in Theorem 1, enabling us to estimate the oracle complexity of DADA
for finding an ϵ-solution in terms of the function residual.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

D.1 NONSMOOTH LIPSCHITZ FUNCTIONS

Assumption 8. The function f in problem (1) is locally Lipschitz at x∗. Specifically, for any x ∈ B(x∗, ρ),
the following inequality holds:

f(x)− f∗ ≤ L0∥x− x∗∥, (13)
where L0, ρ > 0 are fixed constants.
Lemma 9. Let f be locally L0-Lipschitz at x∗ (Assumption 8). Then, ω(t) ≤ ϵ for any given ϵ > 0 whenever
t ≤ δ(ϵ), where

δ(ϵ) := min

{
ϵ

L0
, ρ

}
.

Proof. According to (13), for any 0 ≤ t ≤ ρ, we have
ω(t) ≤ L0t.

Making the right-hand side ≤ ϵ, we get the claim.

Combining Theorem 1 and Lemma 9, we get the following complexity result.
Corollary 10. Consider problem (1) under Assumption 8. Let Algorithm 1 with coefficients (5) be applied
for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
L2
0

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

D.2 LIPSCHITZ-SMOOTH FUNCTIONS

Assumption 11. The function f in problem (1) is locally Lipschitz-smooth at x∗. Specifically, for any
x ∈ B(x∗, ρ), the following inequality holds:

f(x) ≤ f∗ + ⟨∇f(x∗), x− x∗⟩+ L1

2
∥x− x∗∥2, (14)

where L1, ρ > 0 are fixed constants.
Lemma 12. Assume that f is locally Lipschitz-smooth at x∗ with constant L1 (Assumption 11). Then,
ω(t) ≤ ϵ for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{√
ϵ

L1
,

ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to (14), for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+ L1

2
∥x− x∗∥2.

Hence, for any 0 ≤ t ≤ ρ,

ω(t) ≤ L1

2
t2 + ∥∇f(x∗)∥∗t.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

L1

2
t2 ≤ ϵ

2
, ∥∇f(x∗)∥∗t ≤

ϵ

2
.

Solving this system of inequalities, we get the claim.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Combining Theorem 1 and Lemma 12, we get the following complexity result.

Corollary 13. Consider problem (1) under Assumption 11. Let Algorithm 1 with coefficients (5) be applied
for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
L1

ϵ
,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

D.3 HÖLDER-SMOOTH FUNCTIONS

Assumption 14. The function f in problem (1) is locally Hölder-smooth at x∗. Specifically, for any x ∈
B(x∗, ρ), the following inequality holds:

f(x) ≤ f∗ + ⟨∇f(x∗), x− x∗⟩+ Hν

1 + ν
∥x− x∗∥1+ν , (15)

where ν ∈ [0, 1] and Hν , ρ > 0 are fixed constants.

Lemma 15. Let f be locally (ν,Hν)-Hölder-smooth at x∗ (Assumption 14). Then, ω(t) ≤ ϵ for any given
ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{[
(1 + ν)ϵ

2Hν

] 1
1+ν

,
ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to (15), for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+ Hν

1 + ν
∥x− x∗∥1+ν .

Hence, for any 0 ≤ t ≤ ρ,

ω(t) ≤ ∥∇f(x∗)∥∗t+
Hν

1 + ν
t1+ν .

To make the right-hand side of the last inequality ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

Hν

1 + ν
t1+ν ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 15, we get the following complexity result.

Corollary 16. Consider problem (1) under Assumption 14. Let Algorithm 1 with coefficients (5) be applied
for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{[
2Hν

(1 + ν)ϵ

] 2
1+ν

,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

D.4 FUNCTIONS WITH LIPSCHITZ HIGH-ORDER DERIVATIVE

Assumption 17. The function f in problem (1) is such that its pth derivative is locally Lp-Lipschitz at x∗.
Specifically, f is p times differentiable on B(x∗, ρ), and, for any x ∈ B(x∗, ρ), the following inequality
holds:

∥∇pf(x)−∇pf(x∗)∥ ≤ Lp∥x− x∗∥.

where Lp, ρ > 0 are fixed constants.

The Assumption 17 immediately implies the following global upper bound on the function value:

f(x) ≤ f∗ +

p∑
i=1

1

i!
∇if(x∗)[x− x∗]i +

Lp

(p+ 1)!
∥x− x∗∥p+1. (16)

Lemma 18. Assume that f has locally Lp-Lipschitz pth derivative at x∗ (Assumption 17). Then, ω(t) ≤ ϵ
for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{
min
2≤i≤p

[
i! ϵ

(p+ 1)∥∇if(x∗)∥

] 1
i

,

[
p! ϵ

Lp

] 1
p+1

,
ϵ

(p+ 1)∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to (16), for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+
p∑

i=2

1

i!
∥∇if(x∗)∥∥x− x∗∥i + Lp

(p+ 1)!
∥x− x∗∥p+1.

