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ABSTRACT

We present a novel universal gradient method for solving convex optimization problems.
Our algorithm—Dual Averaging with Distance Adaptation (DADA)—is based on the clas-
sical scheme of dual averaging and dynamically adjusts its coefficients based on observed
gradients and the distance between iterates and the starting point, eliminating the need
for problem-specific parameters. DADA is a universal algorithm that simultaneously
works for a broad spectrum of problem classes, provided the local growth of the objec-
tive function around its minimizer can be bounded. Particular examples of such problem
classes are nonsmooth Lipschitz functions, Lipschitz-smooth functions, Hölder-smooth
functions, functions with high-order Lipschitz derivative, quasi-self-concordant functions,
and (L0, L1)-smooth functions. Crucially, DADA is applicable to both unconstrained
and constrained problems, even when the domain is unbounded, without requiring prior
knowledge of the number of iterations or desired accuracy.

1 INTRODUCTION

Gradient methods are among the most popular and efficient algorithms for solving optimization problems
arising in machine learning, as they are highly adaptable and scalable across various settings (Bottou et al.,
2018). Despite their popularity, these methods face a significant challenge of selecting appropriate hyper-
parameters, particularly stepsizes, which are critical to the performance of the algorithm. Hyperparameter
tuning is one of the standard approaches to address this issue but is a time-consuming and resource-intensive
process, especially as models become larger and more complex. Consequently, the cost of training these
models has become a significant concern (Sharir et al., 2020; Patterson et al., 2021).

Typically, line-search techniques have been used to select stepsizes for optimization methods, and they are
provably efficient for certain function classes, such as Hölder-smooth problems (Nesterov, 2015). However,
in recent years, several so-called parameter-free algorithms have been developed which do not utilize line
search (Orabona & Tommasi, 2017; Cutkosky & Orabona, 2018; Carmon & Hinder, 2022; Ivgi et al., 2023;
Khaled et al., 2023; Mishchenko & Defazio, 2024). Notably, one strategy involves dynamically adjusting
stepsizes based on estimates of the initial distance to the optimal solution (Carmon & Hinder, 2022; Ivgi
et al., 2023; Khaled et al., 2023). Another approach leverages lower bounds on the initial distance combined
with the Dual Averaging (DA) scheme (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2024). How-
ever, these methods primarily focus on nonsmooth Lipschitz or, in some cases, Lipschitz-smooth functions.
Some of these methods also come with additional limitations, such as requiring bounded domain assump-
tions (Khaled et al., 2023) or failing to extend to constrained optimization problems (Defazio & Mishchenko,
2023; Mishchenko & Defazio, 2024).

To formalize the discussion, we consider the following optimization problem:

f∗ := min
x∈Q

f(x), (1)
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Method Universal Constraints Unbounded domain No search Stochastic

DoG (Ivgi et al., 2023) ✗ ✓ ✓ ✓ ✓
DoWG (Khaled et al., 2023) ✗ ✓ ✗ ✓ ✗
Bisection Search (Carmon & Hinder, 2022) ✗ ✓ ✓ ✗ ✓
Prodigy (Mishchenko & Defazio, 2024) ✗ ✗ ✗ ✓ ✗
D-Adaptation (Defazio & Mishchenko, 2023) ✗ ✗ ✗ ✓ ✗
UGM (Nesterov, 2015) ✓(*) ✓ ✓ ✗ ✗
DADA (Ours) ✓ ✓ ✓ ✓ ✗

✓(*) Note that UGM uses a different definition of universality. They call their method universal because it works for Hölder-smooth
functions, which are only a subset of the functions we consider.

Table 1: A comparison of different adaptive algorithms to solve equation 1. “Universal” means the algorithm simultane-
ously works for multiple problem classes without the need for choosing different parameters for each of these function
classes. “Constraints” means the algorithm can be applied to constrained problems. “Unbounded domain” means the
algorithm can be applied to problems with unbounded feasible sets. “Stochastic” indicates that the algorithm is analyzed
in the stochastic setting. “No search” means the algorithm does not use an internal search procedure.

whereQ ⊆ Rd is a nonempty closed convex set, and f : Rd → R∪{+∞} is a proper closed convex function
that is subdifferentiable on Q. We assume that Q is a simple set, meaning that it is possible to efficiently
compute the projection ontoQ. We also assume problem Eq. (1) has a solution x∗ ∈ int dom f . The starting
point in our methods is denoted by x0.

Contributions. In this paper, we introduce Dual Averaging with Distance Adaptation (DADA), a novel
universal gradient method for solving equation 1. Building on the classical framework of weighted DA (Nes-
terov, 2005b), DADA incorporates a dynamically adjusted estimate of D0 := ∥x0 − x∗∥, inspired by recent
techniques from (Ivgi et al., 2023; Carmon & Hinder, 2022) and further developed in (Khaled et al., 2023),
without requiring prior knowledge of problem-specific parameters. Furthermore, our approach applies to
both unconstrained problems and those with simple constraints, possibly with unbounded domains. This
makes DADA a powerful tool across a wide range of applications.

We start, in Section 2, by presenting our method and outline its foundational structure based on the DA
scheme (Nesterov, 2005b). Our main theoretical result, Theorem 1, establishes convergence guarantees for
a broad range of function classes.

To demonstrate the versatility and effectiveness of DADA, in Section 3, we provide complexity esti-
mates across several interesting function classes: nonsmooth Lipschitz functions, Lipschitz-smooth func-
tions, Hölder-smooth functions, quasi-self-concordant (QSC) functions, functions with Lipschitz high-order
derivative, and (L0, L1)-smooth functions. These results underscore DADA’s ability to deliver competitive
performance without knowledge of class-specific parameters.

Related work. The design of parameter-free optimization algorithms has received significant attention,
particularly for convex problems where tuning learning rates can be avoided entirely. Classical techniques
such as the Polyak step size (Polyak, 1987) and doubling schedules (Streeter & McMahan, 2012) elim-
inate tuning at the cost of oracle access or restarts. More recent approaches achieve near-optimal con-
vergence without any hyperparameters. For instance, coin-betting–based methods (Orabona & Pál, 2016)
adapt to unknown Lipschitz or domain parameters in online and stochastic optimization. In the stochas-
tic convex setting, bisection-based procedures (Carmon & Hinder, 2022) and dual-averaging methods such
as D-Adaptation (Defazio & Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2024) achieve op-
timal rates via distance estimation, while normalized gradient methods like DoG (Ivgi et al., 2023) and
DoWG (Khaled et al., 2023) adapt to curvature using observed gradients and distances. We summarize the
main properties of the algorithms we compare against in Table 1. While adaptive gradient methods such as
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AdaGrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015) exploit problem structure, they retain a base
learning rate and are not truly parameter-free.

Several heuristics motivated by deep learning attempt to mitigate learning rate tuning through normalization
or scaling. Methods such as LARS (You et al., 2017), LAMB (You et al., 2019), Adafactor (Shazeer & Stern,
2018), and Fromage (Bernstein et al., 2020) use norms of weights or gradients to scale updates, though
they typically include tunable factors and lack full convergence guarantees. While these methods have
shown empirical success across architectures, they often still require a base step size and their theoretical
understanding remains limited.

