Dimension-adapted Momentum Outscales SGD

Damien Ferbach* Katie Everett Gauthier Gidel®
Mila & Université de Montréal =~ Google DeepMind & MIT Mila & Université de Montréal
ferbach.damien@gmail.com everettk@google.com gidelgau@mila.quebec
Elliot Paquette? Courtney Paquette?
McGill University Google DeepMind & McGill University
elliot.paquette@mcgill.ca courtney.paquette@mcgill.ca
Abstract

We investigate scaling laws for stochastic momentum algorithms with small batch
on the power law random features model, parameterized by data complexity, target
complexity, and model size. When trained with a stochastic momentum algo-
rithm, our analysis reveals four distinct loss curve shapes determined by varying
data-target complexities. While traditional stochastic gradient descent with momen-
tum (SGD-M) yields identical scaling law exponents to SGD, dimension-adapted
Nesterov acceleration (DANA) improves these exponents by scaling momentum
hyperparameters based on model size and data complexity. This outscaling phe-
nomenon, which also improves compute-optimal scaling behavior, is achieved by
DANA across a broad range of data and target complexities, while traditional meth-
ods fall short. Extensive experiments on high-dimensional synthetic quadratics
validate our theoretical predictions and large-scale text experiments with LSTMs
show DANA’s improved loss exponents over SGD hold in a practical setting.

1 Introduction

When pretraining large neural networks, the loss typically scales like a power law with respect to
the amount of data, number of parameters, and total amount of compute [54]. Scaling laws for the
loss function Z2(0) in their simplest form are Z2(6;) < t~7 + d~7 where {0; € R?} is a sequence
of iterates generated by a stochastic algorithm.* The exponents o and T are of practical importance
because they control the number of samples and parameters needed to attain a desired loss value.

While model architectures and training methods have advanced rapidly, it has long been unclear
whether innovations in optimization algorithms could fundamentally change the exponents of these
power laws [48]. Some evidence suggests that major advances like the Adam optimizer [56] primarily
improve the constants in the scaling law rather than improving its exponent [48].

Moreover, recent work has extensively investigated how various algorithmic parameters such as
learning rates [103] and batch sizes [70] should scale as the model sizes and compute grow. However,
momentum parameters are typically treated as fixed constants [93] rather than dimension/compute-
dependent quantities, despite their widespread use in large model training. This leads to the question:

*Corresponding author; website: https://damienferbach.github.io/.

fCanada CIFAR Al Chair

The authors contributed equally to the paper.

“Notation: f < g means there exist constants ¢ and C' (both independent of d) such that cg < f < Cg. We
use (z)4+ to denote max{0, z}.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://elliotpaquette.github.io/

alpha = 1.25, beta = 2.0, 6 =5.40, d = 500 alpha = 1.4, beta = 1.0, batch = 1 o alpha = 1.2, beta = 0.7
jana-

:
10° 10 10° 10° 107 10° 10° 10%° 10° 10° 107 10° 108 109 10° T10% 10° 10° 107 10° 107 101
flops flops flops

Figure 1: For empirical runs and deterministic ODE (7) simulations of PLRF, DANA outscales SGD while
Schedule-Free SGD and Adam do not. (left) SGD & DANA fixed d, single run. Gray dashed line indicates
transition (¢ < 1/v3 < d) where DANA-constant(k2 = 1) shifts from SGD-like behavior to acceleration.
Deterministic ODE predictions (bold curves) match single runs of the stochastic algorithms (faded curves).
(middle) Deterministic ODEs for SGD, DANA and Schedule-free SGD [33], across d = {100x 2'},i =1, .., 10.
DANA-decaying (ks = i) outscales DANA-constant, which itself outscales SGD. Schedule-free SGD scales
similarly to SGD. (right) ODEs show Adam cosine decay [56] appears to have the same scaling law as SGD.
See Sec. M for details. In all figures, batch size is 1.

Can one select hyperparameters of stochastic momentum algorithms as a function of model size and
data to provably change the exponents in the scaling laws for the loss?

In this work, we answer in the affirmative, mathematically showing that one can indeed improve
the scaling law exponents over standard stochastic gradient descent (SGD) on a simple power law
random features (PLRF) model.

QOutscaling. To address the question of scaling, let us consider the following learning problem,

min {2(0) = E.[%#(0;2)]}, where Z : R — R, (1)
c d

where d is the parameter count, and where x is drawn from an unknown distribution.

A training regime, t < d*, £ > 0, is a scaling of iterations (or samples) to parameters. There are many
examples of training regimes, e.g., the proportional regime (t < d) or the compute-optimal regime,
in which one selects the ¢ that yields the best loss under a fixed compute budget (see Sec. 5). Now
suppose the loss under an algorithm follows the scaling law

P(t,d) &ef P(0y,d) <t~° +d~" and suppose t =< d’, £ > 0 is a training regime.)

Then under this training regime, the loss satisfies 2 (d’, d) =< d~™"{¢®:7} We call the absolute
exponent on d, the loss exponent. For a given training regime, we say an algorithm outscales another
algorithm if the loss exponent is larger.

We emphasize that this notion of outscaling differs in one key aspect from the more traditional
notion of “acceleration” from optimization theory. Acceleration is typically formulated for a fixed-
dimensional problem with constants that can have large d-dependence (e.g., || — 0*||?). In other
words, acceleration generally denotes outperformance when ¢ — oo and d = O(1).

In this work, we are interested in scaling laws of one-pass, mini-batch SGD with momentum with
batch size B. Atiteration ¢ > 0, we generate independent samples {z} ; } 5 | and update:

e = (1= AWy +m(td) S8 VRO xhy),
Ori1 = 0r — 2(t;d) S0 VRO) — v3(t:)y,

where A(t) : [0,00) — [0, 00) is a momentum hyperparameter and 7;(¢; d) : [0, 00) — [0, 00) are
learning rates. This framework incorporates classical SGD and SGD-Momentum by setting

1) =1, 72(t;d) =y =Fd ™", y(t;d) =3 =3d ", A(t) =9, k >0 (SGD-M)

as well as stochastic Nesterov, Schedule-Free SGD [33], and accelerated SGD [52, 94]. For a detailed
discussion on related work see Section A and Tables 2 & 3.

(Gen-Mom-SGD)

Main Contributions. In this work, we analyze Gen-Mom-SGD under the power law random
features (PLRF) — a four-parameter model with data complexity (1/«), target complexity (1/4),

>See Assumption 2 for formal definition of o and 3 in the context of the power law random features model.

Loss Exponent

Validation Loss
Validation Loss
o

Final Loss

01 —— SGD loss exp = -0.058 (R2=0.9997)
S _ DANA-decaying k3=0.7 X
DANA-decaying - DANA loss exp = -0.062 (R?=0.9998) 16

3.
10° 107 10° 10° 107 10° 107 10% lell le13 1lel5 lel7 le19 04 05 06 07 08 09 10 12
Training Tokens Flops (6 * non-embed params * tokens) DANA-decaying k3

Figure 2: DANA-decaying improves the loss exponent on LSTM language models. (left) Sweeping DANA-
decaying 3 shows stability and divergence similar to PLRF (Fig. 3a). (center) DANA k3 = 0.7 maximizes
the compute-optimal loss exponent and outscales SGD. (right) Compute-optimal loss exponents (fop) and
validation loss for final iterate (bottom) vs DANA k3. All loss exponents (Fig. 22) have R? > 0.984 and vary
smoothly across k3, traversing the divergent, outscaling, and SGD-like regimes seen in PLRF (Fig. 6 x-axis).
Schedule-Free SGD is k3 = 1.0 and matches SGD loss exponent. SGD-M matches SGD (Fig. 24). See Sec. L.

model parameter count d, and hidden dimensionality v — extensively studied for its scaling properties
[11, 69]. We derive a scaling rule for hyperparameters of Gen-Mom-SGD that improves loss
exponents over SGD across much of the («, 3)-phase plane under a variety of training regimes. We
denote this scaling hyperparameter rule as dimension-adapted Nesterov acceleration (DANA):

y(t;d) =1, ya(t;d) = F2d ™", y3(t;d) = F3d "2(1 +t) 7", A(t) =6(1+t)"", (DANA)
where x; > 0. These hyperparameters will further be made explicit for the PLRF.

To show this improvement in the exponents, we show that the loss curves for PLRF can be described
exactly by a system of differential equations, and derive precise theoretical scaling laws for SGD-M
and DANA. Using dimension- and data-dependent hyperparameters, DANA outscales SGD (see
Fig. 1) above the high-dimensional line (2«¢ > 1) while performing no worse than SGD elsewhere.
In contrast, traditional SGD-M, with fixed, non-scaling momentum, A, produces identical scaling
laws to standard SGD across all regimes (see Fig. 24). DANA-constant (k3 = 0) employs a decaying
momentum schedule (1+¢)~! with the momentum learning rate given as 3 < 72 - 1/d, and outscales
SGD for 2« > 1 under many regimes. DANA-decaying (k2 = k1 = 0, k3 > 0) replaces d with a
time-dependent effective dimension, resulting in a schedule for 3 that outscales SGD for all regimes
and all 2a > 1, succeeding where DANA-constant cannot.

We then investigate the compute-optimal regime, explicitly deriving compute-optimal parameter, loss,
and data exponents. While the empirical Chinchilla laws [50] suggest compute-optimality occurs at
d = t, we show DANA-decaying (for 2cc > 1) has a different compute-optimal relationship between
d and t, emphasizing that outscaling can occur outside the Chinchilla regime. Moreover, for some
(a, 8), DANA reduces the data exponent needed to reach compute-optimality compared to SGD.

We perform extensive PLRF experiments in Sec. K to validate our theory, showing excellent numerical
agreement for loss curves and compute-optimal exponents with the analyzed ODEs. Finally, we train
LSTMs on text data (Fig. 2) showing the DANA loss exponents (Fig. 2c & 22) vary smoothly over
k3 and recover the divergent, outscaling, and SGD-like regimes predicted theoretically by Fig. 6.

While we show the existence of stochastic algorithms that provably outscale for 2ac > 1, it remains
an open question as to whether outscaling SGD can occur in the high-dimensional setting (2« < 1).

2 The power law random features model (PLRF)

In this work, we analyze a four-parameter model called power law random features (PLRF) (3)
[11, 69, 80], which exhibits rich behavior and phenomenologically captures many aspects of scaling
law setups [16, 63, 80]. For a data vector x € R we embed this vector in R using a matrix
W € R"*? and construct noiseless targets by dotting a fixed b € RV with the sample z. This leads to
the formal problem statement:

min {1 2(6) £ 1E, [(WTz,0) — (x,b))*]}. 3)

0cRd

The matrix W allows the model to have variable capacity (d) independent of the data dimension, and
we choose the matrix W to have entries distributed as N (0, 1/d). The key structural assumptions are:

Assumption 1 (Data and targets, a and (3). The samples x € R" are distributed according to
(zj) ~j %2 foralll < j <wvand{z}]_; ~ N(0,1). The targets are scalars constructed by

dotting the sample x with a signal b € R¥ whose entries (b;) = j .

Power law type data distributions are ubiquitous in language, vision, and many other tasks, and these
distributions are largely responsible for making this model phenomenologically similar to scaling
law setups [69, Fig.2,3]. Without the random matrix W, («, 3) are related to what is known in the
literature as source and capacity conditions [22, 23, 36, 81] (see Sec. A and Tab. 1 for details).

The hidden dimensionality v is assumed to be large and proportionate to d, so thatv/d — r € (1, 00).
In the case that 2« > 1, this assumption can be relaxed, in that one can take v larger as a function of
d or even v = oo. It should be noted that in many scaling law setups, such as [50], the task scales
with the parameter count, so that it is natural to assume v grows as d grows.°

3 Continuized analysis of general stochastic momentum algorithms

Continuized frameworks are widely used for the analysis of momentum algorithms (see especially
[38, 78, 92, 99]). When run on the PLRF model, the algorithm class (Gen-Mom-SGD) has a loss
curve that can be described exactly by a system of differential equations; Section C.1 and (22) for
details and derivation.

We use a common probabilistic trick for continuizing a discrete process called Poissonization in
which we let (IV; : ¢ > 0) be a standard Poisson process, and then define Y; = yy, and ©; = 0y, .
Now we let (\;,w;)7_; be the eigenvalue-eigenvector pairs for K € R?¢, which is the covariance
of the projected data W "z, and let ©* be the minimizer of £?(0). We then introduce the system of
variables, with the expectations taken over all randomness except W,

P2(H)ZE [(w;,0,—0")?], (1) FE [(w;, Y2)?], and x;(t) € E [(w), 00 — O)(w;, Y2)]. @)

J J
In terms of these variables, we recover the expected loss by summing over the components of p? (t).

P(t) £ E[2(00)] = E[2(0)] + X0_, \ipd(t).)

Then we can derive a coupled linear system of differential equations:
(05 (0,6), (), GrtiAg) = QEA) x vt A) +P(Hg(tX), (©)

for an explicit matrix €2 and vector g which are polynomials in (A;, A, B, v1, 72, v3) (see (22) for
the full formula).

v(t;) &

These equations are sufficiently complicated that we simplify the ODE before performing the analysis.
This can be viewed as taking a “high-dimensional limit” (see Remark C.3), or, in short, as dropping
all terms from 2 and g which are more than first order in (A, A}, ¥3) to produce:

ot <—2’yg(t)B)\j 0 —273(t)) def 73 (t)
Q(t;A5) = 0 —2A(t) 271 () BA; and g(t;\;) = A\;B | (1)
N(@)BA; —3(t) —A() —2(t)BA; 0

We formulate all results going forward for the simplified ODEs; see Sec. K and Fig. 8 for extensive
numerical validation of the simplified ODEs as a model for the risk curves of Gen-Mom-SGD. We
also note that these simplified ODEs correspond exactly to the risk evolution under the SDE model
of Gen-Mom-SGD:

dY; = —A()Y; dt + 71 (t) (2V2(6,) dt + \/ BK 2(0,) dB{M),
A6, = (1) (EV2(0,) dt + \/ BK2(8,) dB”) — 43()Y dt.

%In the case 2« < 1, there is a larger range of scalings of v that are possible, with d < v < d*/(1=2%),

(N

0=17,p=1.0.d=800, ys(t) = (t+ 1)

—— theory, dana-decaying, ys(t)

N\ theory, sgd
10-2 \ — theory, dana-constant

theory, dana-decaying, ks = 1.0/(2*a)

a=17,B=1.0,d=800,ys(t)=d~*

—— theory, dana-constant, ys(t)
theory, sgd
102 N\~ theory. dana-constant, k; = 1
\ theory, dana-decaying, k3 = 1/(2a)

alpha = 1.0, beta = 0.8, d =500, v=2,500

empirical
—— deterministic equivalent

5

8

rnin
density, U

1074 ®
~ .
u g
107 5

o o
10° 16° 10° 167 107 107 10°
flops

@s(t) < (1+1)7"

107 102 107 10° 107 107 107 10° 10t

108
flops eigenvalues

(b) y3(t) < d™"? (c) iy versus g

Figure 3: (left) & (center) DANA sweeps of x2, k3. A k bigger than (stability) = divergence after some ¢;
DANA-decaying w/ k3 = 1/(2a) is the envelope of the divergent algorithms. k3 = 1/(2c), k2 = 0 is optimal
in DANA. (right) Deterministic equivalent 5 (8) vs empirical density estimate match. See Sec. M for details.

Here dBEl) and ngZ) are independent standard d-dimensional Brownian motions.” Using Itd’s

formula (see (43) for details), one then can easily derive the simplified ODEs for the system v/(t; ;) &ef

(p3(1), &3 (6), x5 (1)
4 Deriving the scaling laws of (Gen-Mom-SGD) on the PLRF model

Random matrix theory of the PLRF. By solving these ODEs for P in terms of their initial data, we

. . d .
can represent the curve P entirely as a function of the spectral data ()\ s p? (O)) L A mathematically
convenient representation for this data is a pair of pure-point measures

fir(dz) = Y30 0y, (da)p2(0) and fise(dz) = S0, 0, (dz) A2,

in terms of which P can be represented as a solution of an integral equation (see (36), (56), (57)).

®

Random matrix theory (RMT) gives a prediction for these measures (us, o), using the so-called
deterministic equivalent; for details, see (33). Deriving such an equivalent is a textbook tool in RMT,
but the proof of equivalence in the case of PLRF falls outside of textbook RMT (see for example
[62]). To limit the scope of the theoretical analysis, all the scaling law statements that follow are
proven for the deterministic equivalent; the numerical agreement between pg and fi5 is excellent
(see Fig. 3c).

Scaling laws for SGD on the PLRF. In [80], using the deterministic equivalent (5, f45), the authors
show for SGD,

(deterministic loss curve) P(t) = F(D(t)) + 72K, (U(1)), where F(t) = F,,(t) + Fauo (1) + Fo,

where J(t) &4 2+, Bt. Here F o) can be viewed as the bias term and JACPP o) as the variance
due to the stochastic gradients. Each of these terms has an interpretation and an explicit scaling law:

Component Symbol Scaling Law Contributing Part of 1

Population bias ~ F,,(t) =t~ (xt26-1)/() Spikes (pure point part) in pg

Model capacity ~ Fo(t) = d~(2a+(1-26)+) Irreducible loss level, p5({0})
Embedding bias f;rac(t) = 11/ 2e) Bulk (absolutely continuous part) of p5
Variance Kpp(t) = dI—20)+¢=2+1/(22) pyre point part of pg

4 Distinct Phases. For different regions of («, 3), one or more of these four terms may be fully
dominated by the others, yielding 4 different phases. See also Fig. 5 as an example. The different
components of the loss curves do not change across the algorithms, but the scaling exponents (o, 7)
vary. The phase boundaries are determined by major quantitative and qualitative changes in the
problem geometry.

"We have also used two Brownian motions for additional simplification of the analysis; this would correspond
to using two independent stochastic gradient estimates in the two lines of (Gen-Mom-SGD).

Dominant terms

PhaseI: F,,(t) + Fo

Phase II: F,,(t) + Fac(t) + Fo

high-d Phase III: K, (¢) + Foe(t) + Fo

line Phase IV: F,,(t) + Kpp(t) + Fo

0.25 Each phase is characterized by different dominant terms in the loss

function P(¢). The terms Fpp (£), Kpp (£), Fac(t), and Fo represent
different components that contribute to the overall loss behavior,
B with their relative importance varying across the parameter space.

Figure 4: Phase diagram and corresponding dominant loss terms.

The high-dimensional line, which occurs where 2« = 1, separates gradient norms that grow with d
from constant ones. The line 23 = 1 determines if the ||y — 6*||* grows with d. The line o = j3
determines if the target complexity or data complexity is higher, which determines the relevance of
gradient noise. Finally o = }l determines where the gradient noise becomes high-dimensional and
has aspects which are not power law.

Scaling laws for momentum methods. Our main result is the extension of these scaling laws
to SGD-M, DANA-constant and DANA-decaying in the small batch setting.

Theorem 4.1. (Summarized Version of Thm G.1 (SGD-M), Thm H.3 (DANA-constant), Thm 1.2,
(DANA-decaying)). Suppose that (o, 3) are not on any critical line, that 2o + 2 > 1, that o > ;11,
and that 8 < o + 1. Suppose that batch size B is fixed independent of d. Consider DANA-constant,
DANA-decaying, SGD, and SGD-M. Define the time change

1+2(y2 + 2)Bt, (SGD-M),
2
14 2Bt + (Ji\/s(s)B ds) . (DANA).

Then, provided the algorithm is stable®, which is to say that for some constant c sufficiently small,
independent of d (and where tr = Zle jT20 = d(1—20)4)

def

©))

§<2,(72+ %) <cmin{4, L}, (SGD-M),
cd > 1,7 < cmin{%, t—lr}, A3d™"2 < ¢y, (DANA) with k3 > i, (stability)
d > 1,9 < emin{ L, L}, A3d "2 < cy2d?*(—30), (DANA) with k3 < 5=,

one has the following scaling law where -y = 7y for DANA and y = ~2 + % for SGD-M

Pt) = F(I(t)) + 1 Kypp (9(1)). (10)

For DANA—decaying, we have the following additional requirements. We only consider 2ac > 1, 7o
bounded below, and (1/2a) < k3 < 1.

We remark that DANA-decaying/constant appear to be the most interesting (and optimal) DANA
cases (see Fig. 6). From (10), it is simple to produce explicit scaling laws for DANA

Plt;d) < &7+ d7 4+ AT HdTTHTOR, (11)
——— S~~~ —_—
population bias model capacity =~ embedding bias variance

see for example Figure 5. The parameters o; and 7; are explicit, depend on the algorithm, and vary
continuously in («, 8). We relegate the proofs to Sec. G, H, I and specific exponents to Table 4.

Understanding stability. The stability conditions listed in Theorem 4.1 are essentially sharp, in that
we can show the loss curves are unbounded in d if the hyperparameters have lower bounds that are on
the same order as these upper bounds.

8Stability is proved in Cor. G.1 for SGD-M, Cor. H.2 for DANA-constant, Prop. 1.2 for DANA-decaying.

y 3 SGD/SGD-M: == 1=,
DANA-constant: - -

\ DANA-decaying: - -

Figure details: Here p &t 2a+28—1. Population bias, F,, (9(t))
>4 dominates at small times, then the loss slows down from embed-

AN \ —~ ding bias, T, (1(t)), and then finally reaches the model capacity,
N “‘ \'/PP Fo(t). In this phase, the gradient noise (variance, fkpp o) is
% A \ > always dominated by F,,, o 9, unlike Phases III/IV. When ¢ < d,
= N « DANA-constant behaves like SGD/SGD-M. For all phases, see

- . R Zo Fig. 7, 12 for phase diagrams and Fig. 13,14,15 for loss curves.

i=d log(?)
Figure 5: Example of loss curves (Phase I, a > 5 > 0.5).

In the case of SGD-M, above the high-dimensional line (2 > 1), the effective learning rate v, + %2
can remain constant, but below it must scale with the parameter count d. This transition is precisely

captured by tr =< Y7, j~2°.

For the DANA class, the simplest choice of ~3 is to take it constant, (i.e, k3 = 0, DANA-constant).
The largest constant stable choice for v3 is d~! (see also a related algorithm [94]). This has a key
limitation: with such small 3, the momentum term needs O(d) steps to reach the gradient magnitude
and to have any effect on the behavior of the loss. Thus, for early iterations, ¢ < d, DANA-constant
and SGD exhibit similar scaling behavior.

One can resolve this, and produce a faster algorithm by observing that after ¢ iterations, only part of

the d-dimensional feature space is being used, i.e. there is an effective dimension of K at iteration ¢
[14, 61, 101, 110]. Quantitatively,

(effective dimension at iteration ¢) < max{j : \;(K) > 1/(tB)} < (tB)~'/(?®),

If we replace the fixed dimension parameter d in DANA-constant with (¢B)~1/(2%) this yields the
DANA-decaying algorithm (see also [107]) with the smallest possible k3. Fig. 3 shows DANA-
decaying with 1/(2«) appears to be optimal on PLRF when varying (2, 3); see also Fig. 6.

The choice of § in A(t) = 6(1 + ¢)~! must be chosen sufficiently large to guarantee acceleration and
stability. We summarize the recommended DANA-constant and DANA-decaying hyperparameters

for PLRF in the table below, where tr = 27:1 j72e,

Algorithm Hyperparameters (g + 5 > (2 - k3) max{m%?ﬂ_l, 4 — é})

DANA-constant 2o >1 Ky, k3 =0,ka =1,7% =1/(2tr), 33 =1/5 X 72
20<1 kK1 =1—20,ky=1+kK1,k3 =0
DANA-decaying 2o >1 kKi,ka=0,k3 =1/(20), 72 =1/(2tr), 53 =1/5 X 72

Hyperparameters beyond PLREF. In settings where («,) are unknown or meaningless, we recom-
mend setting 2 to a stable SGD learning rate, y3(t) = v2 x (1 +¢)~ " and 6 = 8. Then, sweep over
k3; the minimum k3 where DANA-decaying converges appears optimal (Fig. 2¢ & 20).

N
)

2a ;izrgence Full DANA class. There are other stable scaling rules in the DANA

2.0 —— stability boundary class (above red line). DANA-decaying w/ k3 = i is optimal (e.g.,

SChlo oy fewest iterations to optimum, best loss exponent) amongst the whole

class. (left, above high-d line, x; = 0, B = 1, = 1.1): Plot

of log,(time to reach irreducible loss). DANA stability boundary

(red) at ko = —2ak3 + 1 with divergence below; DANA takes same

number of iterations as SGD at (pink) line, k2 > 2a(1 — k3). Darker

. color = smaller number of steps. Iterations to reach irreducible loss,

DO \ 5T gie?/(a—1) < ga+l/2 £ 2o (DANA-decay < DANA-constant <
098 0h oaveaoe o8 1 SGD). Stochastic Nesterov does not converge [38].

I
-

N
=)

,_.
o
logq (steps to reach irreducible loss)

g
©

=
~

=
o

—
o

Figure 6: Full DANA class, time to reach irreducible loss.

Phase llb: alpha = 0.7, beta = 0.6, 6 =3.29

107t

1072

1072

X104

=
107°

NN
ARY
N
S
o
10774 = dana-decaying, compute curve
ar

10°°

==~ dana-constant, compute curve
1078] «++-- sgd, compute curve

10° 10° 107 10° 107 10% 10®
flops flops

Phase llla: alpha = 1.4, beta = 3. Phase lllb: alpha = 0.7, beta = 1.5, 6 =5.86 V' N

dana-decay, ode 1
— dana-constant, ode ()utscalcs‘ 4

k4
’,
\ B g
= &
TN \ - - ')'/'757/5'/& 0.75
A

== dana-constant, compute curve
rve

107 10° 100 10% 10° 10° 107 10° 107 108 10%

flops flops 0.5

A

>

Figure 7: Comparison of SGD, DANA-constant, and DANA-decaying with compute-optimal curve
predictions. Numerical set-up: d = 100 x 2°,4 = 1,. .., 15; Simplified ODEs (43) plotted for the scaling-law-
equivalent model. DANA-decaying outscales in all phases (Phase Ia, II, III) where 2. > 1. DANA-constant
outscales SGD in all phases 2ac > 1 except Phase IIIb. Predictions for compute-optimality loss exponents match
empirical results. (see Sec. M for details).

S Using Momentum to outscale SGD

SGD-M fails to outscale. The typical approach to momentum is to use a constant momentum
A(t) = 0, in practice usually set to 1 — & = 0.9. Regardless of the choice of fixed A, SGD-M
produces the same scaling laws as SGD. In particular, most ‘speed up’ of SGD-M can be attributed to
a larger effective learning rate for SGD, resulting in improved scaling law constants, but not a change
in the loss exponent. There is an equivalence in risk dynamics when 5GP = 75GPM 4 ASGD-M /5. qee
Rem. G.2 for details and Fig. 16 and 24 for empirical equivalence on PLRF and LSTMs respectively.

DANA-constant outscales SGD for most («, 3) with 2a. > 1. The limitation of DANA-constant’s
small 3 learning rate is that the momentum term requires at least d iterations of the algorithm to
become noticable in the loss dynamics. Thus, for ¢ < d, DANA-constant and SGD have the same
scaling law (see Fig. 1a where gray line indicates ¢ < d). If one is able to reach JF before d (which
occurs for 2a > 1), DANA-constant will outscale SGD in training regime ¢ = d’ with 1 < £ < 2a.
We note that once ¢ = 2«, no algorithm outscales SGD, as the irreducible loss level is reached.

DANA-decaying outscales DANA-constant for all (o, 3) with 2o > 1. For any regime t = d*
with 0 < ¢ < 2a,, DANA-decaying will outscale both SGD and DANA-constant, provided the former
is not already at the irreducible loss level F,. Hence DANA-decaying will always be both more
sample efficient and compute efficient than SGD and DANA-constant. One may look further at the
full DANA class of algorithms (Fig. 6), which may potentially contain other interesting scaling rules.

Moreover, many stochastic algorithms fall into Gen-Mom-SGD — Schedule-Free SGD [33], Nesterov
[75], AcSGD [94], Accelerated SGD [52, 61] (see Tab. 3 for param. comparison). For these,
deterministic ODEs (22) exactly describe the risk evolution. We give heuristics for the scaling laws
of these algorithms (Sec. B.5). See Tab. 2 for sample complexity comparison and Fig. 10 for scaling
behavior, in which DANA-decaying outperforms all (including Adam with cosine decay, see Fig. 1c).

In principle, one could also look at unstable scaling rules, which are stable in one training regime but
eventually diverge. For example, one could sweep over the 3 in DANA-constant to find the 3 that
minimizes P(t; d); this produces a schedule v3(t; d), which on the PLRF is exactly DANA-decaying
with k3 = 1/(2a) (see Fig. 3b & Section J.3). See also Fig. 3a on PLRF and Fig. 2a on LSTM for a
related sweep over k3.

100 DANA-constant: (a,) =(0.7,0.8) Loss Exponents, B = 0.7

—— dana-constant - Predicted
1.0 dana-decaying - Predicted

o
©

o
>

Loss Exponents

o
=

10-5] — Empirical (10 seeds)
simplified ODE /
Empirical exp = -0.64, 7
1074 Theory exp =

o
o

10° 10° 107 10° 101 025 050 075 100 125 150 175 2.00 07 08 09 10 11 12 13 14
Flops Alpha Values Beta Values

Figure 8: Loss curves match almost exactly between empirical PLRF experiments and ODE solutions.
Compute-optimal loss exponents match approximately. (left) Loss curves for simplified ODEs (7) closely
match empirical PLRF across 13 d-values up to d = 12,800. Empirical loss exponent fit by Chinchilla Approach
1 [50]. (middle) Loss exponents 7 in P(f/d*; d*) = §" for fixed 8 = 0.7 across a’s. Theoretical predictions
(solid lines, see Tab. 5,6,7) match empirical (dots) within 0.09. (right) Compute-optimal parameter exponents
Eind*(f) = ff match within 0.13 (top) and data exponents, ¢ (bottom), for fixed a = 1 across (3 values. See
extensive experiments Sec. K across 84 values of («,) + discussion of error sources. Fig. details in Sec. M.

Compute-optimal regime. One natural training regime for d is the compute-optimal training regime
[16, 50, 63], where for a given compute budget f measured in flops, one chooses d*(f) to minimize
the loss. We measure § via:

Compute (flops f) = (iterations of alg. (¢) X batch size (B)) X parameters (d). (12)

We plot the loss curve Z(6;;d) = P (t;d) = 9(%, d) as a function of flops, and then we solve

for the compute-optimal parameter size d*(f) = arg mindﬁ(g; d) = f¢. With access to the explicit

functional form of the loss curve (11), it is straightforward to find d*. We denote ¢ the parameter
exponent and 7 the loss exponent. Here 9(32, d*) = §7" is known as the compute-optimal curve.
The data exponent is 1 — & since iterations times batch equals amount of data used.

Given the form of the loss curves (11), compute-optimality must occur at an intersection point of
&"pp, fr"ac, Fo, and iKpp Thus, the phases are further broken down depending on the tradeoff location
of compute-optimality. We derive compute-optimal frontiers and present the exponents in Tab. 5,6,7,
Sec. E for proof details. See also Fig. 12 (phase diagrams) and Fig. 13,14,15 cartoon plots of loss
curves and compute-optimality. Fig. 9 gives a detailed example of the shape of the risk curves.
Predictions of exponents (¢, 77, £) match theory - see Fig. 8, Fig. 26-33. For specific details about the
different phases and algorithms, see Sec. E.S.

Compute-optimality main takeaways. The empirical Chinchilla law [50] showed the optimal
parameter count scales like d*(f) = /2 on large language models while [80] observed theoretically
that SGD on PLRF reproduces this behavior in Phase III. However, for 2a > 1, DANA-decaying is
never compute-optimal with d*(f) =< §1/2: depending on the phase, the compute-optimal training
regime of DANA-decaying requires undertraining or overtraining relative to the Chinchilla law.

Furthermore, the compute-optimal tradeoff point can

change based on the choice of algorithm. For exam- 1 Eiziisnfail?:?pc)_ T T
ple, in Phase Ila/Illa, for SGD it is compute-optimal DAN A_dec;,ymg; L
to stop training early, when the optimization enters the >
é’ac regime (which is slower to optimize). However, for ;: F
DANA-decaying, it is compute-optimal to continue train- g

ing, and in fact, to continue training to the irreducible & s .

loss level Fy because DANA-decaying is substantially . - ?;'

more sample/compute-efficient than SGD in this regime. ~a. A r——
Moreover, even when the tradeoff point is the same as RS B/
SGD, such as in Phase Ia, DANA-decaying attains better - e —>

loss than SGD for the same compute or sample budget. . .
Figure 9: Compute-optimal scaling laws

LSTM results. We train 2-layer LSTMs (Fig. 2) on the ~(PhaseIla, (a > (3 + V5)/ 4, 0> > 0.5)).
C4 language dataset [84] and co-scale the embedding We reparameterize Fig. 5 by fixing the compute

and hidden dimensions to sweep model sizes. This in- budget J and parameterizing the x-axis with
£ €[0,1],sothatd = f*~“and t = §*. This

shows the relationship between compute bud-
9 get and optimal parameter count.

duces a power-law regime for the compute-optimal fron-
tier on intermediate model sizes with all R? > 0.984,
similar to Fig 7 in [54]. For DANA-decaying, the loss
exponents (Fig. 22) vary smoothly with x3 and closely match PLRF behavior (Fig. 6): diverging for
ks < 0.6, outscaling SGD for 0.6 < k3 < 0.9, and matching SGD when k3 > 1.0 where k3 = 1.0
is Schedule-Free SGD. We show equivalence for SGD-M and SGD in Fig. 24. For details see Sec. L.

Conclusion, limitations and future work. We have shown that DANA outscales SGD on PLRF in
the 2ac > 1 regime by properly scaling Nesterov-type momentum in a data- and dimension-dependent
way. We validated Theorem 4.1 with extensive PLRF experiments; moreover, PLRF acts as a
useful proxy for LSTMs on text data where theoretical predictions for loss exponent improvements
hold. A full convergence argument beyond quadratics for DANA-decaying would be desirable, e.g.
theory for cross-entropy might suggest different momentum scaling strategies. It is an open question
if outscaling is possible for either the 2ac < 1 case or for d-dependent batch sizes. Additional
limitations of our analysis include the use of fixed features which does not incorporate any kind of
feature learning, as well as deterministic learning dynamics based on an ODE description of the loss
evolution.

Additionally, while we compare DANA against other non-adaptive momentum methods, most real-
world problems benefit from adaptive methods such as Adam. Hence it would be interesting to
have an analysis of DANA combined with Adam or other preconditioned methods. Finally, in the
LSTM setting, the exact meaning of « is not clear, although empirically & = 0.71 (corresponding to
ks = 0.7) appears near optimal. Defining and measuring this o on real-world problems, particularly
determining whether 2o > 1, is an important direction for future work.

Acknowledgments and Disclosure of Funding

G. Gidel is a CIFAR AI Chair, he is supported by a Discovery Grant from the Natural Science and
Engineering Research Council (NSERC) of Canada and a Google x Mila research grant. C. Paquette
is a Canadian Institute for Advanced Research (CIFAR) Al chair, Quebec Al Institute (Mila) and
a Sloan Research Fellow in Computer Science (2024). C. Paquette was supported by a Discovery
Grant from the Natural Science and Engineering Research Council (NSERC) of Canada, NSERC
CREATE grant Interdisciplinary Math and Artificial Intelligence Program (INTER-MATH-AI),
Google x Mila research grant, Fonds de recherche du Quebec Nature et technologies (FRQNT)
NOVA Grant, and CIFAR AI Catalyst Grant. Research by E. Paquette was supported by a
Discovery Grant from the Natural Science and Engineering Research Council (NSERC). Addi-
tional revenues related to this work: C. Paquette has 20% part-time employment at Google DeepMind.

The authors would like to thank Jeffrey Pennington, Lechao Xiao, and Atish Agarwala for their
careful reading and helpful feedback that improved the paper.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow
Datasets, a collection of ready-to-use datasets. https://www.tensorflow.org/datasets.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194-8244, 2017.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. arXiv preprint arXiv:1407.1537, 2014.

Luca Arnaboldi, Ludovic Stephan, Florent Krzakala, and Bruno Loureiro. From high-
dimensional & mean-field dynamics to dimensionless odes: A unifying approach to sgd
in two-layers networks. In The Thirty Sixth Annual Conference on Learning Theory (COLT),
pages 1199-1227. PMLR, 2023.

Sgren Asmussen, Soren Asmussen, and Sren Asmussen. Applied probability and queues,
volume 2. Springer, 2003.

Mahmoud Assran and Michael Rabbat. On the Convergence of Nesterov’s Accelerated
Gradient Method in Stochastic Settings. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

Alexander Atanasov, Blake Bordelon, Jacob A Zavatone-Veth, Courtney Paquette, and Cengiz
Pehlevan. Two-Point Deterministic Equivalence for Stochastic Gradient Dynamics in Linear
Models. arXiv preprint arXiv:2502.05074, 2025.

Krishna B Athreya, Peter E Ney, and PE Ney. Branching processes. Courier Corporation,
2004.

Necdet Serhat Aybat, Alireza Fallah, Mert Giirbiizbalaban, and Asuman Ozdaglar. Robust
Accelerated Gradient Methods for Smooth Strongly Convex Functions. SIAM Journal on
Optimization, 30(1):717-751, 2020.

Francis Bach. High-dimensional analysis of double descent for linear regression with random
projections. SIAM Journal on Mathematics of Data Science, 6(1):26-50, 2024.

Yasaman Babhri, Ethan Dyer, Jared Kaplan, Jachoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. Proc. Natl. Acad. Sci. USA, 121(27):Paper No. e2311878121, 8, 2024.

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010.

Prosanta Barai, Gondy Leroy, Prakash Bisht, Joshua M Rothman, Sumi Lee, Jennifer Andrews,
Sydney A Rice, and Arif Ahmed. Crowdsourcing with enhanced data quality assurance: An
efficient approach to mitigate resource scarcity challenges in training large language models
for healthcare. AMIA Summits on Translational Science Proceedings, 2024:75, 2024.

Peter L. Bartlett, Philip M. Long, Gdbor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proc. Natl. Acad. Sci. USA, 117(48):30063-30070, 2020.

Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch
heavy ball momentum. IMA Journal of Numerical Analysis, page drae033, 08 2024.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A Dynamical Model of Neural
Scaling Laws. In Proceedings of the 41st International Conference on Machine Learning
(ICML), volume 235 of Proceedings of Machine Learning Research, pages 4345-4382. PMLR,
2024.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How Feature Learning Can
Improve Neural Scaling Laws . International Conference on Learning Representations (ICLR),
2025.

11

https://www.tensorflow.org/datasets
https://jmlr.org/papers/volume18/16-410/16-410.pdf
https://arxiv.org/pdf/1407.1537
https://arxiv.org/pdf/1407.1537
https://proceedings.mlr.press/v195/arnaboldi23a/arnaboldi23a.pdf
https://proceedings.mlr.press/v195/arnaboldi23a/arnaboldi23a.pdf
https://proceedings.mlr.press/v195/arnaboldi23a/arnaboldi23a.pdf
https://arxiv.org/abs/2002.12414
https://arxiv.org/abs/2002.12414
https://arxiv.org/abs/2502.05074
https://arxiv.org/abs/2502.05074
https://doi.org/10.1137/19M1244925
https://doi.org/10.1137/19M1244925
https://epubs.siam.org/doi/abs/10.1137/23M1558781
https://epubs.siam.org/doi/abs/10.1137/23M1558781
https://www.pnas.org/doi/10.1073/pnas.2311878121
https://www.pnas.org/doi/10.1073/pnas.2311878121
https://pmc.ncbi.nlm.nih.gov/articles/PMC11141838/pdf/2418.pdf
https://pmc.ncbi.nlm.nih.gov/articles/PMC11141838/pdf/2418.pdf
https://pmc.ncbi.nlm.nih.gov/articles/PMC11141838/pdf/2418.pdf
https://openreview.net/forum?id=nbOY1OmtRc
https://openreview.net/forum?id=nbOY1OmtRc
https://openreview.net/forum?id=dEypApI1MZ
https://openreview.net/forum?id=dEypApI1MZ

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

J. Bradbury, R. Frostig, P. Hawkins, M. Johnson, C. Leary, D. Maclaurin, and S. Wanderman-
Milne. JAX: composable transformations of Python+NumPy programs, 2018.

