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ABSTRACT

We present a novel universal gradient method for solving convex optimization problems.
Our algorithm—Dual Averaging with Distance Adaptation (DADA)—is based on the clas-
sical scheme of dual averaging and dynamically adjusts its coefficients based on observed
gradients and the distance between iterates and the starting point, eliminating the need
for problem-specific parameters. DADA is a universal algorithm that simultaneously
works for a broad spectrum of problem classes, provided the local growth of the objec-
tive function around its minimizer can be bounded. Particular examples of such problem
classes are nonsmooth Lipschitz functions, Lipschitz-smooth functions, Holder-smooth
functions, functions with high-order Lipschitz derivative, quasi-self-concordant functions,
and (Lg, L1)-smooth functions. Crucially, DADA is applicable to both unconstrained
and constrained problems, even when the domain is unbounded, without requiring prior
knowledge of the number of iterations or desired accuracy.

1 INTRODUCTION

Gradient methods are among the most popular and efficient algorithms for solving optimization problems
arising in machine learning, as they are highly adaptable and scalable across various settings (Bottou et al.|
2018)). Despite their popularity, these methods face a significant challenge of selecting appropriate hyper-
parameters, particularly stepsizes, which are critical to the performance of the algorithm. Hyperparameter
tuning is one of the standard approaches to address this issue but is a time-consuming and resource-intensive
process, especially as models become larger and more complex. Consequently, the cost of training these
models has become a significant concern (Sharir et al., [2020; |Patterson et al., [2021])).

Typically, line-search techniques have been used to select stepsizes for optimization methods, and they are
provably efficient for certain function classes, such as Holder-smooth problems (Nesterov, [2015). However,
in recent years, several so-called parameter-free algorithms have been developed which do not utilize line
search (Orabona & Tommasi, 2017} |Cutkosky & Orabonal 2018; |(Carmon & Hinder, 2022; Ivgi et al., [2023;
Khaled et al.l |2023; [Mishchenko & Defaziol [2024). Notably, one strategy involves dynamically adjusting
stepsizes based on estimates of the initial distance to the optimal solution (Carmon & Hinder} 2022; [vgi
et al., 2023} [Khaled et al.,2023)). Another approach leverages lower bounds on the initial distance combined
with the Dual Averaging (DA) scheme (Defazio & Mishchenko| 2023 Mishchenko & Defazio, [2024). How-
ever, these methods primarily focus on nonsmooth Lipschitz or, in some cases, Lipschitz-smooth functions.
Some of these methods also come with additional limitations, such as requiring bounded domain assump-
tions (Khaled et al.| |2023)) or failing to extend to constrained optimization problems (Defazio & Mishchenkol
2023; Mishchenko & Detazio, [2024).

To formalize the discussion, we consider the following optimization problem:

[r= Imrggf(w), (1)
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Method Universal Constraints Unbounded domain No search ~ Stochastic

DoG (Ivgi et al.|[2023)

DoWG (Khaled et al.[[2023)

Bisection Search (Carmon & Hinder)2022)
Prodigy (Mishchenko & Defaziol[2024)
D-Adaptation (Defazio & Mishchenko/[2023)
UGM (Nesterov/2015)

DADA (Ours)

/) Note that UGM uses a different definition of universality. They call their method universal because it works for Holder-smooth
functions, which are only a subset of the functions we consider.

N X % % X% X
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Table 1: A comparison of different adaptive algorithms to solve equation [1| “Universal” means the algorithm simultane-
ously works for multiple problem classes without the need for choosing different parameters for each of these function
classes. “Constraints” means the algorithm can be applied to constrained problems. “Unbounded domain” means the
algorithm can be applied to problems with unbounded feasible sets. “Stochastic” indicates that the algorithm is analyzed
in the stochastic setting. “No search” means the algorithm does not use an internal search procedure.

where Q C R is a nonempty closed convex set, and f: R? — RU{-+oo} is a proper closed convex function
that is subdifferentiable on ). We assume that () is a simple set, meaning that it is possible to efficiently
compute the projection onto (). We also assume problem Eq. (1)) has a solution z* € int dom f. The starting
point in our methods is denoted by x.

Contributions. In this paper, we introduce Dual Averaging with Distance Adaptation (DADA), a novel
universal gradient method for solving equation[I] Building on the classical framework of weighted DA (Nes-
terov, [2005b), DADA incorporates a dynamically adjusted estimate of Dy = ||zg — *||, inspired by recent
techniques from (Ivgi et al.} 2023; |Carmon & Hinder, [2022) and further developed in (Khaled et al., 2023)),
without requiring prior knowledge of problem-specific parameters. Furthermore, our approach applies to
both unconstrained problems and those with simple constraints, possibly with unbounded domains. This
makes DADA a powerful tool across a wide range of applications.

We start, in Section [2] by presenting our method and outline its foundational structure based on the DA
scheme (Nesterov, [2005b)). Our main theoretical result, Theorem |1} establishes convergence guarantees for
a broad range of function classes.

To demonstrate the versatility and effectiveness of DADA, in Section [3] we provide complexity esti-
mates across several interesting function classes: nonsmooth Lipschitz functions, Lipschitz-smooth func-
tions, Holder-smooth functions, quasi-self-concordant (QSC) functions, functions with Lipschitz high-order
derivative, and (Lg, Ly )-smooth functions. These results underscore DADA's ability to deliver competitive
performance without knowledge of class-specific parameters.

Related work. The design of parameter-free optimization algorithms has received significant attention,
particularly for convex problems where tuning learning rates can be avoided entirely. Classical techniques
such as the Polyak step size (Polyak| [1987) and doubling schedules (Streeter & McMahanl, [2012) elim-
inate tuning at the cost of oracle access or restarts. More recent approaches achieve near-optimal con-
vergence without any hyperparameters. For instance, coin-betting—based methods (Orabona & Pall [2016)
adapt to unknown Lipschitz or domain parameters in online and stochastic optimization. In the stochas-
tic convex setting, bisection-based procedures (Carmon & Hinder, [2022) and dual-averaging methods such
as D-Adaptation (Defazio & Mishchenko| |2023) and Prodigy (Mishchenko & Defaziol [2024) achieve op-
timal rates via distance estimation, while normalized gradient methods like DoG (Ivgi et al.| 2023)) and
DoWG (Khaled et al., 2023)) adapt to curvature using observed gradients and distances. We summarize the
main properties of the algorithms we compare against in Table [I] While adaptive gradient methods such as



Under review as a conference paper at ICLR 2026

AdaGrad (Duchi et al.} 2011} and Adam (Kingma & Ba, [2015) exploit problem structure, they retain a base
learning rate and are not truly parameter-free.

