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Abstract
Stochastic gradient methods are increasingly employed in statistical inference tasks, such as param-
eter and interval estimation. Yet, much of the current theoretical framework mainly revolves around
scenarios with i.i.d. observations or strongly convex objectives, bypassing more complex models.
To address this gap, our paper delves into the challenges posed by correlated stream data and the
inherent intricacies of the non-convex landscapes in neural network applications. In this context,
we present SHADE (Stochastic Hidden Averaging Data Estimator), a novel mini-batch gradient-
based estimator. We further substantiate its asymptotic normality through a tailored central limit
theorem designed explicitly for its average scheme. From a technical perspective, our analysis in-
tegrates recent advancements in composite (hidden) convex optimization, stochastic processes, and
dynamical systems.

1. Introduction
Nowadays we witness a surge in large-scale data-driven techniques, encompassing areas such as
machine learning, statistical methodologies, and operational research [6]. Optimizing the parame-
ters of these data-driven models is foundational in the discipline of statistics, and it is well known
that in the simplified case of the aforementioned loss L(θ, ω) is strongly convex with respect to
θ, then θ∗ can be estimated with the ubiquitous stochastic gradient descent algorithm and the re-
sulting estimator θ̂ enjoys consistency and asymptotic normality results from the work of Polyak
and Judditsky [25]. Yet extending this line of work into a framework that includes both dependent,
streaming data and non-convex losses is by no means trivial, implying classical methods that have
worked in decades past often struggle with the complexities of modern machine learning workflows.

Many of these objectives are characterized by hidden structure, where the model parameters
are interfaced through an intricate and often intractable representation mapping. This paradigm
has been used in diverse fields such as generative modeling [18], policy gradient methods within
reinforcement learning [17], and multi-agent games [34] among others, leading to a composition
that ”hides” the strongly convex geometry of the penalty function, yielding non-convex, but tractable
objectives.

Against this backdrop, the crux of this study seeks to probe these theoretical limits, asking:
Is it possible to design an estimator that is both consistent and asymptotically normal in struc-

tured ML-driven non-convex landscapes, especially when dealing with correlated streamed datasets?
Prior work in this area have been shown to be challenging and fruitful areas of inquiry. The

landmark paper of Polyak and Juditsky [27] demonstrating the asymptotic statistical behaviour of
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iterates of a stochastic descent process, has led to the establishment of similar statistical statements
in wide ranging areas from policy gradients to functional analysis. Extending these results, the
recent paper Liu et al. [22], showed the consistency and normality of estimators built on the SGD
framework despite ϕ−mixing weakly dependent data.

Optimization in the face of a non-convex loss has proven a challenging task, and little is known
of asymptotic statistical behaviour estimators trained on a non-convex losses.

Our Results & Techniques. We aim to tackle the above challenges, by utilizing inference meth-
ods that are statistically sound in the presence of streaming, mixing data and under the non-convex
class of latent convex losses. To this end, we assert the input steaming data only needs to comply
with the ϕ−mixing property [14], which subsumes a broad class of mixing processes, including the
α−(strong) and β−mixing conditions among others.

Inspired by the streaming demands of large-scale inference systems and sequential data applica-
tions, and the ubiquity of latent representations with modern deep learning, we introduce SHADE,
an innovative gradient-based estimator that capitalizes on the representation function linking control
and latent variables. To our knowledge, the asymptotic statistical results concerning SHADE render
it the first set of gradient-based estimators that are consistent and asymptotically normal under latent
convex losses, for both mixing and i.i.d data.

Aligning with the criteria outlined in our introduction, Theorem 2 confirms the consistency of
our estimator and Theorem 4 demonstrates the SHADE estimator’s asymptotic normality through a
tailored central limit theorem. In addition, leveraging recent advances in bootstrap covariance esti-
mation under mixing data [5, 11], we formulate a bootstrap variant of SHADE and show in Theorem
5 that the asymptotic behavior of the estimates matches that of the SHADE itself. Consolidating
our findings, we provide empirical evidence underscoring the efficacy of the SHADE estimator in
real-world settings.

2. Problem setup and preliminaries

To tackle the above challenges, we aim to estimate the true parameters θ∗ ∈ Rd of a d-dimensional
model, through minimization of an objective function, expressed as the expected loss over a station-
ary distribution Π(ω) spanning the dataset sample space Ω, also known as the population risk.

θ∗ = argmin
θ∈Θ

{
ℓ(θ) = E[L(θ;ω)] =

∫
ω
L(θ;ω)dΠ(ω)

}
(ERM)

Following the standard approach, L(θ;ω) quantifies the empirical loss when estimating the param-
eter θ given the observed data ω.

In the sequel, we assume the true loss ℓ(θ) = E[L(θ;ω)] admits hidden structure by virtue of
being a latent convex function.

Definition 1 (Latent Convex Function) A function ℓ : Θ → R admits the following composition

ℓ(θ) = (f ◦ χ)(θ) = f(χ(θ))

with its components satisfying the following constraints.
1. χ : Θ → X , a Lipschitz smooth injective mapping with no critical points onto a closed and

convex set X , with cl(χ(Θ)) = X .
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2. f : X → R, is a Lipschitz smooth and strongly convex function.

Directly computing the expected loss ℓ(θ) is often intractable; as such, we assume only the
stochastic loss function L(θ; Ω) defined over parameter space, and the data distribution is given.
We impose the following conditions on the latent convex objective below. [13, 20].

Assumptions (Loss Function)
The latent convex loss ℓ(θ) is the expectation of L : Θ × Ω → R, the empirical loss, over the

space (Ω,F ,P).
• L(θ;ω) is differentiable and c−Lipschitz in θ for almost all ω.
• For a constant p > 2, and a function M(·), the gradients of L(θ;ω) have bounded p-th

moments,
sup
θ∈Θ

∥∇L(θ;ω)∥p ≤Mp(ω), E[Mp(ω)] <∞

• The singular values of the Jacobian of the latent map χ at θ, Jacχ(θ) = J(θ) have bounded
spectra

σ2min(J(θ)) ≤ σ(J(θ)J(θ)T ) ≤ σ2max(J(θ))

where σmin, σmax ∈ (0,∞)

Notation: The parameters in the control space are denoted θ ∈ Θ and their latent representations
x = χ(θ) ∈ X . We refer to its Jacobian evaluated at θ as J(θ) := Jac(χ(θ)). For brevity, we denote
the gradient concerning multiple data points with the following expression.

∇L(θ; Ω) :=
1

|Ω|
∑
s∈Ω

∇L(θ;ωs) and ∇ f(x; Ω) =
1

|Ω|
∑
s∈Ω

∇ f(x;ωs)

3. Estimation in latent objectives

To ensure the statistical soundness of the empirical risk relaxation, two core criteria for the estimator
θt must be met (See Wasserman [35]). Namely, the consistency of the estimator θt, which ensures
it converges in probability to the true parameter value as the sample size tends to infinity and the
existence of a central limit theorem (CLT), which identifies an asymptotic limiting distribution, is
pivotal for crafting confidence intervals for θt.

Building on these prerequisites, [33] demonstrated that under mild regularity conditions, ERM
solutions exhibit asymptotic normality, meaning

√
n(θt − θ∗) weakly converge to a normal distri-

bution.
To ensure an optimally

√
n-consistent estimator for solutions to stochastic approximation ob-

jectives, Polyak [28] and Ruppert [31] independently proposed the averaged SGD (ASGD) iterate:

θ̂ASGD
n = n−1

n∑
t=1

θt, where θt = θt−1 − γt∇L(θt−1;ωt) (Polyak-Ruppert averaging scheme)

for a diminishing learning rate γt ∝ 1/tρ, ρ ∈ (0.5, 1).
Capitalizing on the hidden structure of latent convex objectives, Sakos et al. [32] introduced

the preconditioned hidden gradient algorithm inspired by gradient flows on Riemmanian manifolds,
extending the convergence rates of the averaged stochastic gradient descent iterate to latent convex
objectives.
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θt = θt−1 − γt−1P(θt−1)∇L(θt−1; Ωt), where P(θ) = [J(θ)TJ(θ)]+ (PHGD)

This algorithm enjoys an improved rate of convergence on latent strongly convex functions com-
pared to the conventional Polyak-Ruppert average, and with this in mind, we base our estimator on
iterates of this process.

4. Main results

In this section, we introduce the notion of ϕ-mixing sequences and present our main results regard-
ing the asymptotic behaviour of SHADE.

4.1 Correlated Data Streams Formally, given a probability space (Ω,F ,P), the mixing coeffi-
cient for A,B, where A,B are sub-sigma-algebras of F , is defined

ϕP (A,B) = sup
A∈A,B∈B,P (B)>0

|P (B|A)− P (B)|

For a sequence of data {ωs}∞s=1, we define Fb
a to be the σ−algebra generated by {ωs}bs=a and ϕΩ(t)

to be the following.
ϕΩ(t) = sup

s≥1
ϕP (Fs

1 ,F∞
s+t).

This sequence {ϕΩ(t)}∞t=1 is ϕ−mixing if ϕΩ(t) ↓ 0 asymptotically. Heuristically, ϕΩ(t) is the
maximum amount of information gained by knowing data from t or more steps in the past.

Given our dataset {ωs}∞s=1, if we partition this sequence into blocks of sufficient size {Ωt}∞t=1 =
{ωs}∞s=1, neighboring blocks will be almost independent due to the weaker correlation of data points
temporally separated. Furthermore, if the block is sufficiently small, they behave similarly to the
original ϕ−mixing sequence. With this in mind, we divide our data into two sets of non-overlapping
blocks Ωa

t = Ω2t, Ω
b
t = Ω2t+1, and run PHGD on the two sets of blocks.

