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Abstract

Animal pose estimation is an important field that has re-

ceived increasing attention in the recent years. The main

challenge for this task is the lack of labeled data. Exist-

ing works circumvent this problem with pseudo labels gen-

erated from data of other easily accessible domains such

as synthetic data. However, these pseudo labels are noisy

even with consistency check or confidence-based filtering

due to the domain shift in the data. To solve this prob-

lem, we design a multi-scale domain adaptation module

(MDAM) to reduce the domain gap between the synthetic

and real data. We further introduce an online coarse-to-

fine pseudo label updating strategy. Specifically, we pro-

pose a self-distillation module in an inner coarse-update

loop and a mean-teacher in an outer fine-update loop to

generate new pseudo labels that gradually replace the old

ones. Consequently, our model is able to learn from the

old pseudo labels at the early stage, and gradually switch

to the new pseudo labels to prevent overfitting in the later

stage. We evaluate our approach on the TigDog and VisDA

2019 datasets, where we outperform existing approaches by

a large margin. We also demonstrate the generalization

ability of our model by testing extensively on both unseen

domains and unseen animal categories. Our code is avail-

able at the project website1.

1. Introduction

Animal pose estimation has received increasing attention

over the last few years because of many potential applica-

tions in zoology, biology and aquaculture. Despite the great

success of applying deep neural networks to human pose

estimation, the lack of well-labeled animal pose data makes

it infeasible to directly leverage on the powerful deep learn-

ing approaches. Existing works overcome this problem by

transferring knowledge from other more accessible domains

such as synthetic animal data [23, 5, 46, 47, 48] or human

1https://github.com/chaneyddtt/UDA-Animal-Pose

Figure 1. Our method takes in noisy pseudo labels (e.g. hind hoof

on left image) generated from model trained with labeled synthetic

data and outputs the correct animal pose on real images.

data [6]. The advantage of synthetic data is that it is low

cost and convenient to generate a large scale of data with

accurate ground truth. Moreover, the domain gap between

synthetic and real animals is more manageable than that

between other domains such as human and animals. This

is evident from the results of [6], where sufficient labeled

data in the real animal domain is needed for the network

to work despite the use of sophisticated domain adaptation

techniques.

The domain gap between synthetic and real animals

mainly comes from the differences in texture and back-

ground, and the limited pose variance of synthetic data.

To solve the domain shift problem, existing works first

generate pseudo labels with a model trained on synthetic

data, and then gradually incorporate more pseudo labels

into the training according to the confidence score. How-

ever, these pseudo labels are inaccurate even with refine-

ment techniques such as confidence-based filtering [6] or

geometry-based consistency check [23]. Fig. 1 shows an

example where a model trained on synthetic animals gives

wrong predictions (e.g. the hind hoof) with high confidence

(marked in yellow circle in the heatmap). This kind of noisy

pseudo labels cannot be filtered out based on the confidence

score and will lead to degraded performance when used
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naively for training.

In this paper, we propose a novel approach to learn from

synthetic animal data. We design a multi-scale domain

adaptation module (MDAM) to reduce the domain gap. Our

MDAM consists of a pose estimation module and a domain

classifier. We first train the pose estimation module with

the synthetic data [23] to generate an initial set of pseudo

labels for the real animal images. We then train our MDAM

on the synthetic labels and the pseudo labels. However,

the accuracy of MDAM is limited by the presence of noise

in the pseudo labels. To alleviate this problem, we intro-

duce an online coarse-to-fine pseudo label updating strat-

egy. Specifically, we propose a self-distillation module in

the inner coarse-update loop and a mean-teacher [31] in the

outer fine-update loop to generate better pseudo labels that

gradually replace the old noisy ones.

We design our pseudo label updating strategy accord-

ing to the memorization effect [3, 42] of deep networks,

which states that deep networks learn from clean samples

at the early stage before eventually memorizing (i.e. over-

fits to) the noisy ones. To avoid the memorization effect,

we rely more on the initial pseudo labels at the early stage

when the self-distillation module and mean-teacher are still

at their infancy in training. Our coarse-to-fine pseudo label

updating strategy gradually replaces the noisy initial labels

when the self-distillation module and mean-teacher gained

enough competency to generate more reliable pseudo la-

bels. Consequently, we are able to supervise our network

with more accurate pseudo labels and prevent overfitting

at the same time. As illustrated in Fig. 1, our model can

successfully locate the joint (hind hoof on the right image)

although the initial pseudo label is not accurate.

