

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel universal gradient method for solving convex optimization problems. Our algorithm—Dual Averaging with Distance Adaptation (DADA)—is based on the classical scheme of dual averaging and dynamically adjusts its coefficients based on observed gradients and the distance between iterates and the starting point, eliminating the need for problem-specific parameters. DADA is a universal algorithm whose convergence rate adapts to the local behavior of the objective around its minimizer, through bounds on its local growth. This leads to a single method with explicit, problem-dependent guarantees across a broad range of models, including nonsmooth Lipschitz functions, Lipschitz-smooth functions, Hölder-smooth functions, functions with high-order Lipschitz derivative, quasi-self-concordant functions, and (L_0, L_1) -smooth functions. Crucially, DADA is applicable to both unconstrained and constrained problems, even when the domain is unbounded, without requiring prior knowledge of the number of iterations or desired accuracy.

1 INTRODUCTION

Gradient methods are among the most popular and efficient algorithms for solving optimization problems arising in machine learning, as they are highly adaptable and scalable across various settings (Bottou et al., 2018). Despite their popularity, these methods face a significant challenge of selecting appropriate hyperparameters, particularly stepsizes, which are critical to the performance of the algorithm. Hyperparameter tuning is one of the standard approaches to address this issue but is a time-consuming and resource-intensive process, especially as models become larger and more complex. Consequently, the cost of training these models has become a significant concern (Sharir et al., 2020; Patterson et al., 2021).

Typically, line-search techniques have been used to select stepsizes for optimization methods, and they are provably efficient for certain function classes, such as Hölder-smooth problems (Nesterov, 2015). However, in recent years, several so-called parameter-free algorithms have been developed which do not utilize line search (Orabona & Tommasi, 2017; Cutkosky & Orabona, 2018; Carmon & Hinder, 2022; Ivgi et al., 2023; Khaled et al., 2023; Mishchenko & Defazio, 2024). Notably, one strategy involves dynamically adjusting stepsizes based on estimates of the initial distance to the optimal solution (Carmon & Hinder, 2022; Ivgi et al., 2023; Khaled et al., 2023). Another approach leverages lower bounds on the initial distance combined with the Dual Averaging (DA) scheme (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2024). However, these methods primarily focus on nonsmooth Lipschitz or, in some cases, Lipschitz-smooth functions. Some of these methods also come with additional limitations, such as requiring bounded domain assumptions (Khaled et al., 2023) or failing to extend to constrained optimization problems (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2024).

To formalize the discussion, we consider the following optimization problem:

$$f^* := \min_{x \in Q} f(x), \quad (1)$$

Method	Universal	Constraints	Unbounded domain	No search	Stochastic
DoG (Ivgi et al., 2023)	✗	✓	✓	✓	✓
DoWG (Khaled et al., 2023)	✗	✓	✗	✓	✗
Bisection Search (Carmon & Hinder, 2022)	✗	✓	✓	✗	✓
Prodigy (Mishchenko & Defazio, 2024)	✗	✗	✗	✓	✗
D-Adaptation (Defazio & Mishchenko, 2023)	✗	✗	✗	✓	✗
UGM (Nesterov, 2015)	✓ ^(*)	✓	✓	✗	✗
DADA (Ours)	✓	✓	✓	✓	✗

^(*) Note that UGM uses a different definition of universality. They call their method universal because it works for Hölder-smooth functions, which are only a subset of the functions we consider.

Table 1: A comparison of different adaptive algorithms to solve (1). “Universal” means the algorithm simultaneously works for multiple problem classes without the need for choosing different parameters for each of these function classes. “Constraints” means the algorithm can be applied to constrained problems. “Unbounded domain” means the algorithm can be applied to problems with unbounded feasible sets. “Stochastic” indicates that the algorithm is analyzed in the stochastic setting. “No search” means the algorithm does not use an internal search procedure.

where $Q \subseteq \mathbb{R}^d$ is a nonempty closed convex set, and $f: \mathbb{R}^d \rightarrow \mathbb{R} \cup \{+\infty\}$ is a proper closed convex function that is subdifferentiable on Q . We assume that Q is a simple set, meaning that it is possible to efficiently compute the projection onto Q . We also assume problem (1) has a solution $x^* \in \text{int dom } f$. The starting point in our methods is denoted by x_0 .

Contributions. In this paper, we introduce Dual Averaging with Distance Adaptation (DADA), a novel universal gradient method for solving (1). Building on the classical framework of weighted DA (Nesterov, 2005b), DADA incorporates a dynamically adjusted estimate of $D_0 := \|x_0 - x^*\|$, inspired by recent techniques from (Ivgi et al., 2023; Carmon & Hinder, 2022) and further developed in (Khaled et al., 2023), without requiring prior knowledge of problem-specific parameters. Furthermore, our approach applies to both unconstrained problems and those with simple constraints, possibly with unbounded domains. This makes DADA a powerful tool across a wide range of applications.

We start, in Section 2, by presenting our method and outline its foundational structure based on the DA scheme (Nesterov, 2005b). Our main theoretical result, Theorem 1, establishes convergence guarantees for a broad range of function classes.

To demonstrate the versatility and effectiveness of DADA, in Section 3, we provide complexity estimates across several interesting function classes: nonsmooth Lipschitz functions, Lipschitz-smooth functions, Hölder-smooth functions, quasi-self-concordant (QSC) functions, functions with Lipschitz high-order derivative, and (L_0, L_1) -smooth functions. These results underscore DADA’s ability to deliver competitive performance without knowledge of class-specific parameters.

Related work. The development of parameter-free first-order methods has received increasing attention in both optimization and machine learning. A central goal in this line of work is to design algorithms whose performance does not depend on prior knowledge of problem’s specific parameters, such as smoothness constants, Lipschitz parameters, or distance to the minimizer—quantities that are rarely known in practice.

Classical approaches to removing stepsize tuning include techniques such as Polyak’s stepsize rule (Polyak, 1987) and doubling schedules (Streater & McMahan, 2012). While effective in certain settings, these strategies either rely on access to the optimal value or introduce additional overhead through repeated restarts. In contrast, more recent parameter-free methods aim to achieve near-optimal performance without requiring such auxiliary procedures.

A large group of recent parameter-free methods is based on AdaGrad-type conditioning (Duchi et al., 2011). These methods adaptively accumulate squared gradient norms to adjust the effective stepsize. This idea

underlies several recent distance-adaptation algorithms, including DoG (Ivgi et al., 2023), DoWG (Khaled et al., 2023), D-Adaptation (Defazio & Mishchenko, 2023), and Prodigy (Mishchenko & Defazio, 2024). Although these algorithms achieve parameter-free convergence guarantees for nonsmooth Lipschitz or Lipschitz-smooth objectives, their theoretical rates does not automatically adapt to broader families of convex functions. We summarize the main properties of the algorithms we compare against in Table 1.

Beyond AdaGrad-type schemes, coin-betting algorithms (Orabona & Pál, 2016) provide adaptive guarantees in online and stochastic optimization by treating learning as a sequential investment game. In a different direction, Carmon and Hinder (Carmon & Hinder, 2022) propose a bisection-based SGD routine that adapts to the unknown smoothness or distance-to-optimum by iteratively solving simpler subproblems. Both coin-betting and bisection approaches are orthogonal to ours but share the goal of eliminating learning rate tuning through adaptation mechanisms.

Another universal method worth noting is Nesterov’s Universal Gradient Method (UGM) (Nesterov, 2015), which achieves optimal rates for Hölder-smooth functions via adaptive line search. While UGM is often described as “universal,” its scope is limited to smoothness-varying settings and does not extend to broader function classes such as quasi-self-concordant or high-order smooth functions. Moreover, its reliance on internal line search procedures makes it less practical in constrained or composite problems.

Notation. In this text, we work in the space \mathbb{R}^d equipped with the standard inner product $\langle \cdot, \cdot \rangle$ and the general Euclidean norm $\|x\| := \langle Bx, x \rangle^{1/2}$, where B is a fixed symmetric positive definite matrix. The corresponding dual norm is defined in the standard way as $\|s\|_* := \max_{\|x\|=1} \langle s, x \rangle = \langle s, B^{-1}s \rangle^{1/2}$. Thus, for any $s, x \in \mathbb{R}^d$, we have the Cauchy-Schwarz inequality $|\langle s, x \rangle| \leq \|s\|_* \|x\|$. The Euclidean ball of radius $r > 0$ centered at $x \in \mathbb{R}^d$ is defined as $B(x, r) := \{y \in \mathbb{R}^d : \|y - x\| \leq r\}$. For a convex function $f: \mathbb{R}^d \rightarrow \mathbb{R} \cup \{+\infty\}$, we denote its effective domain as $\text{dom } f := \{x \in \mathbb{R}^d : f(x) < +\infty\}$. The subdifferential of f at a point $x \in \text{dom } f$ is denoted by $\partial f(x)$, and $\nabla f(x) \in \partial f(x)$ denotes a subgradient.

2 DADA METHOD

Measuring the quality of solution. Given an approximate solution $x \in Q$ to problem (1) and an arbitrary subgradient $\nabla f(x) \in \partial f(x)$, we measure the suboptimality of x by the distance from x^* to the hyperplane $\{y : \langle \nabla f(x), x - y \rangle = 0\}$:

$$v(x) := \frac{\langle \nabla f(x), x - x^* \rangle}{\|\nabla f(x)\|_*} \quad (\geq 0). \quad (2)$$

This objective is meaningful because minimizing $v(x)$ also reduces the corresponding function residual $f(x) - f^*$. Indeed, there exists the following simple relationship between $v(x)$ and the function residual (Nesterov, 2018, Section 3.2.2) (see also Lemma 3 for the short proof):

$$f(x) - f^* \leq \omega(v(x)), \quad (3)$$

where

$$\omega(t) := \max_{x \in B(x^*, t)} f(x) - f^* \quad (4)$$

measures the local growth of f around the solution x^* . Note that inequality (3) is nontrivial only when $B(x^*, v(x)) \subseteq \text{dom } f$.

By bounding $\omega(t)$, we can derive convergence-rate estimates that simultaneously apply to a broad range of problem classes (we discuss several examples in Section 3).