Several heuristics motivated by deep learning attempt to mitigate learning rate tuning through normalization
or scaling. Methods such as LARS (You et al.,2017), LAMB (You et al.|[2019)), Adafactor (Shazeer & Stern),
2018), and Fromage (Bernstein et al.l 2020) use norms of weights or gradients to scale updates, though
they typically include tunable factors and lack full convergence guarantees. While these methods have
shown empirical success across architectures, they often still require a base step size and their theoretical
understanding remains limited.

Notation. In this text, we work in the space R¢ equipped with the standard inner product (-,-) and the
general Euclidean norm ||z|| := (Bz,z)'/2, where B is a fixed symmetric positive definite matrix. The
corresponding dual norm is defined in the standard way as ||s||, := max = (s, z) = (s, B~s)!/2. Thus,
for any s,x € R? we have the Cauchy-Schwarz inequality |(s,z)| < |/s|/«||=||. The Euclidean ball of
radius 7 > 0 centered at z € R? is defined as B(x,7) == {y € R? : ||y — x|| < r}. For a convex
function f: R? — R U {400}, we denote its effective domain as dom f = {x € R?: f(x) < +o0}. The
subdifferential of f at a point z € dom f is denoted by 9 (x), and V f () € 0f(x) denotes a subgradient.

2 DADA METHOD

Measuring the quality of solution. Given an approximate solution = € () to problem equation [I]and an
arbitrary subgradient V f(x) € 0f(x), we measure the suboptimality of 2 by the distance from x* to the

hyperplane {y : (Vf(z),z —y) = 0}:

’U(CU) — <Vf(if),$ — ZE*>

IV£(@)]l
This objective is meaningful because minimizing v(x) also reduces the corresponding function residual

f(z) — f*. Indeed, there exists the following simple relationship between v(z) and the function residual
(Nesterov,, [2018,, Section 3.2.2) (see also Lemmafor the short proof):

(>0). @)

f(@) = 7 <w(v(z)), 3)
where
w(t) = Lo f@)—f* 4

measures the local growth of f around the solution z*. Note that inequality equation [3|is nontrivial only
when B(z*,v(z)) C dom f.

By bounding w(t), we can derive convergence-rate estimates that simultaneously apply to a broad range of
problem classes (we discuss several examples in Section [3).

The method. Our algorithm is based on the general scheme of DA (Nesterov, 2005b) shown in Algo-
rithm[1| Using a standard (sub)gradient method with time-varying coefficients is also possible but requires
either short steps by fixing the number of iterations in advance, or paying an extra logarithmic factor in the
convergence rate (Nesterov, [2018| Section 3.2.3).

The classical method of Weighted DA (WDA) selects the coefficients ay = ”q ” and 5, = (\/E) where

Dy is a user- deﬁned estlmate of Dy. The convergence is guaranteed for any value of Dy but one must pay

Do ) %}, if the parameter Dy is unknown. This cost can
0
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Algorithm 1 General Scheme of DA

Input: xo € Q, number of iterations 7' > 1, coefficients (ak)fgol, (5k)£:1 with nondecreasing S
fork=1,...,Tdo
Compute arbitrary g, € O f(xx)
Tk = argmlanQ{Zf;ol a¢<gi7w - I7«> + %HZB - J“OH2}

Output: z7 = argmin, ¢,

.....

be significantly high if Dy is not known almost exactly. To address this issue, we propose DADA, which
reduces the cost to a logarithmic term, log? p, offering a substantial improvement.

Specifically, our approach utilizes the following coefficients:

Tk _ _

ay=——, Br=cVk+1| 7p:=max{max r,7}, 1= |z0— 74, 5)
[l g |« 1<t<k

where # > 0 is a parameter and c is a certain constant to be specified later. In what follows, we assume

w.l.o.g. that g, # 0 forall 0 < k < T — 1 since otherwise the exact solution has been found, and the method

could be successfully terminated before making 7" iterations.

As we can see, the main difference between WDA and DADA, is that the latter dynamically adjusts its
estimate of Dy by exploiting r, the distance between z; and the initial point x(. This idea has been explored
in recent works (Carmon & Hinder, [2022; [Tvgi et al.,[2023)), which similarly utilize r; in various ways. Other
methods also attempt to estimate this quantity using alternative strategies, based on DA and the similar
principle of employing an increasing sequence of lower bounds for Dy (Defazio & Mishchenkol [2023;
Mishchenko & Defazio), [2024)).

The convergence guarantees for our method are provided in the result below:
Theorem 1. Consider Algorithm || for solving problem equation[I|using the coefficients from Eq. (B) with
¢ > /2. Then, for any T > 1 and v = ming<k<7—_1 v(xk), it holds that

flar) — f* < w(vp),

and _
eD eD

—= log —, (6
VT BT )
where D = max{F, C_Z—f/iDo} and D = \/2(cDy + 1D). Consequently, for a given § > 0, it holds that
v < § whenever T > T,(5), where

vp <

e2D? eD
T, (6) = 52 log?

T
Let us provide a proof sketch for Theorem [I] here and defer the detailed proof to Appendix [B] We begin by
applying the standard result for DA (Lemma[5), which holds for any choice of coefficients aj and fj:

k—1 k-1

Bk Bk a;
> awillgill + 5 DE < FDG+ Y o llgilly,
i=0 =0

20

where D; = ||z; — 2*|| and v; = v(x;) for all ¢ > 0. Use the specific choices for a;, and S as defined in
Eq. (B), we obtain (see Lemmal6):

k—1
vVk+1 vVk+1 k
E fivri-c 2+ D}%SC 2+ D8+7\[7:£
¢

=0

L @
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Dropping the nonnegative 7;v; from the left-hand side, we can show by induction that 7, is uniformly
bounded (see Lemmal/):

/FkSDa

where D is the constant from Theorem This bound is crucial to our analysis, as we need to eliminate 71
from the right-hand side of Eq. (7). Achieving this requires selecting the coefficients precisely as defined
in Eq (3, which is the primary difference compared to the standard DA method (Nesterov} 2005b). Next,
using the inequality D3 — D? < 2rj, Dy, we get

E

-1

k 1
v, < evk 4+ 1rgDg + irk 1 < (cDo + fD)Fk\/k + 1.
c

I
=)

i

After establishing this, the rest of the proof follows straightforwardly by dividing both sides by Zf;ol 7; and
applying the following inequality (valid for any nondecreasing sequence 7, see Lemma [2):

7 (:’S)T lOg err

min
1<k<T Z’?—l = T

This gives us

which is almost Eq. (@) except for the extra factor of ( )T This extra factor, however, is rather weak as

it can be upper bounded by a constant (say, ¢ = exp(1)) whenever T > log 2 7. The case of T' < log 2 = is
not interesting since then Eq. (6) holds trivially because, for any & > 0, in view of Eq. and Lemma [7]
we have v, < Dj, < D. Based on the definition of D, ¢ = 2v/2 is the optimal choice of the constant c in
Eq. (B) (see Appendix[C).