θ̂kt = θ̂kt−1 − γtP(θ̂kt−1)∇L(θ̂kt−1; Ω
k
t ), k ∈ {a, b}

From these two streams, we use the Polyak-Ruppert average the estimates, yielding our stochas-
tic hidden averaging data estimator.

θ̂t =
1

2T

T∑
t=1

(θat + θbt ) (SHADE)

We now stipulate some mild conditions on the relationship between the batch size, learning rate
and mixing coefficients.

Descent Parameters The following conditions on the data sequence {ωs}∞s=1, batch size Bt and
learning rate γt are set, where αβ(1/2− 1/p) = ρ:

• The learning rate of the algorithm is of the form γt = (γ0 + t)−ρ, ρ ∈ (0.5, 1)

• The batch size satisfies Bt = ⌈tα⌉ where α ∈ (0, 1)

• The mixing coefficients satisfy ϕ(t) = t−β where β > 2
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4.2 Asymptotic Behavior We wish to demonstrate our estimators are statistically sound, i.e. they
are consistent and asymptotically normal. To this end, we first show that SHADE is asymptotically
consistent.

Theorem 2 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estima-
tor satisfies

θ̂t
a.s.−−→ θ∗.

This theorem ensures the SHADE estimator is strongly consistent and follows the results found
in Polyak and Juditsky [26] and Liu et al. [22]. This proof relies on the Robbins-Siegmund theorem
[30], a celebrated result that relates the convergence of a Lyapunov function of a non-negative
martingale implies the overall martingale converges as well.

Theorem 3 (Asymptotic Normality of SHADE) Given the assumptions above, the following the-
orem occurs

T√∑T
t=1B

−1
t

(θ̂T − θ∗)
d.−→ N (0,Σ)

where r(t) = E[∇L(θk+t; Ωk+t)∇L(θk; Ωk)
T ],H = ∇2 f(x∗)J(θ∗), V = (2r(0)+4

∑
k≥1 r(k)),

and Σ = H+V [H+]T .

This result mirrors the central limit theorem found in Polyak and Juditsky [26], Liu et al. [22],
and Mou et al. [24], and uses the ”sandwich” covariance structure found in [10]

These asymptotic normality results can be extended to the bootstrap estimates, by showing a
version of the Lindeberg condition holds for bootstrap iterates. [4].

Theorem 4 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂•
T − θ̂)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ Ωa
t ∪ Ωb

t} and represents the data used in the empirical risk minimization
process, and Σ̂ = Σ is the covariance matrix in Theorem 4

This theorem provides the theoretical guarantee that the asymptotic distributions of the bootstrap
estimates will match that of SHADE. This ensures the consistency of these estimates and provides
a base to construct confidence regions.

5. Experiments

This section shows the applicability of the estimators discussed earlier in a host of applications.
In each of the proceeding examples, we define an estimation problem, in which the loss function
is latent convex. The latent parameters are interfaced via a set of control parameters through a
pre-configured neural network which acts as the representation map χ(θ).
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(a) Distribution of
SHADE

(b) Distribution of PR

Figure 1: Parameter Distribution of Estimators in
Latent Linear Model

Latent Linear Model: The first model dis-
cussed is the hidden linear model which mini-
mizes the following non-convex penalty.

L(θ; Ω) = ∥y −Xχ(θ)∥2, ω = (y,xT )T

The data points are ϕ−mixing and gen-
erated via a autoregressive process. In each
experiment, there are 200 bootstrap samples,
10000 training steps, and 500 trials. The learn-
ing rate γt = (t + 10)−0.66, and the batch size
Bt = t0.3, and confidence intervals are made at
the 95% significance level, the joint parameter
estimate capturing the true model 90% of the time. The estimates can be seen below.

We plot the empirical parameter distributions of the models in Figure 1. The SHADE-based
estimator has a tighter empirical variance, hinting at increased asymptotic efficiency.

Detection of Fake LLM Texts: As an example of the efficacy of our methods to real-world prob-
lems, we consider the scenario of determining whether academic text was artificially generated from
a large-language model, i.e. ChatGPT etc. To this end, we utilize the dataset from which contains
thousands of examples of machine-generated and authentic papers from scientific fields. To sim-
plify the analysis, the abstract and introduction sections are encoded into a vector embedding in
R384, which is then passed into a latent logistic regression.

L(θ; Ω) = log(1 + exp(−y · ψ(x) · χ(θ)))

When the control parameters lie in Rd, then we see that estimators based on the SHADE paradigm,
completely outclass those using traditional methods on this non-traditional loss function.

Table 1: Accuracy of artificial text detection.

d SGD Acc. SHADE Acc.

25 0.550 0.535
50 0.560 0.580
100 0.588 0.622

6. Conclusion

This paper proposed a novel statistical estimator that is asymptotically consistent and normal, un-
der a non-convex penalty and online, mixing data. This estimator synergizes the Polyak-Ruppert
averaging scheme, mini-batch sampling and conditioned gradient descent and is successful despite
the demands of modern machine learning systems. We furthermore demonstrated its effectiveness
in a few real-world scenarios. These results emerge from the interplay of non-convex optimization,
online learning and statistical estimation and open the door for future work.
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Appendix A. Background

A.1. Motivating examples

We begin the appendix with a collection of examples demonstrating the ubiquity of the latent convex
objectives.

Example A.1: Consider the estimation problem of predicting a noisy binary response variable
y ∈ {0, 1} given data w. To simplify the analysis, we assume yi generated by the process yi =
σ(θ∗xi) + ϵ, where ϵ ∼ N (0, τ2), where σ is the sigmoid function. Minimizing the expectation of
the squared logistic loss yields the following.

ℓ(θ) = E[(yi − σ(θxi))
2] = E[

(
yi − (1 + exp(−θxi))−2

)2
]

Expanding out this objective in terms of the definition of y and the sigmoid function yields the
following expression.

ℓ(θ) = E[
(
(1 + exp(−θxi))−2 − (1 + exp(−θxi))−2

)2
] + τ2

Taking χ(θ) = log(θ), yields the following simplification.

ℓ(θ) = E[
(
(1 + (θ∗)−xi)−2 − (1 + (θ)−xi)−2

)2
] + τ2

This simplifies to a sum of moment generating function of normal random variables, which is indeed
a convex function.

Example A.2: We now turn to a more complex example in convex reinforcement learning. Its
standard framework hinges on a Markov decision process, M(S,A,P, H, ρ, γ), where S,A rep-
resent the state and action spaces respectively, P the state transition kernel returning a distribution
over states, ρ the initial state distribution, and γ the time discount factor. Our goal is to ascribe
actions to a distribution over states, through a policy function π : S → ∆(A), which induces a
probability measure over states and actions Pρ,π(st, at) given an initial distribution. By defining a
state-occupancy measure as follows:

λπ(s, a) =
∞∑
t=1

γtPρ,π(st = s, at = a)

and denoting U = {λπ;π ∈ Π} to be the set of state-occupancy measures, our goal is to minimize

min
π∈Π

ℓ(π) = H(λπ)

This loss function is not necessarily convex in ℓ(·) (especially if policies are represented by neural
nets), yet the penalty cost H(·) exhibits convexity in terms of the state-occupancy measures. This
latent convex characterization subsumes many reinforcement learning strategies, including pure ex-
ploration learning, whenH(λπ) represents the negative entropy of the policy π, and imitation learn-
ing, where H(λπ) represents the KL divergence between the expert policy and the current. Again,
in this paradigm, we can only interact with the representation of the loss through the representation.

As a final related example, we show the applicability of the Jacobian condition within the con-
text of neural networks.
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Proposition A.1 Suppose h is a shallow one-layer hidden neural network taking d0 input nodes to
d1 hidden nodes to d2 output nodes.

h : Rd0 → Rd2 , h(x) = V ϕ(Wx)

where ϕ is twice-differentiable activation function (i.e. Sigmoid, GELU). Then for allw∗ ∈ B(w0, ρϕ)

σmin(ϕ(W0X)) ≤ σmin(∇ϕ∗(W0)) ≤ σmax(∇ϕ∗(W0)) ≤ sup
a

|ϕ̇(a)|σmax(X)σmax(V )+σmin(ϕ(W0X))

where

ρϕ =
σmin(ϕ(W0X))

2
√
2σmax(X)(supa σmin|ϕ̇(a)|+ supa,V |ϕ̈(a)|σmax(V ))

As can be seen, proposition shows that within a certain radius, the Jacobian of shallow neural
networks have bounded spectra, implying our condition above captures this rich problem set.

A.2. Background in dynamical systems

Our analysis combines tools from dynamical systems, probability theory, and stochastic al-
gorithms. To this end, we begin by laying out a useful introduction to the different versions
of stability. We then recall the celebrated theorem of Lyapunov and conclude by introducing
a Lyapunov function tailored for the preconditioned hidden gradient dynamics.

We define f : D → Rn to be a local Lipschitz map from a subset D ⊂ Rn. In this section, we
consider dynamical systems of the form

ẋ = f(x) (A.1)

When f(x∗) = 0, we denote x∗ to be a fixed point. We can characterize stability in the following
manner.

Definition A.1 (Stability Properties) The fixed point x = 0 of Equation A.1 is
• stable if, ∀ϵ > 0, ∃δ > 0 such that

∥x(0)∥ < δ → ∥x(t)∥ < ϵ,∀t ≥ 0

• unstable if it is not stable
• asymptotically stable if it is stable and δ can be chosen such that

∥x(0)∥ < δ → lim
t→∞

∥x(t)∥ = 0

The Lyapunov theorem is useful for proving asymptotic stability and can be seen as a precursor to
the Robbins-Siegmund theorem used in section B.