Helmut Brakhage. On ill-posed problems and the method of conjugate gradients. In Inverse
and Ill-Posed Problems, pages 165—175. Academic Press, 1987.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877—
1901, 2020.

Bugra Can, Mert Gurbuzbalaban, and Lingjiong Zhu. Accelerated Linear Convergence of
Stochastic Momentum Methods in Wasserstein Distances. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), volume 97, pages 891-901. Proceedings of
Machine Learning Research (PMLR), 2019.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7:331-368, 2007.

Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and random
features. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Chen Cheng and Andrea Montanari. Dimension free ridge regression. arXiv preprint
arXiv:2210.08571, 2022.

Earl A. Coddington and Norman Levinson. Theory of ordinary differential equations. McGraw-
Hill Book Company, Inc., New York-Toronto-London, 1955.

Elizabeth Collins-Woodfin, Courtney Paquette, Elliot Paquette, and Inbar Seroussi. Hitting
the high-dimensional notes: an ODE for SGD learning dynamics on GLMs and multi-index
models. Inf. Inference, 13(4):Paper No. iaae028, 107, 2024.

Elizabeth Collins-Woodfin, Inbar Seroussi, Begofia Garcia Malaxechebarria, Andrew W
Mackenzie, Elliot Paquette, and Courtney Paquette. The High Line: Exact Risk and Learning
Rate Curves of Stochastic Adaptive Learning Rate Algorithms. In Advances in Neural
Information Processing Systems (NeurIPS), volume 37, 2024.

Romain Couillet and Zhenyu Liao. Random Matrix Methods for Machine Learning. Cambridge
University Press, 2022.

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova. Generalization Error
Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime. Advances in
Neural Information Processing Systems (NeurIPS), 34, 2021.

Anh Quang Dang, Reza Babanezhad Harikandeh, and Sharan Vaswani. (Accelerated) Noise-
adaptive Stochastic Heavy-Ball Momentum. Transactions on Machine Learning Research
(TMLR), 2025.

Stéphane d’ Ascoli, Marylou Gabrié, Levent Sagun, and Giulio Biroli. On the interplay between
data structure and loss function in classification problems. Advances in Neural Information
Processing Systems (NeurIPS), 34:8506-8517, 2021.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Pe-
ter Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu,
Claudio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo
Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus
Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papa-
makarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia
Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Milo§ Stanojevi¢, Wojciech
Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem.
http://github.com/google-deepmind, 2020.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and

Ashok Cutkosky. The Road Less Scheduled. In Advances in Neural Information Processing
Systems (NeurIPS), volume 37, pages 9974—10007, 2024.

Leonardo Defilippis, Bruno Loureiro, and Theodor Misiakiewicz. Dimension-free deterministic
equivalents and scaling laws for random feature regression. In Advances in Neural Information
Processing Systems (NeurlPS), volume 37, pages 104630-104693. Curran Associates, Inc.,
2024.

12

http://github.com/google/jax
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://proceedings.mlr.press/v97/can19a/can19a.pdf
http://proceedings.mlr.press/v97/can19a/can19a.pdf
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://proceedings.neurips.cc/paper_files/paper/2018/file/741a0099c9ac04c7bfc822caf7c7459f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/741a0099c9ac04c7bfc822caf7c7459f-Paper.pdf
https://arxiv.org/abs/2210.08571
https://books.google.ca/books/about/Theory_of_Ordinary_Differential_Equation.html?id=LvNQAAAAMAAJ&redir_esc=y
https://arxiv.org/abs/2308.08977
https://arxiv.org/abs/2308.08977
https://arxiv.org/abs/2308.08977
https://openreview.net/forum?id=aVSxwicpAk¬eId=4mjoq2kraU
https://openreview.net/forum?id=aVSxwicpAk¬eId=4mjoq2kraU
https://proceedings.neurips.cc/paper_files/paper/2021/file/543bec10c8325987595fcdc492a525f4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/543bec10c8325987595fcdc492a525f4-Paper.pdf
https://openreview.net/forum?id=Okxp1W8If0
https://openreview.net/forum?id=Okxp1W8If0
https://papers.nips.cc/paper_files/paper/2021/hash/47a5feca4ce02883a5643e295c7ce6cd-Abstract.html
https://papers.nips.cc/paper_files/paper/2021/hash/47a5feca4ce02883a5643e295c7ce6cd-Abstract.html
http://github.com/google-deepmind
https://proceedings.neurips.cc/paper_files/paper/2024/file/136b9a13861308c8948cd308ccd02658-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2024/hash/bd18189308a4c45c7d71ca83acf3deaa-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2024/hash/bd18189308a4c45c7d71ca83acf3deaa-Abstract-Conference.html

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

(51]

(52]

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal Distributed Online
Prediction Using Mini-Batches. Journal of Machine Learning Research (JMLR), 13(1), 2012.

Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large
step-sizes. The Annals of Statistics, 44(4):1363 — 1399, 2016.

NIST Digital Library of Mathematical Functions. https://d1lmf.nist.gov/, Release 1.2.4
of 2025-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

Mathieu Even, Raphaél Berthier, Francis Bach, Nicolas Flammarion, Hadrien Hendrikx, Pierre
Gaillard, Laurent Massoulié, and Adrien Taylor. Continuized Accelerations of Deterministic
and Stochastic Gradient Descents, and of Gossip Algorithms. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 28054-28066, 2021.

Katie E Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J
Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jachoon Lee, et al. Scaling
Exponents Across Parameterizations and Optimizers. In International Conference on Machine
Learning, pages 12666—12700. PMLR, 2024.

Nicolas Flammarion and Francis Bach. From Averaging to Acceleration, There is Only a
Step-size. In Proceedings of The 28th Conference on Learning Theory (COLT), volume 40 of
Proceedings of Machine Learning Research, pages 658—695. PMLR, 03-06 Jul 2015.

Sebastien Gadat, Fabien Panloup, and Sofiane Saadane. Stochastic Heavy Ball. arXiv preprints
arXiv:1609.04228, 2016.

Cedric Gerbelot, Emanuele Troiani, Francesca Mignacco, Florent Krzakala, and Lenka Zde-
borova. Rigorous dynamical mean-field theory for stochastic gradient descent methods. SIAM
Journal on Mathematics of Data Science, 6(2):400—427, 2024.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization I: A generic algorithmic framework. SIAM J. Optim.,
22(4):1469-1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms.
SIAM J. Optim., 23(4):2061-2089, 2013.

Gustaf Gripenberg. On the resolvents of nonconvolution Volterra kernels. Funkcial. Ekvac.,
23(1):83-95, 1980.

Kanan Gupta, Jonathan W. Siegel, and Stephan Wojtowytsch. Nesterov acceleration despite
very noisy gradients. In Advances in Neural Information Processing Systems (NeurlPS),
volume 37, pages 20694-20744, 2024.

Walid Hachem, Philippe Loubaton, and Jamal Najim. Deterministic equivalents for certain
functionals of large random matrices. Ann. Appl. Probab., 17(3):875-930, 2007.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Advances
in Neural Information Processing Systems (NeurIPS), volume 35, 2022.

Hong Hu, Yue M. Lu, and Theodor Misiakiewicz. Asymptotics of Random Feature Regression
Beyond the Linear Scaling Regime. arXiv preprint arXiv:2403.08160, 2024.

Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Acceler-
ating Stochastic Gradient Descent for Least Squares Regression. In Proceedings of the 31st
Conference On Learning Theory (COLT), volume 75, pages 545-604, 2018.

13

https://www.jmlr.org/papers/volume13/dekel12a/dekel12a.pdf
https://www.jmlr.org/papers/volume13/dekel12a/dekel12a.pdf
https://dlmf.nist.gov/
https://proceedings.neurips.cc/paper_files/paper/2021/file/ec26fc2eb2b75aece19c70392dc744c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ec26fc2eb2b75aece19c70392dc744c2-Paper.pdf
https://openreview.net/pdf/579c102a8c067102c85e27612c36d7a356ea9b0b.pdf
https://openreview.net/pdf/579c102a8c067102c85e27612c36d7a356ea9b0b.pdf
http://proceedings.mlr.press/v40/Flammarion15.html
http://proceedings.mlr.press/v40/Flammarion15.html
https://arxiv.org/abs/1609.04228
https://epubs.siam.org/doi/10.1137/23M1594388
https://epubs.siam.org/doi/10.1137/110848864
https://epubs.siam.org/doi/10.1137/110848864
https://epubs.siam.org/doi/abs/10.1137/110848876?journalCode=sjope8
https://epubs.siam.org/doi/abs/10.1137/110848876?journalCode=sjope8
https://proceedings.neurips.cc/paper_files/paper/2024/file/24d2dd6dc9b79116f8ebc852ddb9dc94-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/24d2dd6dc9b79116f8ebc852ddb9dc94-Paper-Conference.pdf
https://arxiv.org/pdf/1712.00409
https://arxiv.org/pdf/1712.00409
https://openreview.net/forum?id=iBBcRUlOAPR
https://arxiv.org/abs/2403.08160
https://arxiv.org/abs/2403.08160
http://proceedings.mlr.press/v75/jain18a/jain18a.pdf
http://proceedings.mlr.press/v75/jain18a/jain18a.pdf

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alex Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the Insufficiency of
Existing Momentum Schemes for Stochastic Optimization. In 2018 Information Theory and
Applications Workshop (ITA), pages 1-9, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Andrei Kulunchakov and Julien Mairal. A Generic Acceleration Framework for Stochastic
Composite Optimization. In Advances in Neural Information Processing Systems (NeurlPS),
volume 32, 2019.

Maxime Laborde and Adam Oberman. A Lyapunov analysis for accelerated gradient methods:
from deterministic to stochastic case. In Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 108, pages 602—612.
Proceedings of Machine Learning Research (PMLR), 2020.

Kiwon Lee, Andrew Cheng, Elliot Paquette, and Courtney Paquette. Trajectory of mini-batch
momentum: batch size saturation and convergence in high dimensions. Advances in Neural
Information Processing Systems (NeurlPS), 35:36944-36957, 2022.

Xuheng Li, Yihe Deng, Jingfeng Wu, Dongruo Zhou, and Quanquan Gu. Risk bounds of
accelerated SGD for overparameterized linear regression. arXiv preprint arXiv:2311.14222,
2023.

Zhenyu Liao, Romain Couillet, and Mahoney Mahoney. A Random Matrix Analysis of
Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the
Corresponding Double Descent. arXiv preprint arXiv:2006.05013, 2020.

Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, and Jason D. Lee. Scaling Laws
in Linear Regression: Compute, Parameters, and Data. In Advances in Neural Information
Processing Systems (NeurIPS), volume 37, pages 60556—-60606. Curran Associates, Inc., 2024.

Chaoyue Liu and Mikhail Belkin. Accelerating SGD with momentum for over-parameterized
learning. In Proceedings of the 37th International Conference on Machine Learning (ICML),
2020.

Peter J. Liu, Roman Novak, Jachoon Lee, Mitchell Wortsman, Lechao Xiao, Katie Everett,
Alexander A. Alemi, Mark Kurzeja, Pierre Marcenac, zzeddin Gur, Simon Kornblith, Kelvin
Xu, Gamaleldin Elsayed, Ian Fischer, Jeffrey Pennington, Ben Adlam, and Jascha-Sohl
Dickstein. Nanodo: A minimal transformer decoder-only language model implementation in
JAX., 2024.

Yuanshi Liu, Haihan Zhang, Qian Chen, and Cong Fang. Optimal Algorithms in Linear
Regression under Covariate Shift: On the Importance of Precondition. arXiv preprint
arXiv:2502.09047, 2025.

Nicolas Loizou and Peter Richtarik. Momentum and stochastic momentum for stochastic
gradient, Newton, proximal point and subspace descent methods. Comput. Optim. Appl.,
77(3):653-710, 2020.

Bruno Loureiro, Cedric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mezard,
and Lenka Zdeborova. Learning curves of generic features maps for realistic datasets with

a teacher-student model. Advances in Neural Information Processing Systems (NeurIPS),
34:18137-18151, 2021.

Alexander Maloney, Daniel A. Roberts, and James Sully. A Solvable Model of Neural Scaling
Laws. arXiv preprint arXiv:2210.16859, 2024.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

14

https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://arxiv.org/pdf/2001.08361
https://arxiv.org/pdf/2001.08361
https://ieeexplore.ieee.org/document/8503173
https://ieeexplore.ieee.org/document/8503173
https://openreview.net/forum?id=8gmWwjFyLj
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://proceedings.neurips.cc/paper/2019/file/4a1c2f4dcf2bf76b6b278ae40875d536-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a1c2f4dcf2bf76b6b278ae40875d536-Paper.pdf
http://proceedings.mlr.press/v108/laborde20a/laborde20a.pdf
http://proceedings.mlr.press/v108/laborde20a/laborde20a.pdf
https://openreview.net/forum?id=z9poo2GhOh6
https://openreview.net/forum?id=z9poo2GhOh6
https://arxiv.org/pdf/2311.14222
https://arxiv.org/pdf/2311.14222
https://arxiv.org/pdf/2006.05013.pdf
https://arxiv.org/pdf/2006.05013.pdf
https://arxiv.org/pdf/2006.05013.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6fcb1afcc1e9c2c82c8ddddf03bcf0f6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6fcb1afcc1e9c2c82c8ddddf03bcf0f6-Paper-Conference.pdf
https://arxiv.org/pdf/1810.13395.pdf
https://arxiv.org/pdf/1810.13395.pdf
https://arxiv.org/pdf/2502.09047
https://arxiv.org/pdf/2502.09047
https://proceedings.neurips.cc/paper_files/paper/2021/file/9704a4fc48ae88598dcbdcdf57f3fdef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9704a4fc48ae88598dcbdcdf57f3fdef-Paper.pdf
https://arxiv.org/pdf/2210.16859
https://arxiv.org/pdf/2210.16859
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1812.06162

[71]

(72]

(73]

[74]

[75]
[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4):667-766, 2022.

Gabriel Mel and Jeffrey Pennington. Anisotropic random feature regression in high dimensions.
In International Conference on Learning Representations, 2021.

Depen Morwani, Nikhil Vyas, Hanlin Zhang, and Sham Kakade. Connections between
Schedule-Free Optimizers, AAEMAMix, and Accelerated SGD Variants. arXiv preprint
arXiv:2502.02431, 2025.

Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, Chris Mingard, and Ard A. Louis. An
exactly solvable model for emergence and scaling laws in the multitask sparse parity problem.
In Advances in Neural Information Processing Systems (NeurIPS), volume 37, pages 39632—
39693, 2024.

Yuri Nesterov. Introductory lectures on convex optimization. Springer, 2004.

Antonio Orvieto, Jonas Kohler, and Aurelien Lucchi. The Role of Memory in Stochastic
Optimization. In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115 of Proceedings of Machine Learning Research, pages 356-366, 2020.

Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. SGD in the Large:
Average-case Analysis, Asymptotics, and Stepsize Criticality. In Proceedings of Thirty Fourth
Conference on Learning Theory (COLT), volume 134, pages 3548-3626, 2021.

Courtney Paquette and Elliot Paquette. Dynamics of stochastic momentum methods on large-
scale, quadratic models. Advances in Neural Information Processing Systems (NeurIPS),
34:9229-9240, 2021.

Courtney Paquette, Elliot Paquette, Ben Adlam, and Jeffrey Pennington. Homogenization
of SGD in high-dimensions: exact dynamics and generalization properties. Mathematical
Programming, pages 1-90, 2024.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 Phases of
Compute-Optimal Neural Scaling Laws. In Advances in Neural Information Processing
Systems (NeurIPS), volume 37, 2024.

Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic
gradient descent on hard learning problems through multiple passes. Advances in Neural
Information Processing Systems (NeurIPS), 31, 2018.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 04, 1964.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
Discrepancies in Compute-Optimal Scaling of Language Models. In Advances in Neural
Information Processing Systems (NeurIPS), volume 37, pages 100535-100570, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1-67, 2020.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates
for Stochastic Gradient Descent and Stochastic Heavy Ball. In Proceedings of Thirty Fourth
Conference on Learning Theory, volume 134, pages 3935-3971. Proceedings of Machine
Learning Research (PMLR), 2021.

C.J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G.E. Dahl. Measuring
the Effects of Data Parallelism on Neural Network Training. Journal of Machine Learning
Research, 20:1-49, 2019.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International conference on machine
learning, pages 71-79. PMLR, 2013.

Utkarsh Sharma and Jared Kaplan. Scaling Laws from the Data Manifold Dimension. Journal
of Machine Learning Research (JMLR), 23(9):1-34, 2022.

15

https://openreview.net/forum?id=JfaWawZ8BmX
https://arxiv.org/pdf/2502.02431
https://arxiv.org/pdf/2502.02431
https://proceedings.neurips.cc/paper_files/paper/2024/file/45f7ad60c01f17711ccd8ac2f2fb77e3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/45f7ad60c01f17711ccd8ac2f2fb77e3-Paper-Conference.pdf
http://dx.doi.org/10.1007/978-1-4419-8853-9
http://proceedings.mlr.press/v115/orvieto20a/orvieto20a.pdf
http://proceedings.mlr.press/v115/orvieto20a/orvieto20a.pdf
https://proceedings.mlr.press/v134/paquette21a/paquette21a.pdf
https://proceedings.mlr.press/v134/paquette21a/paquette21a.pdf
https://openreview.net/pdf?id=WSykyaty6Q
https://openreview.net/pdf?id=WSykyaty6Q
https://link.springer.com/article/10.1007/s10107-024-02171-3
https://link.springer.com/article/10.1007/s10107-024-02171-3
https://openreview.net/forum?id=aVSxwicpAk
https://openreview.net/forum?id=aVSxwicpAk
https://proceedings.neurips.cc/paper_files/paper/2018/file/10ff0b5e85e5b85cc3095d431d8c08b4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/10ff0b5e85e5b85cc3095d431d8c08b4-Paper.pdf
https://doi.org/10.1016/0041-5553(64)90137-5
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6341525cd84f3be0ef203e4d7cd8556-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6341525cd84f3be0ef203e4d7cd8556-Paper-Conference.pdf
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://proceedings.neurips.cc/paper_files/paper/2017/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
http://proceedings.mlr.press/v134/sebbouh21a/sebbouh21a.pdf
http://proceedings.mlr.press/v134/sebbouh21a/sebbouh21a.pdf
https://www.jmlr.org/papers/volume20/18-789/18-789.pdf
https://www.jmlr.org/papers/volume20/18-789/18-789.pdf
https://proceedings.mlr.press/v28/shamir13.pdf
https://proceedings.mlr.press/v28/shamir13.pdf
http://jmlr.org/papers/v23/20-1111.html

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

Jack W Silverstein and Zhi Dong Bai. On the empirical distribution of eigenvalues of a class
of large dimensional random matrices. Journal of Multivariate analysis, 54(2):175-192, 1995.

James B. Simon, Dhruva Karkada, Nikhil Ghosh, and Mikhail Belkin. More is better in
modern machine learning: when infinite overparameterization is optimal and overfitting is
obligatory. In International Conference on Learning Representations (ICLR), 2024.

Weijie Su, Stephen Boyd, and Emmanuel J. Candes. A Differential Equation for Modeling
Nesterov’s Accelerated Gradient Method: Theory and Insights. Journal of Machine Learning
Research, 17(153):1-43, 2016.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th International
Conference on Machine Learning (ICML), volume 28, pages 1139-1147, 2013.

Aditya Varre and Nicolas Flammarion. Accelerated sgd for non-strongly-convex least squares.
In Proceedings of Thirty Fifth Conference on Learning Theory (COLT), volume 135 of
Proceedings of Machine Learning Research, pages 2062-2126, 2022.

Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. Last iterate con-
vergence of SGD for Least-Squares in the Interpolation regime. In Advances in Neural
Information Processing Systems (NeurIPS), volume 34, pages 21581-21591, 2021.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and Faster Convergence of SGD for
Over-Parameterized Models and an Accelerated Perceptron. In Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics (ICML), volume 89
of Proceedings of Machine Learning Research, pages 1195-1204. PMLR, 2019.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius
Hobbhahn. Will we run out of data? Limits of LLM scaling based on human-generated data.
arXiv preprint arXiv:2211.04325, 2022.

Yichen Wang, Yudong Chen, Lorenzo Rosasco, and Fanghui Liu. Re-examining Double
Descent and Scaling Laws under Norm-based Capacity via Deterministic Equivalence. arXiv
preprint arXiv:2502.01585, 2025.

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on
accelerated methods in optimization. proceedings of the National Academy of Sciences,
113(47):E7351-E7358, 2016.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, [zzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies
for large-scale Transformer training instabilities. In The Twelfth International Conference on
Learning Representations, 2023.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last Iterate
Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression. In
Proceedings of the 39th International Conference on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pages 24280-24314. PMLR, 2022.

Yan Yan, Tianbao Yang, Zhe Li Li, Qihang Lin, and Yi Yang. A Unified Analysis of Stochastic
Momentum Methods for Deep Learning. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 2955-2961. International Joint
Conferences on Artificial Intelligence Organization, 7 2018.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727-11737. PMLR,
2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: tuning large
neural networks via zero-shot hyperparameter transfer. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, pages 17084—17097, 2021.

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width
limit. arXiv preprint arXiv:2308.01814, 2023.

Dmitry Yarotsky. Corner Gradient Descent. arXiv preprint arXiv:2504.12519, 2025.

Dmitry Yarotsky and Maksim Velikanov. SGD with Memory: Fundamental Properties and
Stochastic Acceleration. International Conference on Learning Representations (ICLR), 2025.

16

https://openreview.net/pdf?id=OdpIjS0vkO
https://openreview.net/pdf?id=OdpIjS0vkO
https://openreview.net/pdf?id=OdpIjS0vkO
http://jmlr.org/papers/v17/15-084.html
http://jmlr.org/papers/v17/15-084.html
http://proceedings.mlr.press/v28/sutskever13.pdf
http://proceedings.mlr.press/v28/sutskever13.pdf
https://proceedings.mlr.press/v178/varre22a/varre22a.pdf
https://proceedings.neurips.cc/paper/2021/file/b4a0e0fbaa9f16d8947c49f4e610b549-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/b4a0e0fbaa9f16d8947c49f4e610b549-Paper.pdf
http://proceedings.mlr.press/v89/vaswani19a.html
http://proceedings.mlr.press/v89/vaswani19a.html
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2502.01585
https://arxiv.org/abs/2502.01585
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://proceedings.mlr.press/v162/wu22p/wu22p.pdf
https://proceedings.mlr.press/v162/wu22p/wu22p.pdf
https://doi.org/10.24963/ijcai.2018/410
https://doi.org/10.24963/ijcai.2018/410
https://proceedings.mlr.press/v139/yang21c/yang21c.pdf
https://proceedings.mlr.press/v139/yang21c/yang21c.pdf
https://openreview.net/pdf?id=Bx6qKuBM2AD
https://openreview.net/pdf?id=Bx6qKuBM2AD
https://arxiv.org/abs/2308.01814
https://arxiv.org/abs/2308.01814
https://arxiv.org/abs/2504.12519
https://openreview.net/forum?id=Qzd4BloAjQ
https://openreview.net/forum?id=Qzd4BloAjQ

[108]

[109]

[110]

[111]

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sachdeva Sachdeva, George Dahl,
Christopher Shallue, and Roger Grosse. Which Algorithmic Choices Matter at Which Batch
Sizes? Insights From a Noisy Quadratic Model. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
ter, and Sham M. Kakade. How Does Critical Batch Size Scale in Pre-training? . International
Conference on Learning Representations (ICLR), 2025.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanguan Gu, Dean P. Foster, and Sham
Kakade. The Benefits of Implicit Regularization from SGD in Least Squares Problems
(NeurIPS). In Advances in Neural Information Processing Systems, volume 34, pages 5456—
5468, 2021.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Benign
overfitting of constant-stepsize SGD for linear regression. Journal of Machine Learning
Research, 24(326):1-58, 2023.

17

https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf
https://openreview.net/forum?id=JCiF03qnmi
https://proceedings.neurips.cc/paper/2021/file/2b6bb5354a56ce256116b6b307a1ea10-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2b6bb5354a56ce256116b6b307a1ea10-Paper.pdf
https://www.jmlr.org/papers/volume24/21-1297/21-1297.pdf
https://www.jmlr.org/papers/volume24/21-1297/21-1297.pdf

Supplementary material

Broader Impact Statement. The work presented in this paper is foundational research and it is not
tied to any particular application. The primary set-up is on a simple well-studied random features
model with synthetic data and solved using commonly deployed algorithms — variants of stochastic
gradient descent with momentum. We present (theoretical) compute-optimal curves for this model.
While a common positive foreseeable impact of algorithms with better scaling properties is that it
would allow more efficient model training and hence lower energy consumption of Al, it is important
to acknowledge that, many times across history, cost-lowering technological improvements have led
to increase in consumption due to Jevons paradox. Regarding our experiments, we include results
on language models trained on a public language dataset that show the theoretical behavior holds
on more practical settings. We do not release any pretrained models but because the dataset we
used is based on common crawl which has potential issues of fairness, harmfulness, accountability,
and transparency we may be contributing to reinforce these issues by supporting the making of the
current C4 dataset as a standard in NLP, obfuscating these concerns. Finally, since our main results
are theorems regarding scaling laws, we anticipate that one potential negative impact of such a line
of research is that fundamental advance in scaling laws will advantage large entities that have more
computational resource, thus enhancing centralization of technological power.

QOutline of the paper. The remainder of the article is structured as follows:

1. In Section A we discuss related works and compare previous convergence rates to ours.

2. In Section B we provide more details on the algorithms under study, i.e., SGD, SGD-M,
DANA-constant, DANA-decay. We additionally show that multiple existing algorithms
can be re-framed within the class (Gen-Mom-SGD). We then use our results to precisely
conjecture their scaling laws.

3. In Section C we derive the exact ODEs for the loss along with the exact Volterra equation.
We discuss the simplification of this ODE and the resulting Volterra equation. We finally
give some background on Volterra equations and how to reduce their complexity.

4. In Section D we derive the random matrix analysis of the deterministic equivalent measures
W, Wa. Previous results from [80] estimated the deterministic equivalent on a contour
enclosing the spectrum of the data covariance matrix. We reformulate and strengthen these
on the real line and provide general results for the integration of well-behaved real valued
functions against g, px.

5. In Section E we derive the compute-optimal scaling laws for SGD-M, DANA-constant and
DANA-decaying.
6. In Section F we analyse SGD with a general learning rate schedule.

7. In Section G we derive the scaling laws for SGD-M, and prove that they are identical to
SGD with a precise correspondence between the learning rates of these two algorithms.

8. In Section H we analyse the DANA-constant algorithm. We use Frobenius method to obtain
asymptotic estimates for the solutions of the simplified ODE system (43) in Sections H.2
to H.4. We use these estimates to derive stability conditions on the hyperparameters in
sections H.8 and H.9 and compute the forcing and kernel functions.

9. In Section I we analyse DANA-decaying above the high-dimensional line. We give estimates
on the solutions of (43) in Section I.1. We use these to derive the forcing and kernel functions,
and the scaling laws. Finally, we discuss in Section 1.5 a heuristic generalization to the
algorithm class (DANA) with stability conditions and associated scaling laws.

10. In Section J we study whether non-stable learning rates can accelerate the dynamics early in
training. Especially we show that sweeping over the «; hyperparameter in DANA-constant
recovers the DANA-decaying schedule.

11. In Section K we discuss experimental details on the PLRF model and show numerical
agreement between empirical and theoretical PLRF behavior.

12. In Section L we discuss experiments on LSTMs on a language dataset.

13. In Section M we report further experimental details for figures.

18

Notation. We use #(0;) = £(t) when we want to emphasize the iteration counter t. We say
o (t,v,d) ~ A(t,v,d) for functions &7 (t,v,d), A(t,v,d) > 0 if for every ¢ > 0 and for all
admissible v and d, there exists tg, dg such that for all d > dy and t > %

(1—-e)A(t,v,d) < A (t,v,d) < (1+¢)A(t,v,d).
For some v € N*, we denote the diagonal matrix D = Diag(j 2% : 1 < j <).

For A, B two matrices, comparisons of the form A < B are understood coordinate-wise. Additionally,
||A|| denotes the matrix of the absolute values of coordinates of A. For z € R4, v/ > 0 denote

the positive square root of z and /—z & iy/z. H < {z € C, Im(z) > 0} denotes the complex
upper-half plane. For 7 > 0 and v € R we denote the Poisson kernel Pois,, (u) & %UQZUQ . For

f
x € R4, we denote T = max{1l,z}. Forz € R, we use x4 & max{z, 0}.

Detailed proof sketch. We finally provide below a detailed proof sketch of our main result Theo-
rem 4.1

1. The first step is to derive an evolution equation for the quadratic risk using the raw algorithm
updates Equation (Gen-Mom-SGD).

* We adopt in Section C.1 a continuized analysis in Equation (Gen-Mom-SGD) by
replacing the update times by the jumps of a Poisson process of rate 1 (Equation (18)).
This allows us to reduce the analysis to ODE systems without sending the learning
rates to 0.

¢ In Section C.1.1 we derive ODEs for the projected risk on each eigenvalue direction of
the covariance matrix for two algorithms: the original one in Section C.1.1 and the coin-
flip algorithm in Section C.2.2. The coin-flip algorithm uses two independent Poisson
processes for the momentum and parameter updates in Equation (Gen-Mom-SGD)
which gives rise to much simpler ODEs.

* The ODEs obtained are theoretically solvable but a lot of small high-order terms make
the analysis difficult. Hence we drop high-order terms in X in the exact and coin-flip
ODEs to obtain the ‘simplified ODEs’ (Section C.2.2). We prove in Section C.2.1
that the ‘simplified ODE’ exactly represents the evolution of the SDEs presented in
Equation (7).

* Finally, using these ODEs, we can derive a Volterra equation for the full quadratic risk
P(t) = F(t) + (K * P)(t) where P(t) is the risk, F () is the forcing function, IC(¢, s)
is the kernel function. This is done in Sections C.1.2 and C.2.3.

The rest of the proof focuses on computing asymptotics for F and K (Equation (55))
by quantifying the empirical distribution of the covariance matrix spectrum and solving
the ODE:s.

2. Quantifying the spectrum of the data covariance matrix K.
* We first rewrite ur, g in Equation (55) as integrals against two measures ur, ti
which are defined through the deterministic equivalent in Equation (63).

* Using Random Matrix Theory and previous results from [80], we provide upper and
lower bounds on the deterministic equivalent measures (i f, (1 in Sections D.1 and D.2.

* In Sections D.3 and D.4 we use these bounds to define diverse components of the forcing
function and kernel function (Equations (66) and (68)), formalized in Propositions D.13
and D.14.

3. We then solve the ‘simplified ODE’ Equation (54) for each class of algorithm in Equa-
tion (Gen-Mom-SGD) separately.
* For SGD-M we solve the ODE in Section G.1. These are the simplest as the ODE has
constant coefficients, and the solutions are exponentials.

» For DANA-constant, the ODE has time-varying coefficients. We employ Frobenius
theory to obtain asymptotic solutions of the ODE in Section H.2 to Section H.6.

* For DANA-decaying, we employ orthogonal polynomial theory to solve the ODEs in
Section I.1.

4. Finally, we need to solve the Volterra equation for the risk.

19

* For each algorithm to remain stable, the kernel norm has to be smaller than 1. This
leads to stability conditions on the learning rates for SGD-M (Corollary G.1), DANA-
constant (Corollary H.2) and DANA-decaying (Proposition 1.5).

* Using this stability condition we can simplify the Volterra equation as P < F + K
using Kesten’s lemma (Propositions G.8, H.20 and L.5).

* We then compute F, K for each algorithm by integrating the previous solutions against
wr, b and obtain explicit scaling laws for the loss P. This is done in Proposition G.4
for SGD-M, Propositions H.13, H.14 and H.19 for DANA-constant and Propositions I.1,
1.3 and .4 for DANA-decaying.

* Finally, we determine the compute-optimal regime in Section E by a comparison of the
different terms in the loss.

Contents
1 Introduction 1
2 The power law random features model (PLRF) 3
3 Continuized analysis of general stochastic momentum algorithms 4
4 Deriving the scaling laws of (Gen-Mom-SGD) on the PLRF model 5
5 Using Momentum to outscale SGD 8
A Related Work 22
B Additional Algorithm Set-up 28
B.1 Stochastic gradient descent (SGD)o 28
B.1.1 SGD with constant learningrate, 28
B.2 Classic (constant) momentum (SGD-M) 29
B.3 Dimension-Adapted Nesterov Acceleration: DANA-constant 29
B.4 Data-Adapted Nesterov Acceleration (DANA-decaying): Time/Data-dependent learn-
INZTAES o o o e e e e 31
B.5 Comparison with Schedule-free, AcSGD, Stochastic Nesterov and conjectured scal-
INGLaws e e e 31
C Deriving ODEs and Volterra equations 32
C.1 Derivation of exact ODEs and exact Volterra for the expected loss of meta stochastic
momentum algorithm, (Gen-Mom-SGD) 32
C.1.1 Derivation of the Exact ODEs. 33
C.1.2 Derivation of the exact Volterra equation 36
C.1.3 Deterministic Equivalent of the Expected Loss 38
C.2 Simplified ODEs and simplified Volterra 39
C.2.1 Derivation of the simplified ODEs. 39
C.2.2 Simplified ODE as the large time limit of a coin-flip algorithm 41
C.2.3 Derivation of the simplified Volterra equation 45
C.3 Background on Volterraequations 46

C4

Reducing the complexity in the Volterra equation

Measure of the Deterministic Equivalent

D.1

D.2

D3
D.4

Estimating ptg o o o e e e
D.I.1 Upperboundon pug o o o v
D.1.2 Lowerboundon pg
EStimating fhgc . .« -« v v v e e e e e e e e e e e e e e e
D.2.1 Upper-bound on figc . . . o v oo o e
D.2.2 Lowerbound on figc . .« v v o i e e e
Forcing function. L

Kernel function

Compute-optimal curves - General

E.1
E.2
E.3
E.4
E.5

Stochastic momentum (SGD-M), compute-optimal curves
DANA-constant, compute-optimal curves
DANA-decaying, compute-optimal curves
Comparison of samples needed at compute optimality

Summary on compute-optimality results

Stochastic gradient descent (SGD)

F.1
F2

Volterra equation for SGD oL o
SGD with learning rate schedule oo,
F2.1 Simplifying the Volterra equation for SGD with learning rate schedule . . .
F.2.2 Forcing function for SGD with decaying learning rate schedule

F.2.3 Kernel function for SGD with decaying learning rate schedule

Classic Stochastic Momentum (SGD-M)

G.1
G.2

Solution to the ODE for classic stochastic momentum

Asymptotics of the kernel and forcing functions, SGD-M

DANA-constant

H.1
H.2
H.3
H.4
H.S5
H.6
H.7

H.8

Simplificationof the ODE L
Getting asymptotic solutions of the ODE through Frobenius method
Fundamental solutions around zero and infinity

Behavior of @11 (¢, s) and ®1o(t,s) o o Lo

Estimation of the forcing function
H.7.1 Asymptotics of Fo(t) oo
H.7.2 Asymptotics of Fgcand Fppp, . o o o 0 oo oo

Necessary conditions for stability L L.

48
50
51
53
54
54
55
56
58

60
61
62
64
67
68

74
74
74
75
79
81

85
85
85

H.9 Sufficient condition for stability: upper-bound on the kernel norm
H.10 Upper-bound on the kernel function
H.10.1 Firstterm: SGDnoise
H.10.2 Second term: momentum noise
H.10.3 Summary
H.11 Veritying the hypothesis of Kesten’s Lemma

I DANA-decaying

I.1 Solutions to the simplified ODE
.2 Computing the forcing function.,
1.3 Stability condition for DANA-decaying.
I.4 Kernelfunction L
.5 Extended heuristics for general algorithm

5.1 Forcing function
.6 Stability conditions

1.7 Kernel function e

J Compute-optimality beyond stability and motivation for DANA-decaying schedule
J.1 o Strategy L L e e
J.2 Stochastic Gradient Descent Lo
J3 DANA constant it e e e e
J4 DANA-decaying

K Power-Law Random Features Experiments & Numerical Simulations
K.1 Power-Law Random Features Experiment Details
K.2 Measuring the Empirical Scaling Law Exponents: Chinchilla Approach 1
K.3 Computing the deterministic equivalent for K oo

K4 TImplementationofthe ODE.,

L LSTM Language Model Experiments
L.1 LSTM Results: DANA-decaying across £3« « « « v v v v v v v v v oo n .
L.2 LSTM Results: Loss Exponents
L.3 Equivalent risk dynamics for SGD-MandSGD
L.4 Experiment Details

M Additional Information on the Experimental Set-Ups for Figures

A Related Work

132
134
145
146
148
155
156
156
158

158
158
159
159
160

162
162
162
163
163

164
164
166
169
169

171

PLRF & Scaling laws on the PLRF. Our work builds on the study of compute optimality in
large language models, introduced by [50] and [54], who performed empirical investigations of this
phenomenon. The problem formulation follows [69], which examined data-limited scaling scenarios
but did not address compute optimality or algorithmic considerations. Related dynamical analyses

22

This work’ [DLM24]? [Bahri+21]° [MRS22]* [BAP24]° [Lin+24]°

II‘lpllt . d d d M M M
dimension

of features v P P N N -
Iterations/samples ¢ n D T P N
Capacity 20 Q 1+a 1+a b a
Source S r B0-0) s0-hH g s
Target decay 1 ")

(in L) avh oarts 0 0 5 :

! [Paq+24] E. Paquette, C. Paquette, L. Xiao, J. Pennington. 4+3 Phases of Compute-optimal Neural Scaling
Laws. 2024

2 [DLM24] L. Defilippis, B. Loureiro, T. Misiakiewicz. Dimension-free deterministic equivalents for random
feature regression. 2024

3 [Bahri21] Y. Bahri, D. Dyer, J. Kaplan, J. Lee, and U. Sharma. Explaining neural scaling laws. 2024.

“[MRS22] A. Maloney, D.A. Roberts, J. Sully. A solvable model of neural scaling laws

3 [BAP24] B. Bordelon, A. Atanasov, C. Pehlevan. A dynamical model of neural scaling laws. 2024.

% [Lin24] L. Lin, J. Wu, S. Kakade, P. Barlett,].D. Lee. Scaling Laws in Linear Regression: Compute,
Parameters, and Data. 2024

Table 1: Comparison of the source/capacity parameters across various related work. We note this table is
taken from Table 1 in [DLM24]? and Table 4 in [Paq+24]1. [Pag+24] also uses the same notation as this paper
except samples are r instead of ¢.

through gradient flow in similar settings can be found in [16]. A significant body of research has
investigated scaling laws relating loss minimization to dataset size and parameter count across various
settings (linear models, random features, deep networks). Notable contributions include [11], [89],
and [91], which explore the "hidden-manifold" data model for one-pass SGD.

Scaling laws and compute-optimality for the PLRF model under one-pass SGD have been analyzed
by [16, 63, 80] with an extension to feature learning in [17]. This work notably follows and extends
the ideas of [80] to stochastic momentum algorithms. Particularly, [80] developed scaling laws for
SGD under a deterministic equivalent and showed that there exists 4 distinct phases. They used their
scaling law to find compute-optimality. Related work on ridge-regression gradient descent includes
[29] and [34]. Other theoretical guarantees for scaling laws beyond PLREF, typically for gradient flow,
have been established in works such as [74].