3 UNIVERSALITY OF DADA: EXAMPLES OF APPLICATIONS

Let us demonstrate that our method is universal in the sense that it simultaneously works for multiple prob-
lem classes without the need for choosing different parameters for each of these function classes. For
simplicity, we assume that V f(2*) = 0 (this happens, in particular, when our problem equation [1|is un-
constrained) and measure the e-accuracy in terms of the function residual. We also assume, for simplicity,
that the objective function satisfies all necessary inequalities on the entire space, but all our results still
hold if they are satisfied only locally at z* (see Appendix [D). To simplify the notation, we also denote
log, t :=1+logtand Dy := max{F, ||zo — 2*||}, where 7 is the parameter of our method.

Nonsmooth Lipschitz functions. This function class is defined by the inequality
[f(z) = f(y)] < Lollz —yl|
for all z, y € R?. For this problem class, DADA requires at most (see Corollary

LED§ . 5 Do
O( 2 log+7

oracle calls to reach e-accuracy, which matches the standard complexity of (sub)gradient methods (Nesterov,
2005b; 2018)), up to an extra logarithmic factor. Note that a polylogarithmic factor in QO appears in the
complexity bounds of all distance-adaptation methods (Defazio & Mishchenko, 2023 Ivgl et al.l 2023}

Khaled et al., 2023; Mishchenko & Defaziol [2024)).
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Lipschitz-smooth functions. Another important class of functions are those with Lipschitz gradient:
IVf(@) = Vi)l < Lallz -yl
for all -, y € R?. In this case, the complexity of our method is (see Corolla.ry

L,D? D,
O( ! Ologi()).
€ T

This coincides with the standard complexity of the (nonaccelerated) gradient method on Lipschitz-smooth
functions (Nesterov, |2018], Section 3) up to an extra logarithmic factor.

Note that the complexity of DADA is slightly worse than that of the classical gradient method with line
L.D t2) Ly

€
guess for L. The difference is that the logarithmic factor in the latter estimate appears in an additive way
instead of multiplicative.

search (Nesterov, 2015), which achieves a complexity bound of O ( ), where Ly is the initial

Holder-smooth functions. The previous two examples are subclasses of the more general class of Holder-
smooth functions. It is defined by the following inequality:

IVf(x) = Vi)l < Hollz —yl”

for all z,y € RY, where v € [0,1] and H, > 0. Therefore, for v = 0, we get functions with bounded
variation of subgradients (which contains all Lipschitz functions) and for v = 1 we get Lipschitz-smooth
functions.

The complexity of DADA on this problem class is (see Corollary

2 _
H,|™7 _ Do
O |=%| Dilog2 = ).

This is similar to the O([£2] ”%Dg + log|

~ Z ) complexity of the universal (nonaccelerated) gradient
Leltv

method with line search (GM-LS) (Nesterov, 2015)), where L is the parameter of the method. Again, the
complexity of GM-LS is slightly better since the logarithmic factor is additive (and not multiplicative).

However, GM-LS is not guaranteed to work (well) on other problem classes such as those we consider next.

Functions with Lipschitz high-order derivative. This class is a generalization of the Lipschitz-smooth
class. Functions in this class are p times differentiable, and have the property that their pth derivative (p > 2)
is Lipschitz, i.e., for all 2,y € R?, we have

IVPf(z) = VPf)ll < Lpllz —yl,

where the ||| norm in the left-hand side is the usual operator norm of a symmetric p-linear opeator: || A|| =
maxycpd . |)=1/A[R]P||. For example, the pth power of the Euclidean norm is an example of a function
in this class (see (Rodomanov & Nesterov, 2019)). The complexity of DADA on this problem class is (see

Corollary [T9)
. 2 2 —
if@).]7 . [Ly |77 ] A D
O<[max [pHVf(:c)H} + { p} ]Dglogf_ TO>

2<i<p| ! € ple

Although line-search gradient methods might be better for Holder-smooth problems, to our knowledge, they
are not known to attain comparable bounds on this function class.
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Quasi-self-concordant (QSC) functions (Bach,2010). A function f is called QSC with parameter M >
0 if it is three times continuously differentiable and the following inequality holds for any z, u, v € R%:

V2 f(@)[u, u, 0] < M(V2 f(z)u, u)|o]]. ®)

For example, the exponential, logistic, and softmax functions are QSC; for more details and other examples,
see (Doikov, [2023). When applied to a QSC function, our method has the following complexity (Corol-

lary 23):

_ V2 f(z*)||D? D

In terms of comparisons, second-order methods, such as those explored in (Doikov,[2023), are more powerful
for minimizing QSC functions, as they leverage additional curvature information. Their complexity bound,

in terms of queries to the second-order oracle, is O(M Dy log % +log [z“TgO"), where Fy = f(x0)— f*, Dy is
the diameter of the initial sublevel set, and go = ||V f(x0)]|« (see (Doikov, {2023} Corollary 3.4)). However,
each iteration of these methods is significantly more expensive.

To our knowledge, the QSC class has not been previously studied in the context of first-order methods. The
only other first-order methods for which one can prove similar bounds are the nonadaptive variants of our
scheme, namely the normalized gradient method (NGM) from (Nesterov, 2018} Section 5) and the recent
improvement of this algorithm for constrained problems (Nesterov, 2024).

(Lo, L1)-smooth functions. As introduced in (Zhang et al [2020), a function f is said to be (Lo, L1)-
smooth if for all z € R?, we have

IV2f(@)|l < Lo + Ly ||V f ()]
The complexity of DADA on this class is (see Corollary 26)

_, LoD3 D
O({L%ngt > O]logir).

Up to the extra logarithmic factor, this matches the complexity of NGM from (Vankov et al., 2024), with

the distinction that their approach is less robust to the initial guess of Dy. Specifically, the penalty for
2

underestimating it in the latter method is a multiplicative factor of p? := % while in our method this factor

is logarithmic: logi p-

4 EXPERIMENTS

To evaluate the efficiency of our proposed method, DADA, we conduct a series of experiments on convex
optimization problems. Our goal is to demonstrate the effectiveness of DADA in achieving competitive
performance across various function classes without any hyperparameter tuning.