Notation. In this text, we work in the space Rd equipped with the standard inner product ⟨·, ·⟩ and the
general Euclidean norm ∥x∥ := ⟨Bx, x⟩1/2, where B is a fixed symmetric positive definite matrix. The
corresponding dual norm is defined in the standard way as ∥s∥∗ := max∥x∥=1⟨s, x⟩ = ⟨s,B−1s⟩1/2. Thus,
for any s, x ∈ Rd, we have the Cauchy-Schwarz inequality |⟨s, x⟩| ≤ ∥s∥∗∥x∥. The Euclidean ball of
radius r > 0 centered at x ∈ Rd is defined as B(x, r) := {y ∈ Rd : ∥y − x∥ ≤ r}. For a convex
function f : Rd → R ∪ {+∞}, we denote its effective domain as dom f := {x ∈ Rd : f(x) < +∞}. The
subdifferential of f at a point x ∈ dom f is denoted by ∂f(x), and ∇f(x) ∈ ∂f(x) denotes a subgradient.

2 DADA METHOD

Measuring the quality of solution. Given an approximate solution x ∈ Q to problem equation 1 and an
arbitrary subgradient ∇f(x) ∈ ∂f(x), we measure the suboptimality of x by the distance from x∗ to the
hyperplane {y : ⟨∇f(x), x− y⟩ = 0}:

v(x) :=
⟨∇f(x), x− x∗⟩

∥∇f(x)∥∗
(≥ 0) . (2)

This objective is meaningful because minimizing v(x) also reduces the corresponding function residual
f(x) − f∗. Indeed, there exists the following simple relationship between v(x) and the function residual
(Nesterov, 2018, Section 3.2.2) (see also Lemma 3 for the short proof):

f(x)− f∗ ≤ ω(v(x)), (3)

where

ω(t) := max
x∈B(x∗,t)

f(x)− f∗ (4)

measures the local growth of f around the solution x∗. Note that inequality equation 3 is nontrivial only
when B(x∗, v(x)) ⊆ dom f .

By bounding ω(t), we can derive convergence-rate estimates that simultaneously apply to a broad range of
problem classes (we discuss several examples in Section 3).

The method. Our algorithm is based on the general scheme of DA (Nesterov, 2005b) shown in Algo-
rithm 1. Using a standard (sub)gradient method with time-varying coefficients is also possible but requires
either short steps by fixing the number of iterations in advance, or paying an extra logarithmic factor in the
convergence rate (Nesterov, 2018, Section 3.2.3).

The classical method of Weighted DA (WDA) selects the coefficients ak = D̂0

∥gk∥∗
and βk = Θ(

√
k), where

D̂0 is a user-defined estimate of D0. The convergence is guaranteed for any value of D̂0 but one must pay
a multiplicative cost of ρ2, where ρ := max{ D̂0

D0
, D0

D̂0
}, if the parameter D0 is unknown. This cost can

3
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Algorithm 1 General Scheme of DA

Input: x0 ∈ Q, number of iterations T ≥ 1, coefficients (ak)
T−1
k=0 , (βk)

T
k=1 with nondecreasing βk

for k = 1, . . . , T do
Compute arbitrary gk ∈ ∂f(xk)

xk = argminx∈Q

{∑k−1
i=0 ai⟨gi, x− xi⟩+ βk

2
∥x− x0∥2

}
Output: x∗

T = argminx∈{x0,...,xT−1} f(x)

be significantly high if D0 is not known almost exactly. To address this issue, we propose DADA, which
reduces the cost to a logarithmic term, log2 ρ, offering a substantial improvement.

Specifically, our approach utilizes the following coefficients:

ak =
r̄k

∥gk∥∗
, βk = c

√
k + 1 , r̄k := max{ max

1≤t≤k
rt, r̄}, rt := ∥x0 − xt∥, (5)

where r̄ > 0 is a parameter and c is a certain constant to be specified later. In what follows, we assume
w.l.o.g. that gk ̸= 0 for all 0 ≤ k ≤ T −1 since otherwise the exact solution has been found, and the method
could be successfully terminated before making T iterations.

As we can see, the main difference between WDA and DADA, is that the latter dynamically adjusts its
estimate ofD0 by exploiting rt, the distance between xt and the initial point x0. This idea has been explored
in recent works (Carmon & Hinder, 2022; Ivgi et al., 2023), which similarly utilize rt in various ways. Other
methods also attempt to estimate this quantity using alternative strategies, based on DA and the similar
principle of employing an increasing sequence of lower bounds for D0 (Defazio & Mishchenko, 2023;
Mishchenko & Defazio, 2024).

The convergence guarantees for our method are provided in the result below:
Theorem 1. Consider Algorithm 1 for solving problem equation 1 using the coefficients from Eq. (5) with
c >

√
2. Then, for any T ≥ 1 and v∗T := min0≤k≤T−1 v(xk), it holds that

f(x∗T )− f∗ ≤ ω(v∗T ),

and

v∗T ≤ eD√
T

log
eD̄

r̄
, (6)

where D̄ := max{r̄, 2c
c−

√
2
D0} and D :=

√
2(cD0 +

1
c D̄). Consequently, for a given δ > 0, it holds that

v∗T ≤ δ whenever T ≥ Tv(δ), where

Tv(δ) :=
e2D2

δ2
log2

eD̄

r̄
.

Let us provide a proof sketch for Theorem 1 here and defer the detailed proof to Appendix B. We begin by
applying the standard result for DA (Lemma 5), which holds for any choice of coefficients ak and βk:

k−1∑
i=0

aivi∥gi∥∗ +
βk
2
D2

k ≤ βk
2
D2

0 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗,

where Di = ∥xi − x∗∥ and vi = v(xi) for all i ≥ 0. Use the specific choices for ak and βk as defined in
Eq. (5), we obtain (see Lemma 6):

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1. (7)
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Dropping the nonnegative r̄ivi from the left-hand side, we can show by induction that r̄k is uniformly
bounded (see Lemma 7):

r̄k ≤ D̄,

where D̄ is the constant from Theorem 1. This bound is crucial to our analysis, as we need to eliminate r̄k−1

from the right-hand side of Eq. (7). Achieving this requires selecting the coefficients precisely as defined
in Eq. (5), which is the primary difference compared to the standard DA method (Nesterov, 2005b). Next,
using the inequality D2

0 −D2
k ≤ 2rkD0, we get

k−1∑
i=0

r̄ivi ≤ c
√
k + 1rkD0 +

√
k

c
r̄2k−1 ≤

(
cD0 +

1

c
D̄
)
r̄k
√
k + 1.

After establishing this, the rest of the proof follows straightforwardly by dividing both sides by
∑k−1

i=0 r̄i and
applying the following inequality (valid for any nondecreasing sequence r̄k, see Lemma 2):

min
1≤k≤T

r̄k∑k−1
i=0 r̄i

≤
( r̄Tr̄0 )

1
T log er̄T

r̄0

T
.