141 **Algorithm 1** General Scheme of DA142 **Input:** $x_0 \in Q$, number of iterations $T \geq 1$, coefficients $(a_k)_{k=0}^{T-1}, (\beta_k)_{k=1}^T$ with nondecreasing β_k 143 **for** $k = 1, \dots, T$ **do**144 Compute arbitrary $g_k \in \partial f(x_k)$ 145 $x_k = \operatorname{argmin}_{x \in Q} \left\{ \sum_{i=0}^{k-1} a_i \langle g_i, x - x_i \rangle + \frac{\beta_k}{2} \|x - x_0\|^2 \right\}$ 146 **Output:** $x_T^* = \operatorname{argmin}_{x \in \{x_0, \dots, x_{T-1}\}} f(x)$ 147
148
149 **The method.** Our algorithm is based on the general scheme of DA (Nesterov, 2005b) shown in Algorithm 1. Using a standard (sub)gradient method with time-varying coefficients is also possible but requires either short steps by fixing the number of iterations in advance, or paying an extra logarithmic factor in the convergence rate (Nesterov, 2018, Section 3.2.3).150 The classical method of Weighted DA (WDA) selects the coefficients $a_k = \frac{\hat{D}_0}{\|g_k\|_*$ and $\beta_k = \Theta(\sqrt{k})$, where
151 \hat{D}_0 is a user-defined estimate of D_0 . The convergence is guaranteed for any value of \hat{D}_0 but one must pay
152 a multiplicative cost of ρ^2 , where $\rho := \max\{\frac{\hat{D}_0}{D_0}, \frac{D_0}{\hat{D}_0}\}$, if the parameter D_0 is unknown. This cost can
153 be significantly high if D_0 is not known almost exactly. To address this issue, we propose DADA, which
154 reduces the cost to a logarithmic term, $\log^2 \rho$, offering a substantial improvement.155
156 Specifically, our approach utilizes the following coefficients:

157
158
159
160
161
$$a_k = \frac{\bar{r}_k}{\|g_k\|_*}, \quad \beta_k = c\sqrt{k+1}, \quad \bar{r}_k := \max\{\max_{1 \leq t \leq k} r_t, \bar{r}\}, \quad r_t := \|x_0 - x_t\|, \quad (5)$$

162 where $\bar{r} > 0$ is a parameter and c is a certain constant to be specified later. In what follows, we assume
163 w.l.o.g. that $g_k \neq 0$ for all $0 \leq k \leq T-1$ since otherwise the exact solution has been found, and the method
164 could be successfully terminated before making T iterations.165 As we can see, the main difference between WDA and DADA, is that the latter dynamically adjusts its
166 estimate of D_0 by exploiting r_t , the distance between x_t and the initial point x_0 . This idea has been explored
167 in recent works (Carmon & Hinder, 2022; Ivgi et al., 2023), which similarly utilize r_t in various ways. Other
168 methods also attempt to estimate this quantity using alternative strategies, based on DA and the similar
169 principle of employing an increasing sequence of lower bounds for D_0 (Defazio & Mishchenko, 2023;
170 Mishchenko & Defazio, 2024).

171 The convergence guarantees for our method are provided in the result below:

172 **Theorem 1.** Consider Algorithm 1 for solving problem (1) using the coefficients from (5) with $c > \sqrt{2}$.
173 Then, for any $T \geq 1$ and $v_T^* := \min_{0 \leq k \leq T-1} v(x_k)$, it holds that

174
175
$$f(x_T^*) - f^* \leq \omega(v_T^*),$$

176 and

177
178
179
180
181
$$v_T^* \leq \frac{eD}{\sqrt{T}} \log \frac{e\bar{D}}{\bar{r}}, \quad (6)$$

182 where $\bar{D} := \max\{\bar{r}, \frac{2c}{c-\sqrt{2}} D_0\}$ and $D := \sqrt{2}(cD_0 + \frac{1}{c}\bar{D})$. Consequently, for a given $\delta > 0$, it holds that
183 $v_T^* \leq \delta$ whenever $T \geq T_v(\delta)$, where

184
185
186
187
$$T_v(\delta) := \frac{e^2 D^2}{\delta^2} \log^2 \frac{e\bar{D}}{\bar{r}}.$$

188 Let us provide a proof sketch for Theorem 1 here and defer the detailed proof to Appendix B. We begin by
 189 applying the standard result for DA (Lemma 5), which holds for any choice of coefficients a_k and β_k :
 190

$$191 \sum_{i=0}^{k-1} a_i v_i \|g_i\|_* + \frac{\beta_k}{2} D_k^2 \leq \frac{\beta_k}{2} D_0^2 + \sum_{i=0}^{k-1} \frac{a_i^2}{2\beta_i} \|g_i\|_*^2,$$

193 where $D_i = \|x_i - x^*\|$ and $v_i = v(x_i)$ for all $i \geq 0$. Use the specific choices for a_k and β_k as defined in
 194 (5), we obtain (see Lemma 6):
 195

$$196 \sum_{i=0}^{k-1} \bar{r}_i v_i + \frac{c\sqrt{k+1}}{2} D_k^2 \leq \frac{c\sqrt{k+1}}{2} D_0^2 + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2. \quad (7)$$

198 Dropping the nonnegative $\bar{r}_i v_i$ from the left-hand side, we can show by induction that \bar{r}_k is uniformly
 199 bounded (see Lemma 7):
 200

$$\bar{r}_k \leq \bar{D},$$

201 where \bar{D} is the constant from Theorem 1. This bound is crucial to our analysis, as we need to eliminate \bar{r}_{k-1}
 202 from the right-hand side of (7). Achieving this requires selecting the coefficients precisely as defined in (5),
 203 which is the primary difference compared to the standard DA method (Nesterov, 2005b). Next, using the
 204 inequality $D_0^2 - D_k^2 \leq 2r_k D_0$, we get
 205

$$206 \sum_{i=0}^{k-1} \bar{r}_i v_i \leq c\sqrt{k+1}r_k D_0 + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2 \leq \left(cD_0 + \frac{1}{c}\bar{D}\right) \bar{r}_k \sqrt{k+1}.$$

208 After establishing this, the rest of the proof follows straightforwardly by dividing both sides by $\sum_{i=0}^{k-1} \bar{r}_i$ and
 209 applying the following inequality (valid for any nondecreasing sequence \bar{r}_k , see Lemma 2):
 210

$$211 \min_{1 \leq k \leq T} \frac{\bar{r}_k}{\sum_{i=0}^{k-1} \bar{r}_i} \leq \frac{\left(\frac{\bar{r}_T}{\bar{r}_0}\right)^{\frac{1}{T}} \log \frac{e\bar{r}_T}{\bar{r}_0}}{T}.$$

213 This gives us

$$214 \quad 215 \quad v_T^* \leq \frac{D}{\sqrt{T}} \left(\frac{\bar{D}}{\bar{r}}\right)^{\frac{1}{T}} \log \frac{e\bar{D}}{\bar{r}},$$

216 which is almost (6) except for the extra factor of $(\frac{\bar{D}}{\bar{r}})^{\frac{1}{T}}$. This extra factor, however, is rather weak as it
 217 can be upper bounded by a constant (say, $e \equiv \exp(1)$) whenever $T \geq \log \frac{\bar{D}}{\bar{r}}$. The case of $T \leq \log \frac{\bar{D}}{\bar{r}}$ is
 218 not interesting since then (6) holds trivially because, for any $k \geq 0$, in view of (2) and Lemma 7, we have
 219 $v_k \leq D_k \leq D$. According to Theorem 1, our method converges for any $c > \sqrt{2}$. To obtain the smallest
 220 complexity bound (up to logarithmic factors), the value that minimizes this bound is $c = 2\sqrt{2}$. A more
 221 detailed discussion of this choice is provided in Appendix C.
 222

223 3 UNIVERSALITY OF DADA: EXAMPLES OF APPLICATIONS

226 Let us demonstrate that our method is *universal* in the sense that it simultaneously works for multiple prob-
 227 lem classes without the need for choosing different parameters for each of these function classes. For
 228 simplicity, we assume that $\nabla f(x^*) = 0$ (this happens, in particular, when our problem (1) is unconstrained)
 229 and measure the ϵ -accuracy in terms of the function residual. This assumption is made only to keep the
 230 discussion of the different function classes as clean and readable as possible, and it also reflects an important
 231 practical setting (unconstrained problems, or constrained problems with x^* in the interior of Q). The general
 232 constrained case, where $\nabla f(x^*)$ may be nonzero, is covered by the results in Appendix D. We also assume,
 233 for simplicity, that the objective function satisfies all necessary inequalities on the entire space, but all our
 234 results still hold if they are satisfied only locally at x^* (see Appendix D). To simplify the notation, we also
 denote $\log_+ t := 1 + \log t$ and $\bar{D}_0 := \max\{\bar{r}, \|x_0 - x^*\|\}$, where \bar{r} is the parameter of our method.

235 **Nonsmooth Lipschitz functions.** This function class is defined by the inequality
 236

$$237 \quad |f(x) - f(y)| \leq L_0 \|x - y\|$$

238 for all $x, y \in \mathbb{R}^d$. For this problem class, DADA requires at most (see Corollary 10)
 239

$$240 \quad 241 \quad 242 \quad O\left(\frac{L_0^2 \bar{D}_0^2}{\epsilon^2} \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right)$$

243 oracle calls to reach ϵ -accuracy, which matches the standard complexity of (sub)gradient methods (Nesterov,
 244 2005b; 2018), up to an extra logarithmic factor. Note that a polylogarithmic factor in $\frac{\bar{D}_0}{\bar{r}}$ appears in the
 245 complexity bounds of all distance-adaptation methods (Defazio & Mishchenko, 2023; Ivgi et al., 2023;
 246 Khaled et al., 2023; Mishchenko & Defazio, 2024).
 247

248 **Lipschitz-smooth functions.** Another important class of functions are those with Lipschitz gradient:
 249

$$250 \quad \| \nabla f(x) - \nabla f(y) \|_* \leq L_1 \|x - y\|$$

252 for all $x, y \in \mathbb{R}^d$. In this case, the complexity of our method is (see Corollary 13)
 253

$$254 \quad 255 \quad O\left(\frac{L_1 \bar{D}_0^2}{\epsilon} \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right).$$

256 This coincides with the standard complexity of the (nonaccelerated) gradient method on Lipschitz-smooth
 257 functions (Nesterov, 2018, Section 3) up to an extra logarithmic factor.
 258

259 Note that the complexity of DADA is slightly worse than that of the classical gradient method with line
 260 search (Nesterov, 2015), which achieves a complexity bound of $O\left(\frac{L_1 D_0^2}{\epsilon} + \log\left|\frac{L_1}{\hat{L}_1}\right|\right)$, where \hat{L}_1 is the initial
 261 guess for L_1 . The difference is that the logarithmic factor in the latter estimate appears in an additive way
 262 instead of multiplicative.
 263

264 **Hölder-smooth functions.** The previous two examples are subclasses of the more general class of Hölder-
 265 smooth functions. It is defined by the following inequality:
 266

$$267 \quad \| \nabla f(x) - \nabla f(y) \|_* \leq H_\nu \|x - y\|^\nu$$

269 for all $x, y \in \mathbb{R}^d$, where $\nu \in [0, 1]$ and $H_\nu \geq 0$. Therefore, for $\nu = 0$, we get functions with bounded
 270 variation of subgradients (which contains all Lipschitz functions) and for $\nu = 1$ we get Lipschitz-smooth
 271 functions.