We compare DADA against state-of-the-art distance-adaptation algorithms, namely, DoG (Ivgi et al., |[2023)
and Prodigy (Mishchenko & Defaziol[2024), using their official implementations without any modifications.
We also consider the Universal Gradient Method (UGM) from (Nesterov, [2015) and the classical Weighted
Dual Averaging (WDA) method (Nesterov, [2005b). For UGM, we choose the initial value of the line-search
parameter Ly = 1 and set the target accuracy to € = 1076, For WDA, we use the coefficients aj, = ”g%

I«
and B, = vk, where Dy = ||z¢ — z*].

For each method, we plot the best function value among all the test points generated by the algorithm against
the number of first-order oracle calls. We set the starting point to 2o = (1, ..., 1) and select the initial guess
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Figure 1: Comparison of different methods on the worst-case function.

for the distance to the solution as 7 = r.(1 + ||xo||). This choice ensures a fair comparison between DADA
and DoG (Ivgi et al.| 2023), as DoG employs a similar initialization strategy. In all experiments, we fix
re = 107%. Additionally, we conduct a separate experiment to evaluate the sensitivity of DADA to the
choice of ..

We have several experiments on different problem classes. However, due to space constraints, we present
only a single representative experiment in this section. The remaining experiments can be found in Ap-

pendix

Worst-case function. As an example of a function with Lipschitz high-order derivative, we consider the
following worst-case problem from (Doikov et al., [2024):

d—1
1 . . 1
mi — = (i) _ G+D)p 4 * (d)p}
in T) = T T + —|z , 9
min { f(2) p 2 [P+ 212 ©)

where p > 2, and z(?) is the ith element of x. The optimal point in this problem is z* = 0.

As illustrated in Fig. [1| nearly all methods exhibit similar performance when p = 2, except for Prodigy
whose convergence becomes slow after a few initial iterations. While Prodigy eventually reaches a similar
accuracy to the best methods, it is much slower at the beginning of the process. As p increases, our method
converges significantly faster than DoG. This improvement arises because our method adapts to the higher-
order smoothness of the function, whereas DoG’s convergence rate remains unchanged and does not take
advantage of this property.

In contrast, both DADA and UGM demonstrate stable and consistent performance across different values of
p, with DADA performing slightly better than UGM.

5 DISCUSSION

Comparison with recent distance-adaptation methods. Let us briefly compare our method with several
recently proposed parameter-free algorithms, namely, DoG (Ivgi et al., |2023)), DoWG (Khaled et al., 2023)),
D-Adaptation (Defazio & Mishchenko} 2023)) and Prodigy (Mishchenko & Defaziol 2024)).

To begin, we clarify the key differences between our method and approaches like DoG. One immediate
difference is that we use DA instead of the classical (sub)gradient method employed by DoG. However, the
most significant difference lies in how the sequence of gradients is handled. DoG normalizes the current
gradient gy, by the accumulated norms of the previous gradients, an idea inspired by AdaGrad (Duchi et al.|
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2011)). In contrast, our method simply normalizes g, by its own norm. This modification makes our method
universal, ensuring the convergence of v7 to zero, which is not known to be the case for DoG, even for
deterministic problems.

Both DoG and DoWG employ a similar approach to estimate Dy and achieve comparable convergence
rates for Lipschitz-smooth and nonsmooth functions. Similarly to our approach, DoWG considers only the
deterministic case, but with an additional assumption of the bounded feasible set. They have a different
definition of universality, considering only Lipschitz-smooth and nonsmooth settings.

It is important to emphasize that the advantage of our method over DoG is not about guaranteeing conver-
gence. Indeed, (Ivgi et al., [2023] Theorem 1) shows that DoG asymptotically converges to a minimizer on
any convex function with a complexity of O (LQR), where Lr = maxX,.|jz—z,|<rlVf(z)||, denotes the
maximal gradient norm within a ball of radius R = 3||xg — z*|| around x. However, this result highlights
a key limitation of DoG: its complexity bound is always inversely proportional to 2 across all function
classes, regardless of structure, which is not the case for our method. For example, consider the case where
f is a function with Lipschitz Hessian. Suppose, for simplicity, that the problem is unconstrained and sat-
isfies Vf(z*) = 0, and |[V2f(x*)|| is small. In this setting, following from Corollary (19} the complexity
2

~ 3 N2
of DADA is O (Lgf" ), which is significantly better than the complexity of DoG, whose rate remains
3

€

3
@) (%) This means that DoG does not leverage problem structure to improve its complexity, which

is a fundamental limitation in their analysis. In contrast, our method guarantees convergence for general
convex functions while also adapting to problem structure to achieve improved complexities. This makes
our analysis fundamentally stronger.

On the other hand, D-Adaptation and Prodigy are similar to our method in their use of DA. However, the
most significant difference lies in how the dual averaging parameters are selected. D-Adaptation, similar to
DoG, utilizes accumulated gradient norms in its parameter updates. In contrast, our method normalizes by
the current gradient norm at each iteration. This seemingly small change is crucial—it allows us to eliminate
the need for assuming an explicit upper bound on the gradient norms, which D-Adaptation critically relies
upon. Furthermore, to the best of our knowledge, these approaches have not been extended to constrained
optimization and are restricted to specific function classes, such as nonsmooth Lipschitz or smooth convex
functions. Nonetheless, their methods yield notable results in experiments, demonstrating strong empirical
performance.

In conclusion, the main limitation of recent distance-adaptation methods is their inability to automatically
adapt to diverse problem classes. Specifically, these methods require using different hyperparameters, such
as an estimate of the maximal gradient norm, to adjust to the specific problem class. Addressing this broader
adaptability has been the central focus of this paper.

Conclusion. We proposed DADA, a new adaptive and universal optimization method that extends the
classical Dual Averaging algorithm with a novel distance adaptation mechanism. Our method achieves
competitive rates across a wide class of convex problems—including Lipschitz, Lipschitz-smooth, Holder-
smooth, quasi-self-concordant (QSC), and (L, L1)-smooth functions—without requiring parameter tuning
or knowledge of smoothness constants. In contrast to recent approaches such as DoG, DoWG, D-Adaptation,
and Prodigy, DADA seamlessly accommodates both constrained and unconstrained settings, and does so
without requiring restarts or line searches.