This gives us

v∗T ≤ D√
T

(
D̄

r̄

) 1
T

log
eD̄

r̄
,

which is almost Eq. (6) except for the extra factor of ( D̄r̄ )
1
T . This extra factor, however, is rather weak as

it can be upper bounded by a constant (say, e ≡ exp(1)) whenever T ≥ log D̄
r̄ . The case of T ≤ log D̄

r̄ is
not interesting since then Eq. (6) holds trivially because, for any k ≥ 0, in view of Eq. (2) and Lemma 7,
we have vk ≤ Dk ≤ D. Based on the definition of D̄, c = 2

√
2 is the optimal choice of the constant c in

Eq. (5) (see Appendix C).

3 UNIVERSALITY OF DADA: EXAMPLES OF APPLICATIONS

Let us demonstrate that our method is universal in the sense that it simultaneously works for multiple prob-
lem classes without the need for choosing different parameters for each of these function classes. For
simplicity, we assume that ∇f(x∗) = 0 (this happens, in particular, when our problem equation 1 is un-
constrained) and measure the ϵ-accuracy in terms of the function residual. We also assume, for simplicity,
that the objective function satisfies all necessary inequalities on the entire space, but all our results still
hold if they are satisfied only locally at x∗ (see Appendix D). To simplify the notation, we also denote
log+ t := 1 + log t and D̄0 := max{r̄, ∥x0 − x∗∥}, where r̄ is the parameter of our method.

Nonsmooth Lipschitz functions. This function class is defined by the inequality

|f(x)− f(y)| ≤ L0∥x− y∥

for all x, y ∈ Rd. For this problem class, DADA requires at most (see Corollary 10)

O

(
L2
0D̄

2
0

ϵ2
log2+

D̄0

r̄

)
oracle calls to reach ϵ-accuracy, which matches the standard complexity of (sub)gradient methods (Nesterov,
2005b; 2018), up to an extra logarithmic factor. Note that a polylogarithmic factor in D̄0

r̄ appears in the
complexity bounds of all distance-adaptation methods (Defazio & Mishchenko, 2023; Ivgi et al., 2023;
Khaled et al., 2023; Mishchenko & Defazio, 2024).
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Lipschitz-smooth functions. Another important class of functions are those with Lipschitz gradient:

∥∇f(x)−∇f(y)∥∗ ≤ L1∥x− y∥

for all x, y ∈ Rd. In this case, the complexity of our method is (see Corollary 13)

O

(
L1D̄

2
0

ϵ
log2+

D̄0

r̄

)
.

This coincides with the standard complexity of the (nonaccelerated) gradient method on Lipschitz-smooth
functions (Nesterov, 2018, Section 3) up to an extra logarithmic factor.

Note that the complexity of DADA is slightly worse than that of the classical gradient method with line
search (Nesterov, 2015), which achieves a complexity bound of O

(L1D
2
0

ϵ + log
∣∣L1

L̂1

∣∣), where L̂1 is the initial
guess for L1. The difference is that the logarithmic factor in the latter estimate appears in an additive way
instead of multiplicative.

Hölder-smooth functions. The previous two examples are subclasses of the more general class of Hölder-
smooth functions. It is defined by the following inequality:

∥∇f(x)−∇f(y)∥∗ ≤ Hν∥x− y∥ν

for all x, y ∈ Rd, where ν ∈ [0, 1] and Hν ≥ 0. Therefore, for ν = 0, we get functions with bounded
variation of subgradients (which contains all Lipschitz functions) and for ν = 1 we get Lipschitz-smooth
functions.

The complexity of DADA on this problem class is (see Corollary 16)

O

([
Hν

ϵ

] 2
1+ν

D̄2
0 log

2
+

D̄0

r̄

)
.

This is similar to the O
([

Hν

ϵ

] 2
1+νD2

0 + log
∣∣ H 2

1+ν
ν

L̂ϵ
1−ν
1+ν

∣∣) complexity of the universal (nonaccelerated) gradient

method with line search (GM-LS) (Nesterov, 2015), where L̂ is the parameter of the method. Again, the
complexity of GM-LS is slightly better since the logarithmic factor is additive (and not multiplicative).
However, GM-LS is not guaranteed to work (well) on other problem classes such as those we consider next.

Functions with Lipschitz high-order derivative. This class is a generalization of the Lipschitz-smooth
class. Functions in this class are p times differentiable, and have the property that their pth derivative (p ≥ 2)
is Lipschitz, i.e., for all x, y ∈ Rd, we have

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥,

where the ∥·∥ norm in the left-hand side is the usual operator norm of a symmetric p-linear opeator: ∥A∥ =
maxh∈Rd : ∥h∥=1∥A[h]p∥. For example, the pth power of the Euclidean norm is an example of a function
in this class (see (Rodomanov & Nesterov, 2019)). The complexity of DADA on this problem class is (see
Corollary 19)

O

([
max
2≤i≤p

[
p

i!

∥∇if(x∗)∥∗
ϵ

] 2
i

+

[
Lp

p! ϵ

] 2
p+1
]
D̄2

0 log
2
+

D̄0

r̄

)
.

Although line-search gradient methods might be better for Hölder-smooth problems, to our knowledge, they
are not known to attain comparable bounds on this function class.

6
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Quasi-self-concordant (QSC) functions (Bach, 2010). A function f is called QSC with parameter M ≥
0 if it is three times continuously differentiable and the following inequality holds for any x, u, v ∈ Rd:

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥. (8)

For example, the exponential, logistic, and softmax functions are QSC; for more details and other examples,
see (Doikov, 2023). When applied to a QSC function, our method has the following complexity (Corol-
lary 23):

O

([
M2D̄2

0 +
∥∇2f(x∗)∥D̄2

0

ϵ

]
log2+

D̄0

r̄

)
.

In terms of comparisons, second-order methods, such as those explored in (Doikov, 2023), are more powerful
for minimizing QSC functions, as they leverage additional curvature information. Their complexity bound,
in terms of queries to the second-order oracle, isO(MD̂0 log

F0

ϵ +log D̂0g0
ϵF0

), where F0 = f(x0)−f∗, D̂0 is
the diameter of the initial sublevel set, and g0 = ∥∇f(x0)∥∗ (see (Doikov, 2023, Corollary 3.4)). However,
each iteration of these methods is significantly more expensive.

To our knowledge, the QSC class has not been previously studied in the context of first-order methods. The
only other first-order methods for which one can prove similar bounds are the nonadaptive variants of our
scheme, namely the normalized gradient method (NGM) from (Nesterov, 2018, Section 5) and the recent
improvement of this algorithm for constrained problems (Nesterov, 2024).

(L0, L1)-smooth functions. As introduced in (Zhang et al., 2020), a function f is said to be (L0, L1)-
smooth if for all x ∈ Rd, we have

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗.
The complexity of DADA on this class is (see Corollary 26)

O

([
L2
1D̄

2
0 +

L0D̄
2
0

ϵ

]
log2+

D̄0

r̄

)
.

Up to the extra logarithmic factor, this matches the complexity of NGM from (Vankov et al., 2024), with
the distinction that their approach is less robust to the initial guess of D0. Specifically, the penalty for
underestimating it in the latter method is a multiplicative factor of ρ2 :=

D2
0

r̄2 while in our method this factor
is logarithmic: log2+ ρ.

4 EXPERIMENTS

To evaluate the efficiency of our proposed method, DADA, we conduct a series of experiments on convex
optimization problems. Our goal is to demonstrate the effectiveness of DADA in achieving competitive
performance across various function classes without any hyperparameter tuning.