Theorem A.2 Let x = 0 be a fixed point for Equation A.1, and let D ⊂ Rn contain 0. Let
V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D/{0}, V̇ (x) ≤ 0 in D

then x = 0 is stable. Furthermore, if

V̇ (x) < 0 in D/{0}

then x = 0 is asymptotically stable.
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In Sakos et al. [32], the authors demonstrated the L2 energy function satisfies the conditions of
the V (·) function above.

Lemma A.1 Let E(θ;x∗) be the L2 energy function.

E(θ;x∗) =
1

2
∥χ(θ)− x∗∥2

Then E(θ;x∗) satisfies the Lyapunov theorem above

Proof This is Proposition 1 in Sakos et al. [32].

A.3. Notation

We now introduce the notation used in the remainder of the appendix. A key step in the
analysis of the asymptotic behaviour of estimators, is decomposing the gradient of the latent
convex loss ℓ(θ) = f(χ(θ)) into the sum of three non-negative martingales. This facilitates
the creation of robust second-moment bounds, and is similar to the framework created by
Liu et al. [22], Polyak and Juditsky [27].

Both preconditioned hidden gradient descent and its bootstrap counterpart are subsumed by the
following descent process.

θt+1 = θt − γt+1UtP(θt)Vt (A.2)

The random variables Ut satisfy the following assumption.

Assumption A.1 The i.i.d. random variables Ut are independent from the data process {ωs}∞s=1.
In addition, E[Ut] = 1 and E[Up

t ] <∞ for the p introduced in the Main Assumptions.

It is clear to see that when Ut is the identity we recover the preconditioned hidden gradient descent,
and when E[Ut] = 1 and Var(Ut) = 1, we obtain the bootstrap variant. The following notation for
the analysis of the evolution of the iterates of PHGD.

Definition A.3 In the proceeding sections, we use the following notation for different segments of
the gradient.

• Et[·] := E[·|Ω1, ...,Ωt] = E[·|Dt]
• h(x) = ∇ f(x) := E[∇ f(x; Ω)]
• et := Et−1[∇ f(xt−1; Ωt)]−∇ f(xt−1)
• ζt := Ut∇ f(xt−1; Ωt)− Et−1[∇ f(xt−1; Ωt)]
• ĝt := ∇ f(xt−1; Ωt) =

1
|Ωt|
∑

s∈Ωt
∇ f(xt−1;ωs)

• Vt := J(θt)
T (h(χ(θt)) + et + ζt) = ∇L(θt−1;ωt)

• G := ∇2 f(x∗), the Hessian of χ at θ∗

Using this notation, we rewrite the descent procedure as the following.

θt+1 = θt − γt+1UtP(θt)J(θt)
T (h(χ(θt)) + et + ζt) (A.3)

12
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The SHADE estimator, is built off of the iterates of two PHGD processes θat , θ
b
t utilizing non-

overlapping data blocks Ωa
t ,Ω

b
t . We define ĝat , ĝ

b
t = ∇ f(xat−1; Ω

a
t ),∇ f(xbt−1; Ω

b
t), respectively.

The averaging estimators

θ̂a, θ̂b = T−1
T∑
t=1

θat , T
−1

T∑
t=1

θbt

serve similar functions within the SHADE estimator, so without loss of generality it is sufficient to
study θ̂a. For ease of notation, we omit the superscripts unless necessary in the sequel.

A.4. Background on PHGD

We now motivate the development of PHGD, discussing the gradient flow from which it was devel-
oped, and its connection to Riemannian geometry. As mentioned previously, the convergence rates
of stochastic gradient descent on latent convex functions often lag behind those on conventional
convex functions [12]. To mitigate this issue and accelerate the convergence rate of traditional gra-
dient descent in non-convex loss functions, we introduce the notion of natural gradient flows. Given
a function ℓ : Θ → R, and a class of positive semi-definite matrices, Pθ, θ ∈ Θ, the natural gradient
flow is given by the steepest descent in the geometry induced by the matrix Pθ.

θ̇ = −P−1
θ ∇ℓ(θ) (Natural Gradient Flow)

Some examples of these preconditioning matrices include Pθ = I , yielding standard gradient flow,
and the Fisher information matrix, which flows in the steepest direction based on the metric induced
by the Fisher information1 within the space of distributions. [23]

PFisher
θ := −Ex∼p(θ)[∇2 log(pθ(x))] (Fisher matrix)

The hidden nature of latent convex functions leads to an inherent geometry induced by the rep-
resentation mapping. Indeed, by conditioning the gradient relative to the Riemmaninan metric
gij = δijχ

′
i(θi), Sakos et al. [32] propose the preconditioned hidden gradient flow.

PHidden
θ := [J(θ)TJ(θ)]+ (Hidden Preconditioner)

This flow has numerous convergence guarantees that exceed that of traditional gradient descent,
including increased sample complexity efficiency on latent objectives. With this in mind, we will
use the flow’s discretization as the means of optimizing latent convex functions. For ease of notation,
we denote PHidden

θ as P (θ).

θt = θt−1 − γt−1P(θt−1)∇L(θt−1; Ωt)

As a show of the improved convergence of PHGD, we present the following proposition.

Proposition A.2 (Sample Complexity of Stochastic Descent in Hidden Convex Objectives)
Let ℓ(θ) = f(χ(θ)) be a merely latent convex function , i.e. ∇2f(x) = 0. Fix ϵ > 0 and set the

step size γt = (t+ γ0)
−ρ, ρ ∈ (0.5, 1]. Then define the L2 energy Lyapunov function,

ET = E [E(θT ;x
∗)] =

1

2
∥χ(θT )− x∗∥2

Then the following statments hold.

1. For more information about the Riemannian metric induced by the Fisher information in parametric settings see
[2, 21]

13
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• If θ is an iterate of preconditioned hidden gradient descent, ET ≤ ϵ after T = Õ(ϵ−2)
• If θ is an iterate of stochastic gradient descent, ET ≤ ϵ after T = Õ(ϵ−3)

Proof In preparation for the subsequent steps we define

ΛT = ℓ(θT )− ℓ(θ∗) +
ρ

2
∥θT − θ∗∥2

In their recent review of the role of stochastic gradient descent in latent convex objectives Fatkhullin
et al. [12] showed that when T = Õ(βDU

κ2
1
ϵ + βDUM2

κ4
1
ϵ3
), E[ΛT ] < ϵ. Here, κ is the Lipschitz

coefficient of the latent map χ, and DU is a constant stemming from the fact that f(·) is strongly
convex and thus satisfies the Kurdyka-Lojasiewicz (KL) condition [15].

DU ≥ 2β(f(x)− f(x∗))

From the nature of f(·) we can deduce that

ℓ(θT )− ℓ(θ∗) = f(χ(θT ))− f(χ(θ∗)) ≥ β

2
∥xT − x∗∥2

Thus from the Lipschitz properties of χ(·), it follows that

ΛT ≥ (
β + κρ

2
)∥xT − x∗∥2 = (

β + κρ

2
)ET

So it follows that the desired claim is shown for SGD. To proceed, we define g to be a convex
function, and the restricted merit function as follows.

GapC(x̂) = sup
x∈C

⟨g(x), x̂− x⟩

The affine function g(x) = x − x̂, indeed satisfies the condition of being merely convex. Thus
now turning attention to PHGD, through Theorem 1 of Sakos et al. [32] demonstrated in the hidden
merely convex case that the averaged iterate satisfies the following convergence rate

E[GapC(χ(θ̄T ))] = Õ(t−1/2)

Inverting the convergence rate to achieve the sample complexity achieves the desired result.

A.5. Moment inequalities

We now introduce a couple of key moment inequalities for ϕ−mixing sequences, unlocked
by the restrictions made on the ϕ−mixing coefficients, that will be rendered useful when
establishing the asymptotic consistency of our estimators. of martingale iterates.

Lemma A.2 (Moment Inequality) Let {Xt}∞t=1 be a mean-zero stationary sequence with ϕ-mixing
coefficients bounded by a function ϕ(t), where

∑∞
t=1

√
ϕ(t) <∞ and that E[∥Xk

t ∥] <∞ for some
value k > 2. Then

E(|
T∑
i=1

Xt|k) ≤ CkT
k/2

14
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Proof This result is theorem 3 in Yokoyama [36]

Lemma A.3 Let (X,Y ) and (X, Ỹ ) be random vectors where Y and Ỹ with the same marginal
distributions and m be an arbitrary constant. Then we claim

∥E[h(X,Y )|X]− E[h(X, Ỹ )|X]∥ ≤ mϕ(X,Y ) +
E[∥h(X,Y )∥p|X]

mp−1
+

E[∥h(X, Ỹ )∥p|X]

mp−1

Proof This moment inequality is Lemma S.5 from Liu et al. [22]

We recall the template inequality from Sakos et al. [32], that characterizes the evolution of
the L2 energy Lyapunov function, E(θ;x∗) throughout the preconditioned hidden gradient
descent process. This allows us to relate the model error in the control space with that in the
latent space and plays a key role in our analysis of the asymptotic behaviour of the iterate
sequence.

Proposition A.3 (Template inequality) Let ℓ(θ) = E[L(θ;ω)] be a composite convex loss func-
tion. Then for all x̃ ∈ X the iterates of (PHGD) satisfy the template inequality, where Et =
E(θt;x

∗) = 1
2∥χ(θt)− x∗∥2:

Et+1 ≤ Et − γt⟨h(xt), xt − x̃⟩+ γtαt + γ2t ψt

whereαt =
∑

i≤t⟨J(θt)TP (θt)Vt−h(x), xt−x̃⟩ andψt is a random error seqeunce with supt E[ψt] <
∞.

Proof This is an extension of the template descent inequality from Sakos et al. [32], which can be
achieved via linearity in argument. This claim is created by creating bounds on the Taylor expanded
potential function.