"Here, we use the fact that for functions with Lipschitz Hessian, Lr = L{R + (%)R, where L7 = || V2 f(z¥)]].
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DADA provides a unified and adaptive framework for convex optimization with convergence guarantees un-
der minimal assumptions. Future work includes extending DADA to stochastic and nonconvex optimization,
and evaluating its empirical performance in large-scale learning tasks.

10
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A AUXILIARY RESULTS

The following result has been established in prior works such as (Liu & Zhoul 2023 Lemma 30). We include
the proof here for the reader’s convenience.

Lemma 2. Let (d;)52, be a positive nondecreasing sequence. Then for any T > 1,

, dy (42)7 log <4z
min i .
1<k<T Zi:o d; T
Proof. Let Ay = ZZ 0 d for each k£ > 0 (so that Ag = 0). Then, for each & > 0, we have

dpy1Apyr — dp Ay = dy,
which implies that

d d
- ’“Ak:Ak+1—Ak+<1— '“)Ak.
di-+1 di+1 k+1

Summing up these identities forall 0 < k < T — 1, we get

o1 7de+1 AT+Z<1

where A% = maxg<p<r Ax = maxi<p<r Ai and we have used the fact that (d;)$2, is nondecreasing.
Hence,

)AkgAH1+T&m
kJrl

St
A > ——.
T = 1+T - Sr
Applying now the AM-GM inequality and denoting v = ( )T (€ (0, 1]), we can further estimate S >
T~r, giving us

A* T’YT
T2y T(1—~7)
Thus,
LA 1 <$T(1+T(1—7T))
L<SksT g AR T T ’

Estimating further T'(1 — vr) < —T'logyr = log ,%T and substituting the definition of vy, we get the
T
claim. O

The following lemma is a classical result from (Nesterov, 2018, Lemma 3.2.1).

Lemma 3. Let x € dom f be such that f is subdifferentiable on x. Then, we have f(xz) — f* < w(v(x)),
where w(-) and v(-) are defined as in equation|[2and equationd| (with ¥V f () being an arbitrary subgradient
x

from O f (x)).

*

Proof. Let z denote the orthogonal projection of z* onto the supporting hyperplane
{y: (Vf(2),z —y) =0}
Vi(z)

7 ="+ (e e
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Then, (Vf(z),Z — z) =0, and | — =*|| = v(z). Therefore,
fx) < f(&) +(Vf(2), 2 —z) = f(2),
and hence,
f@) =< f@) = <w(z —2"]) = w(o()). O
Lemma 4. Consider the nonnegative sequence (dy)52 , that satisfies, for each k > 0,
di+1 < max{dg, R + ~vdy},
where 0 < v < 1 and R > 0 are certain constants. Then, for any k > 0, we have

1
di, < maX{R,dO}.
I—vy

Proof. We use induction to prove that di, < D for a certain constant D to be determined later. To ensure that
this relation holds for £ = 0, we need to choose D > dj. Let us now suppose that our relation has already
been proved for some k£ > 0 and let us prove it for the next index & + 1. Using the induction hypothesis and
the given inequality, we obtain

di+1 < max{dy, R+ vd} < max{D, R+ vD}.

To prove that the right-hand side is < D, we need to ensure that R + vD < D, which means that we need
to choose D > ﬁR. Combining this requirement with that from the base of induction, we see that we can

choose D = max{ﬁR, do}. O

B PROOF OF THEOREM 1]

Lemma 5. In Algorithm[I] for any 1 < k < T, it holds that
k—1

Bk
> aslgi v —a*) + Sl xW<—MwwW+Z

=0

gl

where Bq is an arbitrary coefficient in (0, 31].

Proof. For any 0 < k < T, define the function ¢y (z) as follows:
k—1 3
k
'(/)k(l‘) = Z ai(giax - Iz> + ?Hl‘ - x0||2a
i=0

so that 9o (z) = %(’ |z — xo||? (with By as defined in the statement). Note that 1)y, is a (3j-strongly convex
function and zy, is its minimizer. Hence, for any x € Q) and 0 < k < T, we have

() 2 v+ o — ) (10)

where 1 = ¥ (x1). Consequently,

Br+1 — B

2
Br+1 — B
2

Vi1 = Yrg1 (@rs1) = U (Thg1) + ar{ge, Thr — Th) + ———— |[@pg1 — 30|

Br
>+ 7\\3«"1@“ — og||* + ar gk, Th1 — Tk) + ——— ||Trt1 — T0||?

* /Bk * a2
>+ 7“1'k+1 — ok ||* + ar gk, Thy1 — Tk) > V) — ﬁ“gkﬂi-
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Telescoping these inequalities and using the fact that 1); = 0, we obtain

k—1 2

* > 2'
/l/}k = ZQﬁZHg’L”
Combining this inequality with the definition of v, and Eq. (I0), we thus obtain

k—1 3 3

k k
> ailgsx® =) + 7 llzo — () = wn(a”) 2 of + ek — )
i=0

2 ﬁk *2
Zmngmw i —a* .

Rearranging, we get the claim. U

Lemma 6. Consider Algorithm [I|using the coefficients defined in Eq. (). Then, the following inequality
holds forall1 < k < T:

2
Dkg -1

ik B cvk+1
Zrivi + 9

1=

C\/k+1 \f_Q
2 c

where Dy, = ||z — x*|| and v; == v(x;).

Proof. Applying Lemma|[5]and the definition of v;, we obtain

k—1
Br
S awilll + 2 0f < Z0g 4 Z . gl
2

=0

Substituting our choice of the coefficients given by equation 5} we get

k_l_ cvk+1 C\/IC+ 72 C\/k‘+ \/E_2
D fwit =D Z s T
=0 2 =0 ¢ 2 ¢
where we have used the fact that 7, is nondecreasing and Zl —0 \/7 < 2k, O

Lemma 7. Consider Algorithm using the coefficients defined in Eq. and assume that ¢ > /2. Then,
we have the following inequalities for all 0 < k < T':

_ 5 _
7. < D, Dk§D0+%D7

where D = max{r DO} and Dy, == ||z — z*||.

Proof. Both bounds are clearly valid for k£ = 0, so it suffices to consider only the case when 1 < k£ < T

Applying Lemma 6] dropping the nonnegative 7;v; from the left-hand side and rearranging, we obtain

Wk 2
DiSDg+CQWTIQf1—DO rlzel
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Consequently,
Dy, §D0+g77k71~ (11)
Therefore,
Tk = ||ok — xo|| < Dy + Do < 2Dg + gfk,l,
Hence,

2
T = maX{Fk,l, T’k} < max{?kl, 2Dy + cfkl}.

Since k > 1 was allowed to be arbitrary, we can apply Lemmafd]to conclude that

2 2¢c _
7 < maxs T, Dy ¢y = maxy 7, Dy =D.
st g Do = {2 00

This proves the first part of the claim.