We compare DADA against state-of-the-art distance-adaptation algorithms, namely, DoG (Ivgi et al., 2023)
and Prodigy (Mishchenko & Defazio, 2024), using their official implementations without any modifications.
We also consider the Universal Gradient Method (UGM) from (Nesterov, 2015) and the classical Weighted
Dual Averaging (WDA) method (Nesterov, 2005b). For UGM, we choose the initial value of the line-search
parameter L0 = 1 and set the target accuracy to ϵ = 10−6. For WDA, we use the coefficients ak = D0

∥gk∥∗

and βk =
√
k, where D0 = ∥x0 − x∗∥.

For each method, we plot the best function value among all the test points generated by the algorithm against
the number of first-order oracle calls. We set the starting point to x0 = (1, . . . , 1) and select the initial guess

7
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Figure 1: Comparison of different methods on the worst-case function.

for the distance to the solution as r̄ = rϵ(1 + ∥x0∥). This choice ensures a fair comparison between DADA
and DoG (Ivgi et al., 2023), as DoG employs a similar initialization strategy. In all experiments, we fix
rϵ = 10−6. Additionally, we conduct a separate experiment to evaluate the sensitivity of DADA to the
choice of rϵ.

We have several experiments on different problem classes. However, due to space constraints, we present
only a single representative experiment in this section. The remaining experiments can be found in Ap-
pendix E.

Worst-case function. As an example of a function with Lipschitz high-order derivative, we consider the
following worst-case problem from (Doikov et al., 2024):

min
x∈Rd

{
f(x) :=

1

p

d−1∑
i=1

|x(i) − x(i+1)|p + 1

p
|x(d)|p

}
, (9)

where p ≥ 2, and x(i) is the ith element of x. The optimal point in this problem is x∗ = 0.

As illustrated in Fig. 1, nearly all methods exhibit similar performance when p = 2, except for Prodigy
whose convergence becomes slow after a few initial iterations. While Prodigy eventually reaches a similar
accuracy to the best methods, it is much slower at the beginning of the process. As p increases, our method
converges significantly faster than DoG. This improvement arises because our method adapts to the higher-
order smoothness of the function, whereas DoG’s convergence rate remains unchanged and does not take
advantage of this property.

In contrast, both DADA and UGM demonstrate stable and consistent performance across different values of
p, with DADA performing slightly better than UGM.

5 DISCUSSION

Comparison with recent distance-adaptation methods. Let us briefly compare our method with several
recently proposed parameter-free algorithms, namely, DoG (Ivgi et al., 2023), DoWG (Khaled et al., 2023),
D-Adaptation (Defazio & Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2024).

To begin, we clarify the key differences between our method and approaches like DoG. One immediate
difference is that we use DA instead of the classical (sub)gradient method employed by DoG. However, the
most significant difference lies in how the sequence of gradients is handled. DoG normalizes the current
gradient gk by the accumulated norms of the previous gradients, an idea inspired by AdaGrad (Duchi et al.,

8
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2011). In contrast, our method simply normalizes gk by its own norm. This modification makes our method
universal, ensuring the convergence of v∗T to zero, which is not known to be the case for DoG, even for
deterministic problems.

Both DoG and DoWG employ a similar approach to estimate D0 and achieve comparable convergence
rates for Lipschitz-smooth and nonsmooth functions. Similarly to our approach, DoWG considers only the
deterministic case, but with an additional assumption of the bounded feasible set. They have a different
definition of universality, considering only Lipschitz-smooth and nonsmooth settings.

It is important to emphasize that the advantage of our method over DoG is not about guaranteeing conver-
gence. Indeed, (Ivgi et al., 2023, Theorem 1) shows that DoG asymptotically converges to a minimizer on
any convex function with a complexity of Õ

(
LRR
ϵ2

)
, where LR = maxx:∥x−x0∥≤R∥∇f(x)∥, denotes the

maximal gradient norm within a ball of radius R = 3∥x0 − x∗∥ around x0. However, this result highlights
a key limitation of DoG: its complexity bound is always inversely proportional to ϵ2 across all function
classes, regardless of structure, which is not the case for our method. For example, consider the case where
f is a function with Lipschitz Hessian. Suppose, for simplicity, that the problem is unconstrained and sat-
isfies ∇f(x∗) = 0, and ∥∇2f(x∗)∥ is small. In this setting, following from Corollary 19, the complexity

of DADA is Õ
(

L
2
3
2 D2

0

ϵ
2
3

)
, which is significantly better than the complexity of DoG, whose rate remains

Õ
(

L2D
3
0

ϵ2

)
1. This means that DoG does not leverage problem structure to improve its complexity, which

is a fundamental limitation in their analysis. In contrast, our method guarantees convergence for general
convex functions while also adapting to problem structure to achieve improved complexities. This makes
our analysis fundamentally stronger.

On the other hand, D-Adaptation and Prodigy are similar to our method in their use of DA. However, the
most significant difference lies in how the dual averaging parameters are selected. D-Adaptation, similar to
DoG, utilizes accumulated gradient norms in its parameter updates. In contrast, our method normalizes by
the current gradient norm at each iteration. This seemingly small change is crucial—it allows us to eliminate
the need for assuming an explicit upper bound on the gradient norms, which D-Adaptation critically relies
upon. Furthermore, to the best of our knowledge, these approaches have not been extended to constrained
optimization and are restricted to specific function classes, such as nonsmooth Lipschitz or smooth convex
functions. Nonetheless, their methods yield notable results in experiments, demonstrating strong empirical
performance.

In conclusion, the main limitation of recent distance-adaptation methods is their inability to automatically
adapt to diverse problem classes. Specifically, these methods require using different hyperparameters, such
as an estimate of the maximal gradient norm, to adjust to the specific problem class. Addressing this broader
adaptability has been the central focus of this paper.

Conclusion. We proposed DADA, a new adaptive and universal optimization method that extends the
classical Dual Averaging algorithm with a novel distance adaptation mechanism. Our method achieves
competitive rates across a wide class of convex problems—including Lipschitz, Lipschitz-smooth, Hölder-
smooth, quasi-self-concordant (QSC), and (L0, L1)-smooth functions—without requiring parameter tuning
or knowledge of smoothness constants. In contrast to recent approaches such as DoG, DoWG, D-Adaptation,
and Prodigy, DADA seamlessly accommodates both constrained and unconstrained settings, and does so
without requiring restarts or line searches.

1Here, we use the fact that for functions with Lipschitz Hessian, LR = L∗
1R+ (L2

2
)R, where L∗

1 = ∥∇2f(x∗)∥.

9
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DADA provides a unified and adaptive framework for convex optimization with convergence guarantees un-
der minimal assumptions. Future work includes extending DADA to stochastic and nonconvex optimization,
and evaluating its empirical performance in large-scale learning tasks.

10
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A AUXILIARY RESULTS

The following result has been established in prior works such as (Liu & Zhou, 2023, Lemma 30). We include
the proof here for the reader’s convenience.
Lemma 2. Let (di)∞i=0 be a positive nondecreasing sequence. Then for any T ≥ 1,

min
1≤k≤T

dk∑k−1
i=0 di

≤
(dT

d0
)

1
T log edT

d0

T
.