A.6. Remarks about ϕ−mixing

In this short section, we recite a proof of Davydov [7] that demonstrates that the ϕ−mixing
condition subsumes the strong (α) mixing condition, which characterizes Markov depen-
dence.

We first prove a proposition exemplifying the power of the ϕ−mixing condition.

Proposition A.4 (Markov Chains are ϕ−mixing (Bradley [3] Theorem 3.3 )) LetX = (Xk)
∞
k=0

be an ergodic and aperiodic (not necessarily stationary) Markov chain over a state space of R. Then
if ϕΩ(n) < 1/2 for some n , then ϕΩ(n) → 0 at least exponentially fast as n → ∞, implying that
X is a ϕ− mixing sequence.

15
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Proof The broad class of Markov chains, even with not necessarily countable state space, satisfy
the mixing condition above. The proof is contained in Davydov [7] and is a variation on the result
of Doeblin (1937).

We conclude with a few additional assumptions on the ϕ−mixing sequence for the analysis to
come.

Assumption A.2 Along with the requirements in the descent parameter, we enforce a few other
rate limiting conditions.

tρ = o

 t∑
j=1

B−1
j

 ,
t∑

j=1

ϕ1/2−1/p(Bj) = o

√√√√ t∑
j=1

B−1
j


Appendix B. Proofs of asymptotic consistency

In this section, our goal is to prove Theorem 2 which we restate below for convenience.

Theorem 2 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estimator
satisfies

θ̂t
a.s.−−→ θ∗.

Our proof strategy is comprised of the following steps.

1. In Lemma B.1, we show the second moment of these martingale terms are then
bounded through convex analysis; in turn, in Lemma B.2 we combine these claims
to establish a bound on the entire second moment in terms of the ϕ−mixing coeffi-
cients and the energy function.

2. From these bounds and the Lyapunov properties of the energy function, the Robbins-
Siegmund theorem [30] implies the consistency of the averaged latent iterates.

3. Applying ideas from real analysis, we characterize the degree of distortion induced by
traveling through the representation mapping in Lemma One, allowing the consistency
of SHADE to be shown.

In the sequel, these notions are made precise via a series of intermediate results.

B.1. Martingale bounds

As a starting point, we instantiate a second moment bound on the different components of the
gradient of our loss. Wrestling with the difficulty of a latent convex objective, we instantiate
these bounds in the latent space X , as opposed to the control space Θ, unlocking the use of
the machinery of convex functions. These work in unison to create a second moment bound
of the empirical gradient ∇L(θ;ω), in terms of distance to the true model.

Lemma B.1 We seek the following bounds on elements of the descent, where vt is a quantity with
finite first moment:

16
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(i) E ∥et∥2 ≤ ϕ1−2/p(Bt−1)vt
(ii) E ∥ĝt − h(xt)∥2 ≤ C

Bt
(1 + ∥xt − x∗∥2)

(iii) Et(∥ζt∥2) ≤ ϕ1−2/p(Bt−1)vt +
C
Bt

(1 + ∥xt−1 − x∗∥2)

Proof (i.) Define ẽt equal to Et[∇ f(xt; Ωt)] − h(xt), where ω̃s is both independent from and
i.i.d. to our ω time series. By virtue of its independence to the original data sequence, this value
compresses into mean zero Gaussian noise. Using Lemma A.3,

Et(∥et∥2) = |Et(∥et∥2)− Et(∥ẽt∥2)| (B.1)

Et(∥et∥2) ≤ mϕ(Bt) +
Et[∥et∥p]
mp/2−1

+
Et[∥ẽt∥p]
mp/2−1

(B.2)

m being arbitrary, we define it ϕ−2/p(Bt) yielding an inequality in terms of the ϕ−mixing sequence
terms.

Et(∥et∥2) ≤ ϕ1−2/p(Bt) + ϕ1−2/p(Bt)Et[∥et∥p] + ϕ1−2/p(Bt)Et[∥ẽt∥p]

The p-th moment of et can be bounded as follows.

E1/p(∥et∥p) = E1/p[∥∇ f(xt; Ωt)− h(xt)∥p] (B.3)

≤ E1/p[∥∇ f(xt; Ωt)∥p] + sup
x∈X

∥h(x)∥ (B.4)

≤ sup
ω∈Ωt

E1/p[Mp(ω)] + C (B.5)

An analogous result holds for ẽt.

E1/p(∥ẽt∥p) ≤ E1/p[Mp(ω)] + C (B.6)

We define v1t below, and see it has finite mean.

v1t = 1 + Et[∥et∥p] + Et[∥ẽt∥p] (B.7)

E[vt] ≤ 2E1/p[Mp(ω)] + C (B.8)

The bound in Lemma A.3 completes the claim.

Proof (ii.) The definition of ĝt found above implies

ĝt − h(xt) = ∇ f(xt; Ωt)− h(xt) (B.9)

The term ∇ f(xt; Ωt) satisfies the martingale condition of Lemma A.2, and so we conclude that

E ∥∇ f(xt; Ωt)− h(xt)∥2 ≤
C

Bt
≤ C

Bt
(1 + ∥xt − x∗∥2) (B.10)

Proof (iii.) Analogously to part (i.), we define ζ̃t as follows.

ζ̃t = Ut∇ f(xt−1; Ω̃t)− Et−1[∇ f(xt−1; Ωt)] (B.11)
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As mentioned earlier, {ω̃}∞s=1 is identical to the process in (i.). So applying Lemma A.3 yields

|Et(∥ζt∥2)− Et(∥ζ̃t∥2)| ≤ mϕ(Bt) +
Et[∥ζt∥p]
mp−1

+
Et[∥ζ̃t∥p]
mp−1

(B.12)

In the same vein as (i.), we can bound E[∥ζt∥p] and E[∥ζ̃t∥p] by Cp, with m = ϕ−2/p(Bt) leading
to below.

|Et(∥ζt∥2)− Et(∥ζ̃t∥2)| ≤ ϕ1−2/p(Bt)(1 + Et[∥ζt∥p] + Et[∥ζ̃t∥p]) (B.13)

Moreover, from the definition of ζ̃t, we obtain

Et ∥ζ̃t∥2 ≤ 2(∥Ut∇f(xt−1; Ω̃t)− Et−1[∇f(xt−1; Ω̃t)]∥2 + ∥et∥2). (B.14)

Combining statements (i.) and (ii.) yields the following inequality, where v2t = (1 + Et[∥ζt∥p] +
Et[∥ζ̃t∥p])

Et−1(∥ζt∥2) ≤ ϕ
1− 2

p (Bt−1)v2t + CB−1
t (1 + ∥xt−1 − x∗∥2) (B.15)

v2t is bounded above by our constant C. To show the desired result, we take vt = v1t + v2t

We now present a descent equality from the viewpoint of the latent iterates xt = χ(θt) by
way of Taylor’s theorem. The result closely resembles traditional stochastic gradient descent.

Lemma B.2 (Descent Equality) Let xt = χ(θt), we then have that for iterates of PHGD

xt+1 = xt − γtUt∇f(xt; Ωt+1) + γ2tO(∥θt − θt−1∥2).

This lemma shifts problems of convergence and consistency into the strongly convex latent space,
where the analysis of martingale sums simplifies dramatically.

Importantly, the asymptotic results show that the SHADE estimator and its bootstrap counter-
parts are (i.) consistent and (ii.) asymptotically normal, despite the impediment of mixing data.
This leads to the creation of robust estimators and confidence intervals in practical settings, which
we explore in the next section.
Proof We show this lemma via Taylor’s theorem. Recall that

xt+1 = χ(θt+1)

= χ(θt − γtUtPtVt)

= χ(θt)− γtJ(θt)PtUtVt + γ2t U
2
t O(∥θt − θt−1∥2)

= χ(θt)− γtJ(θt)PtJ(θt)
TUt∇ f(xt; Ωt−1) + γ2t U

2
t O(∥θt − θt−1∥2)

= xt − γtUtĝt + γ2t U
2
t O(∥θt − θt−1∥2)

So the desired claim has been shown.

With this descent lemma, we can bound the second moment of the energy function in terms of
itself and other gradient terms.
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Lemma B.3 We now show the following bound, where ∆t = xt − x∗.

Et−1[∥∆t∥2] ≤ (1 + Cγ2t + CB−1
t γ2t )∥∆t∥2

+ Cγ2t (1 +Bt−1) + 4γ2t ϕ
1−2/p(Bt−1)vt + 4Cγt

√
ϕ1−2/p(Bt)vt

+ 2γ2t

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + ∥∆t∥2)

+ 2γ3J(θt)VtO(∥θt − θt−1∥2) + γ4t O(∥θt − θt−1∥4)

Proof From Lemma 2, we see that

∥∆t∥2 = ∥∆t − γt(h(xt) + et + ζt) +O(∥θt − θt−1∥2)∥2

Thus expanding this out

∥∆t∥2 = ∥∆t − γt(h(xt) + et + ζt) + γ2t O(∥θt − θt−1∥2)∥2

= ∥∆t−1∥2 + γ2∥h(xt)∥2 + γ2∥et∥2 + γ2∥ζt∥2 + γ4t O(∥θt − θt−1∥4)
− 2γt∆

T
t−1h(xt)− 2γt∆

T
t−1et − 2γt∆

T
t−1ζt

+ 2γ2t h(xt)
T et + 2γ2t h(xt)

T ζt + 2γ2t e
T
t ζt

+ 2γ3t (h(xt) + et + ζt)O(∥θt − θt−1∥2)
≤ ∥∆t−1∥2 + γ2t ∥h(xt)∥2 + γ2t ∥et∥2 + γ2t ∥ζt∥2 + γ4t O(∥θt − θt−1∥4)
− 2γt∆

T
t−1h(xt)− 2γt∥∆t−1∥∥et∥ − 2γt∥∆t−1∥∥ζt∥

+ 2γ2t ∥h(xt)T ∥∥et∥+ 2γ2t ∥h(xt)∥∥ζt∥+ 2γ2t ∥et∥∥ζt∥
+ 2γ3t (h(xt) + et + ζt)O(∥θt − θt−1∥2)

The conditional expectation of this expression given the data Dt :=
⋃t

k=1(Ωk) yields the following.