Scaling hyperparameters in large models. There is extensive literature studying the optimal
scaling of optimizer hyperparameters in large neural networks, particularly the initialization and
learning rate [39, 100, 103, 104], the batch size [70, 87, 109] and the epsilon hyperparameter in
adaptive optimizers [39, 100, 105]. While the momentum hyperparameters for large models are often
treated as fixed constants rather than scaled quantities, the GPT-3 model [20] set B2 = 0.95 rather
than the typical B2 = 0.99 or 0.999, which may improve stability with large batch sizes.

Random features and random matrices. Our work employs random matrix theory to examine a
random features problem that, from a statistical perspective, represents the generalization error of
one-pass stochastic momentum algorithms. Random matrix theory has played an increasingly large
role in machine learning (see for [28] for a modern introduction).

For our random matrix analysis, we require sample covariance matrices with power law population
covariance (i.e. linear random features). The analysis of sample covariance matrices precedes
their usage in machine learning (see e.g. [12]). A detailed study of all parts of the spectrum of
sample covariance matrices with power law population covariances appeared in [80] and has been
subsequently used in [17] to study one-pass SGD and multi-pass SGD [7]. The study of ridge
regression has been extensively investigated (see for e.g. [10, 24]), and the work [34] provides a
complete analysis of the ridge regression problem under power law random features when 2o > 1.

23

There is a larger theory of nonlinear random features regression, mostly in the case of isotropic
random features. For isotropic random features with proportional dimension asymptotics, this
has been explored in works such as [71] and for some classes of anisotropic random features in
[31, 68, 72]. We note that lots of the complexity of the analysis of power law random features arises
from the analysis of self-consistent equations though the proof of these self-consistent equations falls
outside the typical random matrix theory setting from textbooks. The use of self-consistent equations
to study random matrix theory dates to [90], but the analysis of these equations (i.e, for K), as far
as we can tell, dates to [80]). This strongly motivates non-proportional scalings (which would be
inevitable in power law random features with nonlinearities); in the isotropic case, the state of the art
is [51].

Random features regression, ‘source/capacity’ conditions, and SGD. A large body of kernel
regression and random features literature is formulated for “source/capacity” conditions, which are
power law type assumptions that contain the problem setup here, when 2ac > 1 (the low-dimensional
regime). For convenience, we record the parameters

20+ 28 —1
4o ’

Here we have taken 7 apacity as the limit of those r’s for which the source/capacity conditions hold
(see Table 1). We note that in this language rcapacity is often interpreted as "hardness’ (lower is harder),
and that r € (0,0.5), » € (0.5,1.0) and r € (1.0, 00) correspond to 3 regimes of difficulty which
have appeared previously (see the citations below); they are also precisely the 3 Phases Ia, II, and III.

Qsource = 200 and Tcapacity =

Under source/capacity conditions, the authors of [85] establish generalization bounds for random
feature regression with power law structures in 2c > 1 case for one-pass SGD. These bounds were
sharpened in [29] and extended in [34] (see also [98]). An earlier work [22] shows kernel ridge
regression is ‘minimax optimal’ under various ‘source-capacity conditions’. We give a comparison to
these bounds in Table 2, but we note that the problem setup we have is not captured by ‘minimax
optimality’ (in particular minimax optimality is worst-case behavior over a problem class, and our
problem setup is not worst-case for the traditional source/capacity conditions). Moreover, the authors
[52, 94, 107] study stochastic momentum algorithms under source/capacity conditions (see below for
details).

We note that this paper is fundamentally about scaling laws, but the novel mathematical contributions
could also be recast in terms of generalization bounds of one-pass stochastic momentum algorithms.
For SGD, the work of [23] compares SGD to kernel ridge regression, showing that one-pass SGD
can attain the same bounds as kernel ridge regression and hence is another minimax optimal method
(again under ‘source-capacity’ conditions). See also [36] which considers similar statements for SGD
with iterate averaging and [81] for similar statements for multipass SGD; see also [35, 88] which also
prove the single-batch versions of these. These bounds attain the minimax-optimal rate, which are
worse than the rates attained in this paper (see Table 2 for a comparison).

Stochastic momentum algorithms. Recent research has established convergence guarantees for
stochastic classical momentum (SGD-M) in both strongly convex and non-strongly convex settings
[40, 41, 76, 86, 102]°. The latter references have established almost sure convergence results. For
quadratic minimization specifically, SGD-M iterates converge linearly (though not in L?) under
exactness assumptions [67], while under additional constraints on stochastic gradient noise, [55] and
[21] demonstrate linear convergence to a neighborhood of the solution. Batch size determination
significantly impacts the convergence rate of both SGD and SGD+M. For small batch sizes, SGD+M
does not necessarily outperform SGD [55, 78, 108], while some acceleration has been demonstrated
for large batch sizes [15, 30, 60].

Convergence results for stochastic Nesterov’s accelerated method [75] (SNAG) have been estab-
lished for both strongly convex and non-strongly convex settings [6, 9, 58]. Under stronger as-
sumptions—such as the strong growth condition [96] or additive noise on stochastic gradients
[59]—convergence to the optimum at an accelerated rate can be guaranteed. As noted in [38, Thm.
7] (see also references therein), a naive implementation of stochastic Nesterov acceleration fails to
converge in the non-strongly convex setting.

“This is a non-exhaustive list of work on stochastic momentum algorithms.

24

The absence of general convergence guarantees showing acceleration for existing momentum schemes
in stochastic settings has prompted the development of alternative acceleration techniques, known
as "accelerated SGD" [2, 33, 43, 44, 46, 52, 55, 58, 61, 64, 73, 94, 107], see (Gen-Mom-SGD).
Recent empirical success in large transformer models indicates benefits of accelerated SGD methods
[83, 109], though theoretical understanding of hyperparameter scaling with model size [78, 94] and
rigorous proofs of improved compute-optimal scaling exponents remain open questions.

The idea of accelerated SGD emerged from [3, 52, 61, 75, 94]. They observed acceleration can
be obtained by coupling stochastic gradient descent and another update with aggressive stepsize.
Consequently one simply has to scale down the stepsize in the aggressive update to make it robust
to the gradient noise. In [61] (see also [66]), the authors produce an instance dependent risk bound
for an accelerated SGD algorithm using constant (dimension independent) hyperparameters (at least
above the high-dimensional line). We match the hyper-paramters of Accelerated SGD [61] to our
set-up in Table 3. Another popular algorithm, Schedule-free SGD [33], was proved to achieve the
worst-case rate (in the sense of classical analysis of algorithms) of SGD and can also be incorporated
into various other algorithms (e.g., Adam[56]). On benchmarks, it performs remarkably well. After
rewriting, we can express Schedule-free SGD in the form of (Gen-Mom-SGD); see Table 3.

The algorithms AcSGD [94] and DANA in [78], are shown to exhibit acceleration for non-strongly
convex quadratics by using momentum parameter (1 + ¢)~! and dimension-dependent learning rates
on the order of 1/d. Specifically, DANA [78] showed acceleration in the high-dimensional setting
(samples and parameters are proportional) whereas AcSGD provides general bounds on quadratics in
the setting that 2ac > 1 (above the high-dimensional line) under source/capacity conditions. AcSGD
achieves the rate E [2(0;)] < min{2, 75 }|00 — 0* |2 + d=22+(1=2)+_ Since ||y — 0*||? carries a
d-dependence, it is difficult to obtain a scaling law from this. If |6y — 6*||> =< 1 (as anticipated in
Phase II and III), the derived rate agrees with DANA-constant (with ko = 1/d) at the time ¢ =< doti/2
that DANA-constant hits the irreducible loss level. Otherwise the derived rate is worse than the rate
at any other time given for DANA-constant with ko = 1; this makes sense as the AcSGD rate holds
for more general data covariances and it was derived without taking into account scaling. Moreover
we see that when ¢ =< d, AcSGD behaves as 1/t, or SGD — similar to DANA-constant (k3 = 1/d).
We match the hyperparameters in AcSGD with our set-up (see Table 3). Additionally, using our
Theorem 4.1, We derive heuristically the scaling law for AcSGD (see Sec. B.5) which asymptotically
matches DANA-constant with ko = 1/d and we perform experiments showing the close relationship
between DANA-constant and AcSGD, Figure 10.

In a recent work, the authors [107] introduced SGD with I-memory, a one-pass algorithm, analyzed
on the (infinite) quadratic under the source/capacity constraints (2« > 1). In particular, the set-up
is infinite dimensional (d — o) and does not contain the embedding matrix W in PLRF. This
algorithm has the same form as (Gen-Mom-SGD). The authors propose a variant of DANA-decaying
(with k3 = 1/(2a)) (see Table 3). While not proven, they heuristically expect in Phase Ia/II
(signal-dominated regime) that the rate matches our J,, rate. We prove this rate, as well as the
rate for the noise-dominated regime (Phase III) (Theorem 1.2). The work of [107] is based off the
deterministic result which looked at power law eigenvalue distributions on the conjugate gradient
algorithm, see [19]. In a concurrent work [106], the authors used constant momentum and learning
rates in (Gen-Mom-SGD) to show acceleration in the infinite dimensional (d — o) set-up but using
oo-memory SGD. This would require storing multiple (in fact, infinite) vectors, each on the size of
the parameter space. They propose a finite memory version that approximates the infinite version.
Such a result is an interesting future direction to derive scaling laws.

In [40, 73], they showed many known algorithms could be rewritten in the form of (Gen-Mom-SGD).
We include Table 3 to provide an equivalence of hyperparameters of related work with
(Gen-Mom-SGD). These include stochastic Nesterov, AcSGD [94], Schedule-free SGD [33], accel-
erated SGD from [61], and SGD with 1-memory [107]. We perform scaling experiments with the
PLRF model on these algorithms in Fig. 10 and Fig. Ic.

Lastly, the notion of effective dimension has been used by [14, 61, 101, 110], but never quantified
directly as a time-dependent learning rate.

Dynamical deterministic equivalents, Volterra equations and ODEs. Using the deterministic
equivalents for random matrix resolvents [47], we in turn derive deterministic equivalents for the risk
curves of stochastic momentum algorithms.

25

This work This work

Algorithm one-pass DANA-decaying (k3 = 5~) one-pass DANA-constant (k2 = 1),n > d
Phase Ia @(n_(”/(QO‘))'(Q_“3)Vd_”) @(dp/(Qa)n—p/a vd*)
. —(p/(20))-(2—K3) |, 20 p/(20),) —p/ay, —2a
Risk O(n vd o(d n vd
és(n) Phase II Vd~ln~ (2R 1-1/(2a)) VdY/(20) =21/
6(,”7(271/(204))4(27&3) vd72a 6(d271/(2a)n74+1/a \/d72a
Phase III vd_ln_(g_m)(l_l/(ga)) Vd—l/(2a)n—2+l/a)
[VF22]" (see also [52])
Algorithm one-pass Accelerated SGD (n > d)

Phasela O(dn™2||6o — 0*||* vd™")
Risk PhaseIl O(dn=?||6o — 0*||>vd—32*)
2(n) Phase Il O(dn=2||6o — 6*[|>vd—2)

This work [Paq+24]’ [DLM24)°
Algorithm one-pass SGD/SGD-M RR + O(1)-ridge
PhaseIa ©(n ?/?vd=r) same as [Pag+24]’
Risk Phasell ©(n /G0 vg=tn=1+1/C0yvg=2%) game as [Paq+24]’
Z(n 20-1 o
() Phase Il ©(n 2o va=1n~"2a vd=2%) O(n vd 'n~ % vd 2)
Minimax optimal”®’ [Lin+24]°
Algorithm one-pass SGD, . one-pass SGD, very small stepsize
very small stepsize
Phasela O(n=#/(2+28) O(d™P+n~r/2) ymin{ 4 n~ 1T/
Risk PhaseIl O(n=#/(ot28) does not cover
2(n) Phase IIT O (n~4e/ (ot 1) does not cover

7 Carratino, Rudi, Rosasco. Learning with sgd and random features. 2018
8 Dieuleveut and Bach. Nonparametric stochastic approximation with large stepsizes. 2016.
? Pillaud-Vivien, Rudi, Bach. Statistical optimality of SGD on hard learning problems through multiple
passes. 2018.
? Varre, Pillaud-Vivien, Flammarion. Last iterate convergence of SGD for least squares in the interpolation
regime 2021.
!9 Varre, Flammarion. Accelerated SGD for Non-Strongly-Convex Least Squares 2022.

Table 2: (Nonexhaustive) Comparison of sample-complexity results. Let p Lo +28—1. Weusen =
sample size(t in our notation), d = parameters. [DLM24]’ can also be done with RR+optimal-ridge, which
yields same in Phase Ia, but different in Phase II/ITl. [VPF21]° obtain & < n~ min{1/(2e),(2a+25-1)/(2e)}
that is, they capture the J,,, but not .. The minimax optimal SGD rates never achieve any of the rates (always
worse), which can be connected to overly conservative, small stepsizes. For derivation of the minimax rates,
we used Cor. 2 from [DB18]”. [Lin+24]° requires label noise order 1 and also a very small learning rate. For
[VE22]"°, we believe (though not proven) after numerical experiments that |8y — 6*||*> < d"~2” in Phase Ia and
otherwise constant in Phase II/IIL. As it takes on the order of d*+1/2 to reach stationarity for DANA-constant,
we see that our bounds improve over [VF22]'°, but similar. In particular, the two results agree as one approaches
stationarity. For all algorithms, we set batch size = 1.

26

Equivalent Hyperparameters
in Alg. (Gen-Mom-SGD)

Good Choices for
Hyperparameters

~ 2 ~
(1) = 255 - A,

-2

& =c1/(dx Te(D)), B = ca/Tr(D),

AcSGD[94] L t2 t+2
@, B) y2(t) = ,6’1, v3(t) = 77 ;1, czgzor%s}:ant?’s;
Alt) = 25 ee [94, Thm 3]
n(t) = 1" - 5,
S-Nesterov () = 5 HQ(t) B t*i A = c2/Tr(D), c2 constant; See [40]
()] T2\ = 71’ = =51 for details
Alt) = 75
Schedule-Free 71(t) = 1,72(t) = 5(1 - A). B=0.9,5 = ¢2/Tr(D), ¢z constant;
SGD [33] (7, 8) ~s(t) = 25, A(t) = 15 See [73] for equivalence proof.
(t) = a6 —7), See [61] for choices of
ASGD [61] Y2 (t) = &b (1-a :YL hyperparameters; Time-independent
(7, &, B,9) y3(t) = —(1—a&)(1 - B), hyperparameters (¥, &,), but some
At) = (1-pB)a depend on 1/d.
. 7)) =1, L. .
SGD with _ Heuristic only (no specific constants)
~2(t) = qo, N -
1-memory [107] () = (1 +)% 0<a<(2a),
(9o, 6, 0) | 0<d<Ll

Table 3: Other algorithms in the form of updates given by (Gen-Mom-SGD) and hyperpa-
rameters. See [40, 73, 94] for details. Although not proven, AcSGD [94] should attain similar
scaling laws as DANA-constant and ASGD [61] should attain similar scaling laws as SGD. We
note that ASGD [61] is not quite in the form of (Gen-Mom-SGD) as the update in y, uses a stale
gradient VZ(0;_1; x;) instead of VZ(0y; x141) for (Gen-Mom-SGD). SGD with 1-Memory [107]
is a heuristic algorithm independently developed at the same time as DANA-decaying and very
similar; No proof is given. We believe our result proves this algorithm as well.

The method of analysis of the risk curves in this paper is by formulation of a Volterra equation. For
SGD and stochastic momentum, these Volterra equations were studied in the high-dimensional regime,
see [60, 77, 78, 79, 80]. Particularly, we use the formulation that derives the Volterra equation via a
system of coupled difference equations for weights of the residuals in the observed data covariance.
This has been shown to generalizes beyond the least-squares context, at least under SGD, [26]; in
isotropic instances, this simplifies to a finite-dimensional family of ODES [4]. This can also be
generalized to momentum SGD methods [78] and large batch SGD methods [60]. Convolution-
Volterra equations are convenient tools, as they are well-studied parts of renewal theory [5] and
branching process theory [8].

Another method of analysis is dynamical mean field theory. The closest existing work to this one in
scientific motivations is [16, 17], which uses this technique. This formally can be considered as a
type of Gaussian process approximation, but for a finite family of observables (“order parameters”).
In instances of one-pass SGD (including in anisotropic cases), this is rigorously shown to hold in
[42]. The analysis of the resulting self-consistent equations is nontrivial, and [7, 16, 17] does some
of this analysis under simplifying assumptions on the structure of the solutions of these equations.

Besides these works, there is a large theory around generalization error of SGD. The work of [95]
gives a direct analysis of risks of SGD under “source/capacity” type assumptions which formally
capture the F},, parts of the Phase Ia/II loss curves. The risk bounds of [111] give non-asymptotic
estimates which again reproduce tight estimates for the F},, parts of the loss (note that to apply these
bounds to this case, substantial random matrix theory needs to be worked out first); see also [63]
where some of this is done.

27

B Additional Algorithm Set-up

Let v1,72,7v3 : [0,00) — (0,00) be learning rate schedules and A : [0,00) — [0,00) be the
momentum schedule. To solve the PLRF (3), we use a class of one-pass (mini-batch) stochastic
momentum algorithms with batch size B. Let y_; = 6y € R%. At each iteration ¢ > 0, we generate
independent, new samples {x,;}2 ; and update by

B
ye = (1= A)ye—1 + n(t) x Z WTxi_H (<WT9E§+1a 0) — <:C22;+1a b>)

=1 (13)
Or+1 = 0r — 72(t) x Z WT$§+1(<WT$Z§+17 Oi11) — (T4, b>) —73(t) X Yt

i=1

where 7;(t), A(t) are non-negative functions. We will consider multiple versions of the algorithm
(13), that is, with different choices for the learning rates +v’s and the momentum schedule A(t). In
Section 3, we summarize the different algorithms we consider based on hyperparameters as well as
good choices for those hyperparameters.

B.1 Stochastic gradient descent (SGD)

An example of a known stochastic algorithm that falls within the update rule given in (13) is the
stochastic gradient descent (SGD) with learning rate schedule, 2 (t). This algorithm is determined
by setting 71,73 = 0, A = 1, and y2(¢) : [0,00) — (0,00) a learning rate schedule in (13).
Specifically, it updates by

B
Ory1 = 0r — 72(t) ¥ ZWT$%+1(<WT$}L;+179§+1> — (341, b)) (14)

i=1

In Section F, we derive the deterministic ODEs and analyze SGD for compute-optimality when the
learning rate schedule 5 (¢) is a decreasing function.

B.1.1 SGD with constant learning rate

The compute-optimal curves for SGD when 2 (t) is a constant was studied extensively in [16, 63, 80].
In [80], a necessary and sufficient condition for convergence of the algorithm based on the learning
rate yo was established (see [80, Prop. C.2]). Particularly, the condition was

2 (o)
—_— d H () dt <1
72<B+1 an /0 (t) dt <1,

where # is the kernel function for SGD (see Section F for a specific definition). Asymptotically, we
know that ¢ ([80, Cor. G.1]) satisfies

> B - -—2a
/Ojif(t)dt 223 .

=1

Therefore, we have two cases to consider: 2a < 1 (below high-dimensional line) and 2ac > 1 (above
high-dimensional line).

Remark B.1 (Stability conditions for SGD with constant learning rate). Let Tr(D) 4 Z;Zl g2
When 2o < 1, suppose that 5 — r € (1, 00). The stability conditions for SGD with constant learning
rate vy are

(2a>1): 72<Bi+1 and ’}’2<%

2(1-2
2a<1): 72<BL+1 and ’Y2<%NH.

This means that for 2cc > 1, the learning rate is always constant (order 1) as the Tr(D) is summable.
Below the high-dimensional line, Tr(D) grows with the number of features d.

28

B.2 Classic (constant) momentum (SGD-M)

In this section, we consider the classical stochastic momentum where the learning rates y; = 1,72 =
Fod ™1, and y3 = Y3d~ "2, and momentum, A = ¢, is constant (does not change with time and order
1 with respect to d). We call this algorithm stochastic gradient descent with momentum (SGD-M). In
particular, we note that (stochastic) heavyball [82] occurs when v, = 0 and 3 and A are specific
constants determined by the largest and smallest (non-zero) eigenvalue of K. In this case, the updates
in (13) with y_; = 6y = 0 follow

B
ye = (1 —06)ye—1 + Z WT$§+1(<WT$i+1a 0:) — <$i+1a b))
i=1
. | | (15)
Orr1 =0 — 72 ZWT@H“WT@"L-M 0r) — <$i+17 b)) —v3 Xy

i=1

We will show a sufficient condition on the hyperparameters s, y3, § in Cor. G.1 for the simplified
Volterra equation (55) to remain bounded. However, we emphasis that there are discrepancies between
this stability condition and the actual stability condition of the algorithm. Indeed, the simplified
Volterra equation neglects A? terms which makes any A > 0 converge. On the other hand, it is
possible to make a similar analysis on a different set of ODEs (coin-flip ODEs (49)) with v5 = 0. In
that case, we can derive an explicit condition for stability of the algorithm. Specifically, the stability

condition takes the form % > 43 > 0 with 6 € (0,2). The condition § € (0,2)

is crucial to avoid exponential growth of the sequence (y;,¢ > 0). This shows a limitation of the
simplified ODEs (43) which may miss some stability conditions.

B.3 Dimension-Adapted Nesterov Acceleration: DANA-constant

Another important algorithm we consider is DANA, introduced in [78], where it was shown to
accelerate SGD in the proportional d and sample setting (a.k.a. thermodynamic limit). The main
distinction with (DANA) over SGD-M is the momentum schedule. Following a Nesterov style
momentum, we set A(t) = %H. In DANA-constant, the learning rates are all set to be constant
(possibly dimension-dependent). We will consider a more general setting for DANA-constant in
the appendix then what was introduced in the main introduction. Setting y_1; = 6y = 0, the

DANA-constant algorithm updates as

v = (1= AWD)yer +m x T2 Wt (W, 0) = (140,0)

Ore1 = 0p = 72(d) x 20,0, Wy (W), 00) — (@1, 5) —73(d) X e

J tant tant
where A(t) = 1 T 1, 7(d) = COIcllilan . and s(d) = constan

(DANA-constant)

Ko

(16)
Here we have batch size B = d"* where the exponents xp, k1, ko > 0. For the DANA-constant
introduced in the main introduction, we set ko = k1 + 1 and k;, = 0. At times throughout the
appendix, we will reduce back down to DANA-constant with these specific parameters, but for the
proof, see Section H, we will use this more general DANA-constant setting.

Remark B.2 (Good choices for hyperparameters of DANA-constant.). In Lemma H.5, we give
sufficient conditions for stability of the solution to the Volterra equation (55) on the simplified system
of ODEs (43) that accurately predicts the dynamics of the stochastic algorithm DANA-constant. For
necessary conditions on the hyperparameters (on the simplified ODEs), see Corollary H.2. Some
good choices for hyperparameters of DANA-constant (in batch size B = 1) are

20+ 25 -1 1 C2 C3
0 >4x — 44— —, =1, = , d =
max{ o a} n s Tr(D) e’ =% Tr(D)
satisfying SENCY ETr(D) < 1.
2’)/2 2
Here cy, c3 are positive constants and the matrix D = Diag(j=2* : 1 < j < wv).

29

alpha = 1.4, beta =1.0,d = 1,000, batch =1 alpha = 1.4, beta = 1.0, d = 1,000, batch =1

sad » sqd
— sgd, ode — sgd, ode
-1 -1
10 A — das t, ode 10 dana-decay, ode
ant, ode

alpha = 1.4, beta = 1.0, d = 1,000, batch =1

sgd
s

da

é 104 ﬁ 104
h 107° B 107°
10-° 10-°
1077 107
108 A 10-¢
10° 104 10° 10° 107 108 10° 100 103 104 10° 10° 107 108 10° 10%° 107; 3 10% 10° 10° 107 108 10°
flops flops flops
(a) Schedule-free SGD, single run (b) AcSGD, single run (c) Stochastic Nesterov, single run
alpha = 1.4, beta = 1.0, batch =1 ; alpha = 1.4, beta = 1.0, batch=1 100 alpha = 1.4, beta = 1.0, batch =1
n: ay 10 jana-deca N N
R T ey . \;\\}\\‘\\WQ\
10-2 \\ \\§\\\\\ — s 10- Qg&& §§
NN : N
1074 \\\\\\ o \\\\&\\&‘\\&\
" NN
x 107° S Ny 10 N\ NS
il [} NN
i = 10 N
10-1 107
dana-decay
Lo-i2 10-12] — danaco
— Nesterow
[
10% 10° 107 10° 101t 108 10° 10° 107 10° 101t 1013 107 10% 10° 107 10° 101t 1013
flops flops flops

(d) Schedule-free SGD, scaling be- (e) AcSGD, scaling behavior (f) Stochastic Nesterov, scaling be-
havior havior

Figure 10: Comparison of SGD, DANA with other known algorithms (Schedule-free, AcSGD,
Nesterov). Numerical setup: SGD (blue curves) learning rate 7, = 0.5/Tr(D), DANA-constant
(green) has v1(t) = 1, v2(t) = 0.5/Tr(D), v5(t) = 0.1/d, A(t) = §/(1 + t) where 6 = max{2 —
1/a, (2a+28—1)/a}+1; DANA-decaying (orange) same 71, 2, and A as DANA-constant,y3(t) =
0.1/(1 + t)'/(2®); Schedule-free SGD (red in st column) § = 0.9 and 5 = 0.5/Tr(D) in [33];
AcSGD (red in 2nd column) & = 0.1/Tr(D) x 1.0/Tr(D) and § = 0.4/Tr(D) as defined in [94];
Stochastic Nesterov (red in 3rd column) @ = 3 = 0.1/Tr(D) x 1.0/d"/? as defined in [94]. Top
row: algorithms were run for 107 steps with d = 1000, v = 10000; Bottom row: algorithms run
using the ODEs with equivalences given in Table 3; 10? iterations of algorithm, d = {100 x 2¢},
i=1,...,10 and v = 10 x d. (1st column: Schedule-free SGD [33]) Schedule-free SGD (red)
scales very closely with SGD (blue) for this («, 3). We see both DANA-decay and DANA-constant
accelerate. (2nd column: AcSGD [94]) AcSGD (red) gives scaling laws similar to DANA-constant
(green). Moreover, it has the same property of changing behavior at ¢t < d. Although an upper bound
was proven for AcSGD in [94], this is not optimal when applied to the PLRF and, in particular, one
would need to understand ||y — 6*||?. A similar technique as our approach to DANA-constant should
apply to AcSGD. (3rd column: stochastic Nesterov) Stochastic Nesterov is known to not converge
(see e.g., Thm.7 [38] and references therein).

30

B.4 Data-Adapted Nesterov Acceleration (DANA-decaying): Time/Data-dependent learning
rates

In the same spirit as (16), we consider a variation of DANA-constant, called DANA-decaying. In this
case, we not only have a momentum time-dependent schedule, but we also allow the learning rates
to be time dependent. The motivation for a decaying ~y3 schedule is, in light of Section 3, to avoid
the trivial behavior of DANA-constant for small ¢ by using larger 3 at the start, while decaying it
progressively to reduce the noise and preserve the stability of the algorithm. Therefore, we introduce
the DANA-decaying algorithm given by

(DANA-decaying) ye = (1= AM)yer + 7 x DL W (W), 00) = (i44,0)

O = 0 — 72(d) X0 WThahy (W, 0:) — (2,1, b)) — 3(t: d)ye.

) constant

where A(t) = T v3(t;d) = (T and 72(d),y1 = constants.
(7)

Here the exponent k3 > 0 and batch size B is independent of d. We only prove the result when
2a > 1 and y2(d) = 1, see Section L. In the setting of 2« > 1, this amounts to choosing (up to an
absolute constant) the maximal learning rate. We provide some good choices for the hyperparameters

that work well across scales on the PLRF.

Remark B.3 (Good hyperparameters for DANA-decaying, with B = 1). In Section I, we provide
some heuristics as to the correct sufficient conditions for stability of DANA-decay. More precisely for
anyl > k3 > i (for DANA-decaying, one should pick k3 = i) the conditions are stated as

K3 K3 20+ 20 —1 1 B _C
5+2>(1)max{a ,4a}, mn =1, 72(d)7Tr(D)’
o en2(d)
and 3(t;d) = e

Here the constants cz, ¢ > 0 should be chosen small enough and the matrix D = Diag(j=2* : 1 <
j <). Below the high-dimensional line (2. < 1), we are not certain if another choice of 3 may
accelerate.

In the rest of the appendix, we use the following.

Remark B.4 (DANA-decaying/DANA-constant.). Unless it is clear that ko/k3 are being
used, e.g., in the proofs of DANA-constant/DANA-decaying (Section H and Section 1), DANA-
constant refers to (ka = 1+ k1,k3 = 0) and DANA-decaying refers to (ko = 0,k3 =
1/(2a)). In some cases, we will further reduce to the setting where baich size is order 1 in d.
We note when we refer to DANA-decaying we always assume that batch size is order 1.

B.5 Comparison with Schedule-free, AcSGD, Stochastic Nesterov and conjectured scaling
laws

Other algorithms (e.g., stochastic Nesterov, AcSGD [94], Accelerated SGD [52, 61]) can be written
in terms of Gen-Mom-SGD. For the equivalence of hyperparameters of these algorithms to the
hyperparameters in Gen-Mom-SGD, see Table 3. See also Figure 10 for their scaling performance
compared with DANA and SGD.

We conjecture that Theorem 4.1 can be extended to include a time-dependent ~; (¢; d). In some sense,
the algorithm Gen-Mom-SGD is over-parameterized, that is, for Gen-Mom-SGD (71, y2, 73, A =<
(1 +t)~1) such that

Y1 (t;d)xy3(t;d) = A3(t;d) = Gen-Mom-SGD(v1, 72,73, A < (1 + 1)~ ") ~ DANA(72,93).

This is certainly true when 73 is a constant (d-dependent allowed). It should also hold (at least
asymptotically) when 7, (¢; d) and ~3(¢; d) are time-dependent provided that +; (¢; d) is growing
and A(t) is nice. Intuitively, this is true as 611 in Gen-Mom-SGD gets updated by approximately
~v1(t;d) x y3(t; d) x y, after unrolling the recursion on y;’s.

31

Under this belief and using the equivalence with our parametrization in Table 3 we can very precisely
conjecture their scaling law behavior.

* Schedule-free SGD. In our parametrization Schedule-free SGD uses the asymptotic learn-
ing rates vy (t; d)ys(t; d) = 1+t and v (t;d) = (1 — B) with 7 = ﬁ, B=1. Therefore
we see Schedule-free SGD is approximately DANA-decaying with v, (¢; d) =< (oy and
v3(t; d) = m or, if you like, k3 = 1. Then from Theorem 4.1, we have that the
function ¥(t) =< 1 4 22 Bt. This leads to the conjectured behavior:

[Conjectured Scaling Laws for Schedule-free SGD: For any o > 0, 2ac + 28 > 1, }

Schedule-free SGD has the exact same scaling laws as SGD.

* AcSGD. In our parametrization, ACSGD [94] uses the asymptotlc learning rates
Y1 (t)y3(t) = & and 5 (t) = 3 with & = der(D) and § =< T D) We see that this exactly

corresponds for large time to the schedule for DANA-constant with 3 (¢; d) = v2(d) x 2.
Using our result on DANA-constant Theorem H.3, this leads to the conjectured behavior:

[Conjectured Scaling Laws for AcSGD: For any a > 0, 2a + 28 > 1, AcSGD }

has the exact same scaling laws as DANA-constant.

* Stochastic Nesterov In our parametrization, stochastic Nesterov uses the asymptotic learning
rates v1 (t)y3(t) = 7 and 2 (t) = 4 with§ =< ﬁD). We see that this exactly corresponds for

large time to the schedule for DANA-constant without the é scaling in the v3(t) learning rate.
Using our stability result on DANA-constant Corollary H.2, this leads to the conjectured
behavior (see related results in e.g., Thm.7 [38] and references therein):

[Conjectured Scaling Laws for Stochastic Nesterov: For any o > 0, 2a+25 > 1, }

Nesterov Momentum diverges for large times.

C Deriving ODEs and Volterra equations

In this section, we derive Volterra equations that match the dynamics of the meta stochastic momentum
algorithm updates in (13). We develop two systems of ODEs that culminate in two (related) Volterra
equations. In Section C.1, we deduce a system of ODEs and a Volterra equation that, in expectation,
matches the expected loss under the updates (13). We denote these as the exact ODEs and the exact
Volterra equation, resp. While numerically solvable, analyzing the exact ODEs presents significant
challenges. Therefore, we introduce a system of SDEs derived from studying stochastic momentum
algorithms in the high-dimensional optimization framework [78]. In Section C.2, we derive the ODEs
and Volterra equation for the SDE framework (simplified ODEsy), resp. We empirically demonstrate
that this alternative simplified ODE system accurately model the behavior of SGD/SGD-M, DANA-
constant, and DANA-decaying (see Fig. 26, 27, 28, 29, 30, 31, 32, 33), and are considerably
simpler for analyzing scaling laws. Throughout our analysis, we clearly indicate which system of
ODEs/Volterra equation we are examining for each algorithm.

C.1 Derivation of exact ODEs and exact Volterra for the expected loss of meta stochastic
momentum algorithm, (Gen-Mom-SGD)

In this section, we derive a Volterra equation for the dynamics of the meta stochastic momentum
algorithm which updates using (13). Let Ny be an iid Poisson process. At a jump of N;, we generate
{x*} 2 | new data points whose coordinates follow an a-power law and update by

Vo= (1= AWM+t ZW oy, (@) T (WO, —b) ¥ Y, + AY(Y;_,0,)

Or = O —7o(t Z Wzl (2h,)T (WO, —b) — () x V; £ O, + Al(Y;,0,.).
(18)

32

Here we naturally extend time ¢ to be a continuous parameter with Y;_ = Y;_; and we start this
process so that ©¢ = 6 and Y, = y_1, that is, at initialization the two stochastic algorithms agree.
This is a standard way to embed discrete processes into a continuous process.
For any (0,Y) — f(0,Y) € R, the mean behavior is given by
d
dt

C.1.1 Derivation of the Exact ODEs.

E[f(Y:,00)] = E[f(Y: + AV(Y:,04), 0, + Al(Y;,04)) — f(Vi,00)]. (19)

For this, we need to introduce statistics that are closed under differentiation as defined in (19).

To do so, we begin by writing R” = Im(W) & W, Thus, there exists a b € R? and b € RY such

that one can write b = Wb + b, that is, we can decompose b as an element in the image of T/ and an
element in the co-ker of W. Formally, we have that

b=Wb+b, where WI'Db=0.
We will now choose some specific functions/statistics that will close under differentiation. Let

K ¥ WTDW e R¥*4 and let (Aj,w;)9—; by the eigenvalue-eigenvector pairs for K. We will
con51der the follow special statistics/functions for each eigenvector of K

pi(t) = E[(w]? (0 = D)*)[W], &(t) = E[(w]? V,2%) W],
and x;(t) = E[(wf’?, (0 — b) ® Y3)|W].
We recover the expected loss function from the statistics (20) by

E[2(00)|[IW] = E[2(0:)[W] + 3 i (1), where E[2(6.0)|W] = lim E[2(6,)[W].

J

(20)

Therefore, knowing the evolution of p2(t) and E [# (O)|W] for every j allows us to recover
information about the evolution of the loss curve under ©;. Moreover, we will show that the functions
(p3,€3,X3) close, that is, there is a closed system of ODEs that defined their behavior.

First, we observe that we will need moments of Gaussians via Wick’s formula. In particular, for fixed
vectors v; € R, 1 =1,2,3,4and x; = j~“z; where z; ~ N(0,1),

E.[x{z,v1)] = Dvy
E . [(z,v1){x, va){x, v3)(x,v4)] = (D, v1 @ v2)(D,v3 @ vq) + (D, v1 @ v3)(D, v2 ® vy)
+ (D, v1 ® v4)(D, v2 @ v3).

The (v x v)-matrix D« D1ag(—2@ 1 1 < j <) is the covariance of . Using these moment
computations, we can compute d 7 for the functions in (20).

p functions: Using (19) applied to E [f (O, Y;)] = p3(t) yields,

Lp2(t) = 2E [(w? (— () 2, Wi (2T (WO, — b)) @ (6, — b)) | W]

+2E [(w§?, —s(t) (1 — A()Y: @ (O, — b)) | W]
+2E [<w;®2 (=) 2, WTai(ah) " (We, — b)) ® (0, — b)) | W]
+2E [(§2 (= 72() X2, WTai(x)T (WO, — b)) ® —ys(t)(1 — A(1))Y:) | W]
+2E [(w§2, (= 72() 2, WTai(2))T (WO, — b))
@ (=1 (st) T2, WTaia)T(We, — b)) | W]
+2E [(w§2, —y3(t)(1 = A)Ys @ (=11 (Ds(t) DL, WTai(ah) (WO, — b)) | W]
[;@27(1) X2, WTai(a) T (W6, — b)) “%) | W]
E (w82, (= 7s(t) (1 — A@®)Y,) %) [W]
E [P (= m(t)s(t) 22, Wai(a)T (W6, —b)*%) | W]

33

For convenience, we drop the ¢’s on the learning rates v, (t) = ; and A(t) = A. Applying Wick’s
rule to the RHS, we get

05 (t) = =272BX;p3 (1) — 273(1 — A)x;(t) — 27173 B3 (t)
+27273(1 — A)BAjx; + 417273 BAZ 03 (t) + 29172793 BNE [| DY2 (WO, — b)||*[W]
+ 297273 B(B = DAZp3 (1) + 29371 (1 — A)BAjx; (1) + 93 BNE[| DV (WO, — b)||*|W]
+ 295 BN p}(t) + 75 B(B — DAZp} (1) + 75 (1 — A)*EF(t)
+ 91 BNE (D2 (WO, — b)[2[W] + 29795 BAS p3 () + 1173 B(B — A3 p3 (1),

&7 functions: Using (19) applied to E [f (O, Y;)] = & (t) yields,

SE® =E [(1= AW +m() DL, WTaj(ah) (W6, - 0)) %) | W]
— E[(wf?, V%) |W}
= 2E [(w}?,Y; © —A(1)Y:) | W] + 2BE [(WF?, Y, @ 11 (1) (W wpaf (WO, — 1)) | W]
[<w§®27() *) W]
—2BE [(w} A()Y: ® ’Yl(t)(WTl‘txtT(W@t —b))) | W]
+ 77 (t) BE [(w$?, (WT:c f(We, —b)” % | W]

)
+91()B(B = DE [, (Wi (2)T (WO, — b)) @ (WTai(«f)T (WO, — b)) | W].
Applying Wick’s rule, we get

FE(t) = =208 (1) + 21 BAjx; (1) + A () — 201 () B x5 (1)
+ 297 BA3p3 (1) + 4 BNE[|IDY2 (WO, — b)||? [W]+ B(B — D)y () A7 03 (1)

Xj functions: Lastly, using (19) applied to E [f(Oy,Y;)] = x; yields,

CE[; | W] =E[(wP?,0; — e 22, WTai(a})" (WO, —b)
— 73 ((1 =AY+ Y2, WTaj(ah) T (We, — b)) —
® (1= A, + 7 Yy WTai(a)) T (WO, — b)) | }
—E (w2, (6, —b) @ Y,) | W]

Applying Wick’s rule, we get the following
E[x; | W] = —72BXjx;(t) —v3(1 — A& (t) — v1v3BAjx;(t) — Ax;
+ 72 ABN X (1) + 13A(L — A)EF (1) + 11ysABA;x;(t) + 71 BA;p3 (1)
— 2717 BAp3 (t) — 1172 BME[| DY2(W6, — b) || W]
— 7172 B(B — 1)A5p3 (t) — y173(1 — A)BA;jx;(t) — 29713 BT 5
— i BNE[DY2 (WO, = b)|*|W] = 1i73B(B — 1)A3p3(1).