Proof. Let Ak := 1
dk

∑k−1
i=0 di for each k ≥ 0 (so that A0 = 0). Then, for each k ≥ 0, we have

dk+1Ak+1 − dkAk = dk,

which implies that

dk
dk+1

= Ak+1 −
dk
dk+1

Ak = Ak+1 −Ak +

(
1− dk

dk+1

)
Ak.

Summing up these identities for all 0 ≤ k ≤ T − 1, we get

ST :=

T−1∑
k=0

dk
dk+1

= AT +

T−1∑
k=0

(
1− dk

dk+1

)
Ak ≤ A∗

T (1 + T − ST ),

where A∗
T = max0≤k≤T Ak ≡ max1≤k≤T Ak and we have used the fact that (di)∞i=0 is nondecreasing.

Hence,

A∗
T ≥ ST

1 + T − ST
.

Applying now the AM-GM inequality and denoting γT = ( d0

dT
)

1
T (∈ (0, 1]), we can further estimate ST ≥

TγT , giving us

A∗
T ≥ TγT

1 + T (1− γT )
.

Thus,

min
1≤k≤T

dk∑k−1
i=0 di

=
1

A∗
T

≤
1
γT

(1 + T (1− γT ))

T
.

Estimating further T (1 − γT ) ≤ −T log γT ≡ log 1
γT
T

and substituting the definition of γT , we get the
claim.

The following lemma is a classical result from (Nesterov, 2018, Lemma 3.2.1).
Lemma 3. Let x ∈ dom f be such that f is subdifferentiable on x. Then, we have f(x) − f∗ ≤ ω(v(x)),
where ω(·) and v(·) are defined as in equation 2 and equation 4 (with ∇f(x) being an arbitrary subgradient
from ∂f(x)).

Proof. Let x̄ denote the orthogonal projection of x∗ onto the supporting hyperplane
{y : ⟨∇f(x), x− y⟩ = 0}:

x̄ = x∗ + v(x)
∇f(x)

∥∇f(x)∥∗
.
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Then, ⟨∇f(x), x̄− x⟩ = 0, and ∥x̄− x∗∥ = v(x). Therefore,

f(x) ≤ f(x̄) + ⟨∇f(x), x̄− x⟩ = f(x̄),

and hence,

f(x)− f∗ ≤ f(x̄)− f∗ ≤ ω(∥x̄− x∗∥) = ω(v(x)).

Lemma 4. Consider the nonnegative sequence (dk)
∞
k=0 that satisfies, for each k ≥ 0,

dk+1 ≤ max{dk, R+ γdk},
where 0 ≤ γ < 1 and R ≥ 0 are certain constants. Then, for any k ≥ 0, we have

dk ≤ max

{
1

1− γ
R, d0

}
.

Proof. We use induction to prove that dk ≤ D for a certain constantD to be determined later. To ensure that
this relation holds for k = 0, we need to choose D ≥ d0. Let us now suppose that our relation has already
been proved for some k ≥ 0 and let us prove it for the next index k+ 1. Using the induction hypothesis and
the given inequality, we obtain

dk+1 ≤ max{dk, R+ γdk} ≤ max{D,R+ γD}.
To prove that the right-hand side is ≤ D, we need to ensure that R + γD ≤ D, which means that we need
to choose D ≥ 1

1−γR. Combining this requirement with that from the base of induction, we see that we can
choose D = max{ 1

1−γR, d0}.

B PROOF OF THEOREM 1

Lemma 5. In Algorithm 1, for any 1 ≤ k ≤ T , it holds that
k−1∑
i=0

ai⟨gi, xi − x∗⟩+ βk
2
∥xk − x∗∥2 ≤ βk

2
∥x0 − x∗∥2 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗,

where β0 is an arbitrary coefficient in (0, β1].

Proof. For any 0 ≤ k ≤ T , define the function ψk(x) as follows:

ψk(x) :=

k−1∑
i=0

ai⟨gi, x− xi⟩+
βk
2
∥x− x0∥2,

so that ψ0(x) =
β0

2 ∥x − x0∥2 (with β0 as defined in the statement). Note that ψk is a βk-strongly convex
function and xk is its minimizer. Hence, for any x ∈ Q and 0 ≤ k ≤ T , we have

ψk(x) ≥ ψ∗
k +

βk
2
∥x− xk∥2, (10)

where ψ∗
k := ψk(xk). Consequently,

ψ∗
k+1 = ψk+1(xk+1) = ψk(xk+1) + ak⟨gk, xk+1 − xk⟩+

βk+1 − βk
2

∥xk+1 − x0∥2

≥ ψ∗
k +

βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩+

βk+1 − βk
2

∥xk+1 − x0∥2

≥ ψ∗
k +

βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩ ≥ ψ∗

k − a2k
2βk

∥gk∥2∗.
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Telescoping these inequalities and using the fact that ψ∗
0 = 0, we obtain

ψ∗
k ≥ −

k−1∑
i=0

a2i
2βi

∥gi∥2∗.

Combining this inequality with the definition of ψk and Eq. (10), we thus obtain

k−1∑
i=0

ai⟨gi, x∗ − xi⟩+
βk
2
∥x0 − x∗∥2 = ψk(x

∗) ≥ ψ∗
k +

βk
2
∥xk − x∗∥2

≥ −
k−1∑
i=0

a2i
2βi

∥gi∥2∗ +
βk
2
∥xk − x∗∥2.

Rearranging, we get the claim.

Lemma 6. Consider Algorithm 1 using the coefficients defined in Eq. (5). Then, the following inequality
holds for all 1 ≤ k ≤ T :

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1,

where Dk = ∥xk − x∗∥ and vi := v(xi).

Proof. Applying Lemma 5 and the definition of vi, we obtain

k−1∑
i=0

aivi∥gi∥∗ +
βk
2
D2

k ≤ βk
2
D2

0 +

k−1∑
i=0

a2i
2βi

∥gi∥2∗.

Substituting our choice of the coefficients given by equation 5, we get

k−1∑
i=0

r̄ivi +
c
√
k + 1

2
D2

k ≤ c
√
k + 1

2
D2

0 +
1

2c

k−1∑
i=0

r̄2i√
i+ 1

≤ c
√
k + 1

2
D2

0 +

√
k

c
r̄2k−1,

where we have used the fact that r̄k is nondecreasing and
∑k−1

i=0
1√
i+1

≤ 2
√
k.

Lemma 7. Consider Algorithm 1 using the coefficients defined in Eq. (5) and assume that c >
√
2. Then,

we have the following inequalities for all 0 ≤ k ≤ T :

r̄k ≤ D̄, Dk ≤ D0 +

√
2

c
D̄,

where D̄ := max
{
r̄, 2c

c−
√
2
D0

}
and Dk := ∥xk − x∗∥.

Proof. Both bounds are clearly valid for k = 0, so it suffices to consider only the case when 1 ≤ k ≤ T .