We validate our approach on the TigDog Dataset [10],

where we outperform existing unsupervised domain adap-

tation techniques by a large margin. We also demonstrate

the generalization capacity of our approach by directly test-

ing on the Visual Domain Adaptation Challenge dataset

(VisDA2019), the Zebra dataset [46] and the Animal-Pose

dataset [6]. Experimental results show that our approach

can generalize well to both unseen domains and unseen an-

imal categories. Our main contributions are as follows:

• We design an unsupervised domain adaptation pipeline

for animal pose estimation, which consists of a multi-

scale domain adaptation module, a self-distillation

module and a mean-teacher network.

• We propose an online coarse-to-fine pseudo label up-

dating strategy to alleviate the negative effect of unre-

liable pseudo labels.

• Our approach achieves state-of-the-art results on the

TigDog dataset and the VisDA2019 dataset, and can

also generalize well to unseen domains and unseen an-

imal categories.

2. Related Work

Human Pose estimation. Human pose estimation has

been an active research field for decades. One of the most

popular early approaches is the pictorial structure [9, 2, 29]

which uses a tree structure to model the spatial relation-

ships among body parts. These methods do not perform

well in complex scenarios because of the limited repre-

sentation capabilities. Recently, deep learning based ap-

proaches [28, 24, 8, 39, 35, 7, 38, 26] have achieved signif-

icant progress due to the availability of large scale training

data such as the MPII dataset [1] and the COCO keypoint

detection dataset [21]. Existing works can be divided into

two categories. The first category [7, 38, 26] adopts a single

stage backbone network, typically ResNet [15], to gener-

ate deep features, and then upsampling or deconvolution is

applied to generate heatmaps with higher spatial resolution.

The second category [24, 8, 39, 35] is based on a multi-stage

architecture where the generated results from the previous

stage are refined step by step. In this paper, we adopt the

single stage approach as our basic structure so that we can

directly apply domain adaptation to the output of the back-

bone network.

Animal Pose Estimation. Animal pose estimation is rel-

atively under-explored compared to human pose estimation

mainly due to the lack of labeled data. To solve this prob-

lem, Mu et al. [23] use synthetic animal data generated from

CAD models to train their model, which is then used to gen-

erate pseudo labels for the unlabeled real animal images.

Subsequently, the generated pseudo labels are gradually in-

corporated into training based on three consistency check

criteria. Cao et al. [6] propose a cross-domain adaptation

scheme to learn a shared feature space between human and

animal images such that their network can learn from ex-

isting human pose datasets. They also select pseudo labels

into the training based on the confidence score. In contrast

to [23] which does not need any labels for real animal im-

ages, [6] needs part of the real animal images to be labeled

in their dataset to facilitate a successful transfer. Similar

to [23], we focus on unsupervised domain adaptation from

synthetic animal data. Instead of gradually incorporating

pseudo labels into training, we conduct an online coarse-to-

fine pseudo label update to alleviate the negative effect of

noisy pseudo labels.

In addition, there are also several works focusing on 3D

animal pose and shape estimation [48, 47, 46, 5, 18, 4, ?].

[48] builds a statistical 3D shape model SMAL by learning

from scans of toy animals. To recover more detailed 3D

shape of animals, [47] regularizes the deformation of the

mesh from SMAL to constrain the final shape. [46] trains

a neural network on a digitally generated dataset to predict

3D pose, shape and texture for the SMAL model.
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Unsupervised Domain Adaptation. Unsupervised do-

main adaptation aims to learn a model from a labeled source

domain that can perform well on an unlabeled target do-

main. One mainstream approach is based on adversarial

learning [11, 16, 33, 36], where a feature extractor tries to

learn domain-invariant features in order to fool a domain

discriminator. The alignment with adversarial learning can

facilitate the transfer of labels from the source to the target

domain. In addition to feature level alignment, other works

also try to reduce the domain shift in the input [16] or out-

put level [32, 40]. In this work, we apply a domain classifier

to the feature maps of multiple scales such that both global

and local features can be aligned.