Substituting the already proved bound on 7, into Eq. (TT), we obtain the claimed upper bound on Dj,. [
We are now ready to prove the main result.

Proof of Theorem([I] Let T > 1 be arbitrary. According to Lemma and the fact that w(-) is nondecreasing,
we can write

Fap) = f7 = min () - 1< min w(o) =)

where vy, == v(xy) and v} = ming<x<r_1 V. This proves the first part of the claim.

Let us now estimate the rate of convergence of v7.. To that end, let us fix an arbitrary 1 < k£ < T'. In view of
Lemmal6] we have

k o

k—1
vVk+1
Zﬁvi < %(Dg - Dj) + 7 Tk

i=0
where Dy, = ||z, — x*||. Note that
Dj — Dj = |lzo — 2" |* — [lex — «*[* = (Jzo — || = |z — 2" (llwo — 2*|| + llax — 2™
< 2|z — xo||||xo — ¥|| = 2rxDo.

Therefore, we can continue as follows:

k—1

k 1
> rvi < eV + Irg Do + %Fﬁ_l < (cDO + Efk_l)\/k + 17
=0

1. Et1
g(cD0+ED)\/k+1m=D ;m,

where the second inequality is due to the fact that 7, = max{7_1, 7%}, the final inequality is due to
Lemma([7] and the constants D and D are as defined in the statement. Hence,

k—1 _ _
. ST 7 kE+1
v = min viﬁzlzolzzﬁ kk Dy/ .
0<i<k—1 SR Z_*l 7. 2
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Letting now k* = argmin; <« Z"F% and using Lemma we obtain
- = i=0 Ti

& _ 1 _
.. _DySR s\t err D (D\T. eD
Up < Upx < 7 <*> 1037 < —= = log =

- 3 VT
where we have used the fact that £*+1 <741 < 2T (since 1 < k* < T') and that 7 < D (see Lemma 7).
This proves Eq. @) in the case when T' > log g since then we can further bound (%) T = exp(# log 72) <
e.

On the other hand, by the definition of v;, and Lemma[7] we always have the following trivial inequality for
any0< k<T-1:

(Vf(xr), xp — %)

5 _
<pi<Dot V2D<D.
C

VE =
197Gl 7 7 7
This means that Eq. (@) is also satisfied in the case when T' < log % since then % log % > % log % >
DVT > D (we still consider T > 1). The proof of Eq. (@) is now finished.
The final part of the claim readily follows from Eq. (6). O

C HOW TO CHOOSE THE CONSTANT ¢

According to Theorem |1} our method converges for any ¢ > v/2. However, the choice of ¢ can influence
the constant factor in the complexity of DADA. Hence, our goal here is to find the optimal constant ¢ that
minimizes T, (9). To determine this ¢, let 7 be sufficiently small, so that

_ 2c 2c
DEmaX{F,iD }: Dyg.
c—\/ﬁ 0 c—\@ 0

Then, disregarding the logarithmic factors, due to their minimal impact on the complexity of our method,
we can determine the optimal constant ¢ that minimizes

D= \/§<CD0 + %D) = \/§(c+

2
Dyg.
c— ﬁ) 0
This is the value
c=2V2. (12)

For this optimal choice of ¢, we get D = max{7,4Dy} and D = 4Dq + %D, so the complexity of our
method given by Theorem [I]is

62(4D0 + lD)2 eD

ﬂ,((s) = 5—22 10g2 i

D CONVERGENCE OF DADA ON VARIOUS PROBLEM CLASSES

In this section, we analyze the complexity of DADA across different problem classes. To achieve this, we
first establish bounds on the growth function:

w(t) = wegla>§7t)f(x) - f

and determine the threshold ¢ such that w(t) < e for a given e. Subsequently, we combine these results with
the complexity bound 7'(6) derived in Theorem |1} enabling us to estimate the oracle complexity of DADA
for finding an e-solution in terms of the function residual.
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D.1 NONSMOOTH LIPSCHITZ FUNCTIONS

Assumption 8. The function f in problem equation || is locally Lipschitz at x*. Specifically, for any x €
B(z*, p), the following inequality holds:

f(@) = f* < Loflz — 2™, 13)
where Ly, p > 0 are fixed constants.

Lemma9. Let f be locally Ly-Lipschitz at x* (Assumption @) Then, w(t) < e for any given e > 0 whenever
t < d(€), where

€
6(€) = min{ — .
(¢) == min { Ty p}
Proof. According to equation[I3] for any 0 < ¢ < p, we have
Making the right-hand side < €, we get the claim. O

Combining Theorem [T]and Lemma[9] we get the following complexity result.

Corollary 10. Consider problem equation [I|under Assumption[8} Let Algorithm[I|with coefficients equa-
tionbe applied for solving this problem. Then, f(z}.) — f* < e for any given € > 0 whenever T > T'(¢),
where

and the constants D and D are as defined in Theorem

D.2 LIPSCHITZ-SMOOTH FUNCTIONS

Assumption 11. The function f in problem equation (l|is locally Lipschitz-smooth at x*. Specifically, for
any x € B(x*, p), the following inequality holds:

f@) < F* 4+ (V) w— o)+ e, (14)

where Ly, p > 0 are fixed constants.

Lemma 12. Assume that f is locally Lipschitz-smooth at x* with constant Ly (Assumption [I1). Then,
w(t) < e for any given € > 0 whenever t < 6(¢), where

Proof. According to equation[T4] for any = € B(z*, p), we have
* * * Ll *
f@) = 7 < IVF@) e =2l + -l — 271
Hence, forany 0 < t < p,
Ly

wlt) < S+ V)t
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To make the right-hand side < e, it suffices to ensure that each of the two terms is <

EtQ < E,
2 T2
Solving this system of inequalities, we get the claim. U

€.
5

IVF@)lt < 5.

Combining Theorem[I]and Lemma[I2] we get the following complexity result.

Corollary 13. Consider problem equation[I|under Assumption[I1] Let Algorithm[I|with coefficients equa-
tionbe applied for solving this problem. Then, f(x}) — f* < € for any given € > 0 whenever T > T(e),
where

Ly 4|V f(")|? 1} D2 log? P
) 7: b)

2 » 2
p

7(6) = max {

and the constants D and D are as defined in Theorem

€ €

D.3 HOLDER-SMOOTH FUNCTIONS

Assumption 14. The function f in problem equation[l|is locally Holder-smooth at x*. Specifically, for any
x € B(x*, p), the following inequality holds:

fl@) < f*+(Vf({x"),z —x*) + ljj_yyﬂx—x*”l"’”, (15)

where v € [0,1] and H,, p > 0 are fixed constants.