272 The complexity of DADA on this problem class is (see Corollary 16)
 273

$$274 \quad 275 \quad 276 \quad O\left(\left[\frac{H_\nu}{\epsilon}\right]^{\frac{2}{1+\nu}} \bar{D}_0^2 \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right).$$

277 This is similar to the $O\left(\left[\frac{H_\nu}{\epsilon}\right]^{\frac{2}{1+\nu}} D_0^2 + \log\left|\frac{H_\nu^{\frac{2}{1+\nu}}}{\hat{L}_\epsilon^{\frac{1-\nu}{1+\nu}}}\right|\right)$ complexity of the universal (nonaccelerated) gradient
 278 method with line search (GM-LS) (Nesterov, 2015), where \hat{L} is the parameter of the method. Again, the
 279 complexity of GM-LS is slightly better since the logarithmic factor is additive (and not multiplicative).
 280 However, GM-LS is not guaranteed to work (well) on other problem classes such as those we consider next.
 281

282 **Functions with Lipschitz high-order derivative.** This class is a generalization of the Lipschitz-smooth
 283 class. Functions in this class are p times differentiable, and have the property that their p th derivative ($p \geq 2$)
 284 is Lipschitz, i.e., for all $x, y \in \mathbb{R}^d$, we have

$$285 \quad 286 \quad \|\nabla^p f(x) - \nabla^p f(y)\| \leq L_p \|x - y\|,$$

287 where the $\|\cdot\|$ norm in the left-hand side is the usual operator norm of a symmetric p -linear opeator: $\|A\| =$
 288 $\max_{h \in \mathbb{R}^d: \|h\|=1} \|A[h]^p\|$. For example, the p th power of the Euclidean norm is an example of a function
 289 in this class (see (Rodomanov & Nesterov, 2019)). The complexity of DADA on this problem class is (see
 290 Corollary 19)

$$291 \quad 292 \quad O\left(\left[\max_{2 \leq i \leq p} \left[\frac{p}{i!} \frac{\|\nabla^i f(x^*)\|_*}{\epsilon}\right]^{\frac{2}{i}} + \left[\frac{L_p}{p! \epsilon}\right]^{\frac{2}{p+1}}\right] \bar{D}_0^2 \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right).$$

294 Although line-search gradient methods might be better for Hölder-smooth problems, to our knowledge, they
 295 are not known to attain comparable bounds on this function class.

297 **Quasi-self-concordant (QSC) functions (Bach, 2010).** A function f is called QSC with parameter $M \geq$
 298 0 if it is three times continuously differentiable and the following inequality holds for any $x, u, v \in \mathbb{R}^d$:

$$299 \quad 300 \quad \nabla^3 f(x)[u, u, v] \leq M \langle \nabla^2 f(x)u, u \rangle \|v\|. \quad (8)$$

301 For example, the exponential, logistic, and softmax functions are QSC; for more details and other examples,
 302 see (Doikov, 2023). When applied to a QSC function, our method has the following complexity (Corol-
 303 lary 23):

$$304 \quad 305 \quad O\left(\left[M^2 \bar{D}_0^2 + \frac{\|\nabla^2 f(x^*)\| \bar{D}_0^2}{\epsilon}\right] \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right).$$

307 In terms of comparisons, second-order methods, such as those explored in (Doikov, 2023), are more powerful
 308 for minimizing QSC functions, as they leverage additional curvature information. Their complexity bound,
 309 in terms of queries to the second-order oracle, is $O(M \hat{D}_0 \log \frac{F_0}{\epsilon} + \log \frac{\hat{D}_0 g_0}{\epsilon F_0})$, where $F_0 = f(x_0) - f^*$, \hat{D}_0 is
 310 the diameter of the initial sublevel set, and $g_0 = \|\nabla f(x_0)\|_*$ (see (Doikov, 2023, Corollary 3.4)). However,
 311 each iteration of these methods is significantly more expensive.

312 To our knowledge, the QSC class has not been previously studied in the context of first-order methods. The
 313 only other first-order methods for which one can prove similar bounds are the nonadaptive variants of our
 314 scheme, namely the normalized gradient method (NGM) from (Nesterov, 2018, Section 5) and the recent
 315 improvement of this algorithm for constrained problems (Nesterov, 2024).

316 **(L_0, L_1) -smooth functions.** As introduced in (Zhang et al., 2020), a function f is said to be (L_0, L_1) -
 317 smooth if for all $x \in \mathbb{R}^d$, we have

$$319 \quad 320 \quad \|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|_*.$$

321 The complexity of DADA on this class is (see Corollary 26)

$$322 \quad 323 \quad O\left(\left[L_1^2 \bar{D}_0^2 + \frac{L_0 \bar{D}_0^2}{\epsilon}\right] \log_+^2 \frac{\bar{D}_0}{\bar{r}}\right).$$

325 Up to the extra logarithmic factor, this matches the complexity of NGM from (Vankov et al., 2024), with
 326 the distinction that their approach is less robust to the initial guess of D_0 . Specifically, the penalty for
 327 underestimating it in the latter method is a multiplicative factor of $\rho^2 := \frac{D_0^2}{\bar{r}^2}$ while in our method this factor
 328 is logarithmic: $\log_+^2 \rho$.

Figure 1: Comparison of different methods on the worst-case function.

4 EXPERIMENTS

To evaluate the efficiency of our proposed method, DADA, we conduct a series of experiments on convex optimization problems. Our goal is to demonstrate the effectiveness of DADA in achieving competitive performance across various function classes *without any hyperparameter tuning*.

We compare DADA against state-of-the-art distance-adaptation algorithms, namely, DoG (Ivgi et al., 2023) and Prodigy (Mishchenko & Defazio, 2024), using their official implementations without any modifications. We also consider the Universal Gradient Method (UGM) from (Nesterov, 2015) and the classical Weighted Dual Averaging (WDA) method (Nesterov, 2005b). For UGM, we choose the initial value of the line-search parameter $L_0 = 1$ and set the target accuracy to $\epsilon = 10^{-6}$. For WDA, we use the coefficients $a_k = \frac{D_0}{\|g_k\|_*}$ and $\beta_k = \sqrt{k}$, where $D_0 = \|x_0 - x^*\|$.

For each method, we plot the best function value among all the test points generated by the algorithm against the number of first-order oracle calls. We set the starting point to $x_0 = (1, \dots, 1)$ and select the initial guess for the distance to the solution as $\bar{r} = \delta(1 + \|x_0\|)$. This choice ensures a fair comparison between DADA and DoG (Ivgi et al., 2023), as DoG employs a similar initialization strategy. In all experiments, we fix $\delta = 10^{-6}$. Additionally, we conduct a separate experiment to evaluate the sensitivity of DADA to the choice of δ .

We have several experiments on different problem classes. However, due to space constraints, we present only a single representative experiment in this section. The remaining experiments can be found in Appendix E.

Worst-case function. As an example of a function with Lipschitz high-order derivative, we consider the following worst-case problem from (Doikov et al., 2024):

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{p} \sum_{i=1}^{d-1} |x^{(i)} - x^{(i+1)}|^p + \frac{1}{p} |x^{(d)}|^p \right\}, \quad (9)$$

where $p \geq 2$, and $x^{(i)}$ is the i th element of x . The optimal point in this problem is $x^* = 0$.

As illustrated in Fig. 1, nearly all methods exhibit similar performance when $p = 2$, except for Prodigy whose convergence becomes slow after a few initial iterations. While Prodigy eventually reaches a similar accuracy to the best methods, it is much slower at the beginning of the process. As p increases, our method converges significantly faster than DoG. We suspect that this improvement arises because our method adapts to the high-order smoothness of the function, whereas DoG's convergence rate remains unchanged and does not take advantage of this property.

376 In contrast, both DADA and UGM demonstrate stable and consistent performance across different values of
 377 p , with DADA performing slightly better than UGM.
 378

379 380 5 DISCUSSION

382 **Comparison with recent distance-adaptation methods.** Let us briefly compare our method with several
 383 recently proposed parameter-free algorithms, namely, DoG (Ivgi et al., 2023), DoWG (Khaled et al., 2023),
 384 D-Adaptation (Defazio & Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2024).

385 To begin, we clarify the key differences between our method and other existing gradient methods using
 386 the distance-adaptation technique. One immediate difference is that we use DA instead of the classical
 387 (sub)gradient method employed by DoG. We could also instantiate our approach using the standard sub-
 388 gradient method instead of DA. However, doing so would either require fixing the number of iterations in
 389 advance or would worsen the overall complexity by an additional polylogarithmic factor in the target accu-
 390 racy. However, the most significant difference lies in how the sequence of gradients is handled. In contrast to
 391 existing distance-adaptation methods, which follow the AdaGrad (Duchi et al., 2011) principle of accumu-
 392 lating squared gradient norms, our method simply normalizes g_k by its own norm. This modification makes
 393 our method universal, ensuring that v_T^* —the distance from x^* to the supporting hyperplane—converges to
 394 zero, which is not known to be the case for DoG, even for deterministic problems.

395 Both DoG and DoWG employ a similar approach to estimate $D_0 = \|x_0 - x^*\|$ and achieve comparable
 396 convergence rates for Lipschitz-smooth and nonsmooth functions. Similarly to our approach, DoWG con-
 397 siders only the deterministic case, but with an additional assumption of the bounded feasible set. They have
 398 a different definition of universality, considering only Lipschitz-smooth and nonsmooth settings.

399 Furthermore, to the best of our knowledge, these D-Adaptation and Prodigy have not been extended to
 400 constrained optimization. Nonetheless, their methods yield notable results in experiments, demonstrating
 401 strong empirical performance.