Learning from Noisy Data Learning from noisy labels is

an important research topic especially for the deep learning

community. This is because deep learning algorithms rely

heavily on large scale labeled training data that is costly to

collect. To reduce the negative effect of noisy labels, some

approaches focus on training noise robust models by de-

signing robust losses [12, 34, 44] or by correcting the loss

with a transition matrix [27, 13, 37]. Sample selection based

approaches [22, 17, 14, 41] attempt to select possibly clean

samples in each iteration for training. One of the most rep-

resentative methods is Co-Teaching [14, 41], which trains

on all samples at the beginning and gradually drops the sam-

ples with large loss values. This small-loss trick , which is

based on the memorization effect [3, 42] of deep networks,

has also adopted by other works [17, 30] to select more reli-

able labels. Given the noisy pseudo labels, we also conduct

sample selection similar to the Co-Teaching. Moreover, we

gradually update the pseudo labels with the knowledge from

a self-distillation module and a teacher network.

3. Our Method

We propose an unsupervised domain adaptation ap-

proach for animal pose estimation. The labeled source do-

main S consists of synthetic animal images IS and the cor-

responding pose labels YS generated from CAD models,

and the unlabeled target domain T consists of in-the-wild

animal images IT without pose labels. The goal is to learn

a pose estimation model that can adapt well to the unlabeled

target domain. To this end, we design a student-teacher net-

work as shown in Fig. 2. The student and teacher networks

share the same architecture: a basic pose estimation mod-

ule (PEM), a self-distillation module (SDM) and a domain

classifier (DC). We first pretrain the PEM on IS and use it

to generate pseudo labels for IT . However, these pseudo la-

bels are noisy due to the domain gap between the synthetic

and real images, and can hurt the performance when used

naively in training. To alleviate this negative effect, we pro-

pose an online coarse-to-fine pseudo label updating strategy

with the self-distillation module and teacher network.

3.1. Multiscale Domain Adaptation Module

Our MDAM consists of a pose estimation module and

a domain classifier D. The pose estimation module fol-

lows an encoder-decoder architecture, where the encoder is

the feature extractor G and the decoder is the pose estima-

tor P . Given a pair of images (IS , IT ) ∈ R
H×W×3 from

the source and target domains, we feed them into the pose

estimation module to get the corresponding feature maps

(FS , FT ) and heatmaps (ĤS , ĤT ):

FS = G(IS), ĤS = P (FS),

FT = G(IT ), ĤT = P (FT ).
(1)

Similar to human pose estimation [24], we define the an-

imal pose estimation loss in the source domain as the mean-

square error (MSE) between the estimated and ground truth

heatmaps:

LS =
1

N

∑

i,j,c

‖ĤS(i, j, c)−HS(i, j, c)‖
2, (2)

where N = ho × wo ×K, HS represents the ground truth

heatmaps with resolution ho × wo, and K represents the

total number of joints.

We use the pseudo labels H̃T for the target domain since

the ground truth for the target domain is not available:

LT =
1

N

∑

i,j,c

‖ĤT (i, j, c)− H̃T (i, j, c)‖
2. (3)

Note that these pseudo labels H̃T and their corresponding

confidence scores CT are generated from our pose estima-

tion module pretrained on the source domain data following

the training procedure from [23].

To bridge the domain gap between the source and tar-

get domains, we apply a domain classifer D [11, 16, 33] to

the output of the feature extractor G. The domain classifier

attempts to classify the real target data from the synthetic

source data using a cross-entropy loss Ld:

Ld = − log(1−D(FT ))− log(D(FS)), (4)

while the feature extractor tries to fool the domain classifier

by maximizing Ld, i.e. minimizing:

Ladv = −Ld. (5)

We use a gradient reversal layer [11] for optimization.

We apply the domain classifier to the feature maps at

multiple scales given that both local (e.g. a small batch

around a joint) and global information (e.g. the relationship

between different joints) are important for joint detection.

Specifically, we concatenate the intermediate outputs of the

pose estimator and feed them into the domain classifier, as

shown in the right part of Fig. 2.
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Figure 2. Our network is a student-teacher architecture, where the student network consists of a multi-scale domain adaptation module

(MDAM), a refinement block (RB) and a self-feedback loop. We conduct online coarse-to-fine pseudo label update through the inner loop

and the outer loop, respectively.