Putting this altogether yields the following system of linear ODEs.

Exact ODEs for p?, JZ., X;- Let (A\;,w;) be the eigenvalue-eigenvector pairs for K =
WTDW and decompose b = Wb + b such that W7 Db = 0. Here the (v X v)-matrix
D =Diag(j72* : 1 < j <v)and 2(t) &£ 2(0,) = |DV2(WO, — b)|2. Additionally,
we drop the time in the learning rate and momentum schedules to simplify notation. The
functions

P (1) = E[(w)®, (8¢ — 0)®?)]]7 & (1) = E[(wf?, Y%) W],

@n
and x;(t) = E[(w}?, (6 — b) ® Y3)[W]

34

form a closed system of linear ODEs:

Sl 0g) = 95 25) X (5 X5) + 96), @)

where Q(t;);) = Q(t; \;) + Q(t; \;) and g(t; ;) = G(t; \;) + §(t; A;) such that

5 P —Q’YQB)\]' 0 —2’}/3
Qt; \j) = 0 —2A 2v1 B); :

B -3 —A—mB);
: wr [T2BY + 22y +93 + 1) BB+ 1A (1= A)7 2958 +2(298 +25m) (1= A)BX
Qt; \)) = YiB(B + 1))\3 A? —271AB);
—n72(B(B +1))A; — 1373 B(B + 1)\ 13A(2 = A) (724 —2(1 — A)nvs)BA;

o [BNBE[Z()|W] o {7218 +7E73)A BE[2(8) | W]
g(t; 7)) = [VMNBE[Z() W] |, Gt A) = 0 :

0 (=172 — i) BNE [2(t) | W]

w (P1®)
and v(t;2) = | &) | -
(t)

X (t
(23)
The initial conditions are such that
p3(0)
v(0;4;) = | &(0)
x;(0)
L Y,

Remark C.1. We can write the functions (p?,]2, X;) in terms of the non-zero eigenvalues and
. . . d , ,
eigenvectors of the conjugate matrix K Y DY2WWT D219 We show this equivalence below.

Proposition C.1 (Equivalence of (p2,£2,%;)). Suppose K = DY?WWTD'Y?2 where D =
Diag(j =2, j = 1,...v). Then the following holds
W},

(uj, (DV2 (WO, —b)))?

u;, DV2WY;)?
s —€| - e PR
J

W} sz(t):E[Aj
W},

(u$?, (DV2(WO, — b)) @ DV2WY,)
Aj

and ;(t) = E [

where (\j, uj);izl are the nonzero eigenvalues/eigenvectors of K.

Proof. Let DY2W = vEUT be the singular value decomposition where V' = [uq,us, .., uy] €
RV U = [wy,ws,...,wq) € R4 and ¥ € R?*? rectangular diagonal matrix with non-zero
singular values o; where j = 1,...,d. We prove the result for p?(t) — noting that the results for 5]2-
and x; follow a similar argument.

We note that W7 Db = 0 implies that W7 D'/2(D'/2p) = 0. In particular, this means that
UXTVTD'Y/2p = 0. By hitting both sides by U7, we get that

SUTUsTvIDY b =0 = xxTVIDY%=o.
Thus for all nonzero singular values o; (or equivalently for all nonzero eigenvalues \; of K =
WTDW), ul D'/2b = 0.
Additionally, we have that
WTDl/Quj =Ux"VTu; =USTe; = 0;Ue; = ojw;,

where e; is 0 except for a 1 in the jth position. Note this holds for all non-zero o;.

1"These are precisely the statistics described in (4).

35

We have that b = Wb + b where WT Db = 0. Therefore,
(uj, (DY2(WO, —b)))* _ (u;, DY2W (O, — b) — D'/2)?

Aj Aj
_ (4, D'PW(©, —0))* (u;, D'/?b)
Aj Aj
_ (oy{wy, (00 —B)°
Aj '
The last equality follows since 0]2- =);. Taking expectations, finishes the proof. O

itializati _y. = 2(0) = E [{u:DY?0) 200) — _
Remark C.2 (Initialization). If ©g = Yo_ = 0, then p3(0) = E [T W], £3(0) = x;(0) =

Oforallj=1,...,d

Since the nonzero eigenvalues of K are the same as K, and in light of Prop. C.1, these
{(p?, j2-, Xj)};izl satisfy the same exact ODEs as in (22). Throughout the remaining sections, we

use {(p3,£7,x;)}9=, defined by the (nonzero) eigenvalues/eigenvectors of K = DY2wwTpY/2,

C.1.2 Derivation of the exact Volterra equation

In this section, we derive a Volterra equation that describes the expected loss using the exact ODEs.
To do so, requires abstractly solving the inhomogeneous ODEs.

To solve (22), we employ Duhamel’s principle. Let @y (¢, s) for ¢ > s be the solution to the IVP

d
&CI)AJ. (t,s) = Q(t; \j)®x, (t,s) suchthat ®y (s,s) =1d3forall 1 <j <d. (24)

Then by Duhamel’s principle, we have for every j

v(t; Aj) = @, (t,0)v(0; ;) + /Ot 5, (t,5)g(s; \5) ds.

As p3(t) = v(t; Aj)1, we have that
d
E(1) | W] = Jim EL2(0)| W]+ YA, x p2(0)
d
= lim E[2() | W]+) A;(®a, (£,0)0(0: 1)), (25)

t—o0
Jj=1

+/O E[Z(s) | W] {sz:)\f x @y (t,s)h(s) 1 ds.

Here the vector h(s) € R3 is given by

o 75+ 2nv2y3 +7193)
h(s) = 7 ,
(=772 = 7i73)
where the learning rate schedules ~v;, ¢ = 1,2, 3, are time-dependent. We denote the components
of h(s) as h;(s) where i = 1,2, 3. Therefore, the expected loss satisfies a Volterra equation (not
necessarily convolution-type)

E[2(t) W] = F (1) + / Hils) x E[2(s)| W] ds, (26)
d
where 7 (1) £ YA x (®1,(t,0)),, x p2(0) + lim E[2(1) | W]

and 7 (t) def BZ /\? x [hi(s) (@, (t, 8))11 + ha(s) (@, (¢, 3))12 + ha(s) (@, (t, 5))13]

36

Let K = VAVT. Define Dy, ,,(t,5) = Diag(®x,(t,5))1 : 1 < j < v) and @Y (t,5) =
VDs, ,,(t,s)V'. Here we define for the v — d zero eigenvalues of K to have (@, (t,8))11 = 1.
Where might this come from? By allowing some leniency in the definition of the ODE (24), we can
view)\ as a parameter (in the case we looked at above, we set A to be an eigenvalue of K). If one
plugs A = 0 into (24), then due to the initial conditions, we get that ®11(¢,s) = 1 for A = 0. Using
the p3(t) as defined in Prop. C.1,

d
Z(t) = lim E[2(8)|[W] + (@, (£,0)1105(0) = (21 (£, 0), (D2 (W6 — 1))#?).
Similarly defining Dg, ,, (t,5) &ef Diag((®x,(t,8))1x : 1 < j < v) and (P (L, 8))1 &ef
VDg, ,,(t,s)VT fork = 2,3,
H(t) = BZ /\? X [h1(s) (@, (t,5)),, + ha(s)(Pr, (£,5)),, + ha(s)(P, (¢, s))13]
F 27

= B x Tr(K? [h(s)® L (t,5) + ha(s) @2 (L, 5) + ha(s)D (¢, 5)]).

Therefore we can write Volterra equation for K.

From now on, we consider a specific initialization setting.

Assumption 2 (Initialization). We assume at initialization, 6y = ©¢g = 0 and y_1 = Yp_ = 0.
We thus can represent the expected loss function as a Volterra equation

forcing func.

F 1) +/ Hi(s) % E[2(0) | W] ds. (28)
—— Jo

deterministic alg.

E[Z(0) | W]

stochastic noise

The forcing function .% (¢) and kernel function .%#;(ss) are explicit functions of the eigenvalues of the
matrix K = DY2WW7T D'/2 where D = Diag(j~2* : 1 < j < v). In particular, we have that

F(t) = (D (1,0), (D?0)*?)
and #5(t) € B x Tr(K2[ha(s)L(E, 5) + ha(s)D12(E, s) + ha(s) @ (L, 5)])

with S &, (t,5) = Q(t; \;) @2, (¢, s) such that @5, (s, s) = Ids forall 1 < j < vand @}g(t, s) =
V Diag((®x,(t,8))1k : 1 <j<v)VTfork =1,2,3.

(Exact ODEs) Volterra equation for K = D'/2WW7TD'/2 = VTAV. Set the (v x v)-
matrix D = Diag(j 2% : 1 < j < v) and 2(t) & 2(0,) = |DY2(WO, — b)||2. Let

®),(t,s) for t > s be the solution to the IVP
d ;
E(IDAJ (t,s) = Q(t; \j)®x; (t,s) suchthat ®y (s,s) =Id3foralll <j<d. (29)

Then by Duhamel’s principle, we have for every j

1) = B, (00) + [s, (1 9)g(s12)

37

The expected loss under the iterates (Gen-Mom-SGD) satisfies a Volterra equation

E[21)|W] = /%) x E[Z(s) | W] ds
where Z(t) = &t <<I>11(t 0), (DY2(W6q, — b))¥?),
Holt)© def oo Tr(KQ [ha(s)q)}(l (t,s) + hQ(s)cb}?(t, s) + hg(s)<I>}§’(t7 5)]),

7+ N7y +1173)
and h(s) = y?
(=172 —7173)
Here @%“(t,s) = V Diag((®x,(t,8)1x : 1 < j < v)VT fork = 1,2,3 and h; are the
L components of the vector h.

(30)

J

While these representations are easy to see from the derivation of the Volterra equation, a more
useful representation of the forcing function and kernel function is through contour integrals over the

spectrum K. Let T be a contour containing the spectrum of K (recall, K is normalized so that the

largest eigenvalue of K is 1; thus I is a contour containing [0, 1]). Then the forcing function takes
the form

forcing function def —1 - _
< for a%gorithm) Z(t) = ijg«K -2 (Dl/Qb)®2>(‘Dz(ta0))11 dz (€29

and the kernel function takes the form

kernel function def 1
(for algorithm) Hi(t) = B x Tr(2m j{'zQ [h1()(®=(t, 5))11 + ha(s)(@= (1, 5))12

(32)
()@t)] x (K —2)7 dz)

C.1.3 Deterministic Equivalent of the Expected Loss

The forcing function .% (¢) and kernel function .%;(¢) are random as they depend on the random
matrix W. Moreover the expressions via contour integration show that both of these functions can be

described in terms of the random matrix K = DY/2WW7T D1/2, Indeed it is the resolvent of K,
R(K,2) Z (K —2)7,

which plays a significant role in .% and #". To analyze the power law behavior of the expected loss,
we remove the randomness in K, i.e., the matrix W. We do this by finding a deterministic equivalent
for the resolvent of K, Z (K , 2), using techniques from random matrix theory. Intuitively, we want
to take the expectation over the random matrix W; though not formally true.

Formally, we define the deterministic equivalent for the resolvent Z (K, z), denoted by R(z) implicitly
via a fixed point equation

1
m(z) = &ef — where R(z) = def Diag (

1+ Z] 1 J—Qam (2)—=

—20m(z) — 2z :

As mentioned earlier, this deterministic equivalent R(z) can be viewed, roughly as,
Ew[(K —2)7'] =Ew[#(K,2)] = R(2);
though it is not formally the expectation over W.

Using this deterministic expression for the resolvent of K, we define deterministic expressions for
the forcing function via the contour representation of .% (¢) in (31)

211

Ft) & -1 f{ (R(2), (DY26)®2)(®,(t,0))11 dz (34)
I

38

and the kernel function in (32)

K, (t) € B x Tr(;wli 7? 22 [P (s) (D= (t, 8))11 + ha(s)(D=(t, 5))12
(35)

+ ha(s)(P=(t, 5))13] x R(2) dz).

Additionally, the deterministic equivalent defines two measure on the real line, which come from
Stieltjes inversion,

ef .1 .
po(dx) &ef 11%1 =~ Im((R(x + i), (DY?b)®2) dz
[™

o 1 (36)
and pgc(dz) = liﬁ)l —Im (Tr(R(z + ie)z?) da.
el0

Using these measures, we can define the forcing and kernel functions on the real line with the forcing
function defined as

forcing function .
<deterministic equivalent> It = /R((I)I(t’)11 pr(d) (37)

and the kernel function defined as

deterministic

(kernel function)
equivalent

X, (t) = B x / (A1 () (@a (£)11 + ha(5)(@a (£, 5))12 .

+ ha(s) (@4 (t, 5))13] pac (da).

Using the deterministic expressions for the forcing function F and kernel function X, we define the
deterministic function P : R — R as the solution to the Volterra equation:

P(t) = F(t) + /0 “ge.(t) x P(s) ds. (39)

Moreover, we know quite a bit about these two measure px and pg from [80]. See Section D for
details. In Section C.3, we provide some background information on solving Volterra equations.

C.2 Simplified ODEs and simplified Volterra

In general, it is quite difficult to analyze the exact ODEs in (22). Instead, as way to analyze the
scaling laws of (Gen-Mom-SGD), we derive a system of ODEs using an SDE. These SDEs were
studied in [78] on a high-dimensional least squares problem and were shown numerically to reproduce
the learning dynamics of the stochastic algorithms (Gen-Mom-SGD) for a variety of learning rate
and momentum schedules. We will use these SDEs (and more importantly, the ODEs, denoted by
simplified ODEys), to analyze SGD-M, DANA-constant, and DANA-decay in Section G, Section H,
Section I, respectively.

Letting K = W7 DW, we consider the following

dY; = —5(t)Ys + (1) (BV2(©,) + \/w asg!)

40, = —3(t)Y; — 12 (t) (BV2(O,) + W dB?),

where the initial conditions given by O = 6, Yy = yg, and (fBEl), B?) : t > 0) are two independent

d-dimensional standard Brownian motions. We note here that V& (0;) = W* D(W®O, — b).

(40)

C.2.1 Derivation of the simplified ODEs.

In this section, we derive a system of ODEs that describe the behavior of the expected loss under
the SDEs (40). We denote this system of ODEs as simplified ODEs. This system will be used
to analyze SGD-M, Sec. G, DANA-constant, Sec. H and DANA-decaying, Sec 1. To this end, we

39

suppose {(\;, wj)}le are the eigenvalue/eigenvector pairs of K and we write b = Wb + b where

WTD-b=0

As before, we will consider the follow special statistics/functions for each eigenvector of K
pi(t) = E[(w]? (0 =))W, &(t) = E[(w]? v, |W],

and x;(8) = E (w2, (6, — b) @ Vo)W, @b

Instead of using Wick’s formula, we now apply Itd Calculus. First, consider the functions 11, et
(wj, ©; — D), and =; &ef (wj, Y:). A simple computation yields for j = 1,...,d,
dw;, Vi) = (w;,dY;) = (—0Z; + 1 BAIL) dt + 71/ B2(0,)\/X; B!
d(wj, 0 — b) = (w;,dO¢) = (—73Z; — 1 BNIL) dt —12y/B2(0,)1/A; dBY).

Here (Bilj), 3(2) t > 0) are two 1-dimensional Brownian motions. Applying It6 Calculus,

d({wy, Yi))? = d=2 = 2(5; x ((—85; + mBNIL) dt + 71/ B2(0,)/X; dBL))
+ 297\, B2 (0,) dt
d({w;, O — b))? = dIT2 = 2(I1; x ((—15Z; — 12 BN 1) dt — 12/ B2(6:)/A, dB(2))
+ 2\ B2(0,) dt.
As for the cross term, we have
d({w;, Ye) (w;, O — b)) = d(E,11;) = =353 — 2 BA;E,I1; — 65,11 + 1 BAIT
— 725 \/W\/T dBt,j
T /BFO /R, B
Now taking expectations conditioned on W, we have that E [H?|W] = pj ,E ["2\W] = 52 and
E[II;Z;|W] = x;. Thus,
p3 = —272BX;p} — 273X, + 73\ BE [2(6,)|W]
5]2 = *25532‘ + 271 BAjx; + i A BE[2(0)|W]
Xj = —&F —12BXjx; — dxj +nBA;jpj.

Putting this altogether yields the following system of linear ODEs, denoted by Simplified ODEs.

Simplified ODEs for p?, J2-, X;- Let (\;,w;) be the eigenvalue-eigenvector pairs for K=
WTDW and decompose b = Wb + b such that W7 Db = 0. Here the (v X v)-matrix

D =Diag(j72 : 1< j <v)and 2(t) & 2(0,) = |DY2(WO, — b)||2. Additionally,
we drop the time in the learning rate and momentum schedules to simplify notation. The

functions
pj(t) = B[(wf, (6 = 5)®?)]], &) = E[(w7*, V=)W, W)
and x;(t) = E[(w?, (8¢ — b) ® Yy)|W]
form a closed system of linear ODE:s:
Sl \g) = 96 25) X (5 X5) + 9l), @)

40

where
—2')/QB>\J 0 —2’)/3
Qt; ;) & 0 —2A 2yBN; |,
B\; — —A — B\
, YLD A 3 V2D A , (44)
o (BNBEIZ ()| W) w (A0
g(t;);) = | ¥EN; BE[2(t) | W] and v(tN\) = | @) .
0 X5 (t)
Under Assumption 2, the initial conditions are such that
pg(O) E [(w2, b%2)|W]
v(0;;) = fj(o) = 0
x;(0) 0
L Y,

C.2.2 Simplified ODE as the large time limit of a coin-flip algorithm

In the previous paragraph Section C.2.1 we have seen that the simplified ODE (43) models the risk
under a particular system of ODEs (40). Although precise, this caracterization has obvious limitations.
Indeed, the SDE formulation requires the learning rates to vanish, with a correct scaling with the time
and dimension. This hence does not model a practical algorithm which makes any discussion about
compute in the scaling laws.

Instead, in the following we show that we can also view the simplified ODEs in (43) as dropping
terms that arise due to the higher-order moments of the Gaussian data x in the ODEs of a coin-flip
algorithm.

The coin-flip algorithm is a simple two-staged version of (13) where at each iteration we flip a coin
and update either the momentum iterate Y or the gradient update ©. Let N, Nf be iid Poisson
processes (i.e, the coin flips) and let the initialization be such that ©g = 6y and Yy = y_;. Ata
jump of N/, Nf, we generate (z%,7")2 | new data points whose coordinates follow a power law
with parameter « and update by

B

Yi= (1= AW0)Yee +m(t) x Y Wk, (ahy,) (WO, —b) LY, + AY(Y;,0,.)

i=1
O, = O, — a(t) ZWTIN YT (WO, —b) —3(t) x Y, E O, +AYY;,0,.).
(45)
We naturally extended time ¢ to be a continuous parameter with Y;_ = Y;_;. This is a standard way
to embed discrete processes into a continuous process.
Forany (0,Y) — f(©,Y) € R, the mean behavior is given by
d

Derivation of the coin-flip ODEs. In this paragraph, we derive the system of ODEs that describe
the behavior of the expected loss under the coin-flip algorithm. For this, we need to introduce statistics
that are closed under differentiation as defined in (46).

As previously, we begin by wr1t1ng RY = Im(W) @ W+. Thus, there exists a b € R? and beRY

such that one can write b = Wb + b, that is, we can decompose b as an element in the image of W
and an element in the co-ker of . Formally, we have that

b=Wb+b, where W' Db=0.

Indeed, denote b € Tm(W)+ with b — b € Tm(W). Then we are looking for some b € Im(W) + {b}
satisfying W7 Db = 0 <= Db € Im(W)J‘ <= Db € Im(W)* + DIm(W). Hence such b
exists in particular if D Im(W) & Im(W)L = RY. This is clearly the case since dim(D Im(W)) =

dim(Im(W)) = v — dim(Im(W)+) and because D never sends a vector on a perpendicular one,
ieVer € RY, (x, Dx) =0 <= x = 0 since it is diagonal with strictly positive eigenvalues.

41

Letting K & WTDW € R*4 and (Aj,w;)9_; by the eigenvalue-cigenvector pairs for K, we
consider the same special functions as in (20),

pi) =E[w)® (0 = 0)*)W], &(t) = E[(w?,Y,*) W],

and x5 () = E[(wE, (8, —) & Y)W @

As before, knowing the p7’s suffices to recover the expected loss under the coin-flip algorithm. We
proceed like in Section C.1 using Wick’s rule to get a closed formula for (p?, 532-7 Xj)-

p3 functions: Using (46) applied to E [f(©y,Y;)] = p3(t) yields,

B

£05(t) = 2E [(wF?, (= a(t) x Z W& (&) (WO, —b) —13(t)Y:) @ (6, — b)) | W]
+E [(w? ZWTxt @)T (WO, — b))% |W] +~2(t)E (WS, V2% | W]

+ 273(t)E [<W?27 (=72 Z Whz,:3 (WO, — b)) ® (-Y;)) | W]

— 2 (OBA) — 250 (1) + 292D BAZR(E)
L2 (ONBE[[DY2(W, - b)[? | W] + B(B - V20N + D)
+ 293(t)v2(t) BAjx; (1).

&7 functions: Using (46) applied to E [f (O, Y;)] = & (t) yields,

L) =E [, (1 - AW®)Y: +mlt ZWTxt @)T(We, — b))% | W]
— E [(wP?, Y% | W]
= 2E [(w, Y, ® —A0)Yy) | W] +2BE [(WF%,Y: @ 1 (1) (W az{ (WO, —1))) | W]
+E [, (A0Y)) W]
— 2BE [{w}” A()Y @1 (8) (W iz (WO, — b)) | W]
+ R (0)BE [(wf?, (W] (WO, — 1)) | W]
+97(t)B(B — DE [(W?, (Wai(a)" (WO, = b)) @ (WTai(«})" (WO, — b)) | W]
= —2A(0)E (1) + 20 (1) BAjx; (1) + A2 (0)EF(t) — 2A() 1. () BA;x; (1)
+ 297 (1) BA 93 () + 77 () BAE [| DV (WO, — 0) |2 [W] + B(B — 107 (6)A] 03 (¢).

X; functions: Lastly, using (19) applied to E [f(©, Y})] = x; yields,

42

Ely W] =E [} (0 = b) & (1 - A)Ye + m(t ZWTIf z;)T (WO, —))) | W]

—E[(wf? (0 = b)Yy | W]
B
+E[(w?,0r — 72 ZWT:%)T (WO, —b) — ()Y — b Vi) | W]
—E[(wf?, (6 —b) @ V) | W]
= —A(E [(w?, (0, = b)) @ Y;) | W]
+ BE [(w$%,(0; — b) @ v1(t) (WTz,2] (WO, — b)) | W]
— 72(t) BE [(wS?, (WTZ2ET (WO, — b)), Yy) |[W] — 43(t)E [(wF?, V22) [W]
= —A(t)x; () + 7 (6)BX; 5 (1) — y2(t) BAjx; () — 3 (1€ (1)

Putting this altogether yields the following system of linear ODEs.

s S
Coin-flip ODEs for p?, J2-, Xje Le} ()\?, w;) be the eigenyalue-eigenvector pairs for K =
WTDW and decompose b = Wb + b such that W7 Db = 0. Here the (v x v)-matrix
D =Diag(j~2% : 1< j <v)and 2(t) & 2(0,) = |DV/2(WO, — b)|%

p3(t) = E[(wf?, (0 — 0)® >|W], & (t) = E[(wP?, v,2%) W], e
and x;(t) = E [(w]?, (6¢ — b) ® Y;)|W]
form a closed system of linear ODEs:
d
&V(t;) = Q) x vt \y) + g(t; A)), (49)
where
wr [22(OBX; + B(B +)33 ()A] 3 (t) 273(t) (=1 + 72() BA;)
QM) = M) B(B +1)X] —2A(1) + A1) 2n()BA (1 - A®) |,
71 (1) BA; —7s(t) —A(t) = 72(t)BA;
o (BONBE[2() | W) o (70
9t 2) = | F(ONBE[2(t) | W] |, and v(t;2) = | (1) | -
0 X;(t)
(50)
The initial conditions are such that
p3(0)
v(0;4;) = | &(0)
x;(0)
. Y

We see that dropping some high-orders terms in the eigenvalue A & 52 and learning rates/momentum
schedules from the ODEs (22) yields the simplified ODEs in (43). This is the reason why we believe
that working with (43) should not affect our main results. Indeed, when studying the asymptotics for
large time ¢, the contribution to the risk of the different eigenvalues will come mainly from small
eigenvalues o2 (and especially 0% < ﬁ), as for larger ¢’s, solutions to the ODE have exponential

decay.

Simplified ODE as a high-dimensional limit and re-deriving the SDE system (40) without It
calculus The goal of this section is to relate the solutions of the simplified ODE Equation (43)
to limits of solutions of the ODE eq. (49). This allows to re-derive without It6 calculus, some
positiveness result on the sign of the simplified ODE solutions since we know the sign of the coin-flip
ODE solutions.

In the following suppose that v, (¢) = 1 and that vo(t), v3(t), A(t) are three continuous functions.

43

D, ()
- t
Do the change of variable ®(t) &f »ZS}B(J)Z P2(t) | on Equation (43) and get the new ODE
v Y3 (t) q)g (t)

y1Bo
di)(t) —2v,Bo? 0 —2v/371Bo
- N
— = 0 —2A(t) + 128 2v/mv3Bo B(t). (51)

Vy173Bo —/3y1Bo —yeBo? — A(t) + 273((2)

Lemma C.1. Let v1(t) = 1, let B,o > 0, and v2(t), v3(t), A(t) be three continuous functions with
~v2(t),v3(t) > 0. Let A Y52 s> —1and My € M3xs3(R). Denote ¥ : (—1 oo) — M3x3(R) the

solution of the simplified ODE (51) with initial condition for s > —1, U(s) = M. Let d > 0 and
denote ®(t) the solution of the ODE (49) where we used A(t) =4 A(Z—/d) Fi(t) = t/d) Sfori € [3].
 (dt)
Additi <o | =2, (dp) . o Y
itionally denote ®(t) = | m()Bo and write the initial condition ®(s) = M. Then

v 3(t) 7
NCNOE D3 (dt)

vT > —1,
- 1
sup [[w(t) - ()| = O(=).
te(s,T) d
Proof. Denote k = 21 €]1,2]. We obtain
2] o2 B?k 12 ot . 1 o2 1(23 o
A % (t()JB + VJZU) %(t)vdgt)B oVt B ”Y (142 (f)B)
60 gl mpnpg: a0, bot s =l P
t)v1(t)B 3(t)v1 A 2 =
NCRGGLR ,%0 A0 OB 2 4)
~27,(t)Bo* 0 =2¢/73(t)n(t)Bo
— 0 —QA()+ 1ig8 2 73() ()BU + OB,H‘U,t(%) (i)(t)
Visn®)Bo —/unt)Bo —A(t) - y2(t)Bo® + 212“)
which implies the result. O

Remark C.3. Lemma C.1 shows that the simplified ODE (51) is a "high-dimensional” limit of SGD,
where the learning rates are scaled inversely proportionally to the dimension with the correct scaling,
as was done in [78]. Hence one will note in the following the proximity of our results to results from
[78]. However, we underline that our argument in favor of using the simplified ODE (51) is because
this gets rid of higher order terms in the eigenvalue o, whose we believe the contribution to vanish
for large time t. Indeed, we avoid taking the learning rates to vanish for large dimension, as this
would make the compute-optimal scaling laws useless. Hence it is surprising that dropping higher
order terms in the eigenvalues o (looking at the dynamics for large t) is equivalent to dropping higher
order terms in the learning rates -1 2 3 (looking at a non-degenerate, high-dimensional limit of the
algorithm for fixed time t). We leave the study of the links between both for future work.

Corollary C.1. Under the same conditions as in Lemma C.I denote ¥ : (—1,00) — R the solution
of the simplified ODE (51) with initial condition for s > —1, ¥(s) = Diag(a1, ag, az) with a; > 0
fori € [2]. Then, Vt > —1, ¥;; > 0 fori,j € [2].

Proof. For any d > 0, consider the solution ®(t) of the ODE (49) where A(t) &f %ﬁ), Ai(t) =

289 for i € [3] and with initial condition ®(s) = Diag(a1, a2 2% L a 92/). We know that
(p3(t), &3 (t), x;(t)) follows the same ODE as ®. Hence, if the initial condition is admissible, we can
deduce that the first and second coefficients, being squares, are positive. We know that ®.;(s), ®.5(s)
are admissible which directly brings that V¢ > —1, ®11(t), P12(t), P21 (t), Poa(t) > 0. Then we can
pass to the limit-inf when d — oo by using lemma C.1 to get the same result on W. O

44

C.2.3 Derivation of the simplified Volterra equation

We follow the exact same ideas as in Section C.1.2 replacing the matrix £2(¢; A) in the exact ODEs
(23) with Q(; \;) from (44). First, we let @, (¢, s) for ¢ > s be the solution to the IVP

d
&(I)Aj (t,s) = Qt; \j)®a, (t,5) suchthat @y (s,s) =Idzforall 1 <j <d. (52)
where Q(¢; ;) is defined in (44).

Following Section C.1.2, we represent the expected loss function under the SDE (40) as a Volterra
equation following an application of Duhamel’s principle, that is,

t
Dt A)) = D, (1,0 (05 A,) + / By, (1, 8)g(s: A;) ds. (53)
0

Note that in this case the function h(s) simplifies,

- " 2
(Simplified) Volterra equation for K = D'/2WW7TD'/2 = VTAV. Set the (v x v)-

matrix D = Diag(j 2% : 1 < j < v) and 2(t) & 2(6,) = | DV2(WO, — b)||2. Let
@), (t,s) for t > s be the solution to the IVP

d .
aq))\j (t,s) = Q(t; \j)®x; (t,s) suchthat @y, (s,s) =Id3foralll <j<d, (54)

where (¢; \;) is defined in (44). The expected loss under the iterates of the SDE (40)
satisfies a Volterra equation

E[P(t) W] = () + / Hi(s) X E[2(s) | W] ds,

where 7 (1) & (@11(t,0), (DV/2(W6, — b))®?), 59)
and ;(t) & B x Tlr(IA(2 [3(s)®5 (t,5) + 73 ()@ 2 (L, 5)]).
Here @}f(t, s) = V Diag((®x, (t,8)1x : 1 <j<v)VTfork =1,2.
L J

Deterministic equivalent for the SDEs. As the (simplified) forcing and kernel function only
depend on K , like the (exact) forcing function (31) and kernel function (32), we use the same
deterministic equivalent of the resolvent in (33) and the measures, pg and pg in (36). Therefore
define the deterministic equivalences for the forcing and kernel functions of the simplified ODEs on
the real line as

(simplified)
<d forcing function) Ft) = / (®(t,0))11 pr(de) (56)
eterministic equivalen R
and the kernel function defined as
(simplified)
kernel function

deterministic) Ks(t) = B x /R [7% (3)((I)w (t,8))11 + 712(5)((1)1 (tv 5))12]:“% (dz). (57

equivalent

Using the deterministic expressions for the forcing function J and kernel function X, we define the
deterministic function P : R — R as the solution to the Volterra equation:

P(t) = F(¢) + /0 t Ko (t) x P(s) ds. (58)

45

We know quite a bit about these two measures 5 and pg defined in the forcing and kernel function
from [80]. This knowledge allows us to derive scaling properties for the algorithms in Section B.
See Section D for details. In the next section, we provide some background information on solving
(general) Volterra equations.

In the rest of the appendix, we will use this simplified system of ODEs to analyze SGD-M, DANA-
constant, DANA-decaying in Section G, H, 1.

Assumption 3 ((Simplified Forcing and Kernel Functions and Simplified Volterra Equation)). From
now on, we will only work with the (simplified) forcing function and (simplified) kernel function as
defined in (56) and (57). The same holds for the corresponding (simplified) Volterra equation (55).
We will drop the reference to simplified in the forcing and kernel functions and Volterra equation from
now on.

‘We finish this section with a remark.

Remark C.4 (Thm. 4.1 F(9(t)) vs. F(t) in this section.). We note the following connection with
Theorem 4.1 in the introduction, which we hope does not add too much confusion. We have

(Theorem. 4.1) F(0(t)) correspondsto F(t) (Section C,(56) & Appendix).
In particular, the function F(t) (56) derived in this section and considered in the rest of the appendix,

in an asymptotic sense, includes the ¥(t) defined in Theorem 4.1. For K(t) & Ko(t), it is a slightly
more complicated correspondence, here

(Theorem. 4.1) K(9(t)) corresponds to ﬁﬂ((t) (Section C, (57) & Appendix),

where vy is defined in Theorem 4.1. This holds true also for K,(t) =< K, (t, s) which we will define
properly in the next few sections.

C.3 Background on Volterra equations

While Volterra equations such as (58) are quite nice and well-studied in the literature (see, e.g., [45]),
we need an approximation of the solution to them in order to have a better understanding of the
scaling laws. In particular, we need the (deterministic equivalent) loss function P(¢) to be a constant
multiple of the forcing function J and kernel function K. We state this idea more precisely at the end
of the section.

To do this, we need some background on general Volterra equations of the form:
P(t)=F(t) + (K = P)(t), where (K x P)(/ K(t,s)P(s) ds, (59)

and where F(t) is a non-negative forcing function and K (¢, s) is non-negative and monotonically
increasing in second variable and monotonically decreasing in the first variable kernel function. In

general, we define (K * K)(t, s) ﬁ) r,s) dr.

Let us define K*"(t,s) = & (K x K % - x K x K)(t, s), the n-fold convolution of K where K*! =

n times
K(t,s). Under mild assumptions such as || K| & SUD;e[0,00) fot K(t,s) ds < 1 ' (we call this
quantity the kernel norm) and the forcing function F' is bounded, there exists a unique (bounded)
solution P(t) to (59) and the solution is given by repeatedly convolving the forcing function with K
(see, e.g., [45]),

P(t)=F(t)+ Z(K*j «xFY) =F)+ (K« F)t)+ (K*K*xF)(t)+ (K*K*Kx*F)(t)+
Jj=1
This representation of the solution to (59) enables us to get good bounds on P(t). More precisely, [45,

Theorem 1] shows that if K : Ry X R — R is continuous, K (¢, s) = 0 for ¢ > s and F bounded,
then a solution to the Volterra equation is as written above. [45, Theorem 3] shows that if additionally

lim sup, > f(f |K(t,s)|ds < 1 then the above solution is bounded.

"In the case that K is of convolution type, that i 1s K (5) can be expressed as K (t — s), this definition of
[| K || simplifies. Particularly, we define || K|| = [;~ K

46

C.4 Reducing the complexity in the Volterra equation

First, we state and prove a lemma attributed to Kesten’s Lemma [8, Lemma IV.4.7].

Lemma C.2 (Generalized Kesten’s Lemma). Suppose K(t, s) is a positive kernel . Suppose that for
some constant C(K), forallt > r > 0:

/ K) K (s.r)ds < CUK)K (t.1). 60)

Then, for all n > 0:

K*(”+1)(t 7)

— 2 L < C(K)".
e B

Proof. We follow the proof in [80, Lemma C.1]. Define

a, & sup —K*"(t,r)
" sezo K(tr)C(K)n

sup
t>r>0

Then it is immediate that a; = 1. If we can show that
an <1,
then we are done. By definition of the operator we have that:
*(n+1) t *n t
S [wmep e [
By the hypothesis in (60),

K *(n+1) (t ’I“)
S S A AP .
CiEr S an K (t,)

Hence the result is shown.]

fort > r >0,

Often we will not be able to analyze directly the forcing and kernel function, F' and K resp., in the
Volterra equation. Instead, we have access to upper and lower bounds on F' and K. Using these upper
and lower bounds (together with Kesten’s Lemma), we can still give a non-asymptotic bound on the
solution to the Volterra equation.

Lemma C.3 (Non-asymptotic Volterra bound). Suppose the same conditions as Lemma C.2 hold.
Suppose additionally that C(K) < 1l and F(t) < F(t) < F(t), K(t,s) < K(t,s) < K(t,s) with
non-negative ¥, K. Then,

F(t) + (K« F)(t) < P(t) < F(t) + C x (K = F)(t),

1
h = —
where C 1= C(R)

Proof. This proof parallels the proof in Lemma C.2 in [80]. We include the proof for completeness.
We consider the upper and lower bound separately.

Lower bound: Since K and F are non-negative, Zj‘;l(K*J « F)(t) > (K « F)(t) = (K * F)(t).
Recall the solution to the Volterra equation takes the form.

P(t)=F(t)+ Y (K"« F)(t).

j=1

It immediately follows from Z?; (K* % F)(t) > (X * F)(t) the lower bound.

Upper bound: By Lemma C.2, there exists a C(X) < 1 such that
K (t,r) < (C(F)T K (t,7),

47

Hence, we have that

oo

SRR =Y / K9t r)F(r) dr < 3 CUKP (K + F) (1)

j=1
_ (1> (K« F)(#),
1-C(K)
The upper bound is thus shown. O

A main tool for analyzing the deterministic equivalent. We are now state one of the main tools
used to analyze the deterministic equivalent loss function (58),

P(t) = F(t) + /Ot Ks(t) x P(s) ds.

For each algorithm, we will show that the forcing function F and kernel function X (¢) have upper
and lower bounds, that is,

F(t) <F(t) <F(t) and K (1) < K(t) < K(t). (61)

Moreover, we will show that the scaling laws for I and F (same for K (t)) are the same. Therefore,
for each algorithm separately (with the expection of DANA-decaying), we will show the following

Informal Theorem. [Reduction of the Volterra Equation] Let X(t) &ef Ko (t) and define simi-

larly K(t) and X(t). Suppose 2a +28 > 1, a+1 > 3, and a > }'2. For various assump-
tions specific to the individual algorithms, there exists an M > 0 large enough and constants
C(a, B, M, alg), é(a, B, M, alg) such that if yBt > M then:

& x (ff(t) + WlBUC(t)> < P(t) < C x <9‘(t) + 71BfJ<(t)) : (62)

We denote & ¥2 + % for classic momentum and -y &f 2 for both DANA algorithms and SGD.

We prove versions of this informal theorem, see Theorem G.1 for SGD-M, see Theorem H.3 for
DANA-constant, see Proposition F.9 for SGD with decaying learning rate schedules.

For the upper/lower bound on the kernel and forcing functions (61) for each algorithm are given
in Section F for SGD, Section G for SGD-M, Section H for DANA-constant, and Section I for
DANA-decaying. The general asymptotics for the forcing and kernel function can be found in
Section D.3 and Section D.4 with specifics for each algorithm in the individual algorithm sections.

D Measure of the Deterministic Equivalent

In light of the Informal Theorem above, to understand scaling laws, we need to analyze the (up-

per/lower bounds) forcing and kernel functions under the deterministic equivalent for K. We recall
the (simplified) forcing function, F(¢) defined in (56) by

5(0) = [(@2(0,0)ups(do),
0
and the (simplified) kernel function, X (¢) in (57)
Xs(t) =B x /0 (43 (8) (@2 (t,5))11 + 77 (8) (P (L, 8))12] pac (dr),

where the measures p5(dz) and px (dz) are defined in (36) via the Stieltjes inversion,

g (da) = lim 1 Im((R(z + ie), (DY/?b)®?)) da
el0 T
. (63)
and pgx(dx) = lifol = Im(2*Tr(R(z + ic))) da.
€ Vi

While we need o > i and « + 1 > (formally, we believe they are only the result of the proof technique
and not necessary. We believe the result would hold without these conditions.