402 It is important to emphasize that the advantage of our method over DoG does not lie in guaranteeing conver-
 403 gence. Indeed, (Ivgi et al., 2023, Theorem 1) shows that DoG asymptotically converges to a minimizer for
 404 any convex function, with a complexity of $\tilde{O}\left(\frac{L_R^2 \bar{D}_0^2}{\epsilon^2}\right)$, where $L_R = \max_{x \in B(x_0, R)} \|\nabla f(x)\|_*$ for $R = 3\bar{D}_0$,
 405 and ϵ denotes the target accuracy in the function value. However, this complexity bound has a critical
 406 drawback—it remains inversely proportional to ϵ^2 across *all* function classes, which is not the case for our
 407 method. For illustration, consider the setting where f has an L_2 -Lipschitz Hessian. Further, assume for
 408 simplicity that the problem is unconstrained and that $\|\nabla^2 f(x^*)\|$ is zero (or negligibly small). In this case,
 409 the above complexity bound for DoG becomes¹ $\tilde{O}\left(\frac{L_2^2 \bar{D}_0^6}{\epsilon^2}\right)$, which is substantially worse than $\tilde{O}\left(\frac{L_2^{2/3} \bar{D}_0^2}{\epsilon^{2/3}}\right)$
 410 for DADA (see Corollary 19). Thus, in comparison to DoG, our method provides significantly stronger effi-
 411 ciency guarantees and exhibits automatic acceleration under favorable conditions for a considerably broader
 412 family of function classes.

413
 414 **Conclusion.** We proposed DADA, a new adaptive and universal optimization method that extends the
 415 classical Dual Averaging algorithm with a novel distance adaptation mechanism. Our method achieves
 416 competitive rates across a wide class of convex problems—including Lipschitz, Lipschitz-smooth, Hölder-
 417 smooth, quasi-self-concordant (QSC), and (L_0, L_1) -smooth functions—without requiring parameter tuning
 418 or knowledge of smoothness constants. In contrast to recent approaches such as DoG, DoWG, D-Adaptation,
 419 and Prodigy, DADA seamlessly accommodates both constrained and unconstrained settings, and does so
 420 without requiring restarts or line searches.

421 422 ¹Here, we use the fact that for functions with Lipschitz Hessian, $L_R = L_1^* R + \frac{L_2}{2} R^2$, where $L_1^* = \|\nabla^2 f(x^*)\|$.

423 DADA provides a unified and adaptive framework for convex optimization with convergence guarantees un-
424 der minimal assumptions. Future work includes extending DADA to stochastic and nonconvex optimization,
425 and evaluating its empirical performance in large-scale learning tasks.
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470 REFERENCES

471

472 Francis Bach. Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384 – 414,
473 2010. doi: 10.1214/09-EJS521. URL <https://doi.org/10.1214/09-EJS521>.

474 Jeremy R Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
475 networks and the stability of learning. In *arXiv:2002.03432*, 2020.

476

477 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
478 *SIAM Review*, 60(2):223–311, 2018. URL <https://doi.org/10.1137/16M1080173>.

479

480 Yair Carmon and Oliver Hinder. Making SGD parameter-free. In *Proceedings of Thirty Fifth Conference on*
481 *Learning Theory*, volume 178, pp. 2360–2389, 2022. URL <https://proceedings.mlr.press/v178/carmon22a.html>.

482

483 Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in Ba-
484 nach spaces. In *Annual Conference Computational Learning Theory*, 2018. URL <https://api.semanticscholar.org/CorpusID:3346292>.

485

486 Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In *Proceedings*
487 *of the 40th International Conference on Machine Learning*, volume 202, pp. 7449–7479, 2023. URL
488 <https://proceedings.mlr.press/v202/defazio23a.html>.

489

490 Nikita Doikov. Minimizing quasi-self-concordant functions by gradient regularization of Newton method,
491 2023. URL <https://arxiv.org/abs/2308.14742>.

492

493 Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized Newton method.
494 *SIAM Journal on Optimization*, 34(1):27–56, 2024. doi: 10.1137/22M1519444. URL <https://doi.org/10.1137/22M1519444>.

495

496 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
497 optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011. URL <http://jmlr.org/papers/v12/duchilla.html>.

498

499 Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size
500 schedule. In *Proceedings of the 40th International Conference on Machine Learning*, pp. 14465–14499,
501 2023. URL <https://arxiv.org/pdf/2302.12022.pdf>.

502

503 Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An efficient universal parameter-
504 free gradient descent method. In *Advances in Neural Information Processing Systems*, volume 36,
505 pp. 6748–6769, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf.

506

507 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International Conference*
508 *on Learning Representations (ICLR)*, 2015.

509

510 Zijian Liu and Zhengyuan Zhou. Stochastic nonsmooth convex optimization with heavy-tailed noises. *ArXiv*,
511 abs/2303.12277, 2023. URL <https://api.semanticscholar.org/CorpusID:257663403>.

512

513 Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner. In
514 *Proceedings of the 41st International Conference on Machine Learning*, volume 235, pp. 35779–35804,
515 2024. URL <https://proceedings.mlr.press/v235/mishchenko24a.html>.

516

515 Yu Nesterov. Smooth minimization of non-smooth functions. *Mathematical programming*, 103:127–152,
516 2005a.

517 Yurii Nesterov. Primal-dual subgradient methods for convex problems. *Mathematical Programming*, 120: 518 221–259, 2005b. URL <https://api.semanticscholar.org/CorpusID:14935076>.

519

520 Yurii Nesterov. Universal gradient methods for convex optimization problems. *Mathematical Programming*, 521 152:381–404, 2015. URL <https://api.semanticscholar.org/CorpusID:18062781>.

522 Yurii Nesterov. *Lectures on Convex Optimization*. Springer Publishing Company, Incorporated, 2nd 523 edition, 2018. ISBN 3319915770. URL <https://api.semanticscholar.org/CorpusID:14935076>.

524

525 Yurii Nesterov. Primal subgradient methods with predefined step sizes. *Journal of Optimization Theory and 526 Applications*, 2024. doi: 10.1007/s10957-024-02456-9. URL <https://arxiv.org/abs/2308.14742>.

527

528 Francesco Orabona and Dániel Pál. Coin betting and parameter-free online learning. *Advances in Neural 529 Information Processing Systems (NeurIPS)*, 29, 2016.

530

531 Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through coin 532 betting. In *Neural Information Processing Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:6762437>.

533

534 David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David 535 So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training, 2021. URL <https://arxiv.org/abs/2104.10350>.

536

537 Boris T. Polyak. *Introduction to Optimization*. Optimization Software, Inc, 1987.

538

539 Anton Rodomanov and Yurii Nesterov. Smoothness parameter of power of Euclidean norm. *Journal of Op- 540 timization Theory and Applications*, 185:303–326, 2019. URL <https://api.semanticscholar.org/CorpusID:198968030>.

541

542 Anton Rodomanov, Xiaowen Jiang, and Sebastian U. Stich. Universality of AdaGrad stepsizes for stochastic 543 optimization: Inexact oracle, acceleration and variance reduction. In *The Thirty-eighth Annual Conference 544 on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=rniIAVjHi5>.

545

546

547 Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training NLP models: A concise overview, 2020. 548 URL <https://arxiv.org/abs/2004.08900>.

549

550 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In 551 *International Conference on Machine Learning (ICML)*, 2018.

552

553 Matthew Streeter and H Brendan McMahan. No-regret algorithms for unconstrained online convex opti- 554 mization. In *Conference on Learning Theory (COLT)*, pp. 1–11, 2012.

555

556 Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U. Stich. Optimiz- 557 ing (l_0, l_1) -smooth functions by gradient methods, 2024. URL <https://arxiv.org/abs/2410.10800>.

558

559 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. In 560 *arXiv:1708.03888*, 2017.

561

562 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, 563 James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Reducing bert pre-training time from 3 days to 76 564 minutes. In *arXiv:1904.00962*, 2019.

564 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training:
565 A theoretical justification for adaptivity. In *International Conference on Learning Representations*, 2020.
566 URL <https://openreview.net/forum?id=BJgnXpVYws>.
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

611 **A AUXILIARY RESULTS**

613 The following result has been established in prior works such as (Liu & Zhou, 2023, Lemma 30). We include
614 the proof here for the reader's convenience.

615 **Lemma 2.** *Let $(d_i)_{i=0}^\infty$ be a positive nondecreasing sequence. Then for any $T \geq 1$,*

617
$$\min_{1 \leq k \leq T} \frac{d_k}{\sum_{i=0}^{k-1} d_i} \leq \frac{\left(\frac{d_T}{d_0}\right)^{\frac{1}{T}} \log \frac{ed_T}{d_0}}{T}.$$
618
619

620 *Proof.* Let $A_k := \frac{1}{d_k} \sum_{i=0}^{k-1} d_i$ for each $k \geq 0$ (so that $A_0 = 0$). Then, for each $k \geq 0$, we have

621
$$d_{k+1} A_{k+1} - d_k A_k = d_k,$$
622
623

624 which implies that

625
$$\frac{d_k}{d_{k+1}} = A_{k+1} - \frac{d_k}{d_{k+1}} A_k = A_{k+1} - A_k + \left(1 - \frac{d_k}{d_{k+1}}\right) A_k.$$
626
627

628 Summing up these identities for all $0 \leq k \leq T-1$, we get

629
$$S_T := \sum_{k=0}^{T-1} \frac{d_k}{d_{k+1}} = A_T + \sum_{k=0}^{T-1} \left(1 - \frac{d_k}{d_{k+1}}\right) A_k \leq A_T^* (1 + T - S_T),$$
630
631

632 where $A_T^* = \max_{0 \leq k \leq T} A_k \equiv \max_{1 \leq k \leq T} A_k$ and we have used the fact that $(d_i)_{i=0}^\infty$ is nondecreasing.
633 Hence,

634
$$A_T^* \geq \frac{S_T}{1 + T - S_T}.$$
635
636

637 Applying now the AM-GM inequality and denoting $\gamma_T = \left(\frac{d_0}{d_T}\right)^{\frac{1}{T}}$ ($\in (0, 1]$), we can further estimate $S_T \geq T\gamma_T$, giving us