Et−1[∥∆t∥2] ≤ ∥∆t−1∥2 + γ2t ∥h(xt)∥2 + γ2t ∥et∥2 + γ2t Et−1[∥ζt∥2] + γ4t O(∥θt − θt−1∥4)
− 2γt∆

T
t−1h(xt)− 2γt∥∆t−1∥∥et∥

+ 2γ2t ∥h(xt)T ∥∥et∥+ 2γ2t ∥et∥Et−1[∥ζt∥]
+ 2γ3t (h(xt) + et + Et−1[ζt])O(∥θt − θt−1∥2)

Using Lemma B.1, we can transform the inequality into the following.

Et−1[∥∆t∥2] ≤ ∥∆t−1∥2 + γ2tC(1 + ∥∆t−1∥2)− 2γtC
−1∥∆t−1∥2 + 4γ2t ϕ

1−2/p(Bt−1)vt

+ Cγ2tB
−1
t (1 + ∥∆t−1∥2) + 2Cγt

√
ϕ1−2/p(Bt)vt + 2Cγt

√
ϕ1−2/p(Bt)vt

+ 2γ2t

√
ϕ1−2/p(Bt)vt

√
ϕ1−2/p(Bt)vt +

C

Bt
(1 + ∥∆t∥2)

+ 2γ3t J(θt)VtO(∥θt − θt−1∥2) + γ4t O(∥θt − θt−1∥4)
≤ (1 + Cγ2t + CB−1

t γ2t )∥∆t∥2

+ Cγ2t (1 +Bt−1) + 4γ2t ϕ
1−2/p(Bt−1)vt + 4Cγt

√
ϕ1−2/p(Bt)vt

+ 2γ2t

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + ∥∆t∥2)

+ 2γ3t J(θt)VtO(∥θt − θt−1∥2) + γ4t O(∥θt − θt−1∥4)
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B.2. Consistency preliminaries and proof

We now prove the first requirement of an estimator to conduct statistical estimation, consis-
tency. Given the bound generated in the previous parts, and the rate limitations established
in the data descent parameters, we demonstrate that the energy function converges to zero
through an appeal to the Robbins-Siegmund theorem and the PHGD template inequality. As
a consequence, the estimator built off of the latent iterates x̂T = T−1

∑T
t=1 xt is asymp-

totically consistent. We then demonstrate a duality gap in Lemma B.4, that quantifies the
distortion between the control space Θ and latent space X induced by the representation
mapping. This allows us to extend the consistency result to the control space Θ, the SHADE
estimator θ̂.

We begin by introducing the primary vehicle by which we demonstrate consistency, the Robbins-
Siegmund theorem.

Theorem B.1 (Robbins-Siegmund) If (Vt)t≥1 = V (Xt)t≥1, (ψt)t≥1, (αt)t≥1, (Ut)t≥1 be four
nonnegative (Ft)t≥1-adapted processes such that∑

t≥1

ψt ≤ ∞, and sup
ω∈Ω

∏
n≥1

(1 + αn(ω)) ≤ ∞

Then if ∀n ∈ N
E[Vt|Ft−1] ≤ Vt−1(1 + αt−1) + ψt−1 − Ut−1

Then Vn
a.s.−−→ V∞ and supn≥0 E[Vn] <∞.

Proof The proof is found in Robbins and Siegmund [30].

With a suitable function Lyapunov function V (·), a stochastic algorithm that satisfies the above
inequality, can be shown to be convergent.

The gradient sub-elements et and ζt are martingale terms. When analyzing the precondi-
tioned hidden gradient descent process, restated below for convenience, we can apply the Robbins-
Siegmund theorem to demonstrate consistency.

θt+1 = θt − γt+1Vt = θt − γt+1J(θt)(h(θt) + et+1 + ζt+1).

Corollary B.1 Let θt be defined in the sequence above, and let V (·) be a Lyapunov function.
Then if E[∥ĝt∥2|Ft−1] ≤ Cγ2t (1 + V (θt−1)), the following holds.

θ̂n − θ̂n−1
a.s.−−→ 0

Proof This proof is an adaptation of Theorem 5.3 in [19].

We next show a useful lemma relating the latent and control spaces.
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Lemma B.4 (Representation Gap) Given Main Assumption (iii.), where σmin, σmax are the small-
est and largest singular values of the latent mapping χ respectively.

σmin||θ − θ∗|| ≤ ||χ(θ)− χ(θ∗)|| ≤ σmax||θ − θ∗||.

This lemma controls the ’distortion’ of the distance metric between the latent and control spaces by
the representation mapping and performs a key role in the analysis.
Proof

We first prove the upper bound, implying to showing that the representation mapping χ is
σmax−Lipschitz. Given a vector v with norm equal to one, from the definition of a Jacobian the
following statement holds.

lim
t→0

|χ(θ)− χ(θ + tv)|
t

= J(θ)(v) (B.16)

For all ε, there exists a δ such that if t < δ,

∥|χ(θ)− χ(θ + tv)|
t

− J(θ)(v)∥ < ε (B.17)

Then using the fact that |∥a∥ − ∥b∥| < ∥a− b∥, we claim

−ε+ σmin ≤ −ε+ ∥J(θ)(v)∥ < ∥|χ(θ)− χ(θ + tv)|
t

∥ < ε+ ∥J(θ)(v)∥ ≤ ε+ σmax (B.18)

The above holds for all v on the unit ball and if we replace the value tv with θ∗−θ where ∥θ−θ∗∥ <
δ, we conclude

−ε+ σmin <
∥χ(θ)− χ(θ∗)∥

∥θ − θ∗∥
< ε+ σmax (B.19)

Thus we have shown our function is bi-Lipschitz within the unit ball. To extend this result, given
any pair of points x, y, we construct a set of unit balls intersecting on the edges and use the triangle
inequality to tend ε towards zero to show our function is σmax-Lipschitz on this domain. Multiplying
the denominator of the fraction yields the desired result.

With this lemma in hand, we can finally prove the consistency of SHADE.

Theorem 2 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estimator
satisfies

θ̂t
a.s.−−→ θ∗.

Proof Recall Proposition A.1.

Et+1 ≤ Et − γt⟨h(xt), xt − x̃⟩+ γtαt + γ2t ψt (Proposition A.1)

Note because f is strongly convex, from the definition of strong convexity we see

γt⟨h(xt), xt − x∗⟩ ≥ µ∥xt − x∗∥ = µEt.

Thus the above inequality can be simplified as follows.

Et+1 ≤ (1− 2µγ)Et + γtαt + γ2t ψt (B.20)
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The αt term in the inequality, given the data Dt, has mean zero.

Et[αt] = Et[
∑
t≤T

⟨J(θt)TP(θt)Vt − h(xt), xt − x∗⟩|D]

=
∑
t≤T

(J(θt)
TP(θt)E[Vt|Dt]− h(xt))

T (xt − x∗)

=
∑
t≤T

(J(θt)
TP(θt)J(θt)

Th(xt)− h(xt))
T (xt − x∗)

=
∑
t≤T

(h(xt)− h(xt))
T (xt − x∗)

= 0

Taking expectations, we claim that.

Et[Et+1] ≤ Et[(1− 2µγ)Et + γtαt + γ2t ψt]

= (1− 2γµ)Et + γ2t Et[ψt]

≤ (1/2− γµ)((1 + Cγ2t + CB−1
t γ2t )∥∆t∥2

+ Cγ2t (1 +Bt−1) + 4γ2t ϕ
1−2/p(Bt−1)vt + 4Cγt

√
ϕ1−2/p(Bt)vt

+ 2γ2t

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + ∥∆t∥2)

+ 2γ3J(θt)VtO(∥θt − θt−1∥2) + γ4t O(∥θt − θt−1∥4))

Because
∑

t≥1 γ
2
d < ∞, d > 2 and

∑
t≥1 ϕ

1−2/p < ∞, the terms with these coefficients, are
asymptotically zero. Thus we can apply the Robbins-Siegmund theorem to show that Et converges
to zero as t→ ∞. To show convergence of θ note that from Lemma B.4

σmin∥θt − θ∗∥ ≤ ∥∆t∥ ≤ σmax∥θt − θ∗∥ (B.21)

Thus this implies that ∥θt− θ∗∥2 goes to zero almost surely and the result for the SHADE estimator
follows swiftly.

Appendix C. Proofs of asymptotic normality

In this section we establish the asymptotic normality of SHADE and its bootstrap counterpart. For
convenience, we restate these theorems below. For ease of notation, we define G = ∇2 f(x∗) to be
the Hessian matrix at the optimal state χ(θ∗).

Theorem 3 (Asymptotic Normality of SHADE) Given the assumptions above, the following the-
orem occurs

T√∑T
t=1B

−1
t

(θ̂T − θ∗)
d.−→ N (0,Σ)

where r(t) = E[∇L(θk+t; Ωk+t)∇L(θk; Ωk)
T ],H = ∇2 f(x∗)J(θ∗), V = (2r(0)+4

∑
k≥1 r(k)),

and Σ = H+V [H+]T .
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Theorem 4 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂•
T − θ̂)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ Ωa
t ∪ Ωb

t} and represents the data used in the empirical risk minimization
process, and Σ̂ = Σ is the covariance matrix in Theorem 4

This section establishes the second criterion needed to reliably use empirical risk minimiza-
tion, that of asymptotic normality. Here we leverage the strongly convex geometry of the
latent space to simplify analysis. We additionally, analyze the behavior of bootstrap PHGD
and show that its asymptotic distribution is identical to PHGD. To this end, we use the fol-
lowing arguments.