48

d =500, v=2,500 d =500, v=2,500

alpha = 1.0, beta = 0.8, d =500, v=2,500
10° empirical 10° \
—— deterministic equivalent S
102 10 | N
10* N\ \\\
0 w uw
o < 10 \\ B
50 z ! N z
= 7} i Wi
2 10 s ! \\,,"m M f 5
3 " T 19 mm apha=10,beta=03 ”"""“ i ©
10 100 alpha = 1.0, beta = 0.5
e alpha = 1.0, beta = 0.7
10 10-1] W alpha = 1.0, beta = 0.9
alpha = 1.0, beta = 1.1
10710 10-2| W alpha = 1.0, beta = 1.3 4
10 107* 1073 1072 -1 0 1 10-° 10-° 1074 1073 1072 1071 10' 1077 107 10-° 107¢ 1077 1077 1077 10
eigenvalues eigenvalues eigenvalues
(a) Deterministic equivalent vs. em- (b) pg as B changes (c) s as o changes

pirical

Figure 11: Deterministic equivalent of the forcing function measure ;5. Numerical set-up: 100
randomly generated K = DWWTD and the p;’s computed; for empirical density g, 500 bins
equal spaced on log scale from 1078 to 1 and counted the number of); that fall into each bin
weighted by p;’s and then averaged over the 500; For deterministic equivalent jg, solved fixed
pointed equation (33) using Newton Method on a grid of x-values. Fig. 11a: deterministic density of
L (63) under the deterministic equivalent for K (red) matches the empirical density of ps. Fig 11b:
slopes of the densities p5 for all 5 agree at the left edge, but the slopes diverge on the right edge
as [changes. Number of ‘point masses’ on the right edge are the same for all 3. Fig. 11c: Left
edge cutoff evolves like d~2¢ as illustrated here. Number of ‘point masses’ and slope of the density
change as « changes. These slopes effect the scaling laws.

Here R(z) is the deterministic equivalent of the resolvent of K, given by the fixed point equation

1 1
m(z) = — where R(z) = Diag () .
1+ 2450, fmmz(z) z rem(z) — 2

For verification that the deterministic measures in (63) match the behavior of the random matrix K X
see Figure 11.

We begin with a first technical lemma stating that will allow us to show that g, g put no mass on
intervals [1 + €, 00) for d large enough.

Lemma D.1. Let o > 0, o # % and € > 0. There exists d > 0 such that ¥d > d, admissible v,
and any z € [1 + €,0), the fixed point equation m(z) = T L =7 has a real solution
143 2= 2amz) ==

m(z) € [1 —e/2,1+ ¢/2].

Proof. The proof boils down to showing that for any z € [1 + €,00), the function G(m; z) &f

has a fixed point in [1 — €/2,1 + ¢/2] for d large enough. Clearly for all d > 0,

j—2a

g i =,
G(m; z) is continuous in m on [1 —€/2, 1+¢€/2]. We write Vim € [1—€/2,1+€/2],Vz € [1+€,+00)

1 v j72a o
E;j—mm—z = dz|1+e/2—z| € Zj ’

S 20(@) d71+max{0,172a}.

€

The above can be made arbitrarily small for large d. Hence, by definition of G(m; z), this brings
the existence of d(a, €) such that Vd > d, Vz € [1 + €, 00), G(m; 2) is a continuous self-map on
[1 —€/2,1+ ¢/2]. Hence it admits a fixed point in [1 — €/2,1 + €/2].

O

49

D.1 Estimating .5
In the following section, we provide upper and lower bounds on the deterministic equivalent measure

of the forcing function p5 to compare it to reference measures s, , pi5,,, g, o that integrating it
against any function f can simplify as

[s@dustey = [fo)dlus, + s, + s,)0,
ceRL oc€Ry
This is formalized in Proposition D.13 below.

We begin by noting for all j € [v] that we can define ug) (dx) by Stieljes inversion, i.e. Vz € H,

/°° 1 (dz) er 1
o x—2z j2am(z) -2’

; 1 1
ivalently 13 (dz) & lim = 1 .
or equivalently .7’ (dz) i = Tm T T 1 ie) — (2 1 1) dzx

(64)

We therefore rewrite g (dz) = Y27_, j72*~ QBM(J (dx).

Now let’s notice an important identity, which will be very useful to get upper and lower bounds on
wy. That is for any z = x + in(x) € H we can rewrite

1 1
—Im

T (jzam(w +in(x)) — (v + “7(1))) I m </0 SWFM)
L[l)
o w(s—a:) + n(x)?

(Pmsn(x) *Hf;) (z).

Hence, estimating the left-hand term allows to evaluate the result of the convolution between ug)
with Poisson kernels. We can hence use the bounds from [80] on a specific contour in the complex
plane to estimate . For that, we will need a technical lemma comparing indicators on segments
and specific combinations of Poisson kernels.

Lemma D.2. Let e,c,a > 0. Consider for uw € [d72%1], n(u) &
(log(1/€)/c) max{ul 1/ T w} and denote P(u) 4 fjcig/S Pois, () (u — x) da.
There exists a constant C (€, ¢, o) independent of d, v, such that VC' € [d—2* 1] we have
(i)
- 2C
Vs €R, licac(s) < C (/ Pois,; () (s — u) du) .
(ii) .
ifu€e[C,2C] Pu)<C
and ifu ¢ [C,2C] P(u) < C {1, nd(((i;Q } with d(u) d:efd(u, (42, 58]).
Proof. (i) First note that Vu € [C,2C], n(u) 5 C. We can define a & inf,cic 201 n(w),

f . . =
b L SUp,e(c,2c) M(u) and notice that there exists a constant C'(e, ¢,) such that

2C

VC >0Vs €R, 1[0720](5) <C (/
u=C

Poisy(s — u) du) .

From the definition of 7(u) which follows a power law, we know that g < 21+1/(2¢) Hence
. e,c,M,x
this brings that Vs € [-C, C| SUPne o,y PoiSn(8) ATy gy proves the result.

> inf, c(q,p] Poisy (s) ~

50

(ii) Similarly, we know that for potentially different constants C(e, ¢, @), C (e, ¢,) we have

20
VC > 0Vs € R, (/ Poisy(s — u) du) <C.

=C
up p1 Poisy (s) &0 Mo . =
This brings using mff[“b]#s’(s) < lthatifu € [C,2C], P(u) < C. Additionally,
n€la n

notice that for a potentially larger C'

AC 5C - (0

u ¢ [C,2C], Vo € [— 3 ?], Pois,(z)(u —2) < C

we obtain that still for a potentially larger C,

w ¢ [C,20] P(u) < émin{l, ”(C)C} with d(u) & d(u, [g g]).

D.1.1 Upper bound on p5

We begin by proving the upper bound by decomposing the real line into different ranges of ‘singular
values’, o’s: large 0’s, 0 = 0, small ¢’’s, and intermediate o’s.
(4)

A first observation is that y.;” is a probability measure.

Proposition D.1. Let o > 0. Forany j € [v], ug) is a positive measure and ug)(Rﬂ =1

_gam(mfze) (Hie)) dz. Since for all z € H, m(z)
() ;

is defined as the fixed point of (33) with negative imaginary part [80, Prop. E.1], it is clear that p5” is

() ; =1
4

Proof. By definition, ugﬁ)(dx) = limeyo - Im(
a positive measure. Additionally, since the support of x5’ is bounded and

we see that ,u(gj) has mass 1. O

1
— ~
jT2em(z) -z z=1it,t—00

This implies a first bound on the mass of ug for large o.

Proposition D.2 (Upper bound for large ¢’s). Let o > 0. Suppose 2cc + 23 > 1. Then there is a
constant C(«, B) such that VM > 0, we have

pg([M, +oc]) < C(a, B).
Additionally, for any € > 0, there exists some d > 0 such that¥d > d, 5 ([1 + €, +o0]) = 0.

Proof. We know from Proposition D.1 that

v

ZJ 2028, (]))—Zj’2“’26<oo

j=1
since 2 + 23 > 1. Finally, the last claim is a direct consequence from Lemma D.1. O

Proposition D.3 (Point mass at 0). Let a > 0. Suppose 2a + 23 > 1. Then pg has an atom at 0
and there exists some C' > 0 such that

F—20—20

J —2a+(28-1)4+—1
< +
<{O} Z 1 +] 2ad20‘1€(7}/d) - Cd

where r(v/d) solves fv/d £ du=1.

K+u2e

In particular, we know pg({0}) =< d=20+@8=1D+

51

Proof. This is a direct consequence of [80, Prop. E.3, F.1, H.3] and the weak convergence of the
Poisson kernels to the Dirac. O

Proposition D.4 (Upper-bound for small ¢’s). Let o > 0. There exists some constant c(a) > 0
independent of d such that
Vo € (0,cd %), pug(dz) =0.

Proof. We know that fi5(dz) = lim.jo £ Im((R(z + ic), (DY/2b)®2)) da. Using [80, Prop. E.3],
we know the existence of c¢(a) > 0 such that m(z) is analytic in B(0, ¢(a)d=2*) and

Vo € (0,ed™2*), m(z) <0
which implies the result. O
Proposition D.5 (Upper-bound for intermediary o’s). Let o > 0 withov # 3, o # %, and B #

with 2o+ 26 > 1, 2a + 8 # % and 20+ 1 > B. There exists M,C > 0 depending only on «, 3
such that for any C' € [d=2*M, 37,

28—1
2

s ([C,20)) < C (c1+ + %ﬁcl—ﬁ) .

Proof. Using lemma D.2, we only need to estimate Y_7_, j~ 2%/ L Im (m) where z =

u + in(u). Applying [80, Prop. E.5], we get the existence of €¢,¢, M > 0 such that for any
1-1/(2a)

u € [d2*M, 3], and with n)(u) = (log(1/€)/c) max{u!*T1/(2) T 1"} we have

11]°
m(z(u)) = (1+061) +i(1+ 02)—u~ YOG with (8,,85) € |—=, =] .
20 33
Applying the summation lemma [80, Prop. E.4] we obtain for u € [d 2% M, ﬁ] and some constants
C:'7C:’0fa,ﬁ,c,e,M,

v

Z‘j_m_m% tm (j‘Q"‘m(z(z)) - z(u)> <C <u2§;1 + %Bu_% * Cﬁn(u)ubg(l/uo

=1

We conclude by writing

4((C,2C)) = / L2 () (ds)

<C /R + (/C " Poisy (s — du> i (ds)

=C (Poisy(u) *pz) (du)
2C
coé [(4 Su) a

:
<C (CH%1 + %ﬂcl—ﬁ) :

O

There is some intermediate o’s that still need to be bounded, o2 € [¢(a)d 2%, M d~2“]. This is done
in the next proposition.

52

Proposition D.6. Let o > 0 with 2ac + 26 > 1. Then for any co > ¢1 > 0 there exists a constant
C(a, B, c1, co) such that

b (le1d=2*, e2d=2%)) < Cla, B, er, c9)d =20+ 1=28)+

Proof. We use the estimate in [80, Prop. E.3] using points z € ([c1, c2] +4)d =2 and the upper-bound
Lie, o) () < C’fccl"’ Pois; (z — s) ds for some C(c1,c2) > 0and all x € R, O

D.1.2 Lower bound on p4

To obtain a lower-bound, we will use the lower-bound on the indicator 1;c >¢) using Poisson kernels
proved in Lemma D.2. This introduces some error terms due to the tail of the Poisson kernels that
need to be controlled using the previous upper-bounds. In particular, we will need n(u) < u, for this
bound to be non-vacuous.

Proposition D.7 (Lower bound for intermediary o’s). Letor, 8 >0, > ,a # £, 20428 > 1, a+
1 > [there exists some M > 0 large enough and C(cv, M) such that for any C' € [Md 2%, =1,

1 1+2§*1 CB 1—5L
uf([CﬂC])z(j(C 1)

Proof. We consider as in Lemma D.2 P(u def s 504/2 /3

o) & a'” 1/<2u>
and 7)(x) = (log(1/€)/c) max{z' 1/,) , 2

«

Pois,(z) (u —) dz where z € [d™2*M, 7]
} with €, ¢, M given by [80, Prop. E.5]. We

write using some constant C from Lemma D.2

5C/3 4

O (C,20]) > /:40/3 (e in)(~v + (1= m(+ in)d)) - /Q[C o, POBsd)

We hence have using some constant C that

50/3 4 v 2028

~ J
Cus(|C,2C 2/ —Im - - :
pc2c) = | s\ L G rm e

- [P
¢[C,2C]
CHQB ! %301—i c
— P(u du
- (] Papstan

+ /u 1 P(u)u;(du)).

=2C

We need to upper-bound both integrals on the right-hand side using Proposition D.5. For the first one
we decompose

c 2-iC
| Pwsian <Z< s P)) [()
logd
TI(C)O EPPS TR /S N S
< 27t 20 —(27* 2a

n(C) e (10 if 20> 1
< Ct s .
~To (.t d Zaif 20 < 1

53

251

Here, we used Proposition D.6 for the left edge and, in the second line 1 + > 1. There is left to

check when 2a < 1 that

2a

n(C) —2a 14281 1— L
—d <
C ¢ dC

~101-1/(2a)
-101- 1/(2a)

C>de
C < d~and 22 - 2a<cl

The second case is always valid but the first case is true in particular when 5 < « + 1. For the second
integral, we similarly expand

1 log(1/C) 2=iC
P < P
| st 5 §j (uepggch} uo) <[walaw

—i—1C

log(28-1 1
< C)1+‘2;+d(2i0)122>
@ '
: (i

Here we used Proposition D.2 for the right edge of the integral, 8 < % + « for the first term and
« > 0 for the second term. In fact for the ﬁrst term, we can reduce to the less restrictive condition

B < 1+ « by noticing that "(C (Cl_*) under this condition. O

D.2 Estimating py

Similarly to the previous sections, we will now upper and lower bound py to prove in Proposi-
tion D.14 upper and lower bounds for the integral of functions with respect to pic.

We can rewrite, using [80, Lemma E.1] and dropping the —zv term which vanishes

o (dz) & % lim In (2 +i€)(1 —m(x +i€))d)) equivalently / h ”jfd? = 2(1-m(2))d).
6 ! (65)

An important equivalent identity is to rewrite for z = = + in(z) € H,
1 7 px(ds)n(z)
~ (1 - m(:)a) = |
™ o (s—2)?+n(x)?
)-

= (Poisy(z) *psx) (z

D.2.1 Upper-bound on p5x

Again we decompose the real line into various ranges of ¢’s. Using the upper-bound of the indicator
function using Poisson kernels, we similarly get:

Proposition D.8 (Upper bound for intermediary os). Let v > 0, o 1, o 1. There exists M, C
depending only on o such that for any C € [d=2*M, M] we have:

«([C,2C)) < C x C?2a.

Proof. Using Lemma D.2, we only need to estimate X Im((z + in)(1 — m(z + in))d) for z €

(422,] and () = (log(1/e)/e) ma{a /() & £} Apoiving (80, Prop 5],
there exists ¢, M > 0 and € > 0 sufficiently small such that

1 . . 1/ (2e) : 1-1/(2)
~Im((z + in(a))(1 = m(x + in(x)))d) = “—— + O (n(@) Al + in()) + e /).
We use the bound on A from [80, Prop.E.4] (when setting 5 = 0) to conclude. O

54

Proposition D.9 (Upper bound for large o’s). If a > 1, a # 2, YM > 0, pxc (|4, M]) < 1

4 ~

Additionally, for any € > 0, there exists some d > 0 such that¥d > d, psc([1 + €, +00)) = 0.

Proof. Consider z =x +i € Hforz € [ﬁ, M]. This defines a compact U of distance at least 1 to
[0, 1]. From [80, Prop E.6], we have that

v

t(a(1 = m()) =1 | =Y) + Oty)

—2x —2a 7204
- j x 1 j x (—x)
7£XZ—((j_2a—l‘ Jrlxz _2"‘—1‘)
Cla)
+O((1 X min{d,d‘ml})

_y I Clo)
“2 G apiit O(<1 x min{d,d4a—1}) '

The above being bounded, it implies using Lemma D.2 that M%([ﬁv M]) < 1. Finally, the last claim
is a direct consequence of Lemma D.1. O

Proposition D.10 (Upper bound for o’s near zero). Jc(a) > 0 such that s ([0, c(a)d=2%]) = 0.

Proof. Using [80, Prop. E.3], we know that m(z) is analytic in B(0, c¢(a)d~2%). Hence, from (65) it
follows that pigc is null on [0, ¢(a)d—2]. O

We now move to the last range for o’s:

Proposition D.11. Let o, 8 > 0 with 2a + 28 > 1. Then Yea > ¢ > 0, we have
Mj{([cld—2a’02d—2a}) § d1—4o¢'

Proof. We use the estimate in [80, Prop. E.3] using points z € ([c1, c2]+4)d ™2 and the upper-bound
Lie, o) () < C’fccl2 Pois, 1 (z) ds. This brings that

C2d—2a

pac([erd ™2, cad ™) < / (Poisy *pu5¢)(s) ds

Cld72a

S /62 = Im ((s +i)(1 — m(s +1))d)

c1

= ' / Im ((s +4)(1 = (s + 1)) + O(d ™)

C1

g d1—4a.

D.2.2 Lower bound on p5

In the next proposition, we prove a lower bound on fx.
Proposition D.12 (Lower bound for intermediary o’s). Let o > %, o # % there exists some M > 0

large enough and C(a, M) such that for any C € [Md >, 1.

02-1/(2a)
pae([C,2C)) = ——=—.

55

def (5C/3

Proof. We consider as in Lemma D.2 P(u) = e—iC /3 POISy (@) (U — x)dz. Again for x €
[d=2eM,] and n(z) = (log(1/€)/c) max{a?+1/(2e) w2 UEUY with ¢ ¢, M given by [80,
Prop.E.5]

We write with some constant C' from Lemma D.2 and potentially larger C

~ 5C/3
Cuxc((C.20]) > / g I (e i) de - / eoney P00
C2-1/(20) c 1
>C (| P+ [P(u)m(du)) .

We need to upper-bound both integrals on the right-hand side. For that we use Proposition D.8. For
the first one we decompose

—i—1¢y

c o -
P du) < p 4
/u=0 ()i, (du) < Z (ue[z—m?g,z—icl (u)>) /2 pixc (du)
n

Here we used that 2 — i > 0 for the sum to converge. For the second one we write

/11 P(u)ps(du) < log%m <ue[max]P(u)) X /:Mcugc(du)

=20 1 2iC,2i+1C i
i=

1

All this finally brings that for M large enough, px ([C,2C]) > %02_% for some C' depending on
€, ¢, Q.

O

D.3 Forcing function

In this section, we decompose the measure g based on the upper and lower bounds previously
derived. This decomposition allows us to break the forcing function into three components, Fy(t),
Fpp(t), and Foc(2), that is

F(t) = Tpp(t) + Fac(t) + Fo(t).

‘We will discuss this in detail.

Proposition D.3 gives an explicit formula for the behavior of the measure p15 at x = 0. Proposition D.4

gives the “gap” between the 0 eigenvalues of K and the next smallest eigenvalue which occurs
at ¢(a) x d=2 where c(«) is some explicit constant. Moreover Proposition D.2 says the largest

eigenvalue of K is approximately 1. This is all to say, the support of g is {0} U [c(a)d 2%, 1+c(a)].
Lastly Propositions D.5 and D.7 can be interpreted as saying something about the density for pi5.

56

Fop(0()) + Fac (1)) + Fo(t) + ¥K,pp(9(2))

Plt) < T 1
jpp(t) + \{Tu(‘(t) + :Tll(f) + ,yiBprpOf)

~
=~
~
=~

Model Capacity: pg({0}) Fo(t) < d—2etmax{0,1-26}
Population Bias: Spikes in g Fpp(t) < t—(20F26-1)/(2)
. . - C x Fo(t), if28>1,2a<1
E Bias: Fac(t) < .
mbedding Bias: Bulk of pg wel(t) < {07 i£26 < 1
andif 28 > 1,2a > 1, F,.(t) = d 't 1 H1/29)
Variance: Spikes of pusc K1) = dmaxi0i=2a}y=2+1/(2a)
Learning
Algorithm rate Time scale, V(t)
2
SGD(72) Yo 9(t) =1+ Bt
SGDM(215,9) 2+ 0O =1+ (5 + B
DANA-constant(yz2,73)", t < d Yo () =1+ Bt
DANA-constant(yz2,73)", t > d Yo 9(t) =1+ 73Bt2

DANA-decaying(yz, v3)",
Ya(t) = (1 +¢)~ /)

DANA (72, 73),
¥3(t; d)(ginZiil schedule 72 9(t) =1+ 7Bt + (J; V(s B ds)”

Yo I(t) =14 B(1+1)271/)

T DANA-constant with v3 < 72 x 1 /d. * DANA-decaying only when 2 > 1 and v =< 1.

Table 4: Asymptotics for the forcing and kernel functions for all algorithms. See Sec-
tion G/Section F for details/proofs of the derivations for these asymptotics of SGD-M/SGD. See
Section H for details/proofs of the asymptotics for DANA-constant. See Section I for details about the
heuristics used to derive these asymptotics for DANA-decaying. Here the constant C' is independent
of dimension and B is order 1 independent of d. For the DANA class, we do not have a full proof.
We believe this is true for 2ac > 1 and y3d~"3 < =5, which we believe is true for stability reasons

and would suggest that v = ~9; this is the most uncertain part. Note that fkpp o = ﬁfKW where

Kpp is defined in Thm. 4.1 and K, (t) o Kpp(t, 0) is defined in this section.

Therefore, informally, we have
W N p,, + U, + B (66)

where we define the three measures as

def def _

pg, (du) = pr({0})do(du), pg,, (du) = Locuc1u? 1/ dy,
—1/(2cx)
and HF .. (du) déf 1d—2a <uélcﬁuT du.
Here cg = Z;’;l j’w if 8> % and 0 otherwise and dj is a Dirac delta function, that is,
def [0, x#0 >
do(x) = {oo, - i 0. where /_Oo do(x) dz = 1.

With this interpretation, we decompose the forcing function based on integrating against the three
different measures pg,, Wy F g that is,

Folt) & / @t 0))11 % s () = iy ({01) (@t 0))ns,
(1) < /0 " (@u(t,0))11 X pg, (du) = /0 (@u(t,0))11 x uF-1D/20) gy 67)

00 1
and Foolt) 2 [@0 X i () = % [(@101 ¢ w)
d

0 —2a

57

In particular, for any “nice” function ®,,(¢) : R>¢ X R>o — R, with some regularity parameter A we
know the existence of a constant C'(«, 8, A) such that V¢ > 0:

é X (Fo(t) + Fpp(t) + Fac(t)) < F(t) < C x (Fo(t) + Fpp(t) + Fac(t)) .

We formalize this idea in the next proposition.
Proposition D.13. Let o > i,ﬁ > 0with2a+28>1, a+1> 5, a,8 # % Ay > 0. There exists
M, My, My > 0 and C(a, Ay) such that for any f : [0,1] — Ry satisfying Vu € (0, 1)

i > A .
min flu) 2 A nax f(u)

we have for any d > 1,

1 ey 1
cranzxn(/QuizafT“>(M3¢p+-M?mJ<du>sz/;dmlfuoug<du>
< Cla, A) _/AT2 f(u) (Ngrpp + /Jbtm) (du).

Mod—2«

Proof. The proof is entirely similar to the one of Proposition D.14 O

Remark D.1. An alternative (although not identical) definition for us, , is as a sum of point-masses

L (du) =" 7025, o (du).
j=1

D.4 Kernel function

We can simplify the kernel function in a similar way as for the forcing function, that is

K(t,s) & K (t) < Kpp(t,),

where K, that is simpler to analyze than directly the kernel function.

Two differences are that there is no mass at 0 and the absolutely-continuous part is negligible. Hence
only the pure-point contribution survives. We define accordingly

pac,, (du)) Locu<iu' ™Y dy where g B s (63)
and the kernel function integration against this measure pg,, by
def >
Kpp(t:5) = B [(V3 (8)(@ult,)11 + 77 (5)(Pult, 8))12) X px,, (du)
0
(69)

= B/O (Y3 (8) (@ (t,)11 +V2(8)(Pult, 8))12) w2 du.

In particular, for a > §, o # § and for any “nice” functions @, (t,)12, P (t, 5)12 : R>0 X Rxq X
R>0 — R, with some regularity parameter A we know the existence of a constant C'(c, A) such that
Yt > 0:

1

ot Kopp(t,s) <K(t,s) < C x Kpplt,s).
We formalize this idea in the next proposition.
Proposition D.14. Let o > i, Ay > 0. There exists M, My, Ms > 0 and C(«, A1) such that for
any f : [0,1] — Ry satisfying Vu € (0, 1)

min f(u) > A; max_f(u).

[u,2u] [2u,4u]
we have for any d > 1,
1 i 7 e
G [s, @0 < [T) < Clat) [fu,, (o).
C(Oé, Al) Mid—2 Md—2« Mod—2a

58

Proof. We will instead show the following claim, which directly implies the result.

Claim D. 1 There exists k(o) € N* and C(a, A1) such that for any f : [0,1] — Ry satisfying
Vu € (0, 1) the following holds

i > A
[ff%ﬂ]f(u) 1&5%“ u).

then for any d > 1 and any ki, ko € Ny with 2alog(d) — k > ky > ko > k we have
2—k2+1 2—1‘72

1
G oy S, @) < [() < Cloan) [fla,, ()

2—k1—1

9—ka—1

Proof of the claim: First, using Proposition D.8 and Proposition D.12 we know the existence of

k(a) and C(c) such that for any 2o log(d) —j?: >k > ke > k,and k € [y — 1,k + 1],
Sty (275, 27541 < pac([27F,27F41)) < Cpgc,, ([27F,27741)).

For the left side we write

g—ka+1

/2 fu)psc,, (du) S

—ky41

™7

(uE[Q k+1 ,27k] f<u>> x Mx:!’p([QikH»l’ 27k])

??"??‘
[u

<y (5 Lo, £) x Clap(27471

A u€g2—k 2-k—1]

o
I
o

o

) [

<2 s,

—kq

Qe
=}

Similarly for the right side:

o—ka—1 k1—1
. —k—1 o—k
/271@171 fwps,, (du) = k; <1L6[21g11r1172k]f(u)> X g, (27771, 277)
k1—1

\%

L -k o—k+1

=ka

Zv?‘

A PR
> o /2 | wpsc(dw).

Taking C(a, Ay) & é(ylelds the result.

O

Remark D.2. An alternative (although not identical) definition for pxc,,, is as a sum of point-masses
i, (du) Z 374620 (du).

We can finally provide the following heuristics on the different loss terms:

* "Population bias" (J,): This loss term corresponds to the loss dynamics when running full-
batch gradient descent on the problem (hence following the population gradient), without
the embedding matrix W.

* "Model capacity" (JFy): This loss term (which is only d-dependent) represents the limit of
the loss, as the number of iterations reaches infinity. It arises from the partial expressivity of
our model class, since the learned parameters # € R? cannot encode the whole target vector
b € R” whenv > d.

59

* "Embedding bias" (F.): This loss term comes from the random embedding matrix W
which deforms the spectrum of the data covariance matrix and misaligns it with the target
vector b.

 "Variance" (X,,): This loss term comes from the stochasticity of the algorithm which at
each step samples a new i.i.d. random datapoint to compute a stochastic gradient. This
stochastic gradient, whose average recovers the population gradient, is a non-exact estimate
of the gradient and therefore introduces this additional loss term.

E Compute-optimal curves - General

We summarize the results of this Section E in Figure 12 (Phase Diagrams) and for scaling laws and
compute-optimal tradeoffs see Figure 13 and 14 (above the high-dimensional line) and Figure 15
(below the high-dimensional line). In the Phase Diagrams, we indicate which phases acceleration
occurs.

In this section for finding the compute-optimal curves, we note that DANA-decaying refers to DANA
with k3 = 5= and k2 = k1 = max{0,1 — 2a}. This is the same as saying that 7 is the largest
possible learning rate for stability. DANA-constant refers to DANA with k1 = max{0,1 — 2a},
Ro = 1+f<a1,and/13 =0.

In light of (62) and the simplifications of the forcing function (Section D.3) and kernel function

(Section D.4), we have that

1
P(t) < Fpp(t) + Fact) + Fo(t) + Py—Bﬂcpp(t), (70)

where v = 7, for SGD/DANA and y = 75 + 2 for SGD-M, and K, (t) = K, (¢, 0).

Since for each algorithm we consider (SGD, SGD-M, DANA-constant, DANA-decaying) these terms
are asymptotically equal to d~7¢~?, we can now derive the compute-optimal curves and exponents.
See Table 4 for the asymptotics of the forcing and kernel functions for each of these algorithms. For
derivations, see Section G (SGD-M), Section H (DANA-constant), and Section I (DANA-decaying).

To simplify the computations for compute-optimal curves, we introduce the following curve
P(t) & max {F (1), Fac(t), Fo (1), 25 Kpp(1)}. (71)

The function P(¢, d) achieves the same power law behavior as the original compute-optimal curve
P(t,d) (i.e., the slope of the compute-optimal curve is correct) and deviates from the true curve
by an absolute constant (independent of d and f). Note that some of the terms in the max function
(71) should be taken to be 0 when not defined for the different phases. Therefore, we derive the
compute-optimal curves by solving the problem

mdln fP(d B,d), and 1fd*(f) = argmlnd T(E%,d), -
then the compute-optimal curve is ~ P* (f) &ef j’(PO B7d*(f)).

Using this alternative loss function, jD(t, d), the compute-optimal line must occur at one of the corner
points, i.e., where any pair of functions equal each other. The following lemma gives a useful
characterization of these points.

Lemma E.1 (See Lemma D.1 in [80]). Suppose Cy,C1 > 0 are constants and ~y,v1,P0,01 € R
exponents and such that a function P(t, d) equals

P(t,d) = max {Cot~0d P, €yt~ d P},

Suppose that there exists i € {0,1}, j Y1 i such that pi — i > 0> p; — ;. Then replacing
T g the minimizer of P in d satisfies

d* défargmind {jj(f’)} = (%])1/(“/rprvo+po) % f(fyﬁwl)/(ylfplfﬁ,ﬁpo)
and the associated value is

min P, d) = Cy x §770 x (d*)10~Po,

60

Loss P(t) Trade off Compute-optimal Curves

Ia j)]’;hase Ia(f) = f(2a1+1 71) (1B a1/ (2a))

d;’hase Ia = fl/(2a+1)
Px lfafﬁ
Ib ?Phase Ib(f) = f2
Phase I i}MPZ?(t)-'_SrO(t) ?pp:?o d* - %
Phase Ib ™ f
- _o(20+26-1)
Ic fP;hase Ic(f) = fa(2,673)72,8+1
__1-2(a+p)
d;haselc = f2(0¢(2ﬂ—3)—2,8+1)
~ 204261
Phase Il T +Tac(t) g _ g Phhasen(f) < 7 20+5
+90(1) Ay gy = fB/0)/AHB/)
Phaselnn JecD T g Phem(f) = /0
JrL:K (t) ! dPhase m = f /
~BY-pp
= T a
IVa W%Kpp =9 j)fhase IVa (\f/) /1\2f
?Pp(t) + G'O(t) Phase IVa ™ f
Phase IV L Kpp(t = (-20)(20+426-1)
355 () IVb L% = Fpp Phnase vo (f) = f CCrFa=2m)

d;haie IVb = f(afﬁ)/(2a5+ozf2ﬁ)

Table 5: SGD-M/SGD: Loss description P(t) for SGD-M (v & 7, + 22) and SGD (y & ;) and

compute-optimal curves for 33(#, d) across the 4 phases.

Proof. The proof is a straightforward computation. The minimizer of j’(f, d) in d must occur where
the two terms in the maximum are equal, i.e.,

ealf) = en(d)
Solving for this d gives d*. Plugging in the value of d* into P(f, d) gives the optimal value. O

Remark E.1. The possible minimal values of (72), i.e., where pairs of functions in the max are equal,
can be reduced further. For instance, if F,.(r, d) exist for the phase, then for some 0 < 1o < 11 < 1o

Fpp(t,d), 0<t<tg

Pt d) ~ FKpp(t,d) to<t<t

) Faelt, d), t < t<ty
gjo(t,d), to < t.

Thus, there are only a maximum of three points to check in order to find the optimal compute curve.

Remark E.2. In view of Lemma E. 1, to find the optimal compute curves, we first find the potential
curves (i.e., all the possible combinations of two functions in the loss curve are equal while still lying
on the loss curve). Then the curve which has the smallest exponent on the flops, §, is the optimal
compute curve.

E.1 Stochastic momentum (SGD-M), compute-optimal curves

For constant momentum, the loss curve as well as the forcing terms Fy, J;,, T4 and kernel term
W%ﬂ(pp are entirely similar up to constants as the one for SGD [80]. The compute-optimal curves

are hence identical, see Table 5 when replacing 72 by 72 + 32 (see Remark G.2). See also Figure 12
for a description of the phases in the (¢, 3)-plane.

61

E.2 DANA-constant, compute-optimal curves

In all this section, we will use the hyperparameters in Lem. H.5 and Cor. H.2 (see Section 3) with
B = 1. We discuss the effect of learning rate and batch after. The asymptotics of the forcing and
kernel terms for DANA-constant, valid only in some regions of the (72,73, B, t,) space, are below

28—1

Fpp(t.d) = min{ (32 Bt) 5 (V3B P)
EF(Lc(t7d) = dilmin{(’ygBt)ilei’(73Bt)72+é}7

1

ﬁxpp(t,d) = o min{(y2Bt) 235, (Vs Bt) "1 EY, Fo(t, d) x d-2etmax{0.1-25}
2

Derivations for these forcing function and kernel function asymptotics can be found in Section H.
For a summary of the compute-optimal curves for DANA-constant, see Table 6 and Figure 12b for a
description of the phases in the («, 8)—plane.

Below the high-dimensional line, (Phases Ib, Ic, IVa, IVb). In that case, the limit level JFy is
reached for t < d?* < d. We have, Vt < d,

Fop(t,d) < (1B 755 Foo(t,d) = d (1 Bt) A

1 —o4 L
and %—BKpp(t,d)x'yg('ygBt) 2+3a,

Hence the forcing and kernel terms are similar to SGD and the compute-optimal choices for d*, t*
are the same as in Table 5.

Above the high-dimensional line (Phases Ia, I1a, IIb, ITIa, ITIb). A first observation is that the
limit on the min in 5, F4c, Kpp can never be compute-optimal by itself, since decreasing d would
yield strictly better performance. Hence we only need to check the risk between the different terms of
the forcing and kernel. Additionally, from [80], the compute-optimal for SGD happens in all phases
for t > d. Hence it has to be similar for DANA-constant since. We can therefore simplify in the
following for ¢t > d,

B—1

2
Fop(t,d) = (V1Bt) 255, Fuelt,d) = d}(\/13Bt) 27,
1 1
d 7% t d = Bt _4+g'
an 2B pp(t, d) < v2(\/3Bt)

Phase Ia. In this phase, the approximate loss curve satisfies

28—1

d) < max{F,,(L,d), Fo(L,d)} < max{(y/y3Bt) " "= ,d 2>}, (73)

P(d

a4

Proposition E.1 (Phase I, DANA-constant). Suppose we are in Phase Ia, i.e. 2a0 > 1, 23 < 1.

Then the compute-optimal curve T(di*, d*) using (73) occurs with d* = f3/21+a and iP(di*, dr) <
2a428—1
R

Proof. We apply Lemma E.1 with

26 —1 28 —1
70:2—" B ’ pOZ_l_ ﬁ) 71207 and p1:2a+2ﬁ_1
« 2c
O
Phases Ila and IIb. In this phase, the approximate loss curve satisfies,
P(L,d) =< max{F,, (L, d), Foc(L,d), Fo(L,d)} o

2= - —2+1 ;- 2a+max —
= max{ (/73 Bt) =7 d7 N (/s Bt) " H e d7 2ot {0,1 2/3}}.

62

Loss P(t) Trade off Compute-optimal Curves

5 204281
Ia :P;hase Ia(f) f 3/2+”
d;hase Ia(f) =
s 1
Ib :P;’hase Ib(f) = f12
Phase I Foo(t) + Folt 5 o_ 1
S e T () = 2
- —o(2a+26-1)
I iP;haselc(f) = fa(2673)72’8+1
_1-2(atf)
d;hase Ic(f) = f2(a(2ﬁ73)725+1)
. _ 2a(4a—2)
IIa F,.=5 UJPhase IIa(f) = f 122:;4"‘*3
Phase IT Foe(®) + Fael®) Dppase 1ma(f) =< Frottio—s
+Fo(t) N w21
b Fpp = Fae Phhase o (F) = f e
Phdse Ilb(f) f
_ 2a(4a-2)
Ma JF,..=% :P Phase IHd(f) = f 4a?+4a—3
ae = 4a—2
Phase I11 ?ac(l) +50() Bppase ma(f) = f4“2+14a*3
+ g% L ?Ph mp(F) < f~ T e
Y2 B b —=XKpp = Fac ase !
P d;hase Hlb(f) - f1/2
P va(F) =<
Va 1%, =% e 1o ((ff)) = ;1/2
?pp() + :TO() Phase IVa -
Phase IV 1 e

(2(2aB+a—28))

1 T ase f = f
j{pp = 3: Ph IVb() 8)/(208+a—28)

+—=Kpp(t
~2B pp(t) IVb F N
Phdbe IVb = f

Table 6: Loss description P(t) for DANA-constant and compute-optimal curves for P(-1- 75,d)
across the 4 phases (and subphases) defined in Figure 12b. We consider DANA-constant with the
hyperparameters in Lem. H.5 and Cor. H.2 (see Section 3) and batch size B = 1.

Proposition E.2 (Phase II, DANA-constant). Suppose we are in Phase II, i.e. 2a > 1, 20 > 1,
a > f3. Then the compute-optimal curve P(df* ,d*) using (74) occurs

e ifa> % (Phase Ila), with d* < fS/Z’lJrfx and iP(di*, dr) <§" 3/221‘1,
(20+28-1)

« ifa < 3 (Phase IIb), with d* = }55t% and P(L,d*) < § = 5ot

Proof. We have two potential cases to check, whether the compute-optimal is attained for F,,(t) =
Fac(t) or Foeo(t) = Fo(t).

Fpp(t) = Fae(t): We apply Lemma E.1 with

28 — 1 28 —1

Yo =2+

Ifa< %, we have p; — 1 > 0 > py — 7o and it yields an optimal df = fsTffa and ?(df* ,dy) =

_ (2a+28-1)

1/2+4a .
s3+a . On the other hand , if & > 2, we have F,,(t) = F,.(t) for ¢ < f3/2+« but the optimal
is to take t* the largest. This brings us to the second case.

Fac(t) = Fo(t): We apply Lemma E.1 with

63

Yo=2——, po=-—, =0, and p; = 2.
0

Ifa > %, we havze p1 — 71 > 0 > po — 0. Hence the minimum is attained for d = fa+13/ 2 and

fP(a;, d?) = § a+372, For a < % however the optimal is to take ¢, the smallest. We conclude that
2

for a > 3, in Phase Ila, d* = df and for o < 2 in Phase IIb, d* = d3.

Phases I11a and IIIb. In this phase, the approximate loss curve satisfies,

P(L,d) = max{ 255, (], d), Fac(L, d), Fo(§, d)}
= max{y(y/73Bt) 1=, d (/7 Bt) 2w, d 2.

Proposition E.3 (Phase III, DANA-constant). Suppose we are in Phase I, i.e. 2cc > 1, 20 > 1,

a < B. Then the compute-optimal curve T(di*, d*) using (75) occurs

(75)

2a(4a—2)

da—2
e ifa> % (Phase Illa), with d* < fie?+ia=3 gnd T(di“d*) = f 40?taa-3,

e ifa < 3 (Phase IlIb), with d* =< %/ and P(J-, d*) < §~ 1t aa,

Proof. We have two potential cases to check, whether the compute-optimal is attained for
525 Kpp(t, d) = Fac(t, d) or for Fye(t, d) = Fol(t, d).

5K (t,d) = Fac(t,d): In that case, we directly know that df : L2, P(L,d*) = §1+aa . We

also see that by defining

1 1 1 1
’70:4_77 pO:_2+77 71:2_7’ and pP1= 5.
« 2 « 2c

*

Ifa> %, we have pg — 7o > 0 > p; — 1 and we apply Lemma E.1 to obtain d¥ : /2, T(%, dy) =
f’”ﬁ. Ifa< %, the optimal is to choose ¢* the largest which brings us to the other case.