639
$$A_T^* \geq \frac{T\gamma_T}{1 + T(1 - \gamma_T)}.$$
640
641

642 Thus,

643
$$\min_{1 \leq k \leq T} \frac{d_k}{\sum_{i=0}^{k-1} d_i} = \frac{1}{A_T^*} \leq \frac{\frac{1}{\gamma_T} (1 + T(1 - \gamma_T))}{T}.$$
644
645

646 Estimating further $T(1 - \gamma_T) \leq -T \log \gamma_T \equiv \log \frac{1}{\gamma_T}$ and substituting the definition of γ_T , we get the
647 claim. \square

648 The following lemma is a classical result from (Nesterov, 2018, Lemma 3.2.1).

649 **Lemma 3.** *Let $x \in \text{dom } f$ be such that f is subdifferentiable on x . Then, we have $f(x) - f^* \leq \omega(v(x))$,
650 where $\omega(\cdot)$ and $v(\cdot)$ are defined as in (2) and (4) (with $\nabla f(x)$ being an arbitrary subgradient from $\partial f(x)$).*

651 *Proof.* Let \bar{x} denote the orthogonal projection of x^* onto the supporting hyperplane
652 $\{y : \langle \nabla f(x), x - y \rangle = 0\}$:

653
$$\bar{x} = x^* + v(x) \frac{\nabla f(x)}{\|\nabla f(x)\|_*}.$$
654
655

658 Then, $\langle \nabla f(x), \bar{x} - x \rangle = 0$, and $\|\bar{x} - x^*\| = v(x)$. Therefore,

$$659 \quad 660 \quad 661 \quad 662 \quad 663 \quad 664 \quad 665 \quad 666 \quad 667 \quad 668 \quad 669 \quad f(x) \leq f(\bar{x}) + \langle \nabla f(x), \bar{x} - x \rangle = f(\bar{x}),$$

and hence,

$$662 \quad 663 \quad 664 \quad 665 \quad 666 \quad 667 \quad 668 \quad 669 \quad f(x) - f^* \leq f(\bar{x}) - f^* \leq \omega(\|\bar{x} - x^*\|) = \omega(v(x)). \quad \square$$

Lemma 4. Consider the nonnegative sequence $(d_k)_{k=0}^{\infty}$ that satisfies, for each $k \geq 0$,

$$d_{k+1} \leq \max\{d_k, R + \gamma d_k\},$$

where $0 \leq \gamma < 1$ and $R \geq 0$ are certain constants. Then, for any $k \geq 0$, we have

$$d_k \leq \max\left\{\frac{1}{1-\gamma}R, d_0\right\}.$$

Proof. We use induction to prove that $d_k \leq D$ for a certain constant D to be determined later. To ensure that this relation holds for $k = 0$, we need to choose $D \geq d_0$. Let us now suppose that our relation has already been proved for some $k \geq 0$ and let us prove it for the next index $k + 1$. Using the induction hypothesis and the given inequality, we obtain

$$d_{k+1} \leq \max\{d_k, R + \gamma d_k\} \leq \max\{D, R + \gamma D\}.$$

To prove that the right-hand side is $\leq D$, we need to ensure that $R + \gamma D \leq D$, which means that we need to choose $D \geq \frac{1}{1-\gamma}R$. Combining this requirement with that from the base of induction, we see that we can choose $D = \max\{\frac{1}{1-\gamma}R, d_0\}$. \square

B PROOF OF THEOREM 1

Lemma 5. In Algorithm 1, for any $1 \leq k \leq T$, it holds that

$$684 \quad 685 \quad \sum_{i=0}^{k-1} a_i \langle g_i, x_i - x^* \rangle + \frac{\beta_k}{2} \|x_k - x^*\|^2 \leq \frac{\beta_k}{2} \|x_0 - x^*\|^2 + \sum_{i=0}^{k-1} \frac{a_i^2}{2\beta_i} \|g_i\|_*^2,$$

where β_0 is an arbitrary coefficient in $(0, \beta_1]$.

Proof. For any $0 \leq k \leq T$, define the function $\psi_k(x)$ as follows:

$$690 \quad 691 \quad 692 \quad \psi_k(x) := \sum_{i=0}^{k-1} a_i \langle g_i, x - x_i \rangle + \frac{\beta_k}{2} \|x - x_0\|^2,$$

so that $\psi_0(x) = \frac{\beta_0}{2} \|x - x_0\|^2$ (with β_0 as defined in the statement). Note that ψ_k is a β_k -strongly convex function and x_k is its minimizer. Hence, for any $x \in Q$ and $0 \leq k \leq T$, we have

$$695 \quad 696 \quad \psi_k(x) \geq \psi_k^* + \frac{\beta_k}{2} \|x - x_k\|^2, \quad (10)$$

where $\psi_k^* := \psi_k(x_k)$. Consequently,

$$697 \quad 698 \quad 699 \quad 700 \quad 701 \quad 702 \quad 703 \quad 704 \quad \begin{aligned} \psi_{k+1}^* &= \psi_{k+1}(x_{k+1}) = \psi_k(x_{k+1}) + a_k \langle g_k, x_{k+1} - x_k \rangle + \frac{\beta_{k+1} - \beta_k}{2} \|x_{k+1} - x_0\|^2 \\ &\geq \psi_k^* + \frac{\beta_k}{2} \|x_{k+1} - x_k\|^2 + a_k \langle g_k, x_{k+1} - x_k \rangle + \frac{\beta_{k+1} - \beta_k}{2} \|x_{k+1} - x_0\|^2 \\ &\geq \psi_k^* + \frac{\beta_k}{2} \|x_{k+1} - x_k\|^2 + a_k \langle g_k, x_{k+1} - x_k \rangle \geq \psi_k^* - \frac{a_k^2}{2\beta_k} \|g_k\|_*^2. \end{aligned}$$

705 Telescoping these inequalities and using the fact that $\psi_0^* = 0$, we obtain
 706

$$707 \quad 708 \quad 709 \quad \psi_k^* \geq - \sum_{i=0}^{k-1} \frac{a_i^2}{2\beta_i} \|g_i\|_*^2.$$

710 Combining this inequality with the definition of ψ_k and (10), we thus obtain
 711

$$712 \quad 713 \quad 714 \quad \sum_{i=0}^{k-1} a_i \langle g_i, x^* - x_i \rangle + \frac{\beta_k}{2} \|x_0 - x^*\|^2 = \psi_k(x^*) \geq \psi_k^* + \frac{\beta_k}{2} \|x_k - x^*\|^2 \\ 715 \quad 716 \quad 717 \quad \geq - \sum_{i=0}^{k-1} \frac{a_i^2}{2\beta_i} \|g_i\|_*^2 + \frac{\beta_k}{2} \|x_k - x^*\|^2.$$

718 Rearranging, we get the claim. \square
 719

720 **Lemma 6.** *Consider Algorithm 1 using the coefficients defined in (5). Then, the following inequality holds
 721 for all $1 \leq k \leq T$:*

$$722 \quad 723 \quad 724 \quad \sum_{i=0}^{k-1} \bar{r}_i v_i + \frac{c\sqrt{k+1}}{2} D_k^2 \leq \frac{c\sqrt{k+1}}{2} D_0^2 + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2,$$

725 where $D_k = \|x_k - x^*\|$ and $v_i := v(x_i)$.
 726

727 *Proof.* Applying Lemma 5 and the definition of v_i , we obtain
 728

$$729 \quad 730 \quad 731 \quad \sum_{i=0}^{k-1} a_i v_i \|g_i\|_* + \frac{\beta_k}{2} D_k^2 \leq \frac{\beta_k}{2} D_0^2 + \sum_{i=0}^{k-1} \frac{a_i^2}{2\beta_i} \|g_i\|_*^2.$$

732 Substituting our choice of the coefficients given by (5), we get
 733

$$734 \quad 735 \quad 736 \quad \sum_{i=0}^{k-1} \bar{r}_i v_i + \frac{c\sqrt{k+1}}{2} D_k^2 \leq \frac{c\sqrt{k+1}}{2} D_0^2 + \frac{1}{2c} \sum_{i=0}^{k-1} \frac{\bar{r}_i^2}{\sqrt{i+1}} \leq \frac{c\sqrt{k+1}}{2} D_0^2 + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2,$$

737 where we have used the fact that \bar{r}_k is nondecreasing and $\sum_{i=0}^{k-1} \frac{1}{\sqrt{i+1}} \leq 2\sqrt{k}$. \square
 738

739 **Lemma 7.** *Consider Algorithm 1 using the coefficients defined in (5) and assume that $c > \sqrt{2}$. Then, we
 740 have the following inequalities for all $0 \leq k \leq T$:*
 741

$$742 \quad 743 \quad \bar{r}_k \leq \bar{D}, \quad D_k \leq D_0 + \frac{\sqrt{2}}{c} \bar{D},$$

744 where $\bar{D} := \max\{\bar{r}, \frac{2c}{c-\sqrt{2}} D_0\}$ and $D_k := \|x_k - x^*\|$.
 745

746 *Proof.* Both bounds are clearly valid for $k = 0$, so it suffices to consider only the case when $1 \leq k \leq T$.
 747

748 Applying Lemma 6, dropping the nonnegative $\bar{r}_i v_i$ from the left-hand side and rearranging, we obtain
 749

$$750 \quad 751 \quad D_k^2 \leq D_0^2 + \frac{2\sqrt{k}}{c^2 \sqrt{k+1}} \bar{r}_{k-1}^2 \leq D_0^2 + \frac{2}{c^2} \bar{r}_{k-1}^2.$$

752 Consequently,

753

$$754 D_k \leq D_0 + \frac{\sqrt{2}}{c} \bar{r}_{k-1}. \quad (11)$$

755 Therefore,

756

$$757 r_k \equiv \|x_k - x_0\| \leq D_k + D_0 \leq 2D_0 + \frac{\sqrt{2}}{c} \bar{r}_{k-1}.$$

758 Hence,

759

$$760 \bar{r}_k \equiv \max\{\bar{r}_{k-1}, r_k\} \leq \max\left\{\bar{r}_{k-1}, 2D_0 + \frac{\sqrt{2}}{c} \bar{r}_{k-1}\right\}.$$

762 Since $k \geq 1$ was allowed to be arbitrary, we can apply Lemma 4 to conclude that

763

$$764 \bar{r}_k \leq \max\left\{\bar{r}, \frac{2}{1 - \frac{\sqrt{2}}{c}} D_0\right\} = \max\left\{\bar{r}, \frac{2c}{c - \sqrt{2}} D_0\right\} \equiv \bar{D}.$$

766 This proves the first part of the claim.

768 Substituting the already proved bound on \bar{r}_k into (11), we obtain the claimed upper bound on D_k . \square

770 We are now ready to prove the main result.

772 *Proof of Theorem 1.* Let $T \geq 1$ be arbitrary. According to Lemma 3 and the fact that $\omega(\cdot)$ is nondecreasing, we can write

774

$$775 f(x_T^*) - f^* = \min_{0 \leq k \leq T-1} [f(x_k) - f^*] \leq \min_{0 \leq k \leq T-1} \omega(v_k) = \omega(v_T^*),$$

776 where $v_k := v(x_k)$ and $v_T^* := \min_{0 \leq k \leq T-1} v_k$. This proves the first part of the claim.