Lemma 15. Let f be locally (v, H,)-Hélder-smooth at x* (Assumption . Then, w(t) < € for any given
€ > 0 whenever t < §(¢), where

- min (I1+v)e = €
"= H ] ’2||Vf(w*)ll*’p}'

Proof. According to equation[I3] for any = € B(z*, p), we have
* * * Hl/ * v
fl) = 7 < V@) [|elle = 2] + lar — |1+

1+v
Hence, forany 0 < t < p,
H,
t) < |V f(z*) |t + —=t".
wlt) < IV F)t+ 2

To make the right-hand side of the last inequality < ¢, it suffices to ensure that each of the two terms is < 5:

€ H €

V)|t < =, <

IVf@t <5, Rt <
Solving this system of inequalities, we get the claim. O

Combining Theorem [I]and Lemma T3] we get the following complexity result.

Corollary 16. Consider problem equation[Ijunder Assumption Let Algorithm|[I|with coefficients equa-
tionbe applied for solving this problem. Then, f(x}) — f* < € for any given € > 0 whenever T > T(e),

where
oH, 177 4 92 1 D
T(€) = max 7 [V f(z )”*’7 2 D? log? ;7
(1+v)e €2 P> T

and the constants D and D are as defined in Theorem
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D.4 FUNCTIONS WITH LIPSCHITZ HIGH-ORDER DERIVATIVE
Assumption 17. The function f in problem equation|l|is such that its pth derivative is locally L, -Lipschitz at
x*. Specifically, f is p times differentiable on B(x*, p), and, for any x € B(x*, p), the following inequality
holds:

IVPf(z) = VPf(a®)|| < Lyl — 2™

where L,,, p > 0 are fixed constants.

The Assumption[T7]immediately implies the following global upper bound on the function value:

fx)<f +;5v @)z —2*] + (p+p1)!||1:—g3 [P+ (16)

Lemma 18. Assume that f has locally Ly-Lipschitz pth derivative at =* (Assumption . Then, w(t) < ¢
for any given € > 0 whenever t < §(¢), where

6(€) = min {Q@BEP [@ + 1)|T!V;f(a:*)||] E {pL'j - "(p+ 1>|Iéf(:v*)||*’p} '

Proof. According to equation[16] for any x € B(z*, p), we have

* * * £ 1 ) * * |1 L *
f@) = <IVE) sz —x ||+;EIIV fEz =" + (pfl)!llx—x (s

Therefore, for any 0 < ¢t < p, we have

Ly

p+1
(p+ 1!

P
w(t) < [IVF()lt+ %Hvif(x*)\\ti +
i=2

To make the right-hand side < ¢, it suffices to ensure that each of the following inequalities holds:
€

V(a™)|«t < ,
IV Falt <

1 ) , € L €
A% I < —— e S L =2,...,D.
FIVIEIIE € g St <t =2

Solving this system of inequalities, we get the claim. O

Combining Theorem [T]and Lemma|[T8] we get the following complexity result.

Corollary 19. Consider problem equation[Ijunder Assumption[I7} Let Algorithm[I|with coefficients equa-
tion@be applied for solving this problem. Then, f(z%) — f* < e for any given ¢ > 0 whenever T > T'(¢),
where

[<p+ 1>||Vif<z*>||] "

ile

T(e) = max{ max

2<i<p

2 —
Ly 177 (p+ D2IVFE)IE 1 { 272, o€D
] e 2

and the constants D and D are as defined in Theorem
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D.5 QUASI-SELF-CONCORDANT FUNCTIONS

Assumption 20. The function f in problem equation|l|is Quasi-Self-Concordant (QSC) in a neighborhood
of x*. Specifically, it is three times differentiable in a neighborhood of x* and for any x € B(z*, p) and
arbitrary directions u,v € RY, the following inequality holds:

V2 f (@) u, u, 0] < MV f(2)u, u)|v],
where M > 0 and p > 0 are fixed constants.

The following lemma provides an important global upper bound on the function value for QSC functions.

Lemma 21. (Doikov| 2023, Lemma 2.7) Let f be QSC with the parameter M. Then, for any x,y € dom f,
the following inequality holds:

Fy) < fl2) +(Vf(@)y —2) + (V2 f()(y — 2),y — x)p(M |y — =),
where p(t) = et;gfl

Lemma 22. Assume that f is a locally QSC function at x* with constant M (Assumption. Then, w(t) < e
for any given € > 0 whenever t < 6(¢), where

d(e) = min{1 \/ < ° p}
' M7\ 2(e = 2)[[V2f ()| 2V f (@)l ]
Proof. According to Lemma21] for any = € B(z*, p), we have
fl@) = f* <(Vfa),z —a*) + (V2 f(a")(z — 2*), 2 — a")p(M |z — 2*|])
< [Vf )z —a*[| + [IV2 f @)l = 2" [Pe(M ||z — 2*])).
Therefore, for any 0 < ¢ < p, we get
w(t) < V)t + V2 f (@) |2 (M), an

where we have used the fact that ¢(-) is an increasing function.

Note that, for any 0 < t <
equation[I7] we obtain

<, we can estimate ¢(Mt) < ¢(1) = e — 2. Substituting this bound into

w(t) < IVF(@")llst + (e = 2)[ V2 (") [1£.

To make the right-hand side < ¢, it suffices to ensure that each of the two terms is < g:
* € * €
IVF@)lt < 3, (e —=2)|V?f(z")||t* < 3
Solving this system of inequalities, we get the claim. U

Combining Theorem [[]and Lemma[22] we get the following complexity result.