Therefore, for any 0 ≤ t ≤ ρ, we have

ω(t) ≤ ∥∇f(x∗)∥∗t+
p∑

i=2

1

i!
∥∇if(x∗)∥ti + Lp

(p+ 1)!
tp+1.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the following inequalities holds:

∥∇f(x∗)∥∗t ≤
ϵ

p+ 1
,

1

i!
∥∇if(x∗)∥ti ≤ ϵ

p+ 1
,

Lp

(p+ 1)!
tp+1 ≤ ϵ

p+ 1
, i = 2, . . . , p.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 18, we get the following complexity result.

Corollary 19. Consider problem (1) under Assumption 17. Let Algorithm 1 with coefficients (5) be applied
for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
max
2≤i≤p

[
(p+ 1)∥∇if(x∗)∥

i! ϵ

] 2
i

,

[
Lp

p! ϵ

] 2
p+1

,
(p+ 1)2∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

D.5 QUASI-SELF-CONCORDANT FUNCTIONS

Assumption 20. The function f in problem (1) is Quasi-Self-Concordant (QSC) in a neighborhood of x∗.
Specifically, it is three times differentiable in a neighborhood of x∗ and for any x ∈ B(x∗, ρ) and arbitrary
directions u, v ∈ Rd, the following inequality holds:

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥,

where M ≥ 0 and ρ > 0 are fixed constants.

The following lemma provides an important global upper bound on the function value for QSC functions.
Lemma 21. (Doikov, 2023, Lemma 2.7) Let f be QSC with the parameter M . Then, for any x, y ∈ dom f ,
the following inequality holds:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ ⟨∇2f(x)(y − x), y − x⟩φ(M∥y − x∥),

where φ(t) := et−t−1
t2 .

Lemma 22. Assume that f is a locally QSC function at x∗ with constantM (Assumption 20). Then, ω(t) ≤ ϵ
for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{
1

M
,

√
ϵ

2(e− 2)∥∇2f(x∗)∥
,

ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to Lemma 21, for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ ⟨∇2f(x∗)(x− x∗), x− x∗⟩φ(M∥x− x∗∥)
≤ ∥∇f(x∗)∥∗∥x− x∗∥+ ∥∇2f(x∗)∥∥x− x∗∥2φ(M∥x− x∗∥).

Therefore, for any 0 ≤ t ≤ ρ, we get

ω(t) ≤ ∥∇f(x∗)∥∗t+ ∥∇2f(x∗)∥t2φ(Mt), (17)

where we have used the fact that φ(·) is an increasing function.

Note that, for any 0 ≤ t ≤ 1
M , we can estimate φ(Mt) ≤ φ(1) = e − 2. Substituting this bound into (17),

we obtain

ω(t) ≤ ∥∇f(x∗)∥∗t+ (e− 2)∥∇2f(x∗)∥t2.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
, (e− 2)∥∇2f(x∗)∥t2 ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 22, we get the following complexity result.
Corollary 23. Consider problem (1) under Assumption 20. Let Algorithm 1 with coefficients (5) be applied
for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
M2,

2(e− 2)∥∇2f(x∗)∥
ϵ

,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

D.6 (L0, L1)-SMOOTH FUNCTIONS

Let us now consider the case when Q = Rd and f is (L0, L1)-smooth (Zhang et al., 2020), meaning that for
any x ∈ Rd,

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗,
where L0, L1 ≥ 0 are fixed constants.
Lemma 24. (Vankov et al., 2024, Lemma 2.2) Let f be (L0, L1)-smooth. Then, for any x, y ∈ Rd, it holds
that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥∗
L2
1

ξ(L1∥y − x∥),

where ξ(t) := et − t− 1.
Lemma 25. Assume that f is an (L0, L1)-smooth function. Then, ω(t) ≤ ϵ for any given ϵ > 0 whenever
t ≤ δ(ϵ), where

δ(ϵ) := min

{
1

L1
,

√
2ϵ

3(L0 + L1∥∇f(x∗)∥∗)
,

ϵ

2∥∇f(x∗)∥∗

}
.