Applying Lemma 6, dropping the nonnegative r̄ivi from the left-hand side and rearranging, we obtain

D2
k ≤ D2

0 +
2
√
k

c2
√
k + 1

r̄2k−1 ≤ D2
0 +

2

c2
r̄2k−1.
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Consequently,

Dk ≤ D0 +

√
2

c
r̄k−1. (11)

Therefore,

rk ≡ ∥xk − x0∥ ≤ Dk +D0 ≤ 2D0 +

√
2

c
r̄k−1.

Hence,

r̄k ≡ max{r̄k−1, rk} ≤ max

{
r̄k−1, 2D0 +

√
2

c
r̄k−1

}
.

Since k ≥ 1 was allowed to be arbitrary, we can apply Lemma 4 to conclude that

r̄k ≤ max

{
r̄,

2

1−
√
2
c

D0

}
= max

{
r̄,

2c

c−
√
2
D0

}
≡ D̄.

This proves the first part of the claim.

Substituting the already proved bound on r̄k into Eq. (11), we obtain the claimed upper bound on Dk.

We are now ready to prove the main result.

Proof of Theorem 1. Let T ≥ 1 be arbitrary. According to Lemma 3 and the fact that ω(·) is nondecreasing,
we can write

f(x∗T )− f∗ = min
0≤k≤T−1

[f(xk)− f∗] ≤ min
0≤k≤T−1

ω(vk) = ω(v∗T ),

where vk := v(xk) and v∗T := min0≤k≤T−1 vk. This proves the first part of the claim.

Let us now estimate the rate of convergence of v∗T . To that end, let us fix an arbitrary 1 ≤ k ≤ T . In view of
Lemma 6, we have

k−1∑
i=0

r̄ivi ≤
c
√
k + 1

2
(D2

0 −D2
k) +

√
k

c
r̄2k−1,

where Dk = ∥xk − x∗∥. Note that

D2
0 −D2

k ≡ ∥x0 − x∗∥2 − ∥xk − x∗∥2 = (∥x0 − x∗∥ − ∥xk − x∗∥)(∥x0 − x∗∥+ ∥xk − x∗∥)
≤ 2∥xk − x0∥∥x0 − x∗∥ ≡ 2rkD0.

Therefore, we can continue as follows:
k−1∑
i=0

r̄ivi ≤ c
√
k + 1rkD0 +

√
k

c
r̄2k−1 ≤

(
cD0 +

1

c
r̄k−1

)√
k + 1 r̄k

≤
(
cD0 +

1

c
D̄
)√

k + 1 r̄k = D

√
k + 1

2
r̄k,

where the second inequality is due to the fact that r̄k = max{r̄k−1, rk}, the final inequality is due to
Lemma 7, and the constants D̄ and D are as defined in the statement. Hence,

v∗k ≡ min
0≤i≤k−1

vi ≤
∑k−1

i=0 r̄ivi∑k−1
i=0 r̄i

≤ r̄k∑k−1
i=0 r̄i

D

√
k + 1

2
.
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Letting now k∗ = argmin1≤k≤T
r̄k∑k−1
i=0 r̄i

and using Lemma 2, we obtain

v∗T ≤ v∗k∗ ≤
D
√

k∗+1
2

T

( r̄T
r̄

) 1
T

log
er̄T
r̄

≤ D√
T

(
D̄

r̄

) 1
T

log
eD̄

r̄
,

where we have used the fact that k∗+1 ≤ T +1 ≤ 2T (since 1 ≤ k∗ ≤ T ) and that r̄T ≤ D̄ (see Lemma 7).
This proves Eq. (6) in the case when T ≥ log D̄

r̄ since then we can further bound ( D̄r̄ )
1
T ≡ exp( 1

T log D̄
r̄ ) ≤

e.

On the other hand, by the definition of vk and Lemma 7, we always have the following trivial inequality for
any 0 ≤ k ≤ T − 1:

vk ≡ ⟨∇f(xk), xk − x∗⟩
∥∇f(xk)∥∗

≤ Dk ≤ D0 +

√
2

c
D̄ ≤ D.

This means that Eq. (6) is also satisfied in the case when T ≤ log D̄
r̄ since then eD√

T
log eD̄

r̄ ≥ D√
T
log D̄

r̄ ≥
D
√
T ≥ D (we still consider T ≥ 1). The proof of Eq. (6) is now finished.

The final part of the claim readily follows from Eq. (6).

C HOW TO CHOOSE THE CONSTANT c

According to Theorem 1, our method converges for any c >
√
2. However, the choice of c can influence

the constant factor in the complexity of DADA. Hence, our goal here is to find the optimal constant c that
minimizes Tv(δ). To determine this c, let r̄ be sufficiently small, so that

D̄ ≡ max
{
r̄,

2c

c−
√
2
D0

}
=

2c

c−
√
2
D0.

Then, disregarding the logarithmic factors, due to their minimal impact on the complexity of our method,
we can determine the optimal constant c that minimizes

D ≡
√
2
(
cD0 +

1

c
D̄
)
=

√
2
(
c+

2

c−
√
2

)
D0.

This is the value

c = 2
√
2. (12)

For this optimal choice of c, we get D̄ = max{r̄, 4D0} and D = 4D0 + 1
2D̄, so the complexity of our

method given by Theorem 1 is

Tv(δ) =
e2(4D0 +

1
2D̄)2

δ2
log2

eD̄

r̄
.

D CONVERGENCE OF DADA ON VARIOUS PROBLEM CLASSES

In this section, we analyze the complexity of DADA across different problem classes. To achieve this, we
first establish bounds on the growth function:

ω(t) = max
x∈B(x∗,t)

f(x)− f∗,

and determine the threshold t such that ω(t) ≤ ϵ for a given ϵ. Subsequently, we combine these results with
the complexity bound T (δ) derived in Theorem 1, enabling us to estimate the oracle complexity of DADA
for finding an ϵ-solution in terms of the function residual.
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D.1 NONSMOOTH LIPSCHITZ FUNCTIONS

Assumption 8. The function f in problem equation 1 is locally Lipschitz at x∗. Specifically, for any x ∈
B(x∗, ρ), the following inequality holds:

f(x)− f∗ ≤ L0∥x− x∗∥, (13)

where L0, ρ > 0 are fixed constants.
Lemma 9. Let f be locally L0-Lipschitz at x∗ (Assumption 8). Then, ω(t) ≤ ϵ for any given ϵ > 0 whenever
t ≤ δ(ϵ), where

δ(ϵ) := min

{
ϵ

L0
, ρ

}
.

Proof. According to equation 13, for any 0 ≤ t ≤ ρ, we have

ω(t) ≤ L0t.

Making the right-hand side ≤ ϵ, we get the claim.

Combining Theorem 1 and Lemma 9, we get the following complexity result.
Corollary 10. Consider problem equation 1 under Assumption 8. Let Algorithm 1 with coefficients equa-
tion 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ),
where

T (ϵ) = max

{
L2
0

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

D.2 LIPSCHITZ-SMOOTH FUNCTIONS

Assumption 11. The function f in problem equation 1 is locally Lipschitz-smooth at x∗. Specifically, for
any x ∈ B(x∗, ρ), the following inequality holds:

f(x) ≤ f∗ + ⟨∇f(x∗), x− x∗⟩+ L1

2
∥x− x∗∥2, (14)

where L1, ρ > 0 are fixed constants.
Lemma 12. Assume that f is locally Lipschitz-smooth at x∗ with constant L1 (Assumption 11). Then,
ω(t) ≤ ϵ for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{√
ϵ

L1
,

ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to equation 14, for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+ L1

2
∥x− x∗∥2.