1. In Lemma C.1-C.2 we equate the time-averaged parameter estimates with scaled gra-
dients of the loss function. This is similar to the strategy undertaken by Polyak [25]
and Liu et al. [22]. To achieve this, we exploit the strongly convex nature of the ob-
jective in the latent space to create sharp bounds.

2. In Lemma C.3, we show that the sum of the autocorrelation coefficients is finite and
conclude via the Lindeberg condition that the sum of gradients exhibits asymptotic
normality.

3. In Theorem 3, the bootstrap estimates are shown to match the distribution of PHGD.
Leveraging the requirements in Assumption 3 and a theorem from Kuczmaszewka, we
can apply Theorem 2 to achieve the desired result.

C.1. Establishment of asymptotic normality

Thus far our analysis has dwelt on bounding terms of the martingale loss gradient. To pro-
ceed, we establish a correspondence between these expression and the parameter estimates
through supplementary lemmas found in Polyak [25]. By unrolling the iteration sequence
into a product of terms dictated by the Hessian, we extend the gradient bounds to the iteration
parameters.

We begin with a few key propositions regarding the evolution of the descent process.

Proposition C.1 Let G be a positive definite matrix, and define the following.

Dj
j = I

Dt
j = (I − γt−1G)D

t−1
j = ... =

t−1∏
k=j

(I − γkG)

D̄t
j = γj

t−1∑
i=j

Di
j

Then we have that
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(i) There are constants C > 0 such that ∥D̄t
j∥ ≤ C

(ii) limt→∞
1
t ∥D̄

t
j −G−1∥ = 0

(iii) ∥Dt
j∥ ≤ exp(λG

∑t−1
k=j(k + γ)−ρ), where λG is the largest eigenvalue of G.

(iv) Let {aj}∞j=0 be a positive and non-increasing sequence, such that
∑

j≥0 aj = ∞, and
tρ/
∑t

j=1 aj → 0, then limt→∞
∑t

j=1 aj∥D̄t
j −G−1∥/(

∑t
j=1 aj) = 0

Proof The proof for (i) and (ii) can be found in Polyak and Juditsky [26], (iii) can be found in Chen
et al. [5] and (iv) is in Liu et al. [22].

Lemma C.1 Under the assmuptions above, it holds that

1

T

T∑
t=1

t∑
j=1

(
t∏

k=j+1

(I − γkG))γt(ζj) =
1

T

T∑
t=1

G−1Ut(∇f(x∗; Ωt)) +Rn

where E ∥Rn∥2 = O(
∑T

t=1 B
−1
j

T 2 )

Proof This is Lemma S.21 in Liu et al. [22].

Lemma C.2 (Lemma S.7 [22]) Suppose an is a decreasing sequence with limn→∞ an = 0, and
bn is a sequence, such that

∑∞
n=1 |bn| <∞. If

∑∞
n=1 an = ∞, then

lim
T→∞

T∑
n=1

an

T∑
k=n

bk/(

T∑
n=1

an) = lim
T→∞

T∑
n=1

anbn/(

T∑
n=1

an) = 0

Proof This fact is found in [22]

Lemma C.3 We have the following correspondence.

1

T

T∑
t=1

xt − x∗ =
1

T

T∑
i=1

G−1Ut∇ f(x∗; Ωt) + oP (

√∑T
t=1B

−1
t

T
)

Proof We being by rearranging the gradient term.

xt+1 = xt − γt(h(xt) + et + ζt) + γ2tO(∥θt − θt−1∥2) (C.1)

Defining ∆t = (xt − x∗) we can see that

∆t+1 = ∆t − γt(h(xt)− et − ζt) + γ2tO(∥θt − θt−1∥2)
= ∆t − γtG∆t − γt(et + ζt)− γt(h(xt)−G∆t) + γ2tO(∥θt − θt−1∥2)
= (I − γtG)∆t − γt(et + ζt)− γt(h(xt)−G∆t) + γ2tO(∥θt − θt−1∥2)

= (

t∏
j=1

(I − γj))∆0 +

t∑
j=1

(

t∏
k=j+1

(I − γkG))γt(ej + ζj)

+
t∑

j=1

(
t∏

k=j+1

(I − γkG))γt(h(xt)−G∆t) + γ2tO(∥θt − θt−1∥2)
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The average of this expression can be rewritten as.

1

T

T∑
t=1

∆t =
1

T

T∑
t=1

[
t∏

j=1

(I − γj)]∆0 +
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ej + ζj)

+
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(h(xt)−G∆t) +
1

T

T∑
t=1

γ2tO(∥θt − θt−1∥2)

=
1

T

T∑
t=1

[

t∏
j=1

(I − γj)]∆0 +
1

T

T∑
t=1

t∑
j=1

[

t∏
k=j+1

(I − γkG)]γt(ej)

+
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ζj)

+
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(h(xt)−G∆t) +
1

T

T∑
t=1

γ2tO(∥θt − θt−1∥2)

= S1 + S2 + S3 + S4 + S5

We see from Proposition C.1 that S1 is asymptotically oP (

√∑T
j=1 B

−1
j

T ). S2 is bounded as follows.
Define QT

j =
∑T

t=j [
∏t

k=j+1(I − γkG)]γj , Proposition C.1 again implies that ∥QT
j ∥ < C. Then

applying Lemma B.1, we have that

E(∥S2∥) ≤
1

T

T∑
j=1

∥QT
j ∥E[∥et∥] ≤

C

T

T∑
j=1

ϕ1/2−1/p(Bj) = o(

√∑T
j=1B

−1
j

T
) (C.2)

Taylor expanding the above yields.

∥h(xt)−G∆t∥ = ∥h(x∗) +G(xt − x∗)−G(xt − x∗) +O(∥xt − x∗∥2)∥ ≤ C∥xt − x∗∥2 (C.3)

This implies a bound for S4.

E[S4] ≤
1

T

∑
j≤t

E[∥∆j−1∥2]1{∥∆j−1∥2 ≤ δ}

+
1

T

∑
j≤t

T∑
t=j

[

t∏
k=j+1

(I − γkG)]γt E ∥h(xt)−G∆t∥1{∥∆j−1∥2 ≤ δ}

≤
∑T

t=1 γt
T

+
1

T

= o(

√∑T
j=1B

−1
j

T
)

The consistency of our estimator implies ∆t
a.s.−−→ 0, thus the set of all j such that ∥∆j∥2 < δ is

finite almost surely, implying the second term of the sequence will be dominated by the 1
T term.
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Lastly looking at S5 we see that because θt
a.s.−−→ θ∗ almost surely, we have that this term

vanishes on order 1
T . Thus using C.1, we conclude that

1

T

∑
t=1

xt − x∗ =
1

T

T∑
t=1

G−1∇ f(x∗; Ωt) + oP (

√∑T
t=1B

−1
t

T
).

Armed with these supplementary lemma, we now lay out asymptotic normality claims. Through-
out this section, we will refer to r(t) the autocorrelation coefficient defined as follows.

We now recall a result from Fan and Yao [10], which ensures the autocorrelation coefficients do
not grow too large in a ϕ−mixing sequence.

Lemma C.4 Under the assumptions in part 3, we conclude that if r(t) is defined as above. Then∑
t≥1

∥r(t)∥ <∞.

Proof In Theorem 2.20 of Fan and Yao [10], the authors claim the sum of the autocorrelation
coefficients r(t) is bounded throughout time for an α−mixing (strong mixing) sequence. Using the
relationship between ϕ−mixing and strong mixing sequences found in Bradley [3], we can conclude
the desired claim.

The primary vehicle for demonstrating asymptotic normality is the celebrated Lindeberg condition.

Theorem C.1 (Lindeberg Condition) Let (Ω,F ,P) be a probability space andXk : Ω → Rn, k ∈
N be independent random variables. Suppose E[Xk] = µk and Var(Xk) = σ2k < ∞. Then if
s2n =

∑n
k=1 σ

2
n and the sequence {Xk}∞k=1 satisfies

lim
n→∞

1

s2n

n∑
k=1

E[(Xk − µk)
2 · 1{|Xk − µk| > ϵsn}]

Then

Yn =

∑n
k=1(Xk − µk)

sn
→ N (0, 1)

Proof The proof can be found in Brown [4].

With this key tool, we now outline our proof of asymptotic normality.

Lemma C.5 Given the assumptions in part 3, we claim that

1∑T
t=1B

−1
t

T∑
t=1

ĝa∗t + ĝb∗t → N (0, V ).

when V = 2r(0) + 4
∑

k≥1 r(k)
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Proof We only prove this fact for the one-dimensional case. A multivariate extension can be made
via a Cramer-Wold device. For ease of notation, we have that ∇f(x∗; Ωa

t ) = ĝa∗t ,∇f(x∗; Ωb
t) = ĝb∗t

We see that the second moment of this expression can be expressed as

E[∥
T∑
t=1

ĝa∗t + ĝb∗t ∥2] =
T∑
t=1

E[∥ĝa∗t + ĝb∗t ∥2] + 2

t−1∑
t=1

E[∥(ĝa∗t + ĝb∗t ) · (estga∗t+1 + ĝb∗t+1)∥2]

+ 2

T−2∑
t=1

T∑
k=t+2

E[∥(ĝa∗t + ĝb∗t ) · (ĝa∗k + ĝb∗k )∥2]

:= S1 + S2 + S3

We now aim to bound these expressions via our assumptions on the ϕ−mixing nature of these
sequences. When t > k + 1, the difference of the indices between Ωa

t and Ωb
k are at least Bt−1

apart. Thus we can use Lemma B.1 to see that

E[ĝa∗t · ĝb∗k ] ≤ Cpϕ
1−2/p(Bt−1)E2/p[|ĝa∗t · ĝb∗k |p/2]

≤ Cpϕ
1−2/p(Bt−1)E1/p[ĝa∗t ]E1/p[ĝb∗k ]

≤ Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k

An analogous result holds for when k > t+ 1

E[ĝa∗t · ĝb∗k ] ≤ Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k

Combining the above, we conclude.