Fac(t,d) = Fo(t,d): In that case, we define

1
’ Po= 7, Y1 = 07 and pP1 = 20&.

1
:2——
o « 2x

For a < %, we have p;1 — 1 > 0 > pg — 7o and hence applying Lemma E.1, it brings an optimal
d; = fa+13/2, T(%v ds) =1 Ŵ . For a > %, the optimal is to choose ¢* the smallest going back
2

to the first case. We conclude that for o > %, in Phase Illa, d* = d5 and for o < % in Phase IIIb,
d* = dj. O

E.3 DANA-decaying, compute-optimal curves

In all this section, we will use the hyperparameters in Remark B.3 with B = 1. We discuss the effect
of learning rate and batch after. We remind below the asymptotics of the forcing and kernel terms,
valid only in some regions of the (72,73, B, t, d) space (1(t) < (\/v3(t) Bt)?).
Fpp(t, d) = min{yo Bt, 7(£)°} 3, Foo(t,d) = d~ min{y, Bt, 7(t)*} 2
1

5%t d) < 7o min{rBt T(t)?} e, Fo(t,d) = d2etmad01-26},

Derivations for these forcing function and kernel function asymptotics can be found in Section I. For
a summary of the compute-optimal curves for DANA-constant, see Table 7 and Figure 12d for a
description of the phases in the («, 8)—plane.

64

Loss P(t) Trade off Compute-optimal Curves

(1—2a—28)(4a—1)

Ia jD;hase la(f) = f (da—1)+4a2
4da—1

d;hase Ia(f) = f4a a1

fame?

X

DI o=

Ib j)ghase Ib (f)

d;hase Ib(f) = f
a(2a428-1)

IC (P;hase Ic(f) = fa(Zﬁ—3)_2/3+1
__1-2(a+B)
d;hase Ic(f) = f2(0‘(26—3)—2,8+1)
S _ 2a(4a—1)
IIa JFuc =% :PPhase Ha(f) = f 12:114'4‘12
Fon(t) + Fae (t) d;hase Ha(f) = fm
e _ (20+28-1)(da-1)

P (f) < 2(2a2+4a-B)
IIb JFpp = Fac Phase ITb (4a—1)8

Phasel F,,(t) + Fo(t) Fpp = Fo

Phase 11

Appase 1o (F) X f2o? 4055

20(4a— 1)

) <
Ma F..=% P*phase ma () = 1o 17407
(

_da—1

?ac() + 9:0() d;hase Ila f) - f4a 1+4a?
1 _1\2

Kon (8 j < § At
T gy Ky = Fae L phase o (F) =< f 2=

72B da—1
Appase 1y (F) = foo=1

IVa L =T, UJ;hase lVa(f) = f_a
B T eall) = 2
gjpp(t) + gjo(t) Phase IVa ~
Phase IV (1—20)(2a+28—1)

K (t ! _g P (7) = f Crsram
73X Vb i, = 5, P ve jo=8)/(208+a-26)
Phase IVb =

Phase I11

Table 7: DANA-decaying: Loss description for iP() when solved with the DANA-decaying

algorithm and compute-optimal curves for (P(75, d) across the 4 phases (and sub-phases)
defined in Figure 12d. We consider DANA-decaying with the hyperparameters in Remark B.3 and
batch size B = 1.

Below the high-dimensional line, (Phases Ib, Ic, IVa, IVb). In that case, v Bt < 73 Bt2~1/(20) <
7(t)2. Hence, we can write

g:m’(t’ d) = (VQBt)ili%a g:ac(tv d) = dil(’yQBt)ilJrﬁa
1
and wiBKpp(t, d) = Y2 (72Bt)72+ﬁ .

Hence the forcing and kernel terms are similar to SGD and the compute-optimal choices for d*, t*
are the same as in Table 5.

Above the high-dimensional line (Phases Ia, I1a, IIb, ITIa, ITIb). In that case, we can check that
Yo Bt > 43 Bt>~1/ (%) > ()2 Therefore we simplify

L—}7
Top(t,d) = (35 BEY OV g (1) = d7H (3, B2V ()1

1 _ oy L
and ——=X,p(t,d) < y2(73Bt* 1/(2"‘)) 2H3q
’)/QB

Phase Ia. In this phase, the approximate loss curve satisfies

P(4,d) = max{Fp (4, d), Fo(L, d)} = ma{ (3, B2~ 22)) -

(76)

65

Proposition E.4 (Phase Ia, DANA-decaying). Suppose we are in Phase la, i.e. 2o > 1, 25 < 1.
da—1
Then the compute-optimal curve P(-L, d*) using (76) occurs with d* = §1a?+1a=1 and P(L-, d*) =

d*? d*?
(1—2a—28)(4a—1)
f (4a—1)+4a?

Proof. We apply Lemma E.1 with

1 28 —1
70:<2—> <1—|— p >, po=0,v1=0, and p; =2a+25—1.

2a 2c
O
Phases Ila and IIb. In this case, the approximate loss curve satisfies
(P(g,d) xInax{ffpp(g,d),gaf(g,d)vffrO(gad)} (77)

_q1_28-1

= max{ (35 B>/ G T 47 (3 Bt G0y TR e,

Proposition E.5 (Phase II, DANA-decaying). Suppose we are in Phase II, i.e. 2a > 1, 258 > 1,

« > B. Then the compute-optimal curve fP(di” d*) using (77) occurs

2a(4a—1)

da—1
e ifa> 73"'4‘/5 (Phase Ila), with d* < f1e—1+122 and fP(a%, d*) < § de-1taa?,

(20+28—1)(4a—1)

(4a—1)8 _
s ifa< 3%/5 (Phase IIb), with d* < §2e2+4a8-5 and T(a%, d*) < f 20e7+iab-5)
Proof. The compute-optimal choice can be either attained for Epp(g, d) = Foe(d

Id)or Foe(d,d) =
gO(gad)

EFm,(g, d) = ?ac(g, d): In that case, we introduce

— (oL 1+2B—1 =0 (oo LY (1oL and -1
Yo = 2 2% 5 Po =V, 7= 20 20 5 p1 =1

If a < 3+T\/§ then p1 — 1 > 0 > py — v and applying Lemma E.1 we obtain an optimal
(4a—1)8 _ (20428-1)(4a—1) . 345
d} =< f2e?+4e5-5 and fP*(;i%, d}) <f 2@e+ias-5 . However, if a > 2t¥2 then p; — 71 < 0 and

po — Yo < 0. Hence the optimal is to choose t* the largest which brings us to the second case.

3’“&5(5, d) = ﬁ"o(g, d): In that case we define

1 1
%(2%)(12@)’ po=1 7 =0, and p; =2a

4a—1
Ifo> 3+T‘/5, then pg — o < 0 < p1 — 71 and we apply Lemma E.1 to obtain that d5 < f4e—1+4a?

_ 2a(4a-—1)
and T(di*,dg) = f 4a-1+422, On the other hand, if o < 3%‘/5, then pg —v9 > 0, p1 — 1 > 0 and
2
the compute optimal is to take ¢* the smallest, i.e. going back to the first case. We conclude that for
a > 315 in Phase Illa, d* = d} and for 225 in Phase IlIb, d* = d3. 0

Phases ITIa and IIIb. In this case, the approximate loss curve satisfies

P(L,d) < max{W%Kpp(é,d),fr‘“ac(g,d),?o(g,d)}

78
- max{ﬁg(*’ygBtzfl/(Qa))*Hi,dil(f’ygBtzfl/(Za))*Hi,d’h}, (78)

66

Proposition E.6 (Phase III, DANA-decaying). Suppose we are in Phase IlI, i.e. 2ac > 1, 25 > 1,
« < B. Then the compute-optimal curve ‘J’(aé, d*) using (78) occurs

2a(4a—1)

e ifa> 3%/5 (Phase Illa), with d* =< f‘mio{:mz and T(df* ,d*) < da-1t4aZ

a—1)2

= a—1 _(da—-1)"
o ifa < 355 (Phase HIb), with d* = fsaT and P(J, d*) =< |~ 2eta-1.

Proof. The compute-optimal choice can be either attained for ?pp(£7 d) = 3'“,15(27 d) or ?ac(g d) =
Fo(L,d).

’YzBK (

=12 i 2 i =0 ={2 i 1 i and =1
Yo = 20 20 y Po=Y, 7M1= 2 20) b1 = 1.

St/ = in 4l — it
Ifa< ,thenp; —y1 > 0 > po — vy and we apply Lemma E.1 to obtain d,; = | and

1)?
P & A7) =< § 2a(6a=D) . However, when o > 3+‘[, then pg — v < 0, p1 — 71 < 0 and the optimal
ch01ce is to take ¢* the largest, leading to the second case.

?ac(g, d) = ?0(5, d): In that case we define

1 1
%:<2_2a)<1_2a)’ p0:17 71:07 and p1:2a‘

,d) = ?ac(g, d): In that case, we introduce

4a—1
Ifoo > M ,then po — 0 < 0 < p; — ;1 and we apply Lemma E.1 to obtain that d5 < f4a-1+4a2
2a(4a—1)
and ‘P(di*, d}) < § 2@a?+2a-1/2) On the other hand, if o < 3+‘f ,thenpy —v >0, p1 —11 >0

and the compute optimal is to take ¢* the smallest, i.e. going back to the first case. We conclude that
for oo > 3%‘/3, in phase Illa, d* = d7 and for 3%/5 in Phase IIIb, d* = d5.

O

E.4 Comparison of samples needed at compute optimality

Independently of compute, a bottleneck in the training of large models is the amount of data available.
While the size of a model can be arbitrarily increased, data comes with hard limits: the size of internet
when it comes to language models [97] or when dealing with resource constrained tasks such as
medical imaging [13]. Hence a natural question is how do the previous algorithms compare in terms
of samples used at compute-optimality? In what follows, we denote DANA-c as DANA-constant and
DANA-d as DANA-decaying.

We know that for a given number of samples/iterations ¢ > 0, DANA-d always achieve smaller or
equal loss than DANA-c which in turn achieves smaller or equal loss than SGD. Hence for a fixed
given loss level, DANA-decay needs less samples to achieve this loss than DANA-constant which
needs less than SGD; strictly less when the scaling laws exponents are improved in the considered
regime. However, it is not clear that this ordering remains the same when considering the compute-
optimal training regime. Indeed, in some regions of the («, 3) plane, the corresponding training
regimes can be different for two algorithms. For example, for % < aand 8 < « the compute-optimal
regime of DANA-c happens at the frontier F,,./F, while the compute-optimal regime for SGD is
between K,,/F,.. The compute-optimal regime of DANA-c is shifted later in training (this is a
general effect of the acceleration, see Remark E.2). Hence, even if for a given loss level DANA-c
needs less samples than SGD, DANA-c needs more samples at compute-optimality.

In the following denote for i € {SGD, DANA-c, DANA-d}, p; > 0 such that in a given phase, the
number of samples required for algorithm ¢ is at compute optimality ¢* = §#:. The smallest p;, the
more data-efficient the algorithm is for a given compute. A first observation, is that even though the
loss P*(f) is continuous, across all the phases, neither the optimal dimension d*(f) nor the number of

67

samples ¢*(f) are continuous. The points of discontinuity are exactly when the trade-off condition
changes, for examples at the borders I1a/IIbor I11a/I1Tb.

Claim DANA-d will always use less samples at compute-optimality than DANA-c in all phases.
Additionally, given («, 3) and for two algorithms in {SGD, DANA-c, DANA-d}, if compute-
optimality is reached at the same trade-off between Jo, Fyc, Fpp, W%Kpp then DANA-decaying
uses less samples than DANA-constant which in turn uses less samples than SGD at compute-
optimality. The improvement is strict if one of the algorithm is accelerating with respect to the
other. Hence DANA-d, DANA-c and SGD are in that order sample efficient in phases Ia, IIb , IIIb.
However, for large o, compute-optimality for DANA-c, DANA-d is reached later in training due
to the acceleration, and DANA-c, DANA-d may as well use more than less samples than SGD at
compute-optimality, depending on «, 3.

Proof of the claim. We consider each phase:

* Below the high-dimensional line, SGD, DANA-constant and DANA-decaying have the same
scaling laws.

1 1 4da—1
¢ In Phase Ia, PSGD = 1-— S0+l > PDANA-c = 1-— m > PDANA-d — 1-— Lmzim

+ In Phase IIb (of DANA-c), psap = 1 — 255 > ppoanae = 1 — 352 > ppanaa =

148/«
1 (4a—1)8
2a2+4apB—p4"
¢ In Phase IIIb (Of DANA-C), PSGD — % = PDANA-c ~> PDANA-d = 1-— ég:i

» In Phase TIb (of DANA-), pscp = 1 — 7257 > poanad = 1 = gazegadrs. [we are
4da—2

additionally in phase IlIa, then ppana.c = 1 — ToZ1da—3 = PDANA-d = 1-— %.

* In Phase IIIb (of DANA-d), psap = 3 > ppanad = 1 — 2=}. If we are additionally in
Phase Illa, then ppana-c = 1 — gmz052—3 > pPpaNAd = 1 — go=1.

da—2

* In Phase ITa (of DANA-d), ppanac = | — j5592—3 > PDANAd = | — gaaoe

4a24+4a—1"

4a—1

* In Phase Illa (of DANA-d), ppanac = | — 57952 > PpANA-d = | — go79

* In the other cases, there is no general rule of whether one algorithm uses less samples than
the other at compute-optimality. The interested reader may still easily derive them using
Tables 5 to 7.

One can explain why DANA-d always use less samples than DANA-c, even when they don’t share

the same trade-off condition (i.e. for o € [%, 3+4\/5} , B> %) by the fact that DANA-c shifts the

trade-off (later in training) for smaller o than DANA-d. O]

E.5 Summary on compute-optimality results

We provide some specific details about compute-optimality for each algorithm in the different phases.

Below high-dimensional line (Phases Ib, Ic, IVa, IVb): Limit level JF; is reached when ¢t < d.
DANA/SGD-M has same scaling laws as SGD at compute-optimality.

SGD-M. Since same scaling law as SGD, there is a large portion of the (¢, 3)-plane (Phase III,

IVa, Ib) where we have universal scaling, i.e., params exponent is fl/ 2 or equivalently, the compute-
optimal regime is the same as the proportional regime (¢ < d). This was observed empirically in
[50].

DANA-constant/DANA-decaying. To improve the compute-optimal loss exponent for DANA-

constant, compute-optimality must occur after iteration d~! (Thm. H.3). As noted in Thm. 1.2,
DANA-decaying improves the loss exponents for all scaling regimes where 2o > 1, including the
compute-optimality regime.

68

Phase Ia: Here, J,, accelerates beginning at ¢ > d until it reaches the limit risk Fy. While the
compute-optimal tradeoff occurs at I, and Fy (same as SGD), DANA-constant reaches this point
faster than SGD; thus DANA-constant outscales SGD.

Phase II: This phase involves JF,,, Foc, T and at compute-optimality, we always see a better loss
exponent since the tradeoff point occurs at a point where ¢ 2 d. Notably the acceleration changes
the tradeoff constraints (e.g., where compute-optimal tradeoff occurs). For @ < 0.75 (Phase IIb,
DANA-constant) or o < (3 + v/5) /4 (Phase IIb, DANA-decaying), tradeoff occurs at the same two
terms as SGD, i.e., F,, and Fg, but its get there faster. This means that one uses fewer samples than
SGD to achieve compute-optimality. For o > 0.75 (Phase IIa, DANA-constant) or o > (3 + \/5) /4
(Phase IIa, DANA-decaying), the acceleration of F,. shifts the compute-optimal frontier to F,. and
Jo, making DANA model capacity constrained, that is, why the compute-optimal frontier exists
changes.

Phase I1I: This phase involves X,,,, F4c, and Fy and, notably, K, and F,. always intersect at ¢ < d.

The same as Phase II occurs with X, replacing J,,. When o < %, though, for DANA-constant the
compute-optimal tradeoff occurs at X, and F ., so no outscaling SGD.

We summarize the results of Section E below; for Phase Diagrams see Figure 12, for scaling laws
and compute-optimal tradeoffs see Figure 13 and 14 (above the high-dimensional line) and Figure 15
(below the high-dimensional line).

69

A
Oytscales + ’ x
1 Ila '111
1 a
| fa o5, sale > 075
high-d & 1,0 b yiohd
line i~ » line
_____ 3 57 D Loy e p 22
-% oz r2====% 035
G e —IVb FUNY e Same as SGD
0.5 " 0.5 "
B B
(a) Phase Diagram: (b) Phase Diagram: (c) Comparison of
SGD & SGD-M DANA-constant SGD & DANA-constant

A
Oytscales ‘¢

L Illa

i :---a---.; 3+V5

A
Oytscales + «

R
1L /11
,.-i‘.'.c-.E 345

a0

(d) Phase Diagram:
DANA-decaying

(e) Comparison of

SGD & DANA-decaying

B11)%4 4 11134

T high-d 0T high-d

- » line i~ » line

) 5 V_-b-lva] 2-v3 Lag IV 2-v2

ol . oy 2

r39==2F (55 RELCEEE S
N\ Ie Same as SGD 1 e Same as SGD

0.5 " 05 "

B B

(f) Comparison of
DANA-constant & DANA-decaying

Figure 12: Phase diagrams for the various momentum algorithms in the compute-optimal
regime. See Figure 13, Figure 14, and Figure 15 for cartoon pictures of the scaling laws and tradeoffs
across all phases and algorithms. The main phases (I,II,III,IVa) are based on the components of the
loss that dominate at each time. The phases are further broken down to account for the different
tradeoffs in the compute-optimal training regime. We always use k1 = max{0,1 — 2} and we use
DANA-constant with k5 = 1 + k3 and k3 = 0 and DANA-decaying with k3 = 1/(2a), k3 = K1,

and batch size B = 1.

70

A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
t*P/(QQ)
compute =P/ (20)-(2=1/(2a))
] g —p/(2a) g p/(2a)1—p/a g Compute
E 5 t 5 d t 5 optimal
| ° ° compute °
= @ wn _p wn
£7 \ g\ wma F N\
\ » d—* \V d—* \ » d—*
flops - flops - flops -
g A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
H™ t*/)/(Q”) t*/)/(gfl) Compute
» \ CnOI:nﬁIl::l:f optimal 4—p/(20)(2=1/(2a))
N v g p/(20) 4=p/o g
5 B \ Z \1 t £ compute
& B = = ;
(5] [5) [5)
: wv v v
g § dflt71+1/(2“) éﬁ (171/(21v)t72+1/u éﬁ 41— (2=1/(20))(1-1/(2a))
[} —2x —2« —2a
= \ d Ny ¢ N\ ¥ d
flops - flops - flops -
o A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
i e/ (22) t~r/(2¢) compute ‘
mv u)m_pute optimal =P/ (20)(2-1/(2a))
) %) 5]
> > p/(2a) 4—p/ > COIn_pute
3 5 5 \1 ! 5 \ optimal
n 9 3} 3}
g % P 1 1+1/(2 % 1/(2 241 % p 2-1/(2 /(2
Z —o d +1/(2c) 2 d- /(“)[*u"r /o 2 d—1¢—(2-1/(20))(1-1/(2a))
; . df_)a . u d72a . (1720
g > 4 > >
flops flops flops
A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
2 4—r/(20) (—p/(20)
S compute g =P/ (20)(2-1/(2))
v -5} nphmal [-5) dp (Zry)f—p «@ -5} com ute
s B 2 / 2 4 \p
v 5 \ 5 \ compute 5 \ optimal
2 2 g optimal o
£ § \D\(] 14 1+1/(2a) E \A\(] 1/(2(v)t 2}1/u§ &71Lf('zf1/(2(»))(171/(2u))
E (‘]72(& df'.Zn d*'ﬁ(l
£ N— t=d N—» >

flops

flops

flops

Figure 13: Cartoon plots of the scaling laws for each algorithm above the high-dimensional line
(Phase Ia, IIa, IIb). Pictures for the scaling laws for all three algorithms in each of the different
phases. When ¢ < d, DANA-constant behaves like SGD/SGD-M. Observe that the trade off point for
compute-optimum changes across phases and algorithms; indicated by (magenta). population bias,
Fpp(t) = (purple), embedding bias, F,.(t) = (blue), and model capacity, Fy(¢) = (orange). Variance
due to the algorithm has no impact. Here p = 2a + 23 — 1. We always use k1 = max{0,1 — 2a}
and we use DANA-constant with k5 = 1 + k7 and k3 = 0 and DANA-decaying with k3 = 1/(2«),

Ko = K1, and batch size B = 1.

71

g A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
iH compute
4~ (2-1/(20)) optimal 4—(2-1/(2a))?

A %) %) . 5]
SES compute 2 ¢~ (2=1/(2e)) z compute
< 2 optimal 2 2 optimal
o
: % '€ —1,—141/(2c) % —1/(2a) p—24+1 /() % —(2—1/(2a))(1—1/(2a)) j—1
v O d—'t =) d t =) t 7ze)) / d
g -]720‘ -]720‘ - 172(\
= \\ C \\ P C \\ Y C
m |- t: |- |-

flops flops flops
g, 4 SGD/SGD-M 4 DANA-constant 4 DANA-decaying
Y compute
\Y 1—(2-1/(20)) optimal 4—(2-1/(2a))?
VIl S -(2-1/(20)) 2
Vo2 compute z \ t « z \ compute
2 B optimal s 2 optimal
o
g _g p (171L71+l/(24\) 2 \dfl/(Qa)t72+l/(o) 2’ = (2=1/(20))(1-1/(2a)) g—1
2 . a2 Ny 4 N -2

flops flops - flops -
B SGD/SGD-M 4 DANA-constant 4 DANA-decaying
S
\Y \ 1~ (2=1/(20)) \ 1~ (2-1/(20)) \ (—(2-1/(20))?
ViE 4 o / compute
Voo compute > z :
2 E \ optimal E compute ‘é \ optimal
£ 2 Voo 141/2a) B C1/(20)4—241/(a) B P a—1/Ga)n—1/(2a)) 51
- d~t A ° d t ° t— (2l oy d
E N\ (] 2o N\ d 2o (1 2o

flops g flops - flops

Figure 14: Cartoon plots of the scaling laws for each algorithm above the high-dimensional
line (Phase I1Ia, IIIb). Pictures for the scaling laws for all three algorithms in each of the different
phases. When ¢ < d, DANA-constant behaves like SGD/SGD-M. Observe that the trade off point
for compute-optimum changes across phases and algorithms; indicated by (magenta). Variance,
Kpp(t) = (green), embedding bias, F,.(t) = (blue), and model capacity, F(t) = (orange). Even
in the stochastic noise-dominated regime, acceleration occurs for DANA-constant and for DANA-
decaying. We always use k1 = max{0,1 — 2a’} and we use DANA-constant with ko = 1 + £, and
k3 = 0 and DANA-decaying with k3 = 1/(2«), k2 = K1, and batch size B = 1.

72

A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
compute compute compute
optimal optimal optimal

\ (1—2a)p ' p \ (1—2a)p /' p \ (1—2a)p ' p
d 2a t7 2 d 2« 1‘,‘ 2a d 2a t7 2«

\ t=d \
\ > d=P (Ib), d~ 2% (Ic) \ > dr? (Ib), d— 2% (Ic) \ > d=? (Ib), d~ 2% (Ic)
| . | . | .

loss curve
loss curve

Phase Ib/Ic
loss curve

Ll Ll Ll
flops flops flops
A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
compute compute compute
optimal optimal optimal
S 9 1-2a)p 3 @ 1-2a)p 3 @ 1—2a 5
E z P e 2 e z P a
o = = =
n 9 [o
2l \ sl \ gl N\
= S .) . S :
Rl E i s ki e e 1 S A e Ton T EeEnTN “oa
d— 2o 1~ R d 4~ 2a R d d— 34 R d
|- |-
- >
flops flops flops
A SGD/SGD-M 4 DANA-constant 4 DANA-decaying
compute compute compute
optimal optimal optimal
=2 o (1—2a)p) @ 1-2a) o b 4 (1—2a)
>z AT - z 1T - z AT
s = = =
2 9o o]
s g \A 2 \A t=d 2 \A
A 2 = n—l)‘ 2 = rv—l)q 2 = w—l)‘)
A 2a ¢ R-1/(2e) 42 A sa ¢ Ro1/(@) 4 d— 2a ¢ RC1/(2e) 42
—_— —_— —_—
> > >
flops flops flops

Figure 15: Cartoon plots of the scaling laws for each algorithm below the high-dimensional line
(Phase Ib/c, IVa/b). Pictures for the scaling laws for all three algorithms in each of the different
phases. Observe that the scaling laws are all the same for every algorithm; Tradeoff in compute-
optimum indicated by (magenta). Variance, K,,(¢) = (green), population bias, J,,(t) = (purple),
and model capacity, F,(¢) = (orange). SGD/SGD-M and DANA-constant/DANA-decaying have the
same scaling behavior. Here p = 2a 4+ 25 — 1. We always use x; = max{0, 1 — 2a} and we use
DANA-constant with k3 = 1 + k1 and k3 = 0 and DANA-decaying with k3 = 1/(2a), ko = k1,
and batch size B = 1.

73

F Stochastic gradient descent (SGD)

The ODEs in (22) precisely yield the same scaling laws and compute-optimal curves as previous
works have shown for the stochastic gradient descent (SGD) algorithm with constant learning rate.
Of particular interest is reproducing the results of [80] and extending them to include learning rate
schedules.

F.1 Volterra equation for SGD

When v3 = 0, then the updates in (Gen-Mom-SGD) are precisely SGD with learning rate schedule
~2(t). Moreover, we see that the iterates generated by the “coin-flipping” algorithm when v3 = 0
give the exact same iterates as SGD. That is, SGD is the “coin-flipping” algorithm with v3 = 0.

When 3 = 0, the ODE in (22) becomes

d
o = QA x vt) + g(tNy)
—2v2(t)BAj + B(B + 1)%5 () A3 0 0
where Q(t; ;) = (Y (t)B(B + 1)X\3 —2A(t) + A%(t) 2y (H)BN(1 — A(t)))
Y1(t)BA; 0 —A(t) —72(t)BA;

We observe that the v/(¢; A;)1 = p? (t)forj = 1,...d completely decouple from 5;2 and x;. Therefore,
the ODE reduces to solving the following linear ODEs for p?, j=1,...,d

d o

at’
This is the same ODE that appeared in [80] with (%) a constant. Moreover when \; = 0, then
4 p2(t) = 0 and so p2(t) = p2(0) for all ¢.

For A; > 0, using Duhamel’s principle on these 1-dimensional non-homogeneous linear ODEs, we
can explicitly solve for the p?(t):

(1) = [= 27%2(t) BA; + B(B + 1)73(t)A7] o (1) + 23 () \; BE[2(t) | W].

p3(t) = exp (A(t))p3(0) +/0 exp (A(t, Aj) — A(s, A;))73 (s)A; BE [2(s) | W] ds,

-t =R .ot
where A(t, \) & —2BTy(H)A + B(B + 1)Ta(t)A2, Ty(t) & / ya(r) dr, To(t) & / V3 (r) dr.
0 0

Alternatively, in terms of the matrix @, (¢, s), we have for SGD
[DA(t, $)]11 = exp(A(t, A) — A(s, N)). (79)

provided that A > 0 and when A = 0, ®y(¢,)11 = 1.

Remark F.1. We do not need to compute [®(t, s)]12 since v1(t) = 0 so it does not effect the kernel
function.

F.2 SGD with learning rate schedule

Using the results above, we have the Volterra equation for SGD.

Volterra equation for SGD with learning rate schedule - (¢). We can now give an explicit
representation for the expected loss of SGD, that is, following the arguments in Section C,
with 6y = © = 0,
forcing func. t
E(2() | W] = £(0)+ [Hi(s) x E[2(0.)| W] ds, (50)
~~— 0

grad. descent

SGD noise

74

where, for any contour I' containing K, we have

Z@) 2;1 y{@(z,), (DV20)®2) exp (— 2B (t)z + B(B + 1)Q3(1)22) d=
i Jr
H(t) S —n3(s)B

= om

X Tr(% 22 exp (— 2Bz(Qa(t) — Qa(s)) + B(B + 1)22(Q3(t) — Q3(s)))
r

x #(z, K) dz>,

t t
and Q) & / vo(#) A’ and Q2(t) / V2(t) dt.
0 0

(. /

The Volterra equation using the deterministic equivalent for K immediately follows.

IS N
Volterra equation for SGD with learning rate schedule - (¢) under the deterministic

equivalent. We can now give an explicit representation for the deterministic equivalent of
SGD, that is, following the arguments in Section C, with 6y = ©¢ = 0,

forcing func. t
P(t) = F(t) + / %, (t) x P(s) ds, @1)
~~ 0

grad. descent

SGD noise
where, for any contour I' containing [0, 1], we have

def —1
271

= /OOO exp (— 2BTy(t)u + B(B + 1)f2(t)u2) po(du)

F(t) 7{ (R(2), (DV/25)2) exp (— 2BTa(t)z + B(B + 1)Ta(t)22) dz

det —1
K(t) = %’YS(S)B

~

X Tr(?(z*exp (— 2Bz(Ta(t) — T'a(s)) + B(B + 1)22(Ta(t) — Iy(s)))
i

x R(z) dz>
= 7§(S)B /0C>O exp (— 2Byou(Ta(t) — Ta(s)) + B(B + 1)u2(f2(t) = fg(s)))
X Mﬂf(du)a
and T'(t) déf/o ~Yo(r) dr and i (t) déf/o y2(r) dr.

Remark F.2. The results above also hold when 2 (t) is a constant and they exactly reproduce the
results in [80].

F.2.1 Simplifying the Volterra equation for SGD with learning rate schedule

We now aim to simplify the Volterra equation for SGD and to do so, we will assume that the SGD
learning rate schedule is decaying.

Assumption 4 (SGD Learning Rate). Suppose the learning rate schedule v2 : R>g — Ryg is a
nonincreasing function. Moreover, we let 7 d:ef’yg(()), that is o (t) < 72 for all t.

Throughout this section, we assume that Assumption 4 holds. Prior to this section, i.e., the derivation
of the Volterra equation (81), holds regardless of Assumption 4.

75

Next, we need to introduce upper and lower bounds on the SGD kernel. For this, we introduce two
kernel functions,

1
fSGD(t) déf/ exp(—2But + B(B + 1)32u?t) pac(du)

0 (82)

1
and X5P(¢) dg/ exp(—2But) px (du).
0

To simplify the notation, we write K(t) = &l >0 () and K (t) &b g S6p (t). Next, we know that

Ty (t) — Ta(s) < 42(Ta(t) — Ta(s)). Using this observation, we have, for any 0 < s < ¢
13(5)B x K(Ta(t) — Ta(s)) < Ky(t) < 13(5)B x K(Ta(t) — Ta(s)). (83)

Similarly, we define an upper and lower bound on the forcing function J

1 1
F(r) / exp(—2But + B(B + 1)50u2t) s (du) and F(t) < / exp(—2But) jiz (du).
0 0
(84)
It is clear that o
F(0(t)) < F(t) < F(Ta(t))-
In the following lemma, we show that K and J are monotonically decreasing in t.

Lemma F.1 (X and F are decreasing functions). Suppose Assumption 4 holds and the learning rate

satisfies
2

B+1~

Then F and X are decreasing functions in t. In particular, the function F is bounded.

Proof. First, if F is decreasing, then it is clear that F is bounded. Therefore it only remains to show
that F' and K are decreasing. This amounts to showing that

w(—=2Bt+ B(B + 1)%u) <0, forallu € [0,1].
This holds provided that B%rl > . O

Lastly, we introduce Kesten constant for the kernel of SGD as the following

%) /0 R(t) dt. (85)

We now proceed to simplify the Volterra equation for SGD in (81) using a result similar to Lemma
D.3in [27].

Lemma F.2. Suppose Asmmption 4 holds, that is, v (t) is a nonincreasing learning rate schedule

and > 9. Let Ta(t fo ~o(r) dr. Then for all t > 0,

BJrl
waﬂwf[ﬁuwawwrﬁxmﬂﬂw.

If, in addition, there exists ae > 0 and T'(¢) > 0,

/ K (s)K(t — s) ds < 21+ &) |K|[K () and 29,B|K[(1 + &) < 1, (86)

then for all t, ,
P(0) < T0)+C | 13(:)B % K(Lalt) = To(s))T(s) ds
for

B %(0) 1
B (K(T)(% +1) - 1) 1—29,B|X[(1+¢)

76

Proof. We recall that

t) + /t Ks(t) x P(s) ds.
0

The lower bound holds trivially after noting that K, (t) > v2(s)B x X(T'2(t) — T'2(s)) and P(s) >
F(s). For the upper bound, we start with the following. Let us define the convolution map

t) & /0 K (H)F(s) ds

with the composition of the convolution mapping by

t):/otiKs(t)S ds—/ / 5. (1), ()T (r) dr ds.
def

This naturally extends to G/ (F (F)(t) Next, let us define two functions h & F o ;" and g(u) =

B x ¥o(T'5*(u)) where T'o(t fo ~v2(s) ds. Moreover, we introduce another convolution mapping
given by

H & / Rt — w)g(u)h(u) du,

where the composition is given by

/ths ds—//fths K(s —u)g(u)h(u) du.

Again we extend this to j compositions, § (h)(2).

As the kernel function X (¢) and forcing function JF(t) are non-negative, we have that
)+ G (F)). (87)

Next, we prove the following claim. Claim: G (F)(t) < g’ (h)(T2(¢)) forall j > 1.

Proof of Claim: To see this, we will do the case when j = 3 in detail, but the idea will extend to all
j > 1. For this, we have that

. Ta(t) pw pu o o
)= [[[R(Ca(t) - 0w - 0Kl - o)glw)gu)g(e)h(v) dvdudu
0 o Jo
We consider the change of variables v = I'(p) where dv = ~2(p) dp. Then

. Ta(t) pw 07 (w) . .
5 (h)(Ta(t)) = / / / KT (t) — w)K(w — w)K(u — Ta(p))

x g(w)g(u)By3 (p)F(p) dpdudw,

Now consider the change of variables where u = I'5(r). Then,

—3 a(t) pw pT70(w) o o
S = [[[R0~ 0w -)X - Ta(r)

x g(w)g(u)By; (p)F(p) dpdudw

To(t 5 (w) _
/ / / R(Ta(t) — w)K(w — To(r)K(Ta(r) — Ta(p))
x g(w)v3(r)B*v3 (p)F(p) dpdr dw

= /0 /Os /07“ K(To(t) — a(5))K(To(s) — La(r)K(Ca(r) — Ta(p))
X 3 (s)75 (r) B33 (p)F(p) dpdrds.

77

The last equality follows from the change of variables w = I’ (s). The result immediately follows
since X(T'2(t) — I'2(s))v3(s) B > K,(t) and the kernels are nonnegative. This proves the claim.

Therefore, we have from (87)
+ 35 0=
j=1

Next, we show that the map G(h) is contracting and in particular,

/Kt—s ds-/ / K(t —5)g(s)K(s — u)g(u)h(u) duds

/ (/ Xt —s)X s—um(s)ds)g(u)h(u) du

< / K (t - w)g(u)h(u) du,

where the third equality is since © < s < t. The last transition is by change of variables and the
assumption that () is a nonincreasing function. Consecutive application of the convolution map
will then yield by induction,

/iK (t — w)g(u) h(u) du.

Therefore, expanding the loss and using the upper bound, and denote ¢ = 2, B(1 4+ ¢)||X|| such that
q<1,
)+ 25
j=1
o0 F2(t . }
)+ Z/ Tao(t) —u)g(u)?h(u) du
j=1"0
ad , Ta(t)
4 | BRIy ¢ [T R0 - wglwhlu) du
= 0

1

<F(t)+ (1) x Cp X / Br2(s) x K(Ta(t) — Ta(s))F(s) ds.
X(0)

XK(T)(2e+1)

from a change of variables u = I'a(s). O

The third transition follows from Lemma F.3 with C; = + 1 and the last transition follows

Lemma F.3 (Lemma D.4 in [27] and Lemma IV.4.7 in [8]). Suppose 7o < BL_H, i.e., K is monotoni-

cally decreasing. Suppose additionally that | X|| < oo and for some ¢ > 0, there exists a T(¢) > 0
such that

/9< R(t —s) < 21+) |K[K (), forallt>T.
Then for alln > 0

T*n(t) _ ne1 ?()
Slip{ K(t) }S(QHKH(HE)) (()(25+1)+l>'

We immediately get a corollary of Lemma F.2.
Corollary F.1. Under the assumptions of Lemma F.2, the following holds

(1) + / 23(5)B x K(T(t) - T(s))F(s) ds < (1)

<F(t)+C x /0 73(s)B x K(To(t) — Ta(s))F(s) ds,

where C' is the constant in Lemma F.2.

78

The goal will be to show that the lower and upper bound on P(t) from Corollary F.1 have the same
asymptotics (see Section F.2.2 for forcing function and Section F.2.3). Moreover, using the results

from [80], we know that X satisfies the Kesten’s lemma condition (86).

Proposition F.1 (SGD and Kesten’s condition, Proposition G.2 [80]). Suppose o > i. For any
€ > 0, there is an M sufficiently large so that for Bt € [M,d** /M),

/0 T()T(t — 5) < (24) |[TK(2).

Moreover, we have estimates on the Kesten constant ||X||.

Lemma F.4 (Boundedness of || X||, Corollary G.1 [80]). When 2ac > 1 and 7o(B + 1) < 2,

When 2a < 1,

We remark that || X|| is approximately 5=Tr(D); here Tr(D) = Z?Il §~2<. This leads to the main
result.

Proposition F.2. Ler v, d be admissible. When 2o > 1, suppose
1
Z;ozl j72a .

Or when 2 < 1, suppose 5, = ¢ x d**~1 where c > 0 is any constant and

Yo (B+1) <2 and 74 <

Fo(B+1) <2 and <1

c
1 -2«
Then the expected loss P is bounded and

F(0 (1)) + / 23(5)B x K(Ta(t) — Ta(s))F(Ta(s)) ds < P(t)

t
< F(T2(t) +C x / 73 (s)B x X(Ta(t) — Ta(s))F(Ta(s)),
0
where C' is the constant in Lemma F.2.

Proof. The proof combines the previous results with the idea that the conditions on the learning rates
ensure that F is bounded and 2B7,||X|| < 1. O

F.2.2 Forcing function for SGD with decaying learning rate schedule

In light of Corollary F.1, we can now define the different components of the forcing function.

Following the outline in Section D.1, we have three components for the upper forcing function F and
the lower forcing function &,

g, (1) L

=pp 2 o

1
/ exp(—2But) x u(2f=1/(22) gy,
0

— 1 [t
Fpp(t) &f —/ exp(—2But + B(B + 1)3,u%t) x u2f=1/22) gy

- 2a),

1
.0 [exp(-2But) ™) au

1
Fae(t) &f % ; exp(—2But + B(B + 1)7,u’t) x u2#=D/) gy,

79

where cg def Z;’il 7727 if B > and 0 otherwise, and lastly,
v -—2a—203

—_ e]
Fo(t), Fo(t) D ——5——
= 1+ j2ad?2k(v/d)

v/d d
where £ > 0 is the unique solution of / e
0

K+ z2o

For the pure point terms, we get the following proposition.

Proposition F.3 (Pure point forcing term, Proposition H.2 [80]). Suppose 2« + 25 > 1. For any
€ > 0, there is an M > 0 so that for Bt > M,

[Fpp(t) —g(O)] <exg(t) and |F,,(t) = g(t)] <exg(t)

where
g(t) @ (20)1(2B) 1/ (2 =B/a=1 T(£ — L 4 1) x ¢~ (1H8/)+1/(20)
Furthermore, for any M > 0, there exists some constants C,C, ¢ > 0 independent of d so that
c<TFpp(t),F,,(t) <C ifBt<M
and if t > Md> B o
Fpp(t), T, (1) < C x Fo(t).
As for F, we have the following proposition.