Hence, for any 0 ≤ t ≤ ρ,

ω(t) ≤ L1

2
t2 + ∥∇f(x∗)∥∗t.
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To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

L1

2
t2 ≤ ϵ

2
, ∥∇f(x∗)∥∗t ≤

ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 12, we get the following complexity result.
Corollary 13. Consider problem equation 1 under Assumption 11. Let Algorithm 1 with coefficients equa-
tion 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ),
where

T (ϵ) = max

{
L1

ϵ
,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

D.3 HÖLDER-SMOOTH FUNCTIONS

Assumption 14. The function f in problem equation 1 is locally Hölder-smooth at x∗. Specifically, for any
x ∈ B(x∗, ρ), the following inequality holds:

f(x) ≤ f∗ + ⟨∇f(x∗), x− x∗⟩+ Hν

1 + ν
∥x− x∗∥1+ν , (15)

where ν ∈ [0, 1] and Hν , ρ > 0 are fixed constants.
Lemma 15. Let f be locally (ν,Hν)-Hölder-smooth at x∗ (Assumption 14). Then, ω(t) ≤ ϵ for any given
ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{[
(1 + ν)ϵ

2Hν

] 1
1+ν

,
ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to equation 15, for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+ Hν

1 + ν
∥x− x∗∥1+ν .

Hence, for any 0 ≤ t ≤ ρ,

ω(t) ≤ ∥∇f(x∗)∥∗t+
Hν

1 + ν
t1+ν .

To make the right-hand side of the last inequality ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

Hν

1 + ν
t1+ν ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 15, we get the following complexity result.
Corollary 16. Consider problem equation 1 under Assumption 14. Let Algorithm 1 with coefficients equa-
tion 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ),
where

T (ϵ) = max

{[
2Hν

(1 + ν)ϵ

] 2
1+ν

,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.
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D.4 FUNCTIONS WITH LIPSCHITZ HIGH-ORDER DERIVATIVE

Assumption 17. The function f in problem equation 1 is such that its pth derivative is locallyLp-Lipschitz at
x∗. Specifically, f is p times differentiable on B(x∗, ρ), and, for any x ∈ B(x∗, ρ), the following inequality
holds:

∥∇pf(x)−∇pf(x∗)∥ ≤ Lp∥x− x∗∥.

where Lp, ρ > 0 are fixed constants.

The Assumption 17 immediately implies the following global upper bound on the function value:

f(x) ≤ f∗ +

p∑
i=1

1

i!
∇if(x∗)[x− x∗]i +

Lp

(p+ 1)!
∥x− x∗∥p+1. (16)

Lemma 18. Assume that f has locally Lp-Lipschitz pth derivative at x∗ (Assumption 17). Then, ω(t) ≤ ϵ
for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{
min
2≤i≤p

[
i! ϵ

(p+ 1)∥∇if(x∗)∥

] 1
i

,

[
p! ϵ

Lp

] 1
p+1

,
ϵ

(p+ 1)∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to equation 16, for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ∥∇f(x∗)∥∗∥x− x∗∥+
p∑

i=2

1

i!
∥∇if(x∗)∥∥x− x∗∥i + Lp

(p+ 1)!
∥x− x∗∥p+1.

Therefore, for any 0 ≤ t ≤ ρ, we have

ω(t) ≤ ∥∇f(x∗)∥∗t+
p∑

i=2

1

i!
∥∇if(x∗)∥ti + Lp

(p+ 1)!
tp+1.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the following inequalities holds:

∥∇f(x∗)∥∗t ≤
ϵ

p+ 1
,

1

i!
∥∇if(x∗)∥ti ≤ ϵ

p+ 1
,

Lp

(p+ 1)!
tp+1 ≤ ϵ

p+ 1
, i = 2, . . . , p.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 18, we get the following complexity result.

Corollary 19. Consider problem equation 1 under Assumption 17. Let Algorithm 1 with coefficients equa-
tion 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ),
where

T (ϵ) = max

{
max
2≤i≤p

[
(p+ 1)∥∇if(x∗)∥

i! ϵ

] 2
i

,

[
Lp

p! ϵ

] 2
p+1

,
(p+ 1)2∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.
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D.5 QUASI-SELF-CONCORDANT FUNCTIONS

Assumption 20. The function f in problem equation 1 is Quasi-Self-Concordant (QSC) in a neighborhood
of x∗. Specifically, it is three times differentiable in a neighborhood of x∗ and for any x ∈ B(x∗, ρ) and
arbitrary directions u, v ∈ Rd, the following inequality holds:

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥,

where M ≥ 0 and ρ > 0 are fixed constants.

The following lemma provides an important global upper bound on the function value for QSC functions.
Lemma 21. (Doikov, 2023, Lemma 2.7) Let f be QSC with the parameter M . Then, for any x, y ∈ dom f ,
the following inequality holds:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ ⟨∇2f(x)(y − x), y − x⟩φ(M∥y − x∥),

where φ(t) := et−t−1
t2 .

Lemma 22. Assume that f is a locally QSC function at x∗ with constantM (Assumption 20). Then, ω(t) ≤ ϵ
for any given ϵ > 0 whenever t ≤ δ(ϵ), where

δ(ϵ) := min

{
1

M
,

√
ϵ

2(e− 2)∥∇2f(x∗)∥
,

ϵ

2∥∇f(x∗)∥∗
, ρ

}
.

Proof. According to Lemma 21, for any x ∈ B(x∗, ρ), we have

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ ⟨∇2f(x∗)(x− x∗), x− x∗⟩φ(M∥x− x∗∥)
≤ ∥∇f(x∗)∥∗∥x− x∗∥+ ∥∇2f(x∗)∥∥x− x∗∥2φ(M∥x− x∗∥).

Therefore, for any 0 ≤ t ≤ ρ, we get

ω(t) ≤ ∥∇f(x∗)∥∗t+ ∥∇2f(x∗)∥t2φ(Mt), (17)

where we have used the fact that φ(·) is an increasing function.

Note that, for any 0 ≤ t ≤ 1
M , we can estimate φ(Mt) ≤ φ(1) = e − 2. Substituting this bound into

equation 17, we obtain

ω(t) ≤ ∥∇f(x∗)∥∗t+ (e− 2)∥∇2f(x∗)∥t2.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
, (e− 2)∥∇2f(x∗)∥t2 ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 22, we get the following complexity result.
Corollary 23. Consider problem equation 1 under Assumption 20. Let Algorithm 1 with coefficients equa-
tion 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for any given ϵ > 0 whenever T ≥ T (ϵ),
where

T (ϵ) = max

{
M2,

2(e− 2)∥∇2f(x∗)∥
ϵ

,
4∥∇f(x∗)∥2∗

ϵ2
,
1

ρ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

D.6 (L0, L1)-SMOOTH FUNCTIONS

Let us now consider the case when Q = Rd and f is (L0, L1)-smooth (Zhang et al., 2020), meaning that for
any x ∈ Rd,

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗,
where L0, L1 ≥ 0 are fixed constants.
Lemma 24. (Vankov et al., 2024, Lemma 2.2) Let f be (L0, L1)-smooth. Then, for any x, y ∈ Rd, it holds
that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥∗
L2
1

ξ(L1∥y − x∥),

where ξ(t) := et − t− 1.
Lemma 25. Assume that f is an (L0, L1)-smooth function. Then, ω(t) ≤ ϵ for any given ϵ > 0 whenever
t ≤ δ(ϵ), where

δ(ϵ) := min

{
1

L1
,

√
2ϵ

3(L0 + L1∥∇f(x∗)∥∗)
,

ϵ

2∥∇f(x∗)∥∗

}
.