3.2. CoarsetoFine Pseudo Label Update

The pseudo labels we use in Eq. 3 are noisy although we

filter the samples based on the consistency-check criteria

described in [23]. To circumvent this problem, we propose

the coarse-to-fine pseudo label updating strategy to grad-

ually replace the noisy pseudo labels with more accurate

ones. As shown Fig. 2, our coarse-to-fine pseudo label up-

dating strategy consists of two nested loops.

Inner coarse-update loop: As shown in Fig. 2, the inner

loop consists of the self-distillation module: a refinement

block (RB) and a self-feedback loop. The input to the re-

finement block is the output of MDAM ĤT , and we denote

its output as RT . The output of MDAM is supervised by

the output of the refinement block via the self-feedback loop

with a self-distillation loss:

Lsd =
1

N

∑

i,j,c

‖ĤT (i, j, c)−RT (i, j, c)‖
2. (6)

We also supervise the output of MDAM ĤT concurrently

with the noisy pseudo labels H̃T , i.e.

LT =
1

|C|

∑

c∈C

Lc
T , where C = {c | Lc

T < lth},

Lc
T =

1

M

∑

i,j

‖ĤT (i, j, c)− H̃T (i, j, c)‖
2.

(7)

M = h0 × w0, and in contrast to Eq. 3, Lc
T ∈ R

k do

not sum over c, i.e. Lc
T is the loss term per joint. C is the

set of joint indices with a loss value Lc
T smaller than the

threshold lth, which dynamically decreases as the training

proceeds. This means that we start the training with all the

pseudo labels and gradually drop those with large loss val-

ues. The intuition is that the clean samples tend to exhibit

smaller losses than noisy ones before the network eventu-

ally overfit to the noisy ones [3, 42]. On the other hand, we

assign a gradually increasing weight to Lsd in the total loss.

This results in a net effect of gradually replacing the initial

noisy pseudo labels with better pseudo labels produced by

the refinement block RT at the later stage of training.

Outer fine-update loop: As shown in Fig. 2, the outer

loop is a student-teacher architecture. The student net-

work consists of the multi-scale domain adaptation module

and the self-distillation module. The teacher network has

an identical architecture with the student network with the

exception of the self-feedback loop in the self-distillation

module. Furthermore, we follow the mean-teacher [31]

paradigm to update the teacher model θ′ with the exponen-

tial moving average (EMA) of the student model θ:

θ′t = α× θ′t−1 + (1− α)× θt, (8)

where t denotes the training step and α denotes a smooth-

ing coefficient. The output of the teacher network is used

to supervise the student network, i.e. the output of the re-

finement block RT . We apply a random perturbation P to

the input of the student network, and we denote the output

of the teacher network as TT . The random perturbation P
is concurrently applied to the output of the teacher network,

i.e. PTT . We then enforce the self-consistency loss on the

student-teacher network:

Lmt =
1

N

∑

i,j,c

‖RT (i, j, c)− PTT (i, j, c)‖
2. (9)

P is generated from random image rotation, flipping, oc-

clusion, and Gaussion noise. Note that we only apply per-
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turbations that will affect the final output to the teacher net-

work, i.e. random rotation and flipping. Similar to the self-

distillation module, we also concurrently supervise the out-

put of the refinement block RT with the noisy pseudo labels

H̃T via the following loss function:

LR =
1

|C|

∑

c∈C

Lc
R, where C = {c | Lc

R < lth},

Lc
R =

1

M

∑

i,j

‖RT (i, j, c)− H̃T (i, j, c)‖
2.

(10)

We use the dynamic threshold lth to gradually drop the large

loss terms. Similar to the noisy pseudo label on MDAM

loss in Eq. 7, Lc
R does not sum over c.

It is shown in [25] that the teacher network is able to

provide more stable learning signal than the pseudo labels

since it is a temporal ensemble of networks. Therefore, we

also add a gradually increasing weight term to Lmt in the

total loss. This means that the outputs of the teacher net-

work are taken to be better pseudo labels to replace the old

noisy ones at the later stage of training, and thus preventing

overfitting to the noisy pseudo labels.