Proposition F.4 (Asymptotic for Fy, Proposition H.3 [80]). Suppose v and d are admissible such
that the ratio v/d > 1 and suppose 2a. + 2 > 1. Let 0 < r(v/d) < oo be the unique solution to

v/d
N
0 K+ u®

Then as d — oo

4-2e Zv 2)

T j=1J ; if26>1
Fo) Do)~ § i e

o Qu, if28 < 1.

Lastly, we have a proposition for the absolutely continuous part of Fy. ().
Proposition F.5 (Absolutely continuous forcing function, Proposition H.4 [80]). There exists a
constant C(a,) > 0 such that

C xFo(t), if2>12a<1

§j(z(t(t)vg(zc(t) < {0’ lfQB <1

Suppose now 2. > 1 and 23 > 1. For any € > 0, there is an M > 0 so that for Bt € [M, dQO‘/M},
Fac(t) —g(t)] <exg(t) and |F,.(t)—g(t)| <exg(t)

where g(t) < (37 j729)(2B) 7Y/ 29 (20) ID(1L - L)t Y/ gL,
j=1

Furthermore, for any M > 0, there exists some constants C', ¢ > 0 independent of d so that

_ Cxd™, ifBt<M
< . - ~
Fac(t), Toe(t) < {C x To(t), if Bt > Md.

Combining all these propositions, we have the following conclusion.
Proposition F.6 (Forcing function for SGD, Corollary F.1 [80]). For any «, 8 with o, 8 # % and
a+p> % there is a function C(t) bounded above for all t so that

1
1[0} (Fpp (T2 () +F 0 (T2(1) + To(T2(2))) < F(T2(t) < F(2)

< F(Ds(t)) < CW)(Fyp(Ta(t) + Fuc(Da(t)) + To(Ta(1))).

Moreover, for any € > 0, there is a M (¢) large enough that C(t) < 1+ ¢ for T's(t)B € [M, d*® /M|
and for Uo(t)B > Md>®. Lastly, the upper and lower bounds satisfy

Fop(t) ~ Tpp(t), Faelt) ~ TFac(t), and Fy(t) ~ Fo(t).

P =ac

80

SGD-M SGD

Fo(t) = d—2a+max{0,1-28} 9'()(15) = —2c+max{0,1-25}
57
Fop(t) = (erBE) Fpp(t) = (o Bt)~(H3/0)+1/C0)
C x Fo(t), if2>12a<1 C x Fo(t), if28>1,2a>1
< =
Faell) < 0, if28 <1 Facl?) 0, if28 < 1.
lfQB > 17 200 > 1, H:ac = d_1 (,Yefth)—1+l/(20¢) lf2,8 > 1720[> 1, ?ac(t) = d_l(’}/QBt)_l_‘—l/(Qa)
Kpp(t) =< 728 (yerrBt) 271/ Kpp(t) < 12 B(yoBt)~2+1/(22)

Table 8: Asymptotics for the forcing and kernel functions for constant learning rate SGD/SGD-
M. See Section G/Section F for details/proofs of the derivations for these asymptotics of SGD-M/SGD.
Here the constant C' is independent of dimension and et = v2 + %

F.2.3 Kernel function for SGD with decaying learning rate schedule

We perform a similar analysis for the kernel function for SGD. To do so, we introduce two (pure
point) kernel functions:

_ 1 1
Kopp(t) &f % /0 exp(—2But + B(B + 1)7,u’t) x u!~Y/ 2% dy

<1 1
and Kpp(t) o Z/o exp(—2But) X w1/ (2a9) gy,

The first result states that the upper and lower X, are asymptotically the same.

Proposition F.7 (K, asymptotic, Proposition H.5 [80]). Suppose a > 1/4. For any € > 0, there is
an M > 0 so that for Bt > M,

Kpp(t) — g(t)] <exg(t) and |X,,(t) —g(t)| <exg(t)
where
9(t) & (20)"1(2B) "2/ @) T(2 = L) x 4241/,

Moreover, for any M > 0, there exists constants c, C, C > 0, such that when 2o > 1,
c<Kppt)<C, <X, (t)<C, ifBt<M
and when 2o < 1,
Kpp(t) < Cx d* ™t K, (t) < Cxd* ', ifBt <M.
Furthermore, for any M > 0, there exists a constant C > 0, such that
Kpp(t) < Cx Folt), K,,(t) <CxF(t) if Bt > Md>.

This directly leads to the main result for the kernel function.

Proposition F.8 (Kernel estimation, Proposition G.1 [80]). Suppose o« > 1/4. There is a positive
Sunction C(t) so that

1 _
cm %3 (8)B x K, (Ta(t) — Ta(s)) < Ky(t) < O(t) x 43(5)B x Kpp(Ta2(t) — La(s)),
and C(t) is bounded independent of d by a function of M for all T's(t)B < d**M. Moreover for
any € > 0 there is an M sufficiently large so that for T'y(t)B € [M,d*®/M],C(t) < 1 + . Lastly,
the upper and lower bounds satisfy

:K;Dp (t) ~ xpp (t) .

Propositions F.4, E.5, F.3, and F.6 for the forcing function and their companions, Propositions F.7 and
F.8 for the kernel function, allow us to simplify the Volterra equation.

81

Proposition F.9 (Simplification of Volterra equation for SGD with decreasing learning rates). Suppose
v2(t) is a decreasing learning rate schedule (i.e., Assumption 4 holds) and suppose the assumptions
of Proposition F2 hold. Let o > 1/4. First suppose that the forcing function with the decaying
learning rate is integrable, that is,

€9 ey, B) Y / B(Ta(s))73(s) ds < o0,

where h(t) [1:4(20[),1”% - L

2a

+1) x (2Bt)~UHB/)+1/(20) 4 og 5 (2B1) 1/ R) 5 g1,
(88)

Here cg d:ef(Z; 13T (20)7I0(1 = 25 if 20 > 1 and 23 > 1 and otherwise it is 0. Then there
exists absolute constants M, M > 0 such that the following holds

F(T(1)+ExK(Ta(t)) < P(t) < Cx (F(Ta(t)/2)+CxK(Ta(t)/2)) for all Ty(t)B € [M, d>* M),

where C(2, B) & fol F(T2(s))v2(s) ds and C > 0 is an absolute constants independent of vo and

On the other hand, if the forcing function with learning rate schedule is non-integrable, that is,
[ee]
| ha(sndts) ds = o, 59)
0

then there exists absolute constant M, M > 0 such that the following holds
F(To(t)) < P(t) < C x F([o(t)/2), forall Ty(t)B € [M,d** M),

where C'is an absolute constant independent of d, 2, and B.

Proof. Let us first consider the case when (88) holds, that is,

C= /OOO F(T2(s))73(s) ds < oco.

Now we consider the upper and lower bound separately.

Upper bound: From Proposition F.2, we have that

P(t) < F(Ds(t / T (Ta(t) — Ta(s))T(s)72(s) ds.

By a change of variables (v = I'3(s)) and setting u = I's(t), we have that the RHS of the above
inequality equals
t
+/J<(I‘2(t)—1“2(s))ff() 2(s)ds =T / K(u —v)F(v)g(v) dv
0

where g(v) = 72(T'5 ' (v)).

Now let us decompose the convolution into two terms

w/2

/0“ K(u —v)F(v)g(v) dv

Il
S~

K(u —v)F(var/ K(u — v)F(v)g(v) dv
7 w2 _
R(u/2) (/O F(v)g(v)d>+gu/2 u/2/ R

_ u/2_ o
< K(uf2) x (/0 F()g(v) dv) + 71K < F(u/2).

IN

Here we can bound 7, || K || < 2 since we are assuming sufficient conditions on the learning rate for
bounded solutions. Now we need to consider the first term. For this, we know by Prop. F.6, Prop. F.3,

82

Prop. F.4, and Prop. F.5 that there exists M, A;[> 0 such that for all 2Bu € [M, d2eM], we have
F(u/2) ~ h(u/2) + d~2etmax{1=28.0} and F(u/2) < 1 for all 2Bu < M. It follows that

u/2 M u/2 w2
/ F(v)g(v) dv S / F(v)g(v) dv Jr/ h(v)g(v) dv Jr/ d2e+max{0,1=26} q,,
0 0

M M
(90)

Here < means an absolute constant independent of d, o, and B. The first and third integrals are

bounded by absolute constants and the middle integral is upper bounded by C. This proves the upper

bound.

Lower bound: From Proposition F.2, we have the following lower bound on the loss curve which

after a change of variables gives

g)+ [%= 0Fwg(e) do < 20)

We immediately have the following bound

u u F2(1)
/ K — 0)F(v)g(v) dv > K(u) / F(0)g(v) dv > K(u) / F(o)g(v) dv
0 0 0

as X is a decreasing function and g(v)F'(v) are non-negative.

Next we suppose that
/ h(Ta(s))2(s) ds = oo. 1)
0

Upper bound: To prove the upper bound, we recall that

u o - u/2 . . o
/0 K(u = v)F(v)g(v) dv < K(u/2) (/0 9(v)F(v) dv) + 72 (u/2)[X]].

As before, we know by Prop. F.6, Prop. E.3, Prop. F4, and Prop. E.5 as well as Prop. F.7 and
Prop. E.8 that there exists M, M > 0 such that for all 2Bu € [M,d?*M], we have F(u/2) ~
h(u/2) 4 d=2e+max{1-28.0} and F(u/2) < 1 for all 2Bu < M. Moreover X(u/2) ~ u~2+1/(22)
and K(u/2) < 1forall 2Bu < M.

It follows from (90) that

u/2 M w/2 w/2
/ F(v)g(v) dv < / F(v)g(v) dv —l—/ h(v)g(v) dv —l—/ d~2etmax{0.1-26} 4y,
0 0

M M

(92)
Here < means an absolute constant independent of d, 72, and B. We also know that the first and third
integrals are bounded by absolute constants. As (91) holds, we know there are two cases to consider.

First suppose 2o < 1 or 23 < 1 so that h(t) ~ t~(1+8/@)+1/(22) Tn order for (91) to hold, it must
be that 23 < 1. Now we see that if 2ae > 1, then

u/2
%(u/g)/ h(v)g(v) dv ~ w2 2y —(+5/a)+1/2ea)+1 < o —(146/0)+1/(2a) F(u/2).
M
Here we use Proposition F.3. Moreover we always have in this regime that K(u/2) < F(u/2) (here

F
we used Prop. F.3 and Prop. F.7). Thus, all three integrals in (92) are bounded by ?(u /2), proving
the result in this setting.

Now we suppose that 2cc < 1. As in the prior case K (u/2) < F(u/2), showing the result for the first
and third integrals in (92). It remains to show for the 2nd integral in (92). In this case, we note that
the second integral is

w/2

ﬁ(u/g)/ h(v)g(v) dv ~ Fou =21/ (2a)y=(1+6/a)+1/(20)+1

M
~ d20¢—1u—2+1/(2a)u—(1+,8/o¢)+1/(2o¢)+1.

83

Here we used that when 2 < 1, we need 72 < d?*~ 1. Now we see that the following hold
d2a—1u—2+1/(2a)u—(1+[3/a)+1/(2a)+1 < u—(1+[3/a)+1/(2a) ~ ?(U/2)
AN d2a—1u—1+1/(2a) < 1.
Since u € [M,d**M] and —1 4 1/(2a)) > 0, we see that the left hand side is maximized at
u = d?*M which shows that for all u € [M, d*>* M|
d2a—1u—1+1/(2a) < d2a—1(d2a)—1+1/(2a) <1.
Hence the result holds in this case.

Now we need to consider the case when 2 > 1 and 23 > 1. As we have already shown the F,,(u/2)
asymptotic is not the reason that (91) holds. Therefore if (91) is true, it must be because the F e

asymptotic is causing the problem. As before, we always have that K (u/2) < F(u/2). Thus, the
first and third integral of (92) are done. For the middle integral, we see that

gLy 2+1/(20) ~141/(20)+1 < w11/ (20) < F(u/2).

This holds precisely because 2ac > 1. Therefore the upper bound in this case is shown.

Lower bound: From Proposition F.2, we have the following lower bound on the loss curve which
after a change of variables gives

Fu) < 5w+ [Klu - 0F)gle) dv < 90).
0
This proves the result. O

Remark F.3. While we do not have asymptotics for the kernel function when oo < 1/4, we believe
that the kernel function is not power law but rather exponentially decaying. This exponential decay
would mean that the forcing function (which is still power law when o < 1/4) dominates (above and
below) the loss function P(t).

Corollary F.2. Suppose (1) is a decreasing learning rate schedule (i.e., Assumption 4 holds) and
suppose the assumptions of Proposition F.2 hold. Let o« > 1/4. First suppose that the forcing function
with the decaying learning rate is integrable, that is,

def

EUC0, 1) Y [hCa(e)nFe) ds < o

where h(t) & (20)'T(2 — L + 1) x (2B)"(1H8/41/0) |) s (2B) 11/ (20) g1,
93)

Here cg =4 (> o1 i727)(2a) 7T (1 — 5&) if 2a > 1 and 28 > 1 and otherwise it is 0. Then there
exists absolute constants M, M > 0 such that the following holds

F(T(t))+Ex K(Ta(t)) < P(t) < Cx (F(Da(t))+Cx K(Ta(t)) for all To(t)B € [M, d>* M),

where C(2, B) o fol F(T2(s))y3(s) ds and C > 0 is an absolute constants independent of v, and
d.

On the other hand, if the forcing function with learning rate schedule is non-integrable, that is,

/ " h(Ta())n3(s) ds = oo, 04

then there exists absolute constant M, M > 0 such that the following holds
F(To(t)) < P(t) < C x F(Ta(t)), forallTs(t)B € [M,d**M],

where C'is an absolute constant independent of d, 2, and B.

Proof. The result immediately follows from F(u/2) ~ F(u) by Propositions F.4, F.5, F.3, and F.6
and K (u/2) ~ X(u) by Propositions F.7 and F.8 for the kernel function. O

84

A=0.1,d=1,000

~e— SGD, Phase I, (alpha, beta) = (1.4, 0.4)
SGD-M
—e— SGD, Phase Il (alpha,beta) = (1.2, 0.7)
SGD-M
—— 5GD, Phase I, (alpha, beta) = (1.0, 1.2)
< SGD-M

=

04

last iterate, risk

Figure 16: Comparison between SGD and SGD-M. Numerical set-up: Run SGD with constant
756P (14) and SGD-M with A = 0.1 and constant 'ngD'M (15) on the PLRF model with batch size 1.
SGD learning rate 736 ranges 0.1/Tr(K) to 1.0/Tr(K) (100 equally spaced points where selected)
where Tr(K) = Y.7_, 72, Learning rate 7§%°M = A x 43P, SGD and SGD-M were run for 10*
iterations and the last iterate was recorded. As you can see the solid (dot) lines, SGD, nearly match
the same value as the ‘x” marked faded lines, SGD-M. This agrees with our theoretical finding that

SGD-M
show SGD and SGD-M under the equivalence 75°° = 2 have the exact same scaling law in the

small batch regime.

G Classic Stochastic Momentum (SGD-M)

In this section, we consider the classic (constant) stochastic momentum algorithm (15) under the
simplified ODEs (43). In this case, d, 72, 7y3 are constants independent of d and y; = 1. In particular,
we derive the asymptotics for the forcing function, &, and kernel function X (see Table 8 for summary).
See also Fig. 17 for a summary of the different loss curve behaviors depending on phases in the
(a, B)-plane (Fig 12a for SGD/SGD-M phase diagram).

To begin with, we need to give an expression for the forcing and kernel functions; specifically, we
need to solve the ODEs in (43).

G.1 Solution to the ODE for classic stochastic momentum

Given the Volterra equation (55), we need to understand @ (¢, s) where @ (¢, s) solves the ODE

%fb,\(t,s) = Q(t; \)®,(t,s) such that ®y(s,s) = Id3 95)

where for this constant momentum algorithm, the matrix Q(¢, \) reduces to

def —Q’VQB)\ 0 —2’}/3
AP EQtN) = 0 —26 2B\ : (96)
B -3 —0 — ’)/QB)\

Since Q* is constant (independent of time), a solution to (43), ®, (¢, s) = exp(Q* x (t — s)), see
[25, Chapter 3, Section2] for systems of constant coefficient linear ODEs. As a result, we just need
an expression for exp(2* X t).

Computing the exponential of a matrix can easily be done if one knows the eigenvalues and eigen-
vectors/generalized eigenvectors of the matrix. For example, if the eigenvalues of {2* are distinct
or the eigenvectors of 2% form a basis of R3, then we can write exp(Q® x t) = VD(t)VT where
D(t) = Diag(exp(r; x t) : i = 1,2,3 and r; eigenvalue of Q*) and the columns of V are the
eigenvectors of 2”. In the case that this does not occur, then we can use the Jordan form of Q¥ to
find exp(Q* X t). It would involve computing the eigenvalues and generalized eigenvalues of Q*.

G.2 Asymptotics of the kernel and forcing functions, SGD-M

We can now give an explicit solution to the ODE (95) and use it to obtain an explicit formulation for
the loss curve &2 under the SDE in (40) (see also simplified ODEs (43)).

85

A PhaseIa, Ib, Ic 4 Phase II 4 Phase III
compute compute compute
E J. pp E EFPP E j{pp
= = =
(5] 5] 5]
wn [} [}
E \ § \D\HT(L(,' § \D\ZT(L(J

0

&
A 4

u»

flops flops
Phase IVb 4 Phase I'Va
compute compute
Fop E Fpp
=
15
|4 72}
\\ X PP .—84 \ :Kpp
‘j() F 0
flops flops g

Figure 17: SGD-M (and SGD) cartoon plots and phase diagram. The loss curve is the sum

of P(t) = Fpp(t) + Tucll) + 55

Kpp(t) + Fo(t), where y def ~2 for SGD and def Y2 + % for

SGD-M. Each of these terms are explicit and take the form ¢ ~?d~" (See Table 8 for summary of the
asymptotics of the terms and Section G.2 for derivations). Depending on the strength of « relative to
5, some of the terms drop out (Sec. E.1). Compute-optimal derivations can be found in Sec. E.1.

Define w & (§ —y2B0?)? — 4v3Ba?, p © 5+ oBo? 5 — 4, Bo2.

Then the eigenvalues of Q* are —p, —p + \/w, —p — /w and we write

1
Py (t,5) = e T (A Bo® + ¢TIV [(w + 2Boys) — /]

+ e IVE[(w + 2Bo?y3) + py/w))

= %e—(t—sm

2w

(cosh((t — s)vw + V) — 1)

B(t.5) = 2 e cosh (1 — 5)y) - 1)

Here V € C is defined by ¢¥ =

(@t2Bo"75) + i/
(@+2B075)— /e

We can now give precise bounds on ®* (¢, 5)11, ®*(t, 5)12.

In the following, we will restrain the study to some values of o, J, 2, 3, B.
Assumption 5 (Hyperparameter domain). Suppose that § > 0, v2 > 0, v3 > 0, 0 € [0,2], B € N*

and that additionally

max{y2Bo

2 V3 2 d
— < —.
g Bk =

Proposition G.1. There exists C' > 0 such that under Assumption 5 we have

V € Ry, and more precisely Co? B <e
0573

6—§w§052,

w

86

V<

Cw
0’2")/3B ’

Proof. We clearly have 6% > w > (36)? — % > 54—2. Additionally, it is clear that (w + 2Bo?v3) —
ty/w > 0. This implies that V € R, and more precisely

v [wr2Botg /e
(w+2Bo?y3) — pyw

52
\/(5 —7202)2 — 273802 — (§ — v2B02)\/(§ — 12 Bo?)2 — 4y3Bo>
52
- 5 — 2)2 _ 972 Bo2 — (§ — ~oBo2)2, /1 — —413Ba?
(Y20?) V3bo (y2Ba?) (6—2Bo2)2
52
= 2
0—2
(6 — 7230’2)2 (4(5i’$2g02)2)
54
"\ (43B0o?)?
o w
" y3Bo?’

Proposition G.2. There exists C' > 0 such that under Assumption 5 for any t > s > 0 we have

ée(t_s)(\/"?_p) < <I>)‘(t,s)11 < Celt=9)(Vw=p)

1 142 2
if additionally t — s > 5 6?S%e(t—s)(\/oi—p) < <I>/\(t,)12 < Cg%e(t—s)(\/u?—p)
while ift — s < & L8 (1— 962 < DMt 5)1 < CLB (1 — £)5)?
=5 0% = @b = Og

In particular one can also choose C' > 0 such that

Lo+ 580 < gA(¢)y, < CemCl-)(a+ %) Bo?
Cf _ 9 —

2
lfaddl[lonally t—s> e_%(t—s)(’YQ"rz%)BUz < q))\(t, 8)12 < Cg%e—c(t—s)(72+2%)302

Ql~
sl

1
5’

Proof. Since V 2 ——5 Z 1 we know that

2
D (t,5) =< ‘“’%fe*@ﬂ)f’(cosh((t —s)Vw+V)—1)

4Bo?
= %%e*(tfs)p exp ((t — s)Vw + V)
w

= exp((t — 5)(v/&@ — p)).

For the same reason, if (¢ — s)y/w =< (t — s)d 2 1, we have that

2
Nt 5)12 = g%e(tﬂ)(\/@fp)

while if (t — 5)6 < 1 we use that & ((t — 5)0))? < cosh((t — 5)8) — 1 < C((t — 5)0)?
Using Assumption 5 we obtain that there exists C' > 0 such that

87

v2Bo? 1
) 2

540~ (723‘72) 2733") < Va

1_ 27230 19 Bo?\ B 4’)’3302
1 02

’7230 1 ’YQBO’z 2 ’}/3BO'2
<5+ 4 L 2
te (5 T3 (5) T

2 2 2 2
where we used that % < —2% + (%) — 4% < 0 is bounded under Assumption 5.

Additionally, since 72]63 o’ < %, we can further reduce to

1 2 2
=00+ %)Bo < Vo—p< O+ g?’)Ba?.

This implies the last result. O

Now that we know the behavior of ®3, (¢, 5), ®3,(t, s) we can reduce the study to simplified functions
that will be used to bound the forcing and kernel functions. This is done in the next definition.

Definition G.1. Ler € > 0 be a large universal constant corresponding to Proposition G.2. Then,
under Assumption 5 we define

(02, 1) 4 —(B+72)Bo?t

93(02,1?)

Gylo?,1) & gem e (Fam) Bt

Y,(0%,1) Y1y eic(%ng%)BU%ltZé*l +((t - 5)6)21t<5*1)
(0%, 0) 2 €3 (em B HWB L5 (- 5)6) L0)

Then it is clear from the above that ¥Vt > s > 0,

4 1, —€(%+7)Bo’t
- ¢

Wy (02,1) < Dt 0)11 < g0, 1)
QK(GQ,IS—S)S(I)A(, $)12 < Pyc(0?,t — 5).
We hence define:
g'.(t) = 000 11/}(02’ t) N?(dO—Z)
F(t) = [0 1, (0%,8) pg(do?)
F(t) = f;° Gr(0%0) pldo?)
Ks(t) =B x [, o (5 + (%)*)h(0?,t) pac(do?)
K (t) =B x [, 04(751/)?(0 1) + ¥, (0%, 1)) i (do?)
Ks(t) =B x [y ot (v3g(0?,t) + ¥ (0%,1)) pac(do?).

From the above, we see that F,F,F are non-negative functions and that X,(t) = K(t — s),
K, (t) = K(t — 5), Ks(t) = K(t — s) are non-negative convolution kernels. The following
proposition shows that to understand the behavior of P, we only need to understand the solutions of
the Volterra equations using the bounds on the forcing and kernel functions.

Proposition G.3. We have the bounds for all 0 < s < t:

0 < F(t) < F(t) < T(),
0 < K, (t) <Ks(t) < K(t).

88

In particular, denoting P, P, P the solutions of the Volterra equations with respectively forcing
Sfunction I, 3, F and kernel function X, X, K, we have the inequality for all time t > 0:

0<P(t) <P(t) <P(1).

Proof. This is a consequence of proposition G.2 and the fact that p5, ux are positive measures. The
last inequality is a consequence of the Volterra equation definition. O

Denote now, similarly to as was done in Section D:
~ def .
Fo(t) = s ({01)9(0,1) = ps({0}),
~ 1 /1 1.
Fon(t) o= / UH‘M" 1¢(02a t)do,
0

T 2a

af Cp

= =590 97
5o d_aa Y(o?,t)do, o7

Foe(t)

2

(v% + (?)2>B .
~ def 3—L 2/ 2
Kpp(t) = /0 o°"e(o”,t) do.

We can compute the following results on Fo, Fye, grpp, JNCpp which are summarized in Table 5.

Proposition G.4. Suppose o, 5 # % and 2a.+ 28 > 1 and Assumption 5 to hold. For any M > 0,
then, there exists a constant C(a, 8) > 0 such that we have for all t > 0:

%d—2a+max{071—2ﬂ} < é})(t) < Cd—Qa—i—max{O,l—QB}’

_1_28-1 _1_28-1

minfl, (2 +2)Bt) 7} <F(t) < Cmin{l, (o + $)Bt) T}

g +())B min{1, ((72 + ?)Bo -2+ 1<Kt
<003 + (2 Bmin{L, (2 + 2)Bt)),

Faclt) < 0 if28 < 1.

~ {C x Fot) if2a>1,28>1
If additionally 2cc > 1,2 > 1 and (2 + ?)BJ% < Md>?* we have
1 —141/(2a)
Edfl min{1, ((’)/2 + E)Bt)

—141/(2a)
5) 3

} < Fuolt) < Cd! (min{l, (72 + ?)Bt

Proof. The proofs are entirely similar to the one of [80, Proposition H.2, H.3, H.4, H.5] and just

follow from the change of variable u = (v2 + 75—3)30216 in the integral definitions (97). For Jy, we
used Proposition D.3.

Proposition G.5. Suppose o > 0, a, 5 # % and2a0+ 28 > 1, a+ 1 > B and let M > 0. Then,
there exists a constant C(«, 8, M) > 0 such that we have for allt > s > 0:

% (Fot) + Faclt) + Fpp(1)) < F(0) < € (Folt) + Faclt) + Fool0))

If additionally o > 1 and (2 + 2)B(t — s) < Md>*,

1 - . .
aiKpp(t —5) <K(t—s) < CKyp(t — s).

89

Proof. The proof is a direct consequence of Propositions D.13 and D.14 and the estimates derived in
Section D. We apply Proposition D.13 which implies the existence of L, C' > 0 such that

1 [t . .
G [9, s)@t < [T b s (o)
Ld—2e Ld—2e

<C b(0®, 1) (ng,, + p,.)(do?).
Ld—2

Additionally, we know using Propositions D.4 and D.6 that

cd ™2 cd ™2
max{ / B0, 1) (s, + ps.) (o)), / b(o® O, (A0%)} < Fo(t).

Finally, using Proposition D.2, it is clear that

1 1

max{ (0, 1) (ns,, + pis,,) (do?), $(0%, g (do®)} S Fpp(t).
1/M 1/M

For the kernel, we can similarly write for L > 0 large enough

> (73 +

K(t - 5) = /wa = $)pac(dor?)

Ld=** 1/L 1
= / 1/)(0'2,t78),u,j<(d0'2) +/ 1/)(0'2725*5)#9(((10'2) + @D(O’Q,t*S)‘ug{(dUz)
0 L

d—20 1/L
For the second term, we use Proposition D.14 and that (v, + %)B(t — s) < Md>™ to compare it

to the value in Proposition G.4. For the first term, using Proposition D.6 and %(t —5) < Md**,
it is absorbed by the second term. Finally, the third term is absorbed by the second term due to the

exponential decay of z/AJ O

Now, we can easily bound the forcing and kernel functions using F , X.

Proposition G.6. Suppose o, 3 # % 2a0+28 >1a+ 1> Bandlet M > 0. Then, there exists a
constant C(cv, B, M) > 0 such that we have for all t > 0:

= (Fol®) + Taelt) + Tpl0) < 30) < :?() < <~0(t) + Faclt) + 1))
If additionally o > 1, (y2 + %)Bt < Md** and t > 6+

1 -~ _ -
55%;»(1?) S K(t) < K(t) < CKpp(t).
Finally if o > 1, (y2 + 2)Bt < Md*>* and t < 677,

é(v%Bmin{L((w +28)py-2evemy y 258 <<t—s>5>2> < () < K(t)
SC(VSBmin{L((er 2B/ 5B<<t—s>6>2>.

Proof. We know that for any ¢t > 0,
F(t) =

F(et), F(t) = Qﬁ&"(ét),

mH

if additionally t§ > 1, X(t) = éj{(@ﬁ), K(t) = @j{(%t)

Additionally, we know that (g’o(t) + Fae(t) + ﬁfpp(t)) and K, (t) follow power laws. Hence, we

only have to prove the bounds on F and K which was done in Proposition G.5. Finally the case
t6 < 1 can be handled easily since @7, (¢, s) < ((t — 5)d)? and we obtain the result. O

90

Proposition G.7 (Kernel norm bound). Let o > = , « ;é . There exists some constants C(a) >

0, d(a) > 1 such that for 6 >0, B € N*, 5 > 0, 73 > 0, if 3B < %, 7B < 9 anddzci(a),
we have the bounds (note that for 2a. < 1, we use v ~ C' X d)

16° 16’

d1—2a)4
C

< Od1=20)+ (4, + ?).

/y J—
(2 + 2) < 5] < K|

Proof. We will instead show
4020+ 08 4+ ()2
C Yo+ B

<carme (O 553)1)9 ’ 63>

a’+b?
a+b ~ 6

< K| < K]

which directly brings the result as Va, b > 0 we have

since VgB <1.

It is clear that || X|| < ||X||. The bounds are then direct consequences from Definition G.1 and the
lower and upper-bounds on pg derived in Section D.

We first use Lemma D.1 to get that there exists some d > 1 large enough such that Vd > d,
Hac([2,00)) = 0. Hence we reduce to o < 2 and under the assumption of the proposition we see that
we are under Assumption 5.

For the lower bound, we write for some M > 0 large enough to apply Proposition D.12,

iz [T [T e (B gt
61 Jo= Md o
/t - 1/ =Md- %3))Be_(vﬁwTS)Bgzthprp(UQ) dt
N 72 +() 03_5 do

~

7+5 o=Md—«

2
> d- 20‘)+&.
Yo + '73

For the upper-bound, we proceed similarly and write form some M > 0 large enough to apply
Propositions D.5 and D.9 to D.11

/ - / (03 + (5)7)Be B dpge (o) dt

t =0

< (vs+(%Q)Be—“?“%w”ztdum(a%dt
t — @

2 v3\2 2
<'Y2+(5) / g?’fédg

~om+ R =L
< g1—2a)+ ’Y% + (%)2
Yo+ B

For ®7, (¢, 5), t — s small is not a problem as we have directly

oo 2
/ / (2 B0t BB 4 (52 dlt
t=0 Jo=0
2

d(l 204 T2
Y2+ 5 B

91

For ®7,(t, s) we need to be more careful and we write for small times

/ / ((t — 5)6) dpsc (o) dt
t o=0
s/ t/ 22 dpu, (o)t
t=0 =qpd—e
< /

< d(1—2a)+(?)235—1.

J— 2 Y312
Hence we see that || K| < d(1—2)+ % + d(172%)+(22)2 B§~! which brings the claim and the
5

result.
O

Using the bound Proposition G.7, we obtain the following sufficient condition for the algorithm to be
stable.

Corollary G.1 ((Sufficient) Stability condition for hyperparameters of SGD-M). Suppose the iterates
{yt—1,0,}32 are generated by (15). Let § >0, 72 >0, 73 >0, BEN*. Leta > %, a # %, B #
5, 20+ 20 > 1, a + 1> B. There exists some constant ¢ > 0 such that if max{~, B, %} < ‘152,
and o + B < cd=(1=29+ " then the solution P to the simplified Volterra equation Equation (55)
remains bounded, i.e. || P||oo < 0.

Proof. Notice from Propositions G.5 and G.6 that F(¢) is bounded. Additionally, applying Proposi-
tion G.7 yields the existence of a corresponding ¢ > 0 such that || X|| < 1. We saw in Section C.3
that this implies that the loss remains bounded. O

Remark G.1 (Necessary stability condition). Similarly, it is clear using the lower bound on || X||

from Proposition G.7 that if v + 32 > Cd~==29+ for some C (a) > 0 then the risk is unbounded
ie. |P|lo = 00

Proposition G.8. Let§ > 0, 72 > 0, v3 > 0, B € N*, M>0 €>0.Letow > 5, a # &. There

exists some constant ¢ > 0 such that if max{~y, B, VBB } < and Yo+ B < cd= =29+ then for
any t > 0 with (v, + %) Bt < Md** we have

X+ (¢) < K

Proof. We apply Propositions G.4 to G.6 to obtain that

iwaﬂ,%mx%+%¥wmmum+5wwﬂwwh

ift <o ', K(t) < +y3Bmin{l, ((y2 + 2 5 Bypry—2+1/Cey 4 (5 2)2B((t — 5)8)2.

A crucial observation is that K behaves as a power law, i.e. there exists some constant C' > 0 such

that Vt >0, g;{((i’;) < C. Indeed, if t < 57 ort > 6! itis clear. This is still true for
te [s 6 1 by just noticing limyqs-1 K(t) =< K(57) since (v2 + 2)B < 6.

It is additionally clear from Proposition G.7 that for any € > 0, for ¢ > 0 small enough we have
||| < e.

Using these two previous facts, one just writes for any ¢t > 0

92

- / "Rt o)F(s) ds

= " K(t — s)K(s)ds + t K(t — 5)K(s)ds
0 t/2
0 /0 T ®(s) ds
< eX(t)
By decreasing € as needed we obtain the result. O

We finally state a result on the forcing function norm (see related result [80, Proposition H.6]).
Proposition G.9. Let o > 0, a # 1 5. B ;é , a+1> B, 2a+28 > 1. There exists ¢ > O such that

if max{vy2 B, 73B} < and Yo+ B <ed” (A=20)+ then for any t > 0 with 1 < (v + BBt <
Md>® we have

128 <1, by Kon(8) < Kpp() % fo F(s) ds £ FO) + r7myp K (0.

Proof. First case: 23 > 1

First the contribution of 5, gives fMd /et B Fo(s)ds < because Fo (t) = d—2.

1
~ (y2+3)B
. =~ . t ~
Itis clear that 5, € L*(R;.). Hence since 1 < (72 + 22) Bt we know that [Fp(s) ds =< m

For 5"ac, if 2ac < 1, we handle it like .’}"0. If on the other hand 2« > 1 then we write

Fac(s)ds < o n
~ LBIYB
m (y2 + 5)

Md>* /((v2+2%)B) _ d-1 Md?e o
/ x T2 de

o1
(2 +3)B

Since for (v2 +)Bt < 1 we know that Foet) < d7! we obtain that

fOMdza/((Wﬁ?)B) Foe(s)ds < This concludes for the case 25 > 1.

73)B
2nd case: 23 < 1 In this phase, we do not need to worry about F e since it is zero.

It is also clear that mﬂzpp(t) < Kpp(t) x [y F(s)ds since [)T(s)ds =

1
fO ’ 9‘ ()dSZ (2 +vz)

We first consider the Stpp contribution.

Vet B
1 - t
S K1) + Ky (1) [Fypls) ds
Yeft 1
Veff B
1 - o [f _q_z28-1
S jcpp(t)+7§ffB(’Yefth) 2+2la/ (Yett Bs) =7 ds
Vet B -
1 ~ _ 1 _2b=1
sﬁxpp(t)+7eff(76ff3t) >33 (v Bt)” 2@
eff

93

We only need to show that

'Yeff('Yefth)_eri (%,fth) 5 f;r ()

_ 1 _ 72[3—1
<= Vett(Verr Bt) 23za (’Yefth) < (yerBt) ™t e
S Vet S (et Bt)! 28

Since by assumption 7Bt < Md?® we see that we only need et < d>*~ 1. This is true since by
assumption yer < d— 17200+ < 21

We now consider the F, contribution that we will bound using F,, ().

t
xpp(t)x/ Fo(s) ds < Kpp(t)d 272011t
0

2/\

L o 2a—
B (e Bt) 2T 2a d 220y

<
S ff(’Yef-th) 1+id—2a—26+1.

QQ

We only need to show

Kpp(t) % /0 Fo(s)ds < F(0)

<= Yerr(Vetr Bt)” Itz g—20-20+1 < (yerBt) ™t e
< Veft S (’}/efth) d2a+2ﬁ71

Since e Bt > 1 we only need to show that e < d?*—1428 which is true since Vet < d—(1=2a)+
by assumption and (1 — 2a)4 > (1 — 2a) — 20.

O
Theorem G.1. Suppose a > 1,20 +28 > 1, a,f # 2, a+1> B. Let M > 0,6 > 0,72 >

0, v3 > 0, B € N*. There exists some constant ¢ > 0 such that if max{~.B, A’BB} < ‘156 and
¥+ 2 < cd= (=24 then for any t > 0 with 1 < (v2 + 2)Bt < Md?* andt > 61, we have

N -~ ~ 1 ~ 1 ~ ~ ~ 1 ~
C(CT"O(t)Jrffac(tH?pp(t)erxpp(t)) <P(t) < *(50(t)JrfT"ac(t)+?pp(t)+mxpp(t))-

Proof. Using Proposition G.3, it suffices to prove the result on P(t) and P(t). We already know that
vt >0,

F0) + 545 () < 20) <T) < T + 3 [F T 0.
k=1

Let € = 3. Using Proposition G.8 we know that for ¢ > 0 small enough, V¢ > 0 if (72 + %)Bt <
Md2a,

[K«XK] (t) <eX and [|K] < 1.
Hence, applying Lemma C.3 we can bound for some C' > 0
S[Fxtm<ox Fx @
k=1

We only have left to respectively lower and upper bound [F x K] (¢) and F * ﬂ

94

We write using Proposition G.6, and for t > §~1 and (7, + BB >1,

¢
[F K] (/ F(s)XK(t,s)ds + F(s)XK(t,s)ds
t)2

A
S
3

y / F(s)ds + (Fo(t) + Faclt) + Fpp(t)) x | K]

~ ~ ~ 1 ~
gjo(t) + Hfac(t) + ?pp(t) + W X

A

Similarly for the lower-bound we write

t/2
FK] (1) 2 / F(s)K(t, 5) ds

>R () % / ") ds
0
(t).

vV
—

Iy
(e +2)B™ "

Here we used from Proposition G.9 that if 1 < (yo + %) Bt < Md>®, then F(t) + K, (¢ fo
9- (t) W Kpp(t)
Finally, using again Proposition G.5, we obtain the result. O

Remark G.2. Theorem G.I together with the asymptotics in Proposition G.4 shows that SGD-M
with learning rates v = 1, 2, ~v3 and momentum parameter § has the exact same scaling laws than
SGD where o < (72 + %).

H DANA-constant

In this section, we analyze the DANA-constant algorithm introduced in Section B.3. We are interested
in deriving the forcing and kernel function as well as their asymptotics (See Table 12 for summary).
As in SGD-M/SGD, depending on («, 8)-plane, the loss simplifies. We summarize the results in
Figure 18 which shows the different phases and a qualitative description of the loss curves.

We begin with a description of change of variables in the hyperparameters and then go into details
about solving the simplied ODEs in (43) with hyperparameters associated with DANA-constant. This
ultimately leads to the asymptotic description of the forcing and kernel functions.

First, since 71 (t), 3 (¢) are constants, DANA-constant with hyperparameters (1, y2, Y3, l%t) yields
the same algorithm as DANA-constant with parameters (71,2, V3, 1%%) where we chose 71 &f

- def . .
1, 73 o ~v3 X 7v1. Indeed, one can check that the updates of the two algorithms on the 6 variable are
identical, and also that the forcing and kernel functions are identical. Hence across this section, we

will freely use ; = 1 without loss of generality. Additionally, throughout this section, we use o2 to

denote the eigenvalue A of K, thatis A &r 52,

Below we introduce the main parametrization for DANA-constant that will often be used throughout
this section. It essentially amounts to consider (DANA) with k3 = 0.