S3 ≤ 2C

T−2∑
t=1

T∑
k=t+2

Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k ≤ 2C

T−2∑
t=1

B−1
t

T∑
k=t+2

ϕ1−2/p(Bk−1) (C.4)

Thus using Lemma C.2 and the requirements of the ϕ−mixing sequence in the Descent Parameters,
we see that this term is oP (

∑T
t=1B

−1
t ).

We now define vs = ∇f(x∗;ωs), Dt = It ∪ Jt and r(t) = E[∇f(x∗;ωs)∇f(x∗;ωs)]. Thus we
see that

2
t−1∑
t=1

E[∥ĝ∗t · ĝ∗t+1∥2] = 2
t−1∑
t=1

1

BtBt+1
E[(
∑
s∈It

vs)(
∑

k∈St+1

vk)]

= 2

t−1∑
t=1

1

BtBt+1

∑
s∈It

∑
k∈St+1

E[vsvk]

= 2
t−1∑
t=1

1

BtBt+1

2Bt−1∑
s=0

2Bt+1∑
k=1

r(s+ k)

= 2

t−1∑
t=1

1

BtBt+1

2Bt+1∑
k=1

(k+2Bt−1)∑
m=k

r(m)
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Thus by because limt→∞
∑t

k=1 ∥r(k)∥ <∞, we have asymptotically,

lim
t→∞

1

2Bt+1

2Bt+1∑
k=1

∞∑
m=k

∥r(m)∥ = 0 (C.5)

Then we see via Lemma C.2 that this term is asymptotically o(
∑

t≥1B
−1
t )

In a similar vein we look at the term S1. This term can also be represented as the following

t−1∑
t=1

E[∥ĝa∗t · ĝb∗k ∥2] =
T∑
t=1

1

B2
t

E[(
∑
s∈It

vs)(
∑
k∈St

vk)]

=
T∑
t=1

1

B2
t

∑
s∈It

∑
k∈St

E[vsvk]

=
T∑
t=1

1

B2
t

∑
s∈It

∑
k∈St

E[vsvk]

=

T∑
t=1

1

B2
t

(2Btr(0) + 2

2Bt∑
k=1

(2Bt − k)r(k))

=

T∑
t=1

2

Bt
(r(0) + 2

2Bt∑
k=1

(1− k

2Bt
)r(k))

:=
T∑
t=1

2

Bt
βt

Thus because we have that
∑

k≥0 ∥r(k)∥ < ∞. we apply the dominated convergence theorem to
claim limt→∞ βt = r0 + 2

∑
k≥0 r(k). Putting this all together we see

lim
T→∞

S1∑T
t=1B

−1
t

= lim
T→∞

2

∑T
t=1B

−1
t βt∑T

t=1B
−1
t

= 2r(0) + 4
∑
k≥1

r(k) (C.6)

Putting all of these pieces together, we define the quantity VT,t = (ĝa∗t +ĝb∗t )/
√∑T

k=1B
−1
k . Above,

we have just shown that

v2T := E[|
T∑
t=1

VT,t|2] → 2r(0) + 4
∑
k≥1

r(k) (C.7)

Thus we know v2T ≥ c2 for some value c > 0.

E[|VT,t|21{|VT,t| > evT }] ≤
(εvT )

2 E[|VT,t|p]
(εvT )p

(C.8)

We get this via Markov’s inequality. Then using the definition of strong convexity, and the assump-
tions on our loss, we arrive at the following.

(εvT )
2 E[|VT,t|p]
(εvT )p

≤ CpB
−p/2
t

(cε)p−2(
∑t

j=1B
−1
j )

(C.9)

28



INFERENCE IN LATENT OBJECTIVES ON STREAM DATA

Thus combining this all together we satisfy the Lindeberg condition.

1

v2T

T∑
t=1

E[|VT,t|21{|VT,t| > evT }] ≤
C
∑T

t=1B
−p/2
t∑T

t=1B
−1
t

→ 0 (C.10)

The final equality is due to lemma.

To establish Theorem 2, we recall a useful lemma.

Lemma C.6 If
√
n(Xn − µ)

d−→ N (0,Σ) and f : Rd → Rk, then via Taylor expansion we claim

√
n(f(Xn)− f(µ))

d−→ N (0, Jacf (µ)Σ Jacf (µ)
T )

Proof This proof can be shown using the Central Limit theorem and Taylor’s theorem. A full proof
can be found Keener [16].

Theorem 3 (Asymptotic Normality of SHADE) Given the assumptions above, the following the-
orem occurs

T√∑T
t=1B

−1
t

(θ̂T − θ∗)
d.−→ N (0,Σ)

where r(t) = E[∇L(θk+t; Ωk+t)∇L(θk; Ωk)
T ],H = ∇2 f(x∗)J(θ∗), V = (2r(0)+4

∑
k≥1 r(k)),

and Σ = H+V [H+]T .

Proof Given lemma B.4, we have that

T−1
T∑
t=1

xat − x∗ =
1

T

T∑
t=1

G−1ĝa∗t + oP (

√∑T
t=1B

−1
t

T
) (C.11)

T−1
T∑
t=1

xbt − x∗ =
1

T

T∑
t=1

G−1ĝb∗t + oP (

√∑T
t=1B

−1
t

T
) (C.12)

Then applying Lemma C.3 we can conclude.

1

2
T−1(

T∑
t=1

xat + xbt)− x∗ → N (0,Σ)

Applying the delta method results in the desired claim.

Proof This proof can be shown using the Central Limit theorem and Taylor’s theorem. A full proof
can be found [16].
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C.2. Bootstrap normality

We conclude with an asymptotic normality proof for the bootstrap iterates. Formally we claim,

Theorem 4 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂•
T − θ̂)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ Ωa
t ∪ Ωb

t} and represents the data used in the empirical risk minimization
process, and Σ̂ = Σ is the covariance matrix in Theorem 4

Proof Define vt = ĝ∗it + ĝ∗jt , and χ(θ̂) = x̄∗T . Then we claim that

T√∑T
t=1B

−1
t

(x̄∗T − x̄T ) =
1√∑T

t=1B
−1
t

T∑
t=1

1

2
(Ut − 1)G−1(ĝ∗it + ĝ∗jt ) + oP (1)

=
1√∑T

t=1B
−1
t

T∑
t=1

1

2
(Ut − 1)G−1vt + oP (1)

To show asymptotic normality we observe the limiting behavior of YT :=
∑T

t=1(Ut−1)vt/
√∑T

t=1B
−1
t .

Define B to be the unit ball in Rd, i.e. {w ∈ Rd : ∥w∥ = 1}. Because the Ut random variables have
unit mean and unit variance, we verify that

E[|βTYT |2] = βT

(
T∑T

t=1B
−1
t

T∑
t=1

vtv
T
T

)
β

Moreover, we cap the variance of vtvTt with Lemma A.2 and the assumptions defined above, we see
that

E[∥vtvTt − E(vtvTt )∥2] ≤ E[∥vt∥4] ≤ CB−2
t

as the sequence vt is ϕ−mixing. Furthermore, using the rate-limiting assumptions in assumption 3
we see that

T∑
t=1

E ∥vtvTt − E(vtvTT )∥2

(
∑t

j=1B
−1
j )2

≤ C
∞∑
t=1

B−2
t

(
∑t

j=1B
−1
j )2

≲
∞∑
t=1

B−2
t t−2ρ <∞.

Then using Corollary 1 from Kuczmaszewka we see that this value is consistent.

1∑T
t=1B

−1
t

T∑
t=1

[vtv
T
t − E(vtvTt )]

a.s.−−→ 0

So using the properties of strong convexity, the sample covariance matrix converges almost surely
to the true covariance.

VT :=
1∑T

t=1B
−1
t

T∑
t=1

E(vtvTt ) → 2r(0) + 4

∞∑
k=1

r(k) := V
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Thus we can conclude that βTVTβ converges uniformly to βTV β for all β ∈ B.

Likewise, looking at the Lindeberg condition, we can see

gT (β) : =
1

βTVTβ
∑T

j=1B
−1
j

T∑
t=1

E

|(Ut − 1)βT vt|2I

|(Ut − 1)βT vt| > ϵβTVTβ

T∑
j=1

B−1
j ]


(C.13)

≤
∑T

t=1 E[(Ut − 1)βT vt|4]
ϵ2(βTVTβ)2(

∑T
j=1B

−1
j )2

(C.14)

≤
C
∑T

t=1 ∥vt∥4

ϵ2λmin(VT )(
∑T

j=1B
−1
j )2

(C.15)

So because the sample covariance converges almost surely to the true covariance. We claim that
limt→∞ P(λmin(VT ) ≥ λmin(V )/2) = 1. Thus we conclude that

P(gT (β) > δ,∀β ∈ B) (C.16)

≤
C
∑T

t=1 ∥vt∥4

δϵ2λmin(V )(
∑T

j=1B
−1
j )2

+ P(λmin(V ) < λmin(V )/2) (C.17)

≤
C
∑T

t=1B
−2
t

δϵ2λmin(V )(
∑T

j=1B
−1
j )2

+ P(λmin(V ) < λmin(V )/2) → 0 (C.18)

The last convergence comes from Lemma C.2. Thus we have shown the Lindeberg condition is
satisfied and can conclude that Yt|Dt → N (0, V ). Thus applying Theorem 4, and the delta method
the claim is proven.