Remarks: Note that we place the self-distillation mod-

ule in the inner loop for coarse update since self-distillation

is based on the self-feedback loop with a softer regula-

tory strength compared to the mean-teacher based on self-

consistency. It is beneficial to do the softer self-distillation

before the stronger outer loop fine updates by the mean-

teacher in the nested loops. The softer regulations from self-

distillation prevents the mean-teacher from making drastic

replacement of the initial noisy pseudo labels too quickly in

the training. Consequently, this allows the network to avoid

the memorization effect [3, 42], and therefore benefit from

the noisy pseudo labels at the early stage and then the better

pseudo labels at the later stage of training.

3.3. MixUp Regularizer

We further adopt the recently proposed MixUp [43] to

enhance the robustness of our network to the noisy pseudo

labels. Specifically, MixUp reduces the negative effect

of noisy pseudo labels by combining pseudo labels with

the ground truth labels. Given a pair of images (IS , IT )
from the source and target domains, and the corresponding

ground truth and pseudo label heatmaps (HS , H̃T ), we per-

form MixUp to construct virtual training examples by :

λ ∼ Beta(α, α), λ′ = max(λ, 1− λ),

I ′S = λ′IS + (1− λ′)IT ,

H ′
S = λ′HS + (1− λ′)H̃T .

(11)

Beta(α, α) is the Beta distribution, where we set both hy-

perparameters to be α. λ is the parameter to determine the

weight of the MixUp from the source and target domains.

I ′S and H ′
S are the input image and label heatmap in the

source domain after MixUp. We take the maximum value

of (λ, 1 − λ) such that I ′S is closer to IS than to IT . This

is to ensure that the domain label for I ′S is unchanged after

applying MixUp. We also generate virtual example for IT
by simply changing the max(.,.) to the min(.,.) operator.

3.4. Optimization

The overall objective function to train our network can

be expressed as:

L = LS + λadvLadv + Linner + Louter, (12)

where

Linner = λsdLsd + λT LT ,

Louter = λmtLmt + λRLR.

LS is the fully supervised loss in the source domain (c.f .

Eq. 2) and Ladv represents the adversarial loss (c.f . Eq. 5).

Linner consists of the two loss terms in the inner loop: 1)

the self-distillation loss Lsd (c.f . Eq. 6) and 2) noisy pseudo

labels on MDAM loss LT (c.f . Eq. 7). Louter is the two

loss terms in the outer loop: 1) mean-teacher loss Lmt (c.f .

Eq. 9) and 2) noisy pseudo labels on the refinement block

loss LR (c.f . Eq. 10). Furthermore, the domain classifier

concurrently minimizes Ld (c.f . Eq. 4), and the adversarial

training is implemented with the gradient reversal layer.

λadv, λsd, λT , λmt, λR are the weights to balance all

losses. As mentioned in the previous section, we gradu-

ally increase λmt and λsd from 0 to their maximum value

at the first 10 epochs of training by using a sigmoid-shape

function e−5(1−x)2 [31], where x ∈ [0, 1]. At the same

time, we also decrease the λT and λR at each epoch until to

the minimum value. Note that λT and λR are responsible

for balancing the losses, and play no role in removing the

noisy pseudo labels in the training. The dynamic threshold

lth in LT and LR is responsible for removing noisy pseudo

labels. We determine lth using Algorithm 1, where it is dy-

namically set to the value of the αth
N smallest value of Lc

T or

Lc
R. αN is the cut-off index, which we initialize to K and

gradually decrease it during training.

Algorithm 1: Compute Dynamic Threshold lth

Input : Loss Lc

y of K joints {L1

y , . . . ,L
K

y }, where

y = T (c.f . Eq. 7) or y = R (c.f . Eq. 10);

Cut-off index αN

Output: Dynamic threshold lth

// get indices of Lc
y in ascending order

1 {idx1, . . . , idxK} ← sort_ascending({L1

y , . . . ,L
K

y }) ;

// get value of Lc
y at c = idxαN

2 lth ← L
idxαN
y ;
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4. Experiments

We use Resnet [15] as our feature extractor G, followed

by several deconvolutional layers as the pose estimator P .