Proof. According to Lemma 24, for any x ∈ Rd, we have

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ L0 + L1∥∇f(x∗)∥∗
L2
1

ξ(L1∥x− x∗∥)

≤ ∥∇f(x∗)∥∗∥x− x∗∥+ L0 + L1∥∇f(x∗)∥∗
L2
1

ξ(L1∥x− x∗∥)

Therefore, for any t ≥ 0, we get

ω(t) ≤ ∥∇f(x∗)∥∗t+
L0 + L1∥∇f(x∗)∥∗

L2
1

ξ(L1t), (18)

where the second inequality uses the fact that ξ(x) is an increasing function.

Note that, for any 0 ≤ t ≤ 1
L1

, we can estimate

ξ(L1t) ≤
L2
1t

2

2(1− L1t
3)

≤ 3

4
L2
1t

2.

Substituting this bound into (18), we obtain:

ω(t) ≤ ∥∇f(x∗)∥∗t+
3(L0 + L1∥∇f(x∗)∥∗)

4
t2.

To make the right-hand side of the last inequality ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

3(L0 + L1∥∇f(x∗)∥∗)
4

t2 ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 25, we get the following complexity result.
Corollary 26. Consider problem (1) under the assumption that f is an (L0, L1)-smooth function. Let
Algorithm 1 with coefficients (5) be applied for solving this problem. Then, f(x∗T) − f∗ ≤ ϵ for any given
ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
L2
1,

3(L0 + L1∥∇f(x∗)∥∗)
2ϵ

,
4∥∇f(x∗)∥2∗

ϵ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Number of oracle calls

10 1

100

101

102

f(x
* k
)

f*
n = 1000, d = 2000, = 0.1

WDA
UGM
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

100

101

f(x
* k
)

f*

n = 1000, d = 2000, = 0.01
WDA
UGM
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

10 1

100

101

102

f(x
* k
)

f*

n = 1000, d = 2000, = 0.005
WDA
UGM
DoG
Prodigy
DADA

Figure 2: Comparison of different methods on the Softmax function.

0 20000 40000 60000 80000 100000
Number of oracle calls

100

101

102

103

104

105

106

107

108

D
0 r

n = 1000, d = 2000, = 0.1
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

101

102

103

104

105

106

107

108

D
0 r

n = 1000, d = 2000, = 0.01
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

101

102

103

104

105

106

107

D
0 r

n = 1000, d = 2000, = 0.005
DoG
Prodigy
DADA

Figure 3: The ratio D
r̄t

for the Softmax function with different optimal points x∗.

E ADDITIONAL EXPERIMENTS

Softmax function. Our first test problem is

min
x∈Rd

{
f(x) := µ log

(
n∑

i=1

exp

[
⟨ai, x⟩ − bi

µ

])}
, (19)

where ai ∈ Rd, and bi ∈ R for all 1 ≤ i ≤ n, and µ > 0. This function can be viewed as a smooth
approximation of max1≤i≤n[⟨ai, x⟩ − bi] (Nesterov, 2005a).

To generate the data for our problem, we proceed as follows. First, we generate i.i.d. vectors âi with com-
ponents uniformly distributed in the interval [−1, 1] for i = 1, . . . , n, and similarly for the scalar values bi.
Using this data, we form the preliminary version of our function, f̂ . We then compute ai = âi −∇f̂(0) and
use the obtained (ai, bi) to define our function f . This way of generating the data ensures that x∗ = 0 is a
solution of our problem.

The results are shown in Fig. 2, where we fix n = 103 and d = 2n, and consider different values of
µ ∈ {0.1, 0.01, 0.005}. As we can see, most methods exhibit similar performance for µ = 0.1 except for
Prodigy which stops converging after a few initial iterations. This issue, along with a decline in performance
for UGM, persists as µ decreases, whereas DADA, DoG, and WDA remain largely unaffected. Notably, DoG
performs very similarly to DADA, which we hypothesize is primarily due to the similarity in estimating D0.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Number of oracle calls

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

103

f(x
* k
)

f*
q = 1.0, n = 10000, d = 1000

WDA
UGM
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of oracle calls

10 12

10 9

10 6

10 3

100

103

f(x
* k
)

f*

q = 1.5, n = 10000, d = 1000
WDA
UGM
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of oracle calls

10 12

10 9

10 6

10 3

100

103

106

f(x
* k
)

f*

q = 2.0, n = 10000, d = 1000
WDA
UGM
DoG
Prodigy
DADA

Figure 4: Comparison of different methods on the polyhedron feasibility problem.