778 Let us now estimate the rate of convergence of v_T^* . To that end, let us fix an arbitrary $1 \leq k \leq T$. In view of Lemma 6, we have

779

$$780 \sum_{i=0}^{k-1} \bar{r}_i v_i \leq \frac{c\sqrt{k+1}}{2} (D_0^2 - D_k^2) + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2,$$

783 where $D_k = \|x_k - x^*\|$. Note that

784

$$785 D_0^2 - D_k^2 \equiv \|x_0 - x^*\|^2 - \|x_k - x^*\|^2 = (\|x_0 - x^*\| - \|x_k - x^*\|)(\|x_0 - x^*\| + \|x_k - x^*\|) \\ 786 \leq 2\|x_k - x_0\| \|x_0 - x^*\| \equiv 2r_k D_0.$$

787 Therefore, we can continue as follows:

788

$$789 \sum_{i=0}^{k-1} \bar{r}_i v_i \leq c\sqrt{k+1} r_k D_0 + \frac{\sqrt{k}}{c} \bar{r}_{k-1}^2 \leq \left(cD_0 + \frac{1}{c} \bar{r}_{k-1}\right) \sqrt{k+1} \bar{r}_k \\ 790 \\ 791 \leq \left(cD_0 + \frac{1}{c} \bar{D}\right) \sqrt{k+1} \bar{r}_k = D \sqrt{\frac{k+1}{2}} \bar{r}_k,$$

794 where the second inequality is due to the fact that $\bar{r}_k = \max\{\bar{r}_{k-1}, r_k\}$, the final inequality is due to Lemma 7, and the constants \bar{D} and D are as defined in the statement. Hence,

796

$$797 v_k^* \equiv \min_{0 \leq i \leq k-1} v_i \leq \frac{\sum_{i=0}^{k-1} \bar{r}_i v_i}{\sum_{i=0}^{k-1} \bar{r}_i} \leq \frac{\bar{r}_k}{\sum_{i=0}^{k-1} \bar{r}_i} D \sqrt{\frac{k+1}{2}}.$$

799 Letting now $k^* = \operatorname{argmin}_{1 \leq k \leq T} \frac{\bar{r}_k}{\sum_{i=0}^{k-1} \bar{r}_i}$ and using Lemma 2, we obtain
800

$$801 \quad 802 \quad 803 \quad v_T^* \leq v_{k^*}^* \leq \frac{D \sqrt{\frac{k^*+1}{2}}}{T} \left(\frac{\bar{r}_T}{\bar{r}} \right)^{\frac{1}{T}} \log \frac{e\bar{r}_T}{\bar{r}} \leq \frac{D}{\sqrt{T}} \left(\frac{\bar{D}}{\bar{r}} \right)^{\frac{1}{T}} \log \frac{e\bar{D}}{\bar{r}},$$

804 where we have used the fact that $k^* + 1 \leq T + 1 \leq 2T$ (since $1 \leq k^* \leq T$) and that $\bar{r}_T \leq \bar{D}$ (see Lemma 7).
805 This proves (6) in the case when $T \geq \log \frac{\bar{D}}{\bar{r}}$ since then we can further bound $(\frac{\bar{D}}{\bar{r}})^{\frac{1}{T}} \equiv \exp(\frac{1}{T} \log \frac{\bar{D}}{\bar{r}}) \leq e$.
806

807 On the other hand, by the definition of v_k and Lemma 7, we always have the following trivial inequality for
808 any $0 \leq k \leq T - 1$:

$$809 \quad 810 \quad v_k \equiv \frac{\langle \nabla f(x_k), x_k - x^* \rangle}{\| \nabla f(x_k) \|_*} \leq D_k \leq D_0 + \frac{\sqrt{2}}{c} \bar{D} \leq D.$$

811 This means that (6) is also satisfied in the case when $T \leq \log \frac{\bar{D}}{\bar{r}}$ since then $\frac{e\bar{D}}{\sqrt{T}} \log \frac{e\bar{D}}{\bar{r}} \geq \frac{D}{\sqrt{T}} \log \frac{\bar{D}}{\bar{r}} \geq D\sqrt{T} \geq D$ (we still consider $T \geq 1$). The proof of (6) is now finished.
812

813 The final part of the claim readily follows from (6). \square
814

816 C HOW TO CHOOSE THE CONSTANT c

817 According to Theorem 1, our method converges for any $c > \sqrt{2}$. However, the choice of c can influence
818 the constant factor in the complexity of DADA. Hence, our goal here is to find the optimal constant c that
819 minimizes $T_v(\delta)$. To determine this c , let \bar{r} be sufficiently small, so that
820

$$822 \quad 823 \quad \bar{D} \equiv \max \left\{ \bar{r}, \frac{2c}{c - \sqrt{2}} D_0 \right\} = \frac{2c}{c - \sqrt{2}} D_0.$$

824 Then, disregarding the logarithmic factors, due to their minimal impact on the complexity of our method,
825 we can determine the optimal constant c that minimizes

$$826 \quad 827 \quad 828 \quad D \equiv \sqrt{2} \left(c D_0 + \frac{1}{c} \bar{D} \right) = \sqrt{2} \left(c + \frac{2}{c - \sqrt{2}} \right) D_0.$$

829 This is the value

$$830 \quad c = 2\sqrt{2}. \quad (12)$$

831 For this optimal choice of c , we get $\bar{D} = \max\{\bar{r}, 4D_0\}$ and $D = 4D_0 + \frac{1}{2}\bar{D}$, so the complexity of our
832 method given by Theorem 1 is
833

$$834 \quad 835 \quad T_v(\delta) = \frac{e^2 (4D_0 + \frac{1}{2}\bar{D})^2}{\delta^2} \log^2 \frac{e\bar{D}}{\bar{r}}.$$

836 D CONVERGENCE OF DADA ON VARIOUS PROBLEM CLASSES

837 In this section, we analyze the complexity of DADA across different problem classes. To achieve this, we
838 first establish bounds on the growth function:
839

$$841 \quad 842 \quad \omega(t) = \max_{x \in B(x^*, t)} f(x) - f^*,$$

843 and determine the threshold t such that $\omega(t) \leq \epsilon$ for a given ϵ . Subsequently, we combine these results with
844 the complexity bound $T(\delta)$ derived in Theorem 1, enabling us to estimate the oracle complexity of DADA
845 for finding an ϵ -solution in terms of the function residual.

846 D.1 NONSMOOTH LIPSCHITZ FUNCTIONS
847848 **Assumption 8.** *The function f in problem (1) is locally Lipschitz at x^* . Specifically, for any $x \in B(x^*, \rho)$,
849 the following inequality holds:*

850
$$f(x) - f^* \leq L_0 \|x - x^*\|, \quad (13)$$

851

852 where $L_0, \rho > 0$ are fixed constants.
853854 **Lemma 9.** *Let f be locally L_0 -Lipschitz at x^* (Assumption 8). Then, $\omega(t) \leq \epsilon$ for any given $\epsilon > 0$ whenever
855 $t \leq \delta(\epsilon)$, where*

856
$$\delta(\epsilon) := \min \left\{ \frac{\epsilon}{L_0}, \rho \right\}.$$

857

858 *Proof.* According to (13), for any $0 \leq t \leq \rho$, we have
859

860
$$\omega(t) \leq L_0 t.$$

861

862 Making the right-hand side $\leq \epsilon$, we get the claim. \square
863864 Combining Theorem 1 and Lemma 9, we get the following complexity result.
865866 **Corollary 10.** *Consider problem (1) under Assumption 8. Let Algorithm 1 with coefficients (5) be applied
867 for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where*
868

869
$$T(\epsilon) = \max \left\{ \frac{L_0^2}{\epsilon^2}, \frac{1}{\rho^2} \right\} e^2 D^2 \log^2 \frac{e \bar{D}}{\bar{r}},$$

870

871 and the constants D and \bar{D} are as defined in Theorem 1.
872

873 D.2 LIPSCHITZ-SMOOTH FUNCTIONS

874 **Assumption 11.** *The function f in problem (1) is locally Lipschitz-smooth at x^* . Specifically, for any
875 $x \in B(x^*, \rho)$, the following inequality holds:*

876
$$f(x) \leq f^* + \langle \nabla f(x^*), x - x^* \rangle + \frac{L_1}{2} \|x - x^*\|^2, \quad (14)$$

877

878 where $L_1, \rho > 0$ are fixed constants.
879880 **Lemma 12.** *Assume that f is locally Lipschitz-smooth at x^* with constant L_1 (Assumption 11). Then,
881 $\omega(t) \leq \epsilon$ for any given $\epsilon > 0$ whenever $t \leq \delta(\epsilon)$, where*

882
$$\delta(\epsilon) := \min \left\{ \sqrt{\frac{\epsilon}{L_1}}, \frac{\epsilon}{2\|\nabla f(x^*)\|_*}, \rho \right\}.$$

883

884 *Proof.* According to (14), for any $x \in B(x^*, \rho)$, we have
885

886
$$f(x) - f^* \leq \|\nabla f(x^*)\|_* \|x - x^*\| + \frac{L_1}{2} \|x - x^*\|^2.$$

887

888 Hence, for any $0 \leq t \leq \rho$,

889
$$\omega(t) \leq \frac{L_1}{2} t^2 + \|\nabla f(x^*)\|_* t.$$

890

891 To make the right-hand side $\leq \epsilon$, it suffices to ensure that each of the two terms is $\leq \frac{\epsilon}{2}$:
892

893
$$\frac{L_1}{2} t^2 \leq \frac{\epsilon}{2}, \quad \|\nabla f(x^*)\|_* t \leq \frac{\epsilon}{2}.$$