As in [7], the intermediate feature maps of the pose esti-

mation module are upsampled and then concatenated. The

output is fed into both the domain classifier and the refine-

ment block. The domain classifier has a fully-convolutional

architecture, which consists of six convolutional layers with

leaky Relu as the activation function. The refinement block

has one bottleneck block followed by one convolutional

layer. We first pretrain the pose estimation module on the

synthetic dataset for 100 epochs, and then use it to gener-

ate pseudo labels for real images. Both synthetic and real

data are used to train the whole network for 80 epochs. The

learning rate starts at 0.00025 and is decreased using the

polynomial decay with power of 0.9 [32]. Our model is op-

timized with Adam [19] with default parameters in Pytorch.

More training details are included in the supplementary ma-

terials.

4.1. Datasets

We train our network with images and pose annota-

tions {IS , HS} for horse and tiger from the Synthetic An-

imal dataset [23] and real images IT from the TigDog

dataset[10], and test our model on the test split of the Tig-

Dog dataset. We test the generalization capacity of our

model on the VisDA2019 dataset, which contains the same

animal categories as the TigDog dataset. Moreover, we also

test our model on unseen animal categories in the Zebra

dataset [46] and the Animal-Pose dataset [6].

Synthetic Animal Dataset: The dataset contains images

for five animal categories, including horse, tiger, sheep

hound and elephant, with 10,000 images for each animal

category. The texture of animals are randomly genrated

from the COCO dataset or from the original CAD models.

TigDog Dataset: The dataset provides keypoint annota-

tions for horse and tiger, where the images are taken from

YouTube (for horse) and National Geographic documen-

taries (for tiger). There are 19 keypoints in the dataset, in-

cluding eyes, chin, shoulders, legs, hip and neck. We only

use the images from this dataset for training and evaluate on

18 keypoints that do not include neck as in [23].

VisDA2019 Dataset: The dataset is designed for multi-

source domain adaptation and semi-supervised domain

adaptation on image classification task. There are in total

six domains, including real, sketch, clipart, painting, in-

fograph and quickdraw. [23] manually annotates the key-

points for horse and tiger from the sketch, painting and cli-

part domains. We use this dataset to test the generalization

capacity of our approach to unseen domains.

Zebra and Animal-Pose Datasets: The Zebra dataset

contains images of Gravy’s zebra, which are collected in

Kenya with pre-computed bounding boxes. The Animal-

Pose dataset contains annotations for five animal categories:

dog, cat, horse, sheep and cow. We use these two datasets

to test the generalization capacity of our model on unseen

animals from unseen domains.

4.2. Results on the TigDog Dataset

The Percentage of Correct Keypoints (PCK), which re-

ports the percentage of detections that fall within a nor-

malized distance, is used as the evaluation metric follow-

ing [23]. We train a unified model on all animal categories

instead of training one model for each animal category as

in [23]. We believe that this is more practical in the real

setting. The PCK@0.05 accuracy of our approach, and the

existing unsupervised domain adaptation approaches taken

from [23] are shown in Tab. 1. ‘Real’ represents model

trained with the real animal pose data and ‘Syn’ represents

model trained only with synthetic data. As can be seen from

Tab. 1, our model outperforms existing unsupervised do-

main techniques by a large margin. For horse category, our

approach improves the state-of-the-art CC-SSL by 12.34%,

and even outperforms the model trained with real data. For

tiger category, we also achieve the best performance among

other UDA techniques with an improvement of 5.64% com-

pared to CC-SSL. We did not outperform the supervised

model for tiger. The reason is that tigers generally live in

forests, where occlusion by surrounding floras happens fre-

quently. However, this kind of occlusion do not occur in

the synthetic data, and thus making it very challenging for

our model to adapt to the severe occlusion scenario. This

also explains why all UDA methods in Tab. 1 show better

performance for horse, which lives in the grasslands with

lesser occlusions.