Additionally, Fig. 3 illustrates the ratio between D0 and r̄, showing the estimation error of Prodigy, DoG,
and DADA throughout the optimization process. For Prodigy, we use D0

dmax
to generate the plot. The figure

demonstrates that DADA and DoG exhibit similar behavior in estimating D0, despite employing different
update methods—Dual Averaging and Gradient Descent, respectively. However, Prodigy appears to en-
counter challenges in estimating D0 as its estimation stabilizes at a relatively large value.

Hölder-smooth function. Let us consider the following polyhedron feasibility problem:

f∗ := min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

[⟨ai, x⟩ − bi]
q
+

}
, (20)

where ai, bi ∈ Rd, q ∈ [1, 2], and [τ]+ = max(0, τ). This problem can be interpreted as finding a point
x∗ ∈ Rd lying inside the polyhedron P = {x : ⟨ai, x⟩ ≤ bi, i = 1, . . . , n}. Such a point exists if and only
if f∗ = 0.

Observe that f in problem (20) is Hölder-smooth with parameter ν = q−1. Therefore, by varying q ∈ [1, 2],
we can check the robustness of different methods to the smoothness level of the objective function.

The data for our problem is generated randomly, following the procedure in (Rodomanov et al., 2024). First,
we sample x∗ uniformly from the sphere of radius 0.95R centered at the origin. Next, we generate i.i.d.
vectors ai with components uniformly distributed in [−1, 1]. To ensure that ⟨an, x∗⟩ < 0, we invert the
sign of an if necessary. We then sample positive reals si uniformly from [0,−0.1cmin], where cmin :=
mini⟨ai, x∗⟩ < 0, and set bi = ⟨ai, x∗⟩+ si. By construction, x∗ is a solution to the problem with f∗ = 0.

We select n = 104, d = 103, R = 103 and consider different values of q ∈ {1, 1.5, 2}. As shown in Fig. 4,
as q increases and approaches 2, the performance of DoG significantly declines. However, DADA, Prodigy,
and UGM demonstrate similar performance regardless of the choice of q.

Worst-case function. In addition to the experiments presented in Section 4, we evaluate the estimation
error ofD0 for Prodigy, DoG, and DADA throughout the optimization process, as shown in Fig. 5. The figure
illustrates that while Prodigy’s estimate of D0, shows some improvement over time, it remains noticeably
inaccurate. Moreover, for DoG, the estimate deteriorates as p increases, a behavior that is not observed with
DADA, whose estimate remains stable across different values of p.

Comparison of different initial estimates of the distance. In this experiment, we evaluate the sensitivity
of DADA to the choice of the initial point x0. We consider the same Softmax function as in (19) with
n = 103, d = 2n, and µ ∈ {0.5, 0.1, 0.01}.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Number of oracle calls

101

102

103

104

105

106

107

108

D
0 r

p = 2.0, d = 10000
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

101

102

103

104

105

106

107

108

D
0 r

p = 4.0, d = 10000
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of oracle calls

101

102

103

104

105

106

107

108

D
0 r

p = 6.0, d = 10000
DoG
Prodigy
DADA

Figure 5: The ratio D
r̄t

for the worst-case function with different optimal points x∗.

0 20000 40000 60000 80000 100000
Number of oracle calls

10 1

100

101

102

f(x
* k
)

f*

= 0.1
r = 1e 06
r = 1e 05
r = 0.0001
r = 0.001
r = 0.01
r = 0.1

0 20000 40000 60000 80000 100000
Number of oracle calls

10 1

100

101

102

f(x
* k
)

f*

= 0.01
r = 1e 06
r = 1e 05
r = 0.0001
r = 0.001
r = 0.01
r = 0.1

0 20000 40000 60000 80000 100000
Number of oracle calls

100

101

f(x
* k
)

f*

= 0.005
r = 1e 06
r = 1e 05
r = 0.0001
r = 0.001
r = 0.01
r = 0.1

Figure 6: Comparison of different initial estimates of the distance on the Softmax function with different
values of µ.

The results are shown in Fig. 6, where we consider δ ∈ {10−1, . . . , 10−6}. As we can see, the choice of δ
does not affect the performance of DADA, which consistently achieves similar performance across all tested
values.

26

	Introduction
	DADA Method
	Universality of DADA: Examples of Applications
	Experiments
	Discussion
	Auxiliary Results
	Proof of Theorem 1
	How to choose the constant c
	Convergence of DADA on Various Problem Classes
	Nonsmooth Lipschitz Functions
	Lipschitz-Smooth Functions
	Hölder-Smooth Functions
	Functions with Lipschitz High-Order Derivative
	Quasi-Self-Concordant Functions
	(L0, L1)-Smooth Functions

	Additional Experiments