Proof. According to Lemma 24, for any x ∈ Rd, we have

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ L0 + L1∥∇f(x∗)∥∗
L2
1

ξ(L1∥x− x∗∥)

≤ ∥∇f(x∗)∥∗∥x− x∗∥+ L0 + L1∥∇f(x∗)∥∗
L2
1

ξ(L1∥x− x∗∥)

Therefore, for any t ≥ 0, we get

ω(t) ≤ ∥∇f(x∗)∥∗t+
L0 + L1∥∇f(x∗)∥∗

L2
1

ξ(L1t), (18)

where the second inequality uses the fact that ξ(x) is an increasing function.

Note that, for any 0 ≤ t ≤ 1
L1

, we can estimate

ξ(L1t) ≤
L2
1t

2

2(1− L1t
3 )

≤ 3

4
L2
1t

2.

Substituting this bound into equation 18, we obtain:

ω(t) ≤ ∥∇f(x∗)∥∗t+
3(L0 + L1∥∇f(x∗)∥∗)

4
t2.

To make the right-hand side of the last inequality ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

3(L0 + L1∥∇f(x∗)∥∗)
4

t2 ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Combining Theorem 1 and Lemma 25, we get the following complexity result.
Corollary 26. Consider problem equation 1 under the assumption that f is an (L0, L1)-smooth function.
Let Algorithm 1 with coefficients equation 5 be applied for solving this problem. Then, f(x∗T )− f∗ ≤ ϵ for
any given ϵ > 0 whenever T ≥ T (ϵ), where

T (ϵ) = max

{
L2
1,

3(L0 + L1∥∇f(x∗)∥∗)
2ϵ

,
4∥∇f(x∗)∥2∗

ϵ2

}
e2D2 log2

eD̄

r̄
,

and the constants D and D̄ are as defined in Theorem 1.
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Figure 2: Comparison of different methods on the Softmax function.
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Figure 3: The ratio D
r̄t

for the Softmax function with different optimal points x∗.

E ADDITIONAL EXPERIMENTS

Softmax function. Our first test problem is

min
x∈Rd

{
f(x) := µ log

(
n∑

i=1

exp

[
⟨ai, x⟩ − bi

µ

])}
, (19)

where ai ∈ Rd, and bi ∈ R for all 1 ≤ i ≤ n, and µ > 0. This function can be viewed as a smooth
approximation of max1≤i≤n[⟨ai, x⟩ − bi] (Nesterov, 2005a).

To generate the data for our problem, we proceed as follows. First, we generate i.i.d. vectors âi with com-
ponents uniformly distributed in the interval [−1, 1] for i = 1, . . . , n, and similarly for the scalar values bi.
Using this data, we form the preliminary version of our function, f̂ . We then compute ai = âi −∇f̂(0) and
use the obtained (ai, bi) to define our function f . This way of generating the data ensures that x∗ = 0 is a
solution of our problem.

The results are shown in Fig. 2, where we fix n = 103 and d = 2n, and consider different values of
µ ∈ {0.1, 0.01, 0.005}. As we can see, most methods exhibit similar performance for µ = 0.1 except for
Prodigy which stops converging after a few initial iterations. This issue, along with a decline in performance
for UGM, persists as µ decreases, whereas DADA, DoG, and WDA remain largely unaffected. Notably, DoG
performs very similarly to DADA, which we hypothesize is primarily due to the similarity in estimating D0.
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Figure 4: Comparison of different methods on the polyhedron feasibility problem.

Additionally, Fig. 3 illustrates the ratio between D0 and r̄, showing the estimation error of Prodigy, DoG,
and DADA throughout the optimization process. For Prodigy, we use D0

dmax
to generate the plot. The figure

demonstrates that DADA and DoG exhibit similar behavior in estimating D0, despite employing different
update methods—Dual Averaging and Gradient Descent, respectively. However, Prodigy appears to en-
counter challenges in estimating D0 as its estimation stabilizes at a relatively large value.

Hölder-smooth function. Let us consider the following polyhedron feasibility problem:

f∗ := min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

[⟨ai, x⟩ − bi]
q
+

}
, (20)

where ai, bi ∈ Rd, q ∈ [1, 2], and [τ ]+ = max(0, τ). This problem can be interpreted as finding a point
x∗ ∈ Rd lying inside the polyhedron P = {x : ⟨ai, x⟩ ≤ bi, i = 1, . . . , n}. Such a point exists if and only
if f∗ = 0.

Observe that f in problem equation 20 is Hölder-smooth with parameter ν = q − 1. Therefore, by varying
q ∈ [1, 2], we can check the robustness of different methods to the smoothness level of the objective function.

The data for our problem is generated randomly, following the procedure in (Rodomanov et al., 2024). First,
we sample x∗ uniformly from the sphere of radius 0.95R centered at the origin. Next, we generate i.i.d.
vectors ai with components uniformly distributed in [−1, 1]. To ensure that ⟨an, x∗⟩ < 0, we invert the
sign of an if necessary. We then sample positive reals si uniformly from [0,−0.1cmin], where cmin :=
mini⟨ai, x∗⟩ < 0, and set bi = ⟨ai, x∗⟩+ si. By construction, x∗ is a solution to the problem with f∗ = 0.

We select n = 104, d = 103, R = 103 and consider different values of q ∈ {1, 1.5, 2}. As shown in Fig. 4,
as q increases and approaches 2, the performance of DoG significantly declines. However, DADA, Prodigy,
and UGM demonstrate similar performance regardless of the choice of q.

Worst-case function. In addition to the experiments presented in Section 4, we evaluate the estimation
error ofD0 for Prodigy, DoG, and DADA throughout the optimization process, as shown in Fig. 5. The figure
illustrates that while Prodigy’s estimate of D0, shows some improvement over time, it remains noticeably
inaccurate. Moreover, for DoG, the estimate deteriorates as p increases, a behavior that is not observed with
DADA, whose estimate remains stable across different values of p.

Comparison of different initial points. In this experiment, we evaluate the sensitivity of DADA to the
choice of the initial point x0. We consider the same Softmax function as in equation 19 with n = 103,
d = 2n, and µ ∈ {0.5, 0.1, 0.01}.
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Figure 5: The ratio D
r̄t

for the worst-case function with different optimal points x∗.
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Figure 6: Comparison of different initial points on the Softmax function with different values of µ.

The results are shown in Fig. 6, where we consider rϵ ∈ {10−1, . . . , 10−6}. As we can see, the choice of rϵ
does not affect the performance of DADA, which consistently achieves similar performance across all tested
values.
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