4.3. Generalization to Unseen Domains

We test the generalization capacity of our model by di-

rectly applying it to the unseen domains in the VisDA2019

dataset. The PCK@0.05 accuracy of our approach for horse

and tiger under sketch, painting and clipart domains are

shown in Tab. 2. Following [23], we evaluate our model un-

der two settings: 1) The Visible Kpts Accuracy represents

accuracy for only visible joints, and 2) the Full Keypoints

Accuracy represents accuracy for all joints including self-

occluded joints. Both CC-SSL and our approach outper-

form the model trained on real images, which demonstrates

the importance of learning from other domains. Further-

more, our approach also outperforms CC-SSL by a large

margin, especially for horse under the painting domain

(80.05 vs. 73.71, 78.42 vs. 71.56) and for tiger under all

domains. We also show some qualitative results for horse

and tiger in each domain in the first row of Fig. 3.
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Horse Accuracy Tiger Accuracy

Eye Chin Shoulder Hip Elbow Knee Hooves Mean Eye Chin Shoulder Hip Elbow Knee Hooves Mean

Real 79.04 89.71 71.38 91.78 82.85 80.80 72.76 78.98 96.77 93.68 65.90 94.99 67.64 80.25 81.72 81.99

Syn 46.08 53.86 20.46 32.53 20.20 24.20 17.45 25.33 23.45 27.88 14.26 52.99 17.32 16.27 19.29 21.17

Cycgan [45] 70.73 84.46 56.97 69.30 52.94 49.91 35.95 51.86 71.80 62.49 29.77 61.22 36.16 37.48 40.59 46.47

BDL [20] 74.37 86.53 64.43 75.65 63.04 60.18 51.96 62.33 77.46 65.28 36.23 62.33 35.81 45.95 54.39 52.26

Cycada [16] 67.57 84.77 56.92 76.75 55.47 48.72 43.08 55.57 75.17 69.64 35.04 65.41 38.40 42.89 48.90 51.48

CC-SSL [23] 84.60 90.26 69.69 85.89 68.58 68.73 61.33 70.77 96.75 90.46 44.84 77.61 55.82 42.85 64.55 64.14

Ours 91.05 93.37 77.35 80.67 73.63 81.83 73.67 79.50 97.01 91.18 46.63 78.08 50.86 61.54 70.84 67.76

Table 1. PCK@0.05 accuracy for the TigDog dataset. ‘Real’ and ‘Syn’ represent models trained with the labeled real or synthetic dataset,

respectively. All other approaches are trained with the labeled synthetic dataset and the unlabeled real dataset. (Best results in bold)

Horse Tiger

Visible Kpts Accuracy Full Kpts Accuracy Visible Kpts Accuracy Full Kpts Accuracy

Sketch Painting Clipart Sketch Painting Clipart Sketch Painting Clipart Sketch Painting Clipart

Real 65.37 64.45 64.43 61.28 58.19 60.49 48.10 61.48 53.36 46.23 53.14 50.92

CC-SSL [23] 72.29 73.71 73.47 70.31 71.56 72.24 53.34 55.78 59.34 52.64 48.42 54.66

Ours 76.65 80.05 75.45 73.74 78.42 73.61 60.85 61.54 65.12 59.58 56.09 60.66

Table 2. PCK@0.05 accuracy for the VisDA2019 dataset. (Best results in bold)

4.4. Generalization to Unseen Animals from Unseen
Domains

We further test the generalization capacity of our model

in a more challenging scenario, where our model is directly

applied to unseen animal categories from unseen domains.

Note that our model is trained only with the horse and tiger

categories, and we test on both the Zebra and Animal-Pose

datasets.

The Zebra dataset contains images of Gravy’s zebra col-

lected in Kenya, and 28 keypoints are provided with each

image . We only test on the 18 keypoints that are described

in the TigDog dataset. The PCK@0.05 accuracy of our pro-

posed approach is shown in Tab. 3. Zebra3D represents the

approach used in [46] for 3D zebra pose estimation. This

model is trained on a synthetic zebra dataset, which is gen-

erated from zebra models with appearance taking from real

zebra images. We compare with their results without the

post optimization process. The results of CC-SSL are ob-

tained by running their publicly available checkpoint. As

they train one model for each animal category, we use the

one that gives better accuracy on this dataset. We can see

that our approach outperforms CC-SSL with an improve-

ment of 14.3%. Our approach also achieves comparable

results to Zebra3D although our model has not been trained

on the zebra category. Note that the accuracy of our ap-

proach and CC-SSL for joint hip is zero because the joint

locations for hip are defined differently for the Synthetic

Animal dataset (which is used to train our model) and the

Zebra dataset. This is another reason why our approach and

CC-SSL are not as good as Zebra3D.