894

895 Solving this system of inequalities, we get the claim. \square
896

893 Combining Theorem 1 and Lemma 12, we get the following complexity result.
 894

895 **Corollary 13.** *Consider problem (1) under Assumption 11. Let Algorithm 1 with coefficients (5) be applied
 896 for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where*

$$897 \quad 898 \quad 899 \quad T(\epsilon) = \max \left\{ \frac{L_1}{\epsilon}, \frac{4\|\nabla f(x^*)\|_*^2}{\epsilon^2}, \frac{1}{\rho^2} \right\} e^2 D^2 \log^2 \frac{e\bar{D}}{\bar{r}},$$

900 and the constants D and \bar{D} are as defined in Theorem 1.
 901

902 D.3 HÖLDER-SMOOTH FUNCTIONS

903 **Assumption 14.** *The function f in problem (1) is locally Hölder-smooth at x^* . Specifically, for any $x \in$
 904 $B(x^*, \rho)$, the following inequality holds:*

$$905 \quad 906 \quad 907 \quad f(x) \leq f^* + \langle \nabla f(x^*), x - x^* \rangle + \frac{H_\nu}{1+\nu} \|x - x^*\|^{1+\nu}, \quad (15)$$

908 where $\nu \in [0, 1]$ and $H_\nu, \rho > 0$ are fixed constants.
 909

910 **Lemma 15.** *Let f be locally (ν, H_ν) -Hölder-smooth at x^* (Assumption 14). Then, $\omega(t) \leq \epsilon$ for any given
 911 $\epsilon > 0$ whenever $t \leq \delta(\epsilon)$, where*

$$912 \quad 913 \quad 914 \quad \delta(\epsilon) := \min \left\{ \left[\frac{(1+\nu)\epsilon}{2H_\nu} \right]^{\frac{1}{1+\nu}}, \frac{\epsilon}{2\|\nabla f(x^*)\|_*}, \rho \right\}.$$

915 *Proof.* According to (15), for any $x \in B(x^*, \rho)$, we have
 916

$$917 \quad 918 \quad 919 \quad f(x) - f^* \leq \|\nabla f(x^*)\|_* \|x - x^*\| + \frac{H_\nu}{1+\nu} \|x - x^*\|^{1+\nu}.$$

920 Hence, for any $0 \leq t \leq \rho$,
 921

$$922 \quad 923 \quad 924 \quad \omega(t) \leq \|\nabla f(x^*)\|_* t + \frac{H_\nu}{1+\nu} t^{1+\nu}.$$

925 To make the right-hand side of the last inequality $\leq \epsilon$, it suffices to ensure that each of the two terms is $\leq \frac{\epsilon}{2}$:
 926

$$927 \quad 928 \quad \|\nabla f(x^*)\|_* t \leq \frac{\epsilon}{2}, \quad \frac{H_\nu}{1+\nu} t^{1+\nu} \leq \frac{\epsilon}{2}.$$

929 Solving this system of inequalities, we get the claim. □
 930

931 Combining Theorem 1 and Lemma 15, we get the following complexity result.
 932

933 **Corollary 16.** *Consider problem (1) under Assumption 14. Let Algorithm 1 with coefficients (5) be applied
 934 for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where*

$$935 \quad 936 \quad 937 \quad T(\epsilon) = \max \left\{ \left[\frac{2H_\nu}{(1+\nu)\epsilon} \right]^{\frac{2}{1+\nu}}, \frac{4\|\nabla f(x^*)\|_*^2}{\epsilon^2}, \frac{1}{\rho^2} \right\} e^2 D^2 \log^2 \frac{e\bar{D}}{\bar{r}},$$

938 and the constants D and \bar{D} are as defined in Theorem 1.
 939

940 D.4 FUNCTIONS WITH LIPSCHITZ HIGH-ORDER DERIVATIVE
941942 **Assumption 17.** *The function f in problem (1) is such that its p th derivative is locally L_p -Lipschitz at x^* .
943 Specifically, f is p times differentiable on $B(x^*, \rho)$, and, for any $x \in B(x^*, \rho)$, the following inequality
944 holds:*

945
$$\|\nabla^p f(x) - \nabla^p f(x^*)\| \leq L_p \|x - x^*\|.$$

946

947 where $L_p, \rho > 0$ are fixed constants.
948949 The Assumption 17 immediately implies the following global upper bound on the function value:
950

951
$$f(x) \leq f^* + \sum_{i=1}^p \frac{1}{i!} \nabla^i f(x^*) [x - x^*]^i + \frac{L_p}{(p+1)!} \|x - x^*\|^{p+1}. \quad (16)$$

952

953 **Lemma 18.** *Assume that f has locally L_p -Lipschitz p th derivative at x^* (Assumption 17). Then, $\omega(t) \leq \epsilon$
954 for any given $\epsilon > 0$ whenever $t \leq \delta(\epsilon)$, where
955*

956
$$\delta(\epsilon) := \min \left\{ \min_{2 \leq i \leq p} \left[\frac{i! \epsilon}{(p+1) \|\nabla^i f(x^*)\|} \right]^{\frac{1}{i}}, \left[\frac{p! \epsilon}{L_p} \right]^{\frac{1}{p+1}}, \frac{\epsilon}{(p+1) \|\nabla f(x^*)\|_*}, \rho \right\}.$$

957

958 960 *Proof.* According to (16), for any $x \in B(x^*, \rho)$, we have
961

962
$$f(x) - f^* \leq \|\nabla f(x^*)\|_* \|x - x^*\| + \sum_{i=2}^p \frac{1}{i!} \|\nabla^i f(x^*)\| \|x - x^*\|^i + \frac{L_p}{(p+1)!} \|x - x^*\|^{p+1}.$$

963

964 Therefore, for any $0 \leq t \leq \rho$, we have
965

966
$$\omega(t) \leq \|\nabla f(x^*)\|_* t + \sum_{i=2}^p \frac{1}{i!} \|\nabla^i f(x^*)\| t^i + \frac{L_p}{(p+1)!} t^{p+1}.$$

967

968 To make the right-hand side $\leq \epsilon$, it suffices to ensure that each of the following inequalities holds:
969

970
$$\|\nabla f(x^*)\|_* t \leq \frac{\epsilon}{p+1}, \quad \frac{1}{i!} \|\nabla^i f(x^*)\| t^i \leq \frac{\epsilon}{p+1}, \quad \frac{L_p}{(p+1)!} t^{p+1} \leq \frac{\epsilon}{p+1}, \quad i = 2, \dots, p.$$

971

972 Solving this system of inequalities, we get the claim. □
973974 Combining Theorem 1 and Lemma 18, we get the following complexity result.
975976 **Corollary 19.** *Consider problem (1) under Assumption 17. Let Algorithm 1 with coefficients (5) be applied
977 for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where
978*

979
$$T(\epsilon) = \max \left\{ \max_{2 \leq i \leq p} \left[\frac{(p+1) \|\nabla^i f(x^*)\|}{i! \epsilon} \right]^{\frac{2}{i}}, \right.$$

980
$$\left. \left[\frac{L_p}{p! \epsilon} \right]^{\frac{2}{p+1}}, \frac{(p+1)^2 \|\nabla f(x^*)\|_*^2}{\epsilon^2}, \frac{1}{\rho^2} \right\} e^2 D^2 \log^2 \frac{e \bar{D}}{\bar{r}},$$

981

982 986 and the constants D and \bar{D} are as defined in Theorem 1.
985

987 D.5 QUASI-SELF-CONCORDANT FUNCTIONS
988

989 **Assumption 20.** *The function f in problem (1) is Quasi-Self-Concordant (QSC) in a neighborhood of x^* .
990 Specifically, it is three times differentiable in a neighborhood of x^* and for any $x \in B(x^*, \rho)$ and arbitrary
991 directions $u, v \in \mathbb{R}^d$, the following inequality holds:*

$$992 \quad 993 \quad \nabla^3 f(x)[u, u, v] \leq M \langle \nabla^2 f(x)u, u \rangle \|v\|,$$

994 where $M \geq 0$ and $\rho > 0$ are fixed constants.

995 The following lemma provides an important global upper bound on the function value for QSC functions.

996 **Lemma 21.** (Doikov, 2023, Lemma 2.7) *Let f be QSC with the parameter M . Then, for any $x, y \in \text{dom } f$,
997 the following inequality holds:*

$$998 \quad 999 \quad f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \langle \nabla^2 f(x)(y - x), y - x \rangle \varphi(M\|y - x\|),$$

1000 where $\varphi(t) := \frac{e^t - t - 1}{t^2}$.

1001 **Lemma 22.** *Assume that f is a locally QSC function at x^* with constant M (Assumption 20). Then, $\omega(t) \leq \epsilon$
1002 for any given $\epsilon > 0$ whenever $t \leq \delta(\epsilon)$, where*

$$1003 \quad 1004 \quad \delta(\epsilon) := \min \left\{ \frac{1}{M}, \sqrt{\frac{\epsilon}{2(e-2)\|\nabla^2 f(x^*)\|}}, \frac{\epsilon}{2\|\nabla f(x^*)\|_*}, \rho \right\}.$$

1005 *Proof.* According to Lemma 21, for any $x \in B(x^*, \rho)$, we have

$$1006 \quad 1007 \quad f(x) - f^* \leq \langle \nabla f(x^*), x - x^* \rangle + \langle \nabla^2 f(x^*)(x - x^*), x - x^* \rangle \varphi(M\|x - x^*\|) \\ 1008 \quad \leq \|\nabla f(x^*)\|_* \|x - x^*\| + \|\nabla^2 f(x^*)\| \|x - x^*\|^2 \varphi(M\|x - x^*\|).$$

1009 Therefore, for any $0 \leq t \leq \rho$, we get

$$1010 \quad 1011 \quad \omega(t) \leq \|\nabla f(x^*)\|_* t + \|\nabla^2 f(x^*)\| t^2 \varphi(Mt), \quad (17)$$

1012 where we have used the fact that $\varphi(\cdot)$ is an increasing function.