. . def . . .
Parametrization H.1. Ler a vector of hyperparameters H Y (A2, 93, Cp, K1, K2, Kb,) With
2,33, b > 0, K1, Ko, Kp > 0. We add the restriction kp < min{r1, ka}, —2a < —Ka+2K1—Kp <
0. We parametrize

m=1 y="%d "™, y3=7d ", B=cgd™. (98)

Remark H.1. The reason to require kp < min{x1, ko} and K1, ke > 0 is to ensure that v2 B, v3 B
remain bounded as d — oco. Otherwise, eigenvalues of (23) do generally no longer have negative real

95

part and the algorithm would trivially diverge Additionnally we require —2a < —ko +2k1 — kp < 0

to ensure d=2* < % < 1. This condition is in fact not very restrictive on most scalings of interests.
2

We mostly make it to ensure that no edge case for particularly small schedules or very large batch

creates problems in the scaling laws. In particular it is satisfied for any B < d, 3 =< "YQ%, dt<

vo < d= =29+ which includes DANA-constant with batch B = 1 in Section 3. In particular note
that Parametrization H.1 allows for B < d which the reader can check will allow for outscaling
when 2a < 1 when reported in Theorem 4. 1.

H.1 Simplification of the ODE

In theory, the Frobenius method to get asymptotic solutions of an ODE can be applied to Equation (22)

1
1+t
are cumbersome. Instead we will work with the simplified ODE

2
(see [25, Chapters 4, 5] (with some care near zero for the () term). However, the computations

0 0 0
0 200 2v,Bo? 0 2v3(t)
dd,=(t 0 0 -6 Témoo s
Zii() _ T + 0 0 2nBo? | |®.:0t). (99
v1Bo? —(t) —yeBo?
P4 (1)
To simplify the computations, we will additionally do the change of variable i)(t) et «,173302 D5 (t)
V3
\/,“7;‘7 (I)?)(t)
on Equation (99) and get the new ODE
0 o0 0
0 -2 0
dd(t) 0 0 -6 —27,Bo* 0 =2y Bo\ | _
TR 51 + 0 0 2v/n1y3Bo O(t). (100)

VnsBo —ysmBo —v2Bo?

The following technical lemma shows the decreasing behavior of the norm of the solutions of ODE
(100).

Lemma H.1. Consider the ODE (100) on ® 4 (X,Y,Z) : (—1,00) — R3. Then we have the
identity for any t > —1
d(X2(t) + Y2(t) + 2Z3(t))
dt

1))
_ 2v204\ 20y 2 2
= —4yBo*X*(t) 471 +t¥ (t) —4 <1—|—t + v2Bo) Z(t)".

Proof. This comes from the fact that

X0 — 4y, Bo2X2(t) — 471 BoX (t) Z(t),
detiﬂ = —4:5Y2(t) + 4/ s BoY (1) Z(t),
BRI — 48 72(1) + 4/ 3n BoX () Z(t) — 45 BoY () Z(t) — 475 Bo?Z%(t).

O

H.2 Getting asymptotic solutions of the ODE through Frobenius method

In the following, we state two strenghtened results from [25, Chap. 4, Thm 4.1; Chap. 5, Thms 2.1,
4.1] to get uniform estimates in parameter space of asymptotic solutions of (100) for small and large
t.

96

Theorem H.1 (Singularity of the 1st kind around 0). Let Z C R" for some n > 1 and define for any
¢ € Z the ODE: 425 (¢) = (RT< + AC) & (t) where B¢ : RY. +—» M3 5(R) and RS, AS € M3 (R).

Suppose the existence of 6 > 0,C > 0 such that V¢ € Z, RS = Diag(r%, rg, rg) is diagonal with
ming<;£;<3 d(|7“iC - TJC-\, N) > § and that | RS || s, || A||co < C. Then we have the following:

1. V¢ € Z, <i>c(t) = (Ig + Zk21 P,ftk) tR is a Sfundamental solution where noting

Py = I3, the matrices Py are uniquely defined by the recurrence relation Vk >
0, Pg,, [RE+ (k+1)I5] = RSPy, + ASPy. Especially, Vk > 0,3Cy,¥¢ € Z, || Py| <
Cy.

2. As a consequence, VK > 0,3T(5,C,K) > 0,3D(6,C, K) > 0 such that ¥{ € Z, the
fundamental solution ¢ verifies ¥t < T, Vi € [3], HCiJCZ — @ClKH < DReBLAKH) hore
2 de
bex Y (Ig + Y <k Pk‘tk) tR°.
Theorem H.2 (Singularity of the 2nd kind around infinity). Let Z C R™ for some n > 1 and define
forany ¢ € Z the ODE: %(t) = (RTC + AC> P (t) where ® : R% — M3 3(R) and RS, AS €

M 3(R). Suppose the existence of § > 0,C > 0 such that V¢ € Z, AS = Diag(uf,ug,ug) is
diagonal, miny <; ;<3 | — ,u§| > § and that || RS|| oo, || AS||eo < C. Then we have the following:

1.Y¢e Z, o(t) = (Is + k1 f—,’f) tR etA is a formal fundamental solution where Rfj =
0ij jo and noting Py = I3, the matrices Py, are uniquely defined by the recurrence relation
Vk >0, Pg AS — ACPg,, = RSP} — PyRS + kPy. Especially, Yk > 0,3C},Y¢ €
Z|Pg| < Ck.

2. VK >0,3T(0,C,K) > 0,3D > 0 such that V(€ Z, there exists a fundamental solution
®¢ such that Vt > T, Vi € 3], | 8¢, — S| < DiftelRi—K-Dehesd) yhere $K 9

PS\ B¢ 4A¢
<I3 + ZkSK t*}’:) tR etA .

H.3 Fundamental solutions around zero and infinity

In this section, we show asymptotic solutions ® of the ODE Equation (100) for small and large
times. We remind v; = 1. To get bounded coefficients in the ODE, we will differentiate the two
cases 2 Bo < /4v3B and v2Bo > +/4v3B. The first case corresponds to o small and hence ¢
large with respect to the dimension, where there is acceleration. The second case corresponds to o
large, hence ¢ small and dynamics similar to SGD. Additionally, getting asymptotic estimates using
Frobenius method around co requires the eigenvalues of the leading order matrix to be distinct, since
the singularity is of the second kind. Hence we will introduce € € (0, 1) and first restrict ourselves to
the case where v2 Bo ¢ (1 + €)y/4v3B.

1st case: v2Bo < \/4v3B. We apply the time change 7(t) &y vsB(1 + t) and defining & (7) &ef

®(t) we obtain the new ODE

0 0 0
0 -2 0 _9mBe _9
d® R - 0o 0 =6 V3B .
(7) ar < + A> b(r) = 0 0 2 &(r).
dr oysB+ T ovysB+ T 1 | _m2Bo
V3B
(101)
Denoting again R, A respectively the left and right matrices, we rewrite A = TDT~! with D &ef
. . o 2Bo? o 2Bo?
Diag(u1, 2, p13) Wlth#li*%* —4+ 22 M2:*%+ —4+ B =

97

— 2B 1 the limit 2222 — 0, the eigenvalues are distinct. Hence the matrices 7,7~ can be

V3B’ B\/’Y373
chosen analytic in :’/2737;. This implies
T B 1 O(WBU> 7! P 0(7230) 102
=) —1 + , = =22 K 1]+ . ()
11 0 VB O VB

Notice that the matrix A has bounded coefficients and distinct eigenvalues bounded away of each other.
o def _ v2Bo def y2Bo def _

Additionally define 6; = —¢ (1 \/’M) , 0o = —0 <1 + M) , 03 = —0.
In the next proposition, we apply Theorem H.2 on a solution d of Equation (101) to obtain an
asymptotic solution for large time (uniformly in parameter space).

Proposition H.1 (Asymptotic solutions around infinity). Let €,¢ € (0,1), C > 0 such that § €
(0, C). There exists a constant M (¢, €, C) > 0 such that VB, ~s,v3,0 > 0if y2oBo < (1—¢€)\/473B,
there exists a fundamental solution ®>° of Equation (100) such that for any t > —1 satisfying
o ’733(1 + t) > M

Py P,
Jr
oV 3B(1+t) (ov3B(1+1))

€ - —v2Bo®t
< GvmBar oy YREAO) e

where D(o, 3, B) af Diag((o+/3B(1+t))%e?VrsBuit i =12 3). Moreover the matrices Py, Py
are uniquely determined from Theorem H.2.

T7L1e(t) — (I3 + 5)D(0,73, B)

Note that above we could directly bound the matrix norm of the difference since the module of the
decay is the same on all eigen-vectors (Re(d1) = Re(d2) = Re(d3) and Re(u1) = Re(ue) = Re(us).
Additionally, if J is not an integer, we can similarly apply Theorem H.1 to obtain an asymptotic
solution for small time (uniformly in parameter space).

Proposition H.2 (Asymptotic solutions around zero). Let ¢, € € (0,1), C > 0 such that § € (0,C).
There exists a constant M (e, €, C) such that Vya,7s,0, B > 0 if 2 Bo < \/4v3B and d(§,N) > ¢,

there exists a fundamental solution P of Equation (100) such that for all t > —1, ifo/v3B(1+1t) <
M

‘(i)o(t) — (I3 +0o\/vB(1+t)P + (0\/733(1 + t)>2 Py)

1 0 0
x |0 ((oy/3B(1+1t)~% 0
0 0 (ovB(1+1))7°

1 0
< e(ov/AB+0) Laxa (0 (VB +1)
0 0 ((ov3B(1+1))™°

Py, Py are uniquely determined from Theorem H.1 as

9280 0 __2
V3B 12—5
P = 0 0 Trs
1 1 __ 72Bo
5+1 1-95 V3B
4 2
1(4 _2n\ _ 2 = te
2 \22 7 541 (2—28)(1-93) 2-5
2 1 2
and P, = B0 (2512 1% T (0+2)z
1 2
“Gins @ 1 12z 2 4 L
512 a=3(2=0z 2 1=6 ~ 341 T g2
_ VB
where x oBo

98

2nd Case y2 Bo > /43 B. Then we apply the time change 7(t) & Y2 Bo?t and define &(7) = &ef

®(t). We obtain the new ODE

0 0 0
. 0 -2 0) 0 —ovmB
db(r) |00 7 0 Y b(r).
dr voBo? + T Vo8 JGB 'y_g?a
vy2Bo v2Bo

Again the matrix A has bounded coefficients and distinct eigenvalues bounded away from each
other. We rewrite A = TDT~! with some different matrix 7' and eigenvalues p; = —1 —

—475512902 +1, po=-14, /—473'3,;’2902 + 1, ug = —1. Denoting z = ;;gf, we have

1— 22 —l—O(3) x2+0(:53) —2x+0
T= x +O(x3) 1—22+0 (%) —2£E-|-O
71’+O() forO(:cS)
14 32% 4+ O (2?) 22+ O (2?) 2£E+O(JC3)
71 = 22+ 0 (xg) 14+322+0 (1;3) 2x + O (xg)
z+0 (2%) z+0 (2%) 1+ 422 + O (2°)
Remind §; e 51— ——2280 , 09 def —6(723"), 03 & 5. We can
V3B202—4vsB \V/3B%02—4y3B

again apply Theorem H.1 to obtain that (uniformly in parameter space):

Proposition H.3 (Asymptotic solutions around infinity). Let €,é € (0,1), C > 0 such that §, €
(0, C). There exists a constant M (e, €, C) such that Vy2,v3,0,t, B > 0 if or/v3B(1 +t) > M and
voBo > (1 4 €)\/43B, there exists a fundamental solution > of Equation (100) such that

€

P, Py

T (1) - (I + + D| < 1g.5 x D,
() (3 7230'2(1—‘,—15) (72302(1+t))2) (")/2.30'2(1+t))2 3x3
where
~def (72Bo?(1 + 1))%1 728 mt 0 0
D= 0 (12 Bo2(1 + t))02 12 B pat 0
0 0 (12Bo*(1+1)) =% gmaBotust
gy (2B (1)P st 0 0
D= 0 (y2Bo?(1 + t))‘;QeWQBUz#zt 0 '
0 0 (2 Bo? (l—l—t)) —9 ’YzBG pat

Moreover the matrices Py, Py are uniquely determined from Theorem H.2 as

9 26—z%42 z? _ 2(6-3)x
-2 0 5 541 G-1? 32-30+2
_ 2z _ T T _ 2z
Py = 0 0 5+1 | Py = (6+1)2 5—1 5+2
690 61 -1 _ (26+3)x x 5244221
+ -1 G+1)(0+2) 92—36+2 2(52-1)

Additionally, if 24 is not an integer, we can again apply Theorem H.2 to obtain that (uniformly in
parameter space):

Proposition H.4 (Asymptotic solutions around zero). Let ¢,é € (0,1), C > 0 such that ¢ € (0,C).
There exists a constant M (¢, €, C) such that Vvyy, 73, 0,t, B >0 ifo/v3B(l+1t) < M, v2Bo >
VAy3B, and d(6,N) > e, there exists a fundamental solution ®° of Equation (100) such that

(1) — (Is + 12 Bo2(1 + 1) Py + (v2Bo2(1+1))° Py)D, (< & (12Bo?(1 + 1)) 135D

99

where

e 0 0
D0 ((12Bo(1+1)2 0
0 0 ((v2Bo?(1 + 1))

Moreover the matrices Py, Py are uniquely determined from Theorem H. 1.

H.4 Behavior of ®1;(¢, s) and ®12(¢, s)

The goal of this section is to derive bouds on ®11(t,s) and ®15(t,s) where & : {(t,s) €
(—1,00)2, t > s} — M3x3(R) denotes the solution of the IVP (99) with initialization ®(s, s) = I3.

This implies the initialization condition on Equation (100) that is ®(s, s) = Diag(1, =, \\F). We
consider several cases.

1st Case: 2, Bo < (1 — €)+/473B. Depending on the time and o, we get different estimates for the
values of ®11(¢, s) and P12(t, s).

For ov/v3B(1 + t) < 1, we have the following estimate:

Proposition H.5. Lere, é € (0,1), C > 0. Let § € (1,C) with d(6,N) > € and let v2,v3, B, > 0,
let 0 < s < t. Then, there exists a constant M (e, €,C') such that if o\/v3B(1 +1t) < M, and
y2Bo < M+\/4v3B, the function ®11(t,s) = 1 & € and, if additionally § < M, the function
Pio(t,s) < Fz(ov13B(L+5)* (1 +6). If M < 0/13B(1+1t) < 1or M\/4y3B < v.Bo <
VAysBor M < £ <1, then ®11(t, s) = O(1) and B12(t, s) = O(F5(ov/13B(1 + s))>.

Proof. We apply Proposition H.2 to write that a solution ® of Equation (99) is:

D(t,s) = ®°(t)2°(s) " Diag(1, BL;’ \/\/g)

= (13 + O'\/’YgB(l + t)Pl + (0’\/’}/33(1 + t))Q(PQ + 6))
x Diag(L, (0v/73B(1 +1)) 7, (033 B(1 +1) ™)

x Diag <1, (0v/73B(1 + 5))%°
-1
(oV/mB(1-+))l + o/ A1+ s+ (ov/B(1 4 5)(Pa)

. 73 V3
x D (1, -,)
iag Bo? By
—26 —
1+e (}71‘2) ((T “{JB(1+17))2((P2)12iE) (%) (0’ ’Y;B(l-‘rt P1 1;iF
= * * *
* * *
1i (o 733(1+s)) (PE=P)12te) =
X | (0v/3B(1 + 5))? (P2 — Py)a1 £ ¢) it (Hce) *
—(ov7sB(1+)" (P)a1 £ ¢) —g=(o vsB(Hs)) ((Pr)s2£€) =
2B . ﬁ (5f1)2 0
Notice that P12 - P wi; ((Hlng -5 0 |. Additionally, as § > 1, we have that
0 0 T

T+t
M and v, Bo < M+/4y3B, then ®1,(t,s) = 1 + e. If, additionally, § < M, then ®5(t,s) <
2 (0v13B(1+5))* (1 £e).

If one of the conditions is fails, we still have that the coefficients of the ODE are bounded for
ovB(l+1t) < 1, 2Bo < \/4y3B, and 7 < 1. Hence we get under this condition that

(I)ll(t7 S) = O+(1) and (I)lg(t, S) O+ (302 (O’ ’YgB(l + 8))) O

6—1
(h) < 1 for M small. Thus there exists some M small enough such that if o/y3B(1 +t) <

For the case ov/y3B(1 +t) > 1 and 0v/3B(1 + s) < 1, we have the following estimate:

100

Proposition H.6. Let e,€ € (0,1),C > 0 such that § € (1,C). Let 2,73, B,o > 0 and suppose
0 < s < t. Moreover suppose that d(0,N) > € and y3Bo < (1 — €)y/4y3B. Then there exists
a constant M (e, &, C) such that if o7/y3B(1 + t) > M and o+/43B(1 + t) < 4, there exists
Ci,éi € Rfori € [3] with Cl,él > 0,

-5
Dult,s) = e (0 /5 B(1+ 1))
0y B
X [Cl + C cos (log(ox/'ygB(l +1)) 229 + y2Boy/4v3B — 7%320275)
\V4v3B — v3B2%0?
+ C5sin <log(a v3B(1 +t)) 07280 + 2 Boy/4v3B — 72B202t)
4v3B — y3 B20? 2

+0(e) + 02282)}

V3B
and
) -
D5(t,s) = B’y§2 (0+/73B(1 + 5))%e 2Bt (O’\/’YgB(l + t))
. . dv2B
X [Cl + C cos (1og(m/73B(1 +1)) 1279 + v2Boy/4v3B — ’}/%BQO'Qt)
\V4v3B — v3B2%0?
~ . 6’7230- 2 2.9
+ C5sin (log(a v3B(1+1)) TRy By + Y2 Boy/4v3B — v3B%0 t)
2 Bo
+O0(e) + O
() +0(=]
Ifo\/73B(1 + s) > 47 or o7/73B(1 + t) < M holds, the following is true
D(t, s)11 = Oy <(U\/733(1 + t))_(se_wBU?t>
and

D(t, 5)10 = Oy ((a\/%B(l n t))*%*wBUQt%(m/%B(1 + s))2) .

Proof. We apply Proposition H.2 and Proposition H.1 to decompose

@(t,s) _ (i)oo(t) {&)00(1)71(50(1)} &)O(S)*lDiag(l, BL;Q, \/\/%TZ_)

o _.i i, 1 Yo Bo ~ —6_—~2Bot
= <<i —11 (1])4‘0(\/@)4-0(6)) (0v/13B(1 +1t)) P 2B

. B
i 7259

x Diag (e—io\/4'ygB—'y§B?a?t(o, 733(1 —I—t)) 4v3B—~3B252

)
. B
—id y2ba

eia‘/4733_733202t(0\/’y373(1+t)) \/4v3B—v3B252 1)

)

x(s+amw%00xDmawawBa+@fﬂw¢%Bu+@ﬁ

V3B
x (I + 0+/73B(1 + 5) Py + 01/ B(1 + 5)(P5 + €)) ' Diag (1, ==, VAERY
Bo \/EO’

Here, we used that

where S is a constant matrix. To see that, we need to compare the ODE Equation (101) to the limit
ODE with % — 0, 0y/73B — 0:

et
0 0 0
0 —-25 0 -)
dd 0 0 -6 -
d(T): vlo o 2] |ew.
T T 1 -1 0

Around zero a fundamental solution j(7) is asymptotic to Diag(1,772°, 77%) while around infinity
a fundamental solution j(7) is asymptotic to

- 1 1
(i —i 1) Diag(e 1207, e 20T HVART =207 VAT
1 1 0

The matrix S is then defined by S &' i(1)7%4(1). We, in particular, know that det(S) # 0.

Lemma H.2. Vt > 0, j(t) € R¥*3. Additionally, we have the bounds on the coefficients Re(S11) > 0
and Re(S12) > 0 and we can in fact write for some C}, C%, C% with C} > 0,4 € [2]:

ji(r)y=17° (C{ + Cj cos (\/AIT) + Cisin (\/ZT)) +O(r7°7h).

Proof. Denote j'(T) = j.4(7),j &f j.; (1) the columns of the fundamental matrices around 0 and oo,
4,)- By definition of S, we have for all 7 > 0

J1(7) =i1(7)S11 433 (1) S21 + i3 (7) S51.

By using the asymptotic of j, and the fact that j{ must be positive by Corollary C.1 (to better justify
because assumption not completely valid, only at the limit), we get that Re(S71) > 0. The same
argument shows that Re(S12) > 0. The last inequality comes by expressing the solution in a cos, sin
basis. O

For an estimate of ;5 we need the 12 coefficient of

def -1

U (I +0\2sB(1+)P+ (0333 B(1+5)*(P, £)

We already did this in the previous proposition. We write

Ut =13 — 03B+ 8)P + (03/v3B(1 + 5))2(P? — Py) + O((0+/73B(1 + 5))?)

and hence

1
1 _ 2 ~
(U)12——(0\/’}/3B(1+5)) <(5_1)2 :te) .
Finally, if 6 > 1 we obtain the result. O

Next, for o+/y3B(1 +t) > 1 and o/y3B(1 + s) > 1, we have the following.

Proposition H.7. Let e, é € (0,1),C > 0 such that 6 € (1,C). Let 2,73, B,o > 0 and suppose
0 < s < t. Moreover suppose that yoBo < (1 — €)\/4v3B. Then there exists a constant M (¢, €, C)
such that if o\/v3B(1 + s) > M,

Diy(t,5) = Jem BT) (122 B (1 + cos(o VBt - 5) + log (1) T)+ (o(22)+ 0(6)))
and

Byt 5) = shige— B (E=9) (%)’5 <1 ~ cos(oV Bt -) + log (1) T)+ (o(225)+ o@)) .
If, on the other hand, o\/3B(1 + s) € [1, M], we have

®y1(t,s) =04 <e*723"2t(0 vsB(1 + t))*5> and ®15(t,s) = §2504 (e*"f?B"Zt(o vsB(1 + t))*d) .

102

Proof. We use Proposition H.1 to write

@(t,5) = & (1)8(s) ' Diag (17 Bt g)

-4

1+t

_ (T:l: 6) (+) e*"/gBazt
1+s

v Bo

is 1280 —if——2287
X Diag (em/mwaEB%Z(ts) (1+t> \/4713B-~3B202 ’ew\/él'y;;Bf'yngdz(t—s) (HQ JirsB-3B%42 71>

1+s

% (T~ + ¢) x Diag (1,;—;2, g)

The same estimate (102) on 7" we used previously, implies the result. O

2nd Case: v2Bo > (1 + €)/4y3B. As in Case 1, we get different estimates for the values of
@11(15, 8) and @12(15, 8).

For 72 Bo?(1 + t) < 1, we have the following.

Proposition H.8. Lete, € € (0,1), C > O suchthat § € (1,C). Let y3,7v3,B,0 > 0, let 0 < s < t.
Suppose that d(6,N) > €, v2Bo > \/4y3B. Then, there exists a constant M (e, €,C) such that
if 2Bo%(1+1t) < M, ®11(t,s) = 1 = € and if additionally T < M, ®15(t,5) = Oy (7%)
If on the other hand M < ~v3Bo*(1 +1t) < Lor M < 2 < 1, then ®11(t,s) = O, (1) and
Dip(t,s) = O+ (13)-

Proof. We use Proposition H.4 to write

D(t,s) = ®°(t)2°(s) ! Diag (1’ BL;?’ g)

1 0
—26
= (Is + (12Bo>(1 + 1) P1 + (12Bo*(1 + 1)* (P) |0 (33) 5
0 0 (k)

x (Is + (72Bo2(1 +)Py + (72Bo*(1 + 5))2(P, + €))~' Diag (17 7; NaE)

1 0 0
(HEE (12Ba?(1+1))*((P2)12 + €) (72302(1+t))((P1)13i‘)> 0 (Ht)’% 0
— * I+

* *
14¢) 0
0 (l+s>

1+e (12Bo?(1 + 8))2((P?2 — P2)12 t€) =
X ((72B02(1 +5))2((P2 = Py)a1 % ¢) - 1:i:e1 o *) Diag <1, %7 \/% > .
(72B02(1+S))(—(P1)31ig) ("/QBU'Q(l-‘rS))(—(Pl)g,gig) * BU \/EO'

*

2
Note that (P2)12, (P1)3, = O (;;’gf) and (P1)13, (P1)3s2 = O (,nggf . Hence we obtain

N—

:

2
Bia(ts) =1 cand @1a(t,5) = O, (s aBo?(1 4 5)((LE) £ 0)) = 0.09)

Additionally if o Bo?(1+t) € [M, 1] we still have the bounds: ®11(¢,s) = O, (1) and ®15(t, s) =
Oy (3)- H

For y2 Bo?(1 +t) > 1 and 72 Bo?(1 + s) < 1, we have the following.

Proposition H.9. Let e € (0,1), C > 0 such that § € (1,C). Let 2,73, B,o > 0 and suppose
0 < s < t. Moreover, suppose that y2Ba > (1 + €)\/4y3 B, d(6,N) > €), v2Bo?(1 + s) < 1, and
yoBo?(1 +1t) > 1, then

Dy (t,8) = Oy (6’723"2(1”) + (12Bo?(1 + t))fé)

103

and

Dus(t,5) = Or (g2 (12B0*(1+5))" (725" 40 4 (3,821 +)) ")).

Proof. We use Proposition H.3 and Proposition H.4 to decompose

B(t,s) = 4(0) [#(0) (1)) 8(s) Ding(1, 25,)
=T(I3 + (v2Bo*(1 + 1)) ' Py + (72 Bo*(1 + 1)) " 3(P £ ¢€))
Diag(e#!(12B0°(1+)%, e (13 Bo(1 + 1)), e (15 B0 (1 + £))")
- (D + oma)))

v2Bo

- Diag(1, (v2Bo* (1 +))*, (v2Bo?(1+ 5))°)
(I3 + (y2Bo*(1 4+ 5)) Py + (y2Bo?(1 + 8))*(Py £ €))7 !

. Y3 V3
.D 1. 2

. . —1
Here we have written [<I>°°(1)’1<I>0(1)} = D+o ;5 (1)) where D = Diag(dy, da, d3) for d; >

v2Bo

0,4 € [3]. To see that compare with the limit of ODE Equation (100) as Y222 — 0, r,Bo? — 0:

vy2Bo
0 0 0
0 —25 0 5 0 o
) 0 0 -6 - .
dd(T) +lo o o] ém
T T 0 0 -1

We know that around oo there is a fundamental solution j asymptotic to Diag(e=27,1,e~7) and
around 0 there is a fundamental solution j asymptotic to Diag(1,772%,77%). It is clear that in
fact both solutions are diagonal, positive and hence we can define the positive diagonal matrix
D =j(1)~15(1). This implies directly the bound on ®1; as

D11 (t,s) = Y53 BO (e (14 1) + et2H(1+1)% + ela! (1 +1)%)
=304 (e7P7 4 (12B0%1) ™)

where we used that p; < gy = —v2Bo? < 3 < 0and 6, < §3 = —§ < 0 with 6; bounded
above by some constant of €, 4. For the bound on ®15, notice additionally that since § > 1, the term
(12Bo(1 4)% > (12Bo*(1+5)) " > (12aBo2(1 + 5))™. 0

For 7, Bo%(1 +t) > 1 and 72 Bo?(1 + s) > 1, we have the following

Proposition H.10. Lere € (0,1), C > 0 such that § € (1,C). Let v2,73,B,0 > 0, let 0 < s < ¢.
Suppose that yoBo?(1 + s) > 1, yoBo > (1 + €)\/473 B, then

1+t*
Bia(t9) = (L+ O((Bo?(1+5) ™)t (1)

o2
1+1¢
+ O(z* + 22(v2Bo?(1 4 5)) 72 4 (y2Bo*(1 + t))72)e“2(t75) <1 —ts)

93
1+t
0@ + 2(13B0*(1+)71 + (12 B0 (1 + 1))erai=) (11) |

104

and

V3 1+¢\"
Dia(t,s) = Bo? (0(332 + (2B (1 + 5)) " 2)er 179 <1+5)

o2
+ 0@ + (12Bo?(1 + 1)) 2)er2(t=) (i s t)
S

O+ alaBa*(1 4 8) ™+ (aBo(1L) Bt (11))

Proof. We use Proposition H.3 to decompose

B(t, s) = (1) (s) " Diag (1 3 ﬁ*)

"Bo?’ \/Bo
=T(I3 + (v2Bo*(1 + 1)) Py + (32 Bo?(1 + 1)) (P £ €))
mr=s) (12" 0 0
‘ (t—s) (1)
0 etz (m) 0
d3
0 0 ehs(t—s) (%f)

(I3 4 (72Bo*(1+ 5)) "' Py + (12 Bo*(1 + 5)) " *(Py £ €)' T~ " Diag(1, %, \/\/gz)
1+ 0(x + 5577) O + (W>Q) Ol + (7230%)2)

* * *
* * *
é
et (t—s) (%) ' 0 0
19 (t—s) (14t 8
0 etz (m) 0
0 0 ehs(t—s) (M)éS
1+s

14+ 0(z + — 5573 O(xz+< ;)2) *

'ygBaze
2 . Y3 VB
O(x? + (7 BT)2) 14+ 0z + o5 ;) * Dlag(l,Biaz, \/Ea)
O(Z‘ + (7230’23)) O(J?—F ('yzBa s)) *

where we used the estimate (102) for 7" and (H.4) for P, P,. We additionally remind p; =
—12Bo? — 0\/v5B%0% — 473 B, p = =72 Bo® + 01/3B%0% — 4y3B =< —22% i3 = 7, Bo?

- _ _ y2Bo - _ Y2 Bo _ :
and 0y = —0 (1 \/M> , 02 1) (1 + \/’M> , 03 0. Especially we
have for y2 Bo > (1+€)v/4y3B that 11 < —272Bo?, g < —%, and §; =< —§-—2B8_ 232027 0o < —20.

Since fi1, pia, p13 S — 7. this directly implies that @11, ®15(¢,s) = Oy (eJ) Ultimately, this
leads to

B11(t,5) = (1+ O((12B0*(1 +5)) " + w)ers (=) Gi t)

02
1
+ O(z* + 2%(72Bo2(1 + 5)) 72 + (12 Bo2(1 + t)) "2)er2(t=9) (1:2;) (103)

1+t\7
+OW 4+ a(nBa(149) ™+ (uBo(1+) 2= ()

105

and

01
_ a1+t
Dia(t,s) = ;;2 (O(mQ + (y2Bo?(1 + 5)) Q)eﬂl(t) (1+S>

1+s

d2
1+t
2 2 —2\ 2 (t—s)
+ O(z® + (12Bo*(1 + 1)) %)e <) (104)

+ O(z? + (v Bo?(1+s)) !

03
1+t
2 —2\ pu3(t—s)
+ (2 Bo®(1+1t)) %)e (1+5>))

H.5 Summary

We informally summarize all the bounds on @14 (¢, s), ®12(t, s) that we previously developed. In red,
we outline the important contributions for the first and second terms of the kernel.

¢ Oya(t,s)11, s <t < %

V3B 1 1
0 ~2B V72 Bt ~2Bs 1 o
| | | | | S
I I I I I 4
1 1 ef’yzBo'zt ef'yzBo'z(tfs)
2
s O,2(t,8)11, s < St
1 V3B 1
0 V3Bt ¥2B ~2Bs 1 o
| | | | | S
I I I I I 4
1 (g— /fySBt)*‘; ef’yzBazt ef’yzBGQ(tfs)
2
s Dy2(t,8)11, e Ssst
1 1 V3B
0 V3Bt VsBs ¥2B 1 o
| | | | | S
I I I I I 4
1 (ov/A3Bt) =3 72 Bo2 (t—s) (L) o e~ 2B (t—s)
2
* (I)a2(t73)127 s<t< s
V3B 1 1
0 v2B V2Bt ~2Bs 1 o
| | | | | S
I I I I I 4
222 (01/73Bs)? N2 aBr) e st
2
* (I)O'Q(tvs)127 s < % St
1 V7B 1
0 V3Bt 2B V72Bs 1 o
| | | | | S
I I I I I 4
3 2 _ 2 (0 Bo(1 45)) e B (40 _ 20,
Doz (0-‘ /73B5) £;2 (0. /’7338)26 Y2 Bo =5 (12Bo*(1+5)) £;2 p2e—12Bo” (t—s)
° @02(t73)127 % SSSt
1 1 V3B
0 V3Bt Vv3Bs v2B 1 o
| | | | | S
I I I I I 4
5 (0vA3Bs)? 285 (075 T) 2 —v2B0%t g=y3Bo?(t—s) G)ﬂ‘ ~3 2 77230_2 (t—s)

Bzl €

106

H.6 Bounds at the singular point v2Bo € [(1 — €)/4y3 B, (1 + €)v/4y3B

Denote w & % — 1. For w bounded away from zero, we derived in propositions H.1 and H.3
asymptotics solutions for large time of Equation (99). We still need to do the same for w ~ 0. To
that end, we will show that the solutions constructed near zero in Propositions H.2 and H.4 have

exponential decay for large time. We will follow similar steps as in [78, Lemma D.3].

The goal is to bound @11 (¢, s), P12(¢, s) where ®(¢, s) satisfies the IVP Equation (99) with ®(s, s) =
I5. Denote

-1 i _1
|y At
s=[-1 -1 -1}, (105)
1 0 0
then we have the identities
—2v9Bo 0 —2v/v3B 0 V3B 0
St 0 0 2/73B | +wBol; |S=[0 0 3B
VB —vvB —72Bo 0 0 0
0 0 0
+w | 4v3B 0 VB |,
0 4/v3B 0
and
0 0 0 -6 0 0
s7'{o -26 o0]sS=[-26 -§ -2
0 0 =9 0 -2 —¢
Then (99) can be rewritten as
—0 0 0
2 -0 3 010 00 0
dd(t) 0 —25 -9 .
= +10 0 1)4+wl|4 0 1 D(t) (106)
de O’\/’YgB‘Flf 0 0 0 0 4 0
(Dl(g\/twig)
& def 7: ¢ o2 def
where: (1) = S 5%‘1’2(0@) 72877t Now define £2(t) = max{w, ﬁ}
VBo ((7 'y3B)
We then have:
—0 0 0
- —267t =6 =3¢
(I)/1A(t) 0 _25&—1 _25 0 5 0
EO(t) | = +{0 0 ¢
E_Q‘i)Z(t) (ovy3B +t 00 0
0 0 0 Dy (1)

0
Denote N(t) = ||| €1y (t) and A(t) the operator norm for the infinity norm of the right-hand
§203(t)/ |l
matrix
-4 0 0
AT 0 g 0 0 0 0 0
def 0 206t 5 3 '
At) = = +(0 0 & +w |4 0 ¢
ovysB i 00 0 0 4! 0

Then we have the identity:

. N(t
N'(t) S AN + L1 W(B)H.

From the above, if |w| < 1, we know the existence of a continuous constant M () > 0 such that
Vit > 0 with o/3B +t > 1, A(t) < ME(¢).
By Gronwall’s lemma, it implies that for all t > s with oy/v3B + s > 1,

N(t) < N(s)eM+D [De()ds, (107)

s def Bo . . .
Pr ition H.11. D = 22 — 1. Ther 1
opositio enote w = —A=55 here exists some ¢ < 1 and some continuous function

M (0) such that if |w| < cand t > s > 0,

2
wzlgo (t—s)

_12Bo? Y3 _x2Bo”
(t—s)
(b(t,S)ll < Me N s (I)(t,s)lg < BCT2M6 .

Proof. The proof is similar to the one of [78, Lemma D.3].

If on/v3B(1+1t) > oy/v3B(1+ s) > 1 we can apply Equation (107) to each column of ®(¢, s). For
the first column, we know that N (s) < £(s)~2 and f: £(s)ds < &(t)(t—s) since £(t) follows a power
law. This brings that V¢ > s, |3 (t)| < £(£)2/&(s)2e(t=9)4(1) < e(t=9)6(1) We now repeat the same
procedure on the vector <§_(Iigt)(t)> to obtain similarly |y (t)] < £()/&(s)elt=9EW) < t=9)E(0)
2

and finally on the single vector (& (#)) to obtain |®2(t)| < =€), Notice that (t — s)£(t) <
max{y/|w|, /ov/v3Bt}. This all bring ®(¢,s)1; < Me=12Bo" (1=My/lw])(t=s) D(t,8)12

%M e 2B o*(1-My lwD(t=5) For the second column notice the additional factor 3732 . Finally, to
extend to o1/3B(1 + s) < 1, notice that we still have || ®(1, s)|| < 1 and we can apply the same
argument for oy/v3B(1 + t) > 1. For 0/y3B(1 + t) < 1 this is also clear since ||®(t, s)|| < 1

IN

O

H.7 Estimation of the forcing function
In the following section, we will estimate the three forcing terms Fo, Fpp, Fac.
H.7.1 Asymptotics of F((t)

Remind the definition

Fot) £ 1, ({01)(@7=0(£,0)) 1.

Then we have the result from [80]:

108

o < YasB ‘ o> Y8
— 2B — 2B
1
o< 1 V3Bt <0 o< \/’ygB 1 <o
VBt | (= t>2) (= t<) 2Bt

Table 9: Cuts of o domains for forcing function. This is a simplification of Table 11 using s = 0.

Proposition H.12. Suppose § > 1, a > 0 and 2. + 23 > 1. then the constant function Fo(t)
satisfies:

3'0<t) = d—2a+max{0,1—2,ﬁ}.
Proof. From [80] or proposition D.3, we can rewrite

v j72a72ﬂ
Fo(t) = ; 1+ j—2ad2ak(v/d)

v/d
(1 + O(dil)) where I{(’U/d) solves /(; m du = 1.

For large d, the result was proven in [80, Lemma H.3]. For small d just notice that Fo(¢) > 0. O

H.7.2 Asymptotics of F,. and J,,

We remind the definitions of the pure-point term and absolutely continuous term of the forcing
function

1
22;1<I>‘171(t,0)d((72) = 2/ o't 71(t,0) do,
0

. . 1
Foolt) / (0?)~ % 5,(1,0) d(0%) = 2¢5 / o187, (1,0) dor
O [e%

To compute the forcing function, we only need ®J; (¢, 0) above and to cut the integral in 4 different
parts, of which only three can exist together. Informally, the integral on o is decomposed using
Table 9.

Two regions correspond to the first case 7o Bo < /43 B and the two other regions correspond to
the second case 2 Bo > /473 B. The two sub-regions in each group correspond respectively to the
sub-conditions ov/73B(1 +t) = 1, o Bo?t = 1. Note that, as noted in Table 9, for ¢ > %, the third

regions disappears (and the lower-bound of the fourth integral becomes 7“1“’33). On the other hand,

\/W)'

fort < 72 , the second integral disappears (and upper-bound of first integral becomes B

The case t > 22
RE]

Proposition H.13. Let o > 0,2« + 28 > 1 and consider the general Parametrization H.1. Suppose
thatt > 22. Then, if § > max{2 + 2[3 12— 11},25 ¢ N, for any M > O, there exists a constant
C>0 such that

)CX(

Fon(t)
If additionally o > 3, 8 > 3,

{3" () < dt (\/WTB(lth))’2+é if Md*>\3B(l+t)>C
Faclt) <d™' if VB(l+t)<C

{ffpp(t) (VRBO+0) 2 i B+ zC
1 i <

Proof. We first consider the case %= ’73 < 1. Fort > 72 , the third region disappears. Let € = %
and ¢; small enough, then we know the existence of some ce > 0 small enough such that if
W < (1—e)¥S V4'YSB S +e)¥ VM”"B < 1 we can decompose

109

1
8
Fpp(t) v/ o't 11(t,0)do

\/4v3 B

1 (1—e1) e -
/\/WTB(+1) 71(t,0) da+/ c 2B 12 1‘13‘171(15,0) -
’ MRV4EEICED)
(te1)/4v3B .
o t,0)d t,0)d
" ”*ma T N0 