We also test on the 1,000 images from the Animal-Pose

dataset, with 200 images for each animal category. All an-

imal categories in this dataset are unseen except for horse.

We show our results in Tab. 4, where the results for CC-SSL

are from the checkpoint that gives better average accuracy.

We can see that our approach can generalize well to unseen

animal categories such as sheep and cow, with an accuracy

close to horse. The performance of our model for dog and

cat is not as good as that for sheep and cow. We attribute

this to two reasons: 1) The shape and size of dogs and cats

are very different from horses (or tigers), especially for cats

with much smaller size. 2) Dog and cat are always in a sit

or prone pose, which is not the case for horse or tiger living

in the wild environment. We show some failed examples

in Fig. 3 for illustration (the last three examples in the last

row). We also show qualitative results for each animal cat-

egory in Fig. 3. We can see that our model successfully es-

timates some challenging poses, such as the jumping horse,

lying down cat and running dog.

4.5. Ablation Study

We conduct ablation study on the TigDog dataset and the

results are shown in Tab. 5. We use the multi-scale domain

adaptation module as our backbone architecture and train it

with only the pseudo labels (mdam+pl) or the supervision

from the teacher network (mdam+mt). We also compare

with CC-SSL [23], where the authors train the model and

update the pseudo label in an iterative way. We can see

that our backbone MDAM outperforms CC-SSL because

we explicitly enforce the network to learn domain invari-

ant features by applying a domain classifier. The MDAM

trained with the teacher network is not as good as the one

trained with pseudo labels, and this suggests that the teacher

network alone cannot provide enough supervision. The per-

formance is improved by adding the outer fine-update loop

(mdam+mt+outlp), where we gradually update the pseudo

labels with the teacher network. This demonstrates the im-

portance of our progressive updating strategy, which helps
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Eye Chin Shoulder Hip Elbow Knee Hooves Mean

Zebra3D*[46] - - - - - - - 59.5

CC-SSL [23] 60.06 82.29 30.30 0 32.45 65.13 61.97 50.07

Ours 65.33 87.50 23.74 0 45.32 76.02 69.77 57.23

Table 3. PCK@0.05 accuracy for the Zebra dataset. * denotes approaches trained with the zebra category. (Best results in bold)

Figure 3. Qualitative results for the VisDA2019 dataset (the first row) and the Animal-Pose dataset (the last three rows).

Horse Dog Cat Sheep Cow Mean

CC-SSL [23] 65.35 30.27 15.05 52.39 63.71 47.60

Ours 72.84 42.48 27.65 59.51 71.31 56.77

Table 4. PCK@0.05 accuracy for the Animal-Pose dataset. All

animal category are unseen except for horse.

the network learn from pseudo labels at the early stage and

then from the more accurate teacher network. Moreover,

the performance is further improved by adding the inner

coarse-update loop (mdam+mt+outerlp+inlp). This shows

the efficiency of updating the pseudo labels in a coarse-to-

fine manner. Finally, our model is further enhanced with the

MixUp regularizer (full model).

Horse Tiger Mean

CC-SSL [23] 70.77 64.14 67.52

mdam + pl 74.42 64.90 69.69

mdam + mt 74.74 62.62 68.70

mdam + mt + outlp 78.38 67.15 72.70

mdam + mt + outlp + inlp 78.53 68.01 73.25

full model 79.50 67.76 73.66

Table 5. Ablation study for each component of our network.

5. Conclusion

We propose an approach for unsupervised domain adap-

tation on animal pose estimation. A multi-scale domain

adaptation module is designed to transfer knowledge from

the synthetic source domain to the real target domain. In

addition, a coarse-to-fine pseudo label updating strategy is

further introduced to gradually replace noisy pseudo labels

with more accurate ones during training. As a result, we

enable our network to benefit from the noisy pseudo labels

at the early stage, and the updated labels at the later stage

without suffering from the “memorization effect". Exten-

sive experiments on several benchmark datasets show the

effectiveness of our approach.
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