1013 Note that, for any $0 \leq t \leq \frac{1}{M}$, we can estimate $\varphi(Mt) \leq \varphi(1) = e - 2$. Substituting this bound into (17),
1014 we obtain

$$1015 \quad 1016 \quad \omega(t) \leq \|\nabla f(x^*)\|_* t + (e-2)\|\nabla^2 f(x^*)\| t^2.$$

1017 To make the right-hand side $\leq \epsilon$, it suffices to ensure that each of the two terms is $\leq \frac{\epsilon}{2}$:

$$1018 \quad 1019 \quad \|\nabla f(x^*)\|_* t \leq \frac{\epsilon}{2}, \quad (e-2)\|\nabla^2 f(x^*)\| t^2 \leq \frac{\epsilon}{2}.$$

1020 Solving this system of inequalities, we get the claim. \square

1021 Combining Theorem 1 and Lemma 22, we get the following complexity result.

1022 **Corollary 23.** *Consider problem (1) under Assumption 20. Let Algorithm 1 with coefficients (5) be applied
1023 for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where*

$$1024 \quad 1025 \quad T(\epsilon) = \max \left\{ M^2, \frac{2(e-2)\|\nabla^2 f(x^*)\|}{\epsilon}, \frac{4\|\nabla f(x^*)\|_*^2}{\epsilon^2}, \frac{1}{\rho^2} \right\} e^2 D^2 \log^2 \frac{e\bar{D}}{\bar{r}},$$

1026 and the constants D and \bar{D} are as defined in Theorem 1.

1034 D.6 (L_0, L_1) -SMOOTH FUNCTIONS
10351036 Let us now consider the case when $Q = \mathbb{R}^d$ and f is (L_0, L_1) -smooth (Zhang et al., 2020), meaning that for
1037 any $x \in \mathbb{R}^d$,

1038
$$\|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|_*,$$

1039 where $L_0, L_1 \geq 0$ are fixed constants.1040 **Lemma 24.** (Vankov et al., 2024, Lemma 2.2) *Let f be (L_0, L_1) -smooth. Then, for any $x, y \in \mathbb{R}^d$, it holds
1041 that*

1042
$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_0 + L_1 \|\nabla f(x)\|_*}{L_1^2} \xi(L_1 \|y - x\|),$$

1043 where $\xi(t) := e^t - t - 1$.1044 **Lemma 25.** *Assume that f is an (L_0, L_1) -smooth function. Then, $\omega(t) \leq \epsilon$ for any given $\epsilon > 0$ whenever
1045 $t \leq \delta(\epsilon)$, where*

1046
$$\delta(\epsilon) := \min \left\{ \frac{1}{L_1}, \sqrt{\frac{2\epsilon}{3(L_0 + L_1 \|\nabla f(x^*)\|_*)}}, \frac{\epsilon}{2\|\nabla f(x^*)\|_*} \right\}.$$

1047 *Proof.* According to Lemma 24, for any $x \in \mathbb{R}^d$, we have

1048
$$\begin{aligned} f(x) - f^* &\leq \langle \nabla f(x^*), x - x^* \rangle + \frac{L_0 + L_1 \|\nabla f(x^*)\|_*}{L_1^2} \xi(L_1 \|x - x^*\|) \\ 1049 &\leq \|\nabla f(x^*)\|_* \|x - x^*\| + \frac{L_0 + L_1 \|\nabla f(x^*)\|_*}{L_1^2} \xi(L_1 \|x - x^*\|) \end{aligned}$$

1050 Therefore, for any $t \geq 0$, we get

1051
$$\omega(t) \leq \|\nabla f(x^*)\|_* t + \frac{L_0 + L_1 \|\nabla f(x^*)\|_*}{L_1^2} \xi(L_1 t), \quad (18)$$

1052 where the second inequality uses the fact that $\xi(x)$ is an increasing function.1053 Note that, for any $0 \leq t \leq \frac{1}{L_1}$, we can estimate

1054
$$\xi(L_1 t) \leq \frac{L_1^2 t^2}{2(1 - \frac{L_1 t}{3})} \leq \frac{3}{4} L_1^2 t^2.$$

1055 Substituting this bound into (18), we obtain:

1056
$$\omega(t) \leq \|\nabla f(x^*)\|_* t + \frac{3(L_0 + L_1 \|\nabla f(x^*)\|_*)}{4} t^2.$$

1057 To make the right-hand side of the last inequality $\leq \epsilon$, it suffices to ensure that each of the two terms is $\leq \frac{\epsilon}{2}$:

1058
$$\|\nabla f(x^*)\|_* t \leq \frac{\epsilon}{2}, \quad \frac{3(L_0 + L_1 \|\nabla f(x^*)\|_*)}{4} t^2 \leq \frac{\epsilon}{2}.$$

1059 Solving this system of inequalities, we get the claim. \square

1060 Combining Theorem 1 and Lemma 25, we get the following complexity result.

1061 **Corollary 26.** *Consider problem (1) under the assumption that f is an (L_0, L_1) -smooth function. Let
1062 Algorithm 1 with coefficients (5) be applied for solving this problem. Then, $f(x_T^*) - f^* \leq \epsilon$ for any given
1063 $\epsilon > 0$ whenever $T \geq T(\epsilon)$, where*

1064
$$T(\epsilon) = \max \left\{ L_1^2, \frac{3(L_0 + L_1 \|\nabla f(x^*)\|_*)}{2\epsilon}, \frac{4\|\nabla f(x^*)\|_*^2}{\epsilon^2} \right\} e^2 D^2 \log^2 \frac{e\bar{D}}{\bar{r}},$$

1065 and the constants D and \bar{D} are as defined in Theorem 1.

Figure 2: Comparison of different methods on the Softmax function.

Figure 3: The ratio $\frac{D}{\tilde{r}_t}$ for the Softmax function with different optimal points x^* .

E ADDITIONAL EXPERIMENTS

Softmax function. Our first test problem is

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \mu \log \left(\sum_{i=1}^n \exp \left[\frac{\langle a_i, x \rangle - b_i}{\mu} \right] \right) \right\}, \quad (19)$$

where $a_i \in \mathbb{R}^d$, and $b_i \in \mathbb{R}$ for all $1 \leq i \leq n$, and $\mu > 0$. This function can be viewed as a smooth approximation of $\max_{1 \leq i \leq n} [\langle a_i, x \rangle - b_i]$ (Nesterov, 2005a).

To generate the data for our problem, we proceed as follows. First, we generate i.i.d. vectors \hat{a}_i with components uniformly distributed in the interval $[-1, 1]$ for $i = 1, \dots, n$, and similarly for the scalar values b_i . Using this data, we form the preliminary version of our function, \hat{f} . We then compute $a_i = \hat{a}_i - \nabla \hat{f}(0)$ and use the obtained (a_i, b_i) to define our function f . This way of generating the data ensures that $x^* = 0$ is a solution of our problem.

The results are shown in Fig. 2, where we fix $n = 10^3$ and $d = 2n$, and consider different values of $\mu \in \{0.1, 0.01, 0.005\}$. As we can see, most methods exhibit similar performance for $\mu = 0.1$ except for Prodigy which stops converging after a few initial iterations. This issue, along with a decline in performance for UGM, persists as μ decreases, whereas DADA, DoG, and WDA remain largely unaffected. Notably, DoG performs very similarly to DADA, which we hypothesize is primarily due to the similarity in estimating D_0 .

Figure 4: Comparison of different methods on the polyhedron feasibility problem.

Additionally, Fig. 3 illustrates the ratio between D_0 and \bar{r} , showing the estimation error of Prodigy, DoG, and DADA throughout the optimization process. For Prodigy, we use $\frac{D_0}{d_{\max}}$ to generate the plot. The figure demonstrates that DADA and DoG exhibit similar behavior in estimating D_0 , despite employing different update methods—Dual Averaging and Gradient Descent, respectively. However, Prodigy appears to encounter challenges in estimating D_0 as its estimation stabilizes at a relatively large value.

Hölder-smooth function. Let us consider the following *polyhedron feasibility problem*:

$$f^* := \min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n [\langle a_i, x \rangle - b_i]_+^q \right\}, \quad (20)$$

where $a_i, b_i \in \mathbb{R}^d$, $q \in [1, 2]$, and $[\tau]_+ = \max(0, \tau)$. This problem can be interpreted as finding a point $x^* \in \mathbb{R}^d$ lying inside the polyhedron $P = \{x : \langle a_i, x \rangle \leq b_i, i = 1, \dots, n\}$. Such a point exists if and only if $f^* = 0$.

Observe that f in problem (20) is Hölder-smooth with parameter $\nu = q - 1$. Therefore, by varying $q \in [1, 2]$, we can check the robustness of different methods to the smoothness level of the objective function.

The data for our problem is generated randomly, following the procedure in (Rodomanov et al., 2024). First, we sample x^* uniformly from the sphere of radius $0.95R$ centered at the origin. Next, we generate i.i.d. vectors a_i with components uniformly distributed in $[-1, 1]$. To ensure that $\langle a_n, x^* \rangle < 0$, we invert the sign of a_n if necessary. We then sample positive reals s_i uniformly from $[0, -0.1c_{\min}]$, where $c_{\min} := \min_i \langle a_i, x^* \rangle < 0$, and set $b_i = \langle a_i, x^* \rangle + s_i$. By construction, x^* is a solution to the problem with $f^* = 0$.

We select $n = 10^4$, $d = 10^3$, $R = 10^3$ and consider different values of $q \in \{1, 1.5, 2\}$. As shown in Fig. 4, as q increases and approaches 2, the performance of DoG significantly declines. However, DADA, Prodigy, and UGM demonstrate similar performance regardless of the choice of q .

Worst-case function. In addition to the experiments presented in Section 4, we evaluate the estimation error of D_0 for Prodigy, DoG, and DADA throughout the optimization process, as shown in Fig. 5. The figure illustrates that while Prodigy's estimate of D_0 , shows some improvement over time, it remains noticeably inaccurate. Moreover, for DoG, the estimate deteriorates as p increases, a behavior that is not observed with DADA, whose estimate remains stable across different values of p .

Comparison of different initial estimates of the distance. In this experiment, we evaluate the sensitivity of DADA to the choice of the initial point x_0 . We consider the same Softmax function as in (19) with $n = 10^3$, $d = 2n$, and $\mu \in \{0.5, 0.1, 0.01\}$.

Figure 5: The ratio $\frac{D}{\tilde{r}_t}$ for the worst-case function with different optimal points x^* .

Figure 6: Comparison of different initial estimates of the distance on the Softmax function with different values of μ .

The results are shown in Fig. 6, where we consider $\delta \in \{10^{-1}, \dots, 10^{-6}\}$. As we can see, the choice of δ does not affect the performance of DADA, which consistently achieves similar performance across all tested values.

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221