Corollary 23. Consider problem equation[I|\under Assumption Let Algorithm[I|with coefficients equa-
tionbe applied for solving this problem. Then, f(z%.) — f* < e for any given € > 0 whenever T > T'(¢),
where

_ 2 * *\ |2 B
70 — L2, 2= DIVI@ AVI@E 1Y oD
€ €2 p? T

and the constants D and D are as defined in Theorem
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D.6 (Lo, L1)-SMOOTH FUNCTIONS

Let us now consider the case when ) = R< and fis (Lo, L1)-smooth (Zhang et al.,|2020), meaning that for
any x € R4,
IV2f(@)]| < Lo + L[|V f(2)].

where Lg, Ly > 0 are fixed constants.
Lemma 24. (Vankov et al.l 2024, Lemma 2.2) Let f be (Lo, Ly)-smooth. Then, for any x,y € RY, it holds
that
Lo+ Li[|[Vf(2)||

L

fly) < f(@) +(Vf(x),y —z) + ~&(Lally — «l)),

where £(t) == el —t — 1.
Lemma 25. Assume that f is an (Lo, L1)-smooth function. Then, w(t) < e for any given € > 0 whenever
t < d(e), where

d(€) == min S 2 ‘
o Ly"\ 3(Lo + Lal[Vf(a)ll) " 2V f ()l |

Proof. According to Lemma for any € R?, we have
Lo+ L[V f ()|l

fla) = [ <(Vf(@@"),z—a") + % “e(Ly|jx — z*|)
1
, oo Lo+ L V@) .
<195l o)+ 2R E g oo
Therefore, for any ¢ > 0, we get
L L N &
w(t) < V£t + LT EVIED ¢y (8)

Li
where the second inequality uses the fact that £(z) is an increasing function.

Note that, for any 0 < ¢ < %1’ we can estimate

L2¢2
E(Lit) < —1—— <
2(1 - &)

Substituting this bound into equation[T8] we obtain:

3
iLft?

3(Lo + La[[V £ (z")]l+)
4

w(t) <||Vf(") ||t + t2.

To make the right-hand side of the last inequality < e, it suffices to ensure that each of the two terms is < 5:
R € 3(Lo+ L[V (@")[l+) 2 _ €
195t < 5, S £t

Solving this system of inequalities, we get the claim. O

Combining Theorem[I]and Lemma[25] we get the following complexity result.
Corollary 26. Consider problem equation |l|under the assumption that f is an (L, L1)-smooth function.
Let Algorithm|Il|with coefficients equation |S|be applied for solving this problem. Then, f(z%) — f* < € for
any given € > 0 whenever T' > T'(€), where
3(Lo + Li||V£(z")|l+) 4]|VFf(z*)|? D
200 — max d 12, L0+ DIVIE)) UVFEEY ooy 2D
2¢ €2 T
and the constants D and D are as defined in Theorem
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Figure 2: Comparison of different methods on the Softmax function.
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Figure 3: The ratio F% for the Softmax function with different optimal points x*.

E ADDITIONAL EXPERIMENTS

Softmax function. Our first test problem is

min < f(x) = plog Zexp [W} ) 19)

]Rd
ve i=1

where a; € R%, and b; € Rforall 1 < i < n, and > 0. This function can be viewed as a smooth
approximation of maxi <;<, [{a;, ) — b;] (Nesterov, 2005a).

To generate the data for our problem, we proceed as follows. First, we generate i.i.d. vectors a; with com-
ponents uniformly distributed in the interval [—1, 1] for ¢ = 1,...,n, and similarly for the scalar values b;.

Using this data, we form the preliminary version of our function, f. We then compute a; = a; — V f (0) and
use the obtained (a;, b;) to define our function f. This way of generating the data ensures that * = 0 is a
solution of our problem.

The results are shown in Fig. [2| where we fix n = 10% and d = 2n, and consider different values of
p € {0.1,0.01,0.005}. As we can see, most methods exhibit similar performance for ;. = 0.1 except for
Prodigy which stops converging after a few initial iterations. This issue, along with a decline in performance
for UGM, persists as . decreases, whereas DADA, DoG, and WDA remain largely unaffected. Notably, DoG
performs very similarly to DADA, which we hypothesize is primarily due to the similarity in estimating D.
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Figure 4: Comparison of different methods on the polyhedron feasibility problem.

Additionally, Fig. [3illustrates the ratio between Dy and 7, showing the estimation error of Prodigy, DoG,
and DADA throughout the optimization process. For Prodigy, we use di.) 2- to generate the plot. The figure
demonstrates that DADA and DoG exhibit similar behavior in estimating Dy, despite employing different
update methods—Dual Averaging and Gradient Descent, respectively. However, Prodigy appears to en-

counter challenges in estimating Dy as its estimation stabilizes at a relatively large value.

Holder-smooth function. Let us consider the following polyhedron feasibility problem:

= min{ 1) = 1 Y (0w - b} )

Rd n
re i=1

where a;,b; € RY, ¢ € [1,2], and [7]; = max(0, 7). This problem can be interpreted as finding a point
x* € RY lying inside the polyhedron P = {z : {(a;,x) < b;, i = 1,...,n}. Such a point exists if and only
if f* = 0.

Observe that f in problem equation 20|is Holder-smooth with parameter v = ¢ — 1. Therefore, by varying
q € [1, 2], we can check the robustness of different methods to the smoothness level of the objective function.

The data for our problem is generated randomly, following the procedure in (Rodomanov et al.,[2024). First,
we sample z* uniformly from the sphere of radius 0.95R centered at the origin. Next, we generate i.i.d.
vectors a; with components uniformly distributed in [—1,1]. To ensure that (a,,z*) < 0, we invert the
sign of a,, if necessary. We then sample positive reals s; uniformly from [0, —0.1¢p;n], where cpin =
min;{(a;, z*) < 0, and set b; = {a;, z*) + s;. By construction, z* is a solution to the problem with f* = 0.

We select n = 104, d = 10%, R = 103 and consider different values of q € {1,1.5,2}. As shown in Fig. E],
as q increases and approaches 2, the performance of DoG significantly declines. However, DADA, Prodigy,
and UGM demonstrate similar performance regardless of the choice of g.

Worst-case function. In addition to the experiments presented in Section 4] we evaluate the estimation
error of Dy for Prodigy, DoG, and DADA throughout the optimization process, as shown in Fig.[5] The figure
illustrates that while Prodigy’s estimate of D, shows some improvement over time, it remains noticeably
inaccurate. Moreover, for DoG, the estimate deteriorates as p increases, a behavior that is not observed with
DADA, whose estimate remains stable across different values of p.

Comparison of different initial points. In this experiment, we evaluate the sensitivity of DADA to the
choice of the initial point zo. We consider the same Softmax function as in equation [19| with n. = 103,
d =2n,and p € {0.5,0.1,0.01}.
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Figure 5: The ratio % for the worst-case function with different optimal points x*.
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Figure 6: Comparison of different initial points on the Softmax function with different values of .

The results are shown in Fig. |§|, where we consider 7. € {1071,...,107%}. As we can see, the choice of 7.
does not affect the performance of DADA, which consistently achieves similar performance across all tested
values.
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