Appendix D. Experiments

This section shows the applicability of the estimators discussed earlier in a host of applications.
We elaborate on the examples given in section 5, as well as present novel scenarios that further
demonstrate the usefulness of our methods. The section begins with a overview on how the inference
is conducted, and proceeds to detail each of the applications.

In each of the proceeding examples, we define an estimation problem, in which the loss function
is latent convex. The latent parameters are interfaced via a set of control parameters through a pre-
configured neural network which acts as the representation map χ(θ). Attached to the parameter
estimates are confidence regions generated by bootstrap algorithm detailed below.

The dimensions of the mapping vary with the datasets, and when applicable, we provide both
point estimates and confidence regions.

Latent Linear Model: The first model discussed is the hidden linear model found in Example
2.1, which minimizes the following non-convex penalty.

L(θ; Ω) = ∥y −Xχ(θ)∥2, ω = (y,xT )T
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Algorithm 1 Bootstrap SHADE

Input: Data {ωs}∞s=1, Learning rate γt, Block size Bt

Initial parameter values θ0, θ
(k)•
0 , for k ∈ {1, ..., n}

Significance level α ∈ [0, 1].
for t = 1 to T do

Construct two minibatches Ωa and Ωb

Update θit = θt−1 − γt−1P(θit−1)Vt−1 for i ∈ {a, b}
Update θ̄t = t−1

t θ̄t−1 +
1
2t(θ

a
t + θbt )

for k = 1 to n do
Generate the random weight U (k)

t

Update θ(k)•t = θ
(ki)•
t−1 − γt−1UtP(θ

(ki)•
t−1 )Vt−1 for i ∈ {a, b}

Update θ̄(k)•t = t−1
t θ̄

(k)•
t−1 +

1
2t(θ

(ak)•
t + θ

(bk)•
t )

end for
end for
Let Σ̂ = 1

T

∑T
i=1

∑T
j=t(θ

(j)•

T − θ̄•
T )(θ

(i)•

T − θ̄•
T )

T

Define lα, uα be the α/2, and 1− α/2 quantiles of θ(1)•T , ..., θ
(n)•

T .
return point estimator θT , empirical confidence interval (lα, uα), and empirical covariance ma-
trix Σ̂.

The control variables θ ∈ R2 are fed into the player’s MLP given by the representation maps

χ(θ) = α(2) · CeLU(α(1) · θ))

where α(1), α(2) are randomly initialized matrices with values within [−1, 1], and bias zero. The
activation function CeLU, is given below for reference.

CeLU(x) = max{0, x}+min{0, exp(x)− 1}

The data points are ϕ−mixing and generated via a autoregressive process. To this end, we
define an orthogonal matrixM and uniformly random diagonal matrix Λ, to construct our transform
P =MΛMT . The covariates xt are then created from the following vector autoregressive process,
where εt is a standard normal random variable.

xt = Pxt−1 + εt (D.1)

In each experiment, there are 200 bootstrap samples, 10000 training steps, and 500 trials. The
learning rate γt = (t+ 10)−0.66, and the batch size Bt = t0.3, and confidence intervals are made at
the 95% significance level, the joint parameter estimate capturing the true model 90% of the time.
The estimates can be seen below.

We plot the empirical parameter distributions of the models in Figure 3. The SHADE-based
estimator has a tighter empirical variance, hinting at increased asymptotic efficiency.

Medical Experiments We extend the applicability of our methods to testing in medical contexts.
To this end, we use the diabetes dataset from the University of California, Irvine (UCI) machine
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Table 2: Latent Linear Estimates

β1 β2
Est. CI Est. CI CP MSE

SGD 0.6961 (0.6709, 0.7119) 0.9875 (0.9831, 0.9962) 0.872 2.701
SHADE 0.6971 (0.6732, 0.7216) 0.9878 (0.9775, 0.9996) 0.896 2.700

(a) Empirical Parameter Distribution of
SHADE

(b) Empirical Parameter Distribution of
Polyak-Ruppert

Figure 2: Parameter Distribution of Estimators in Latent Linear Model

learning repository [9] to predict a binary test result. We achieve this via a logistic regression
augmented with a latent mapping χ.

L(θ; Ω) = log(1 + exp(−yWχ(θ)))

The dataset covers over 250,000 patients and contains data on age, income, and other key health
indicators. These scalar features are normalized into the normal interval via min-max scaling. The
latent map χ in our case is a differentiable multi-layer perceptron with two hidden layers, that maps
the control space Rd into the feature space X ⊆ R21.

χ(θ) = α(2) · CeLU(α(1) · θ))

The linear mappings α(1) ∈ [−1, 1]d×21, α(2) ∈ [−1, 1]21×21 are uniformly randomly initial-
ized. The control space is smaller than the latent space in this scenario and represents a low-rank
encoding of the regression vector χ(β). The experiments are run 300 times with 10000 training
steps. In accordance with the literature, the learning rate is γt = (t + 10)−0.5 and a batch size of
Bt = t0.3.
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Table 3: Accuracy of the
d−dimensional latent linear
model on diabetes detection.

d SGD Acc. SHADE Acc.

2 0.640 0.639
5 0.763 0.765
10 0.764 0.779

As can be seen, both SHADE and SGD learn similarly well in
low dimensional settings, as the optimal model θ ∈ R21 is difficult
to approximate within such a sparse representation. Yet within a
more rich representation space, SHADE, powered by the informa-
tion found in the Jacobian, does a better job of searching the space
for the optimal parameters, bypassing the bottleneck experienced
by the former.

As showing a graph of the asymptotic distribution of all 21 in-
puts would be cumbersome, we showcase the empirical distribution
of a few key parameters. To this end, we present the joint distri-
bution of particular latent regression parameters χ(θ)i of interest, characterizing the interaction
between the variable and the model output. This yields a multi-variate Gaussian distribution for
all three pairs; the last two in particular have an anisotropic distribution, hinting at a relationship
between the underlying data. We observe an anisotropic Gaussian distribution for the latter two

(a) (b) (c)

Figure 3: Distribution of Latent Model Parameters Along Key Values

entries, implying the two variables have a relationship.

Detection of Fake LLM Texts: With the rise of large language models, e.g. BeRT, GPT etc.,
comes the issue of detecting whether text is human or machine-generated. As a show of the ubiquity
of our methods, we use the SHADE parameter estimator to build a model to discriminate between
academic texts and those generated by prompting ChatGPT and Galatica, under the presence of a
latent convex loss, similar to the other experiments given earlier in the section. This data, given it is
from the same article is highly autocorrelated and thus exemplifies the streaming demands tackled
in this paper. To this end, we use the Identifying Machine Generated Scientific Papers (IDMGSP)
dataset proposed by Abdalla et al. [1], which contains the abstracts, introductions, and conclusions
of thousands of authentic and artificially generated papers.

To simplify our model and analysis, we transform the data from its textual representation into a
vector embedding in R384, through the Sentence Transformer autoencoder architecture [29], based
on the BeRT transformer autoencoder model. By reducing the dimensionality of the data from
hundreds of thousands in one-hot encoded form, to mere hundreds, we are able to perform a la-
tent logistic regression, similar to the above examples. Formally, if ψ represents the autoencoder
representation mapping, this is detailed as follows.

L(θ; Ω) = log(1 + exp(−y · ψ(x) · χ(θ)))
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In this case, χ is a two-layer multi-layer perceptron of that maps the control space Rd into the feature
space X ⊆ R384.

χ(θ) = α(2) · CeLU(α(1) · θ)).

The control variables represent a low-rank encoding of the latent model parameters x = χ(θ), and
can be also seen as hedges against overfitting, given the model simplicity.

Table 4: Accuracy of the
d−dimensional latent linear
model on artificial text detec-
tion.

d SGD Acc. SHADE Acc.

25 0.550 0.535
50 0.560 0.580
100 0.588 0.622
200 0.568 0.626

To the right are the accuracies of both Polyak-Ruppert averag-
ing based-methods and SHADE, tested using a variety of control
variable sizes. It is evident, that while the estimator performances
are similar in smaller dimensions, where the optimal parameters are
easier to search through, the complications of searching a solution
space orders of magnitude larger, leave the SGD based method un-
able to properly comb through the parameter space, again demon-
strating the power of the second-order information within the Jaco-
bian, yielding a model that reduces the number of errors made by
15%.

We conclude with another avenue of examination of the dif-
ferences within the empirical parameter distributions created by
SHADE and the Polyak-Ruppert averaging scheme. Listing point
estimates and confidence intervals for each of the 384 unique parameters would prove infeasible
and cumbersome, we instead, graph the distributions of the fiftieth and hundredth latent parameter
χ(θ) over the 200 runs, to elucidate their joint relationship, with the former on the left-hand axis
and the latter on the right. The SHADE estimator’s distribution is uni-modal multivariate Gaussian,
while the Polyak-Ruppert estimator’s distribution has skew, albeit with a tighter distribution overall

(a) SHADE Distribution (b) PR Distribution

Figure 4: Distribution of Parameters Along Varying Parameters

Remarks: These experiments exemplify the advantages of the SHADE estimator over the existing
framework within the realm of stream data and latent convex losses in both real world and synthetic
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contexts. By conditioning the gradient, the low-rank parameter estimates construct asymptotically
consistent estimators with superior performance. The bootstrap SHADE algorithm in particular al-
lows for the formation of accurate, balanced confidence intervals in light of the challenges presented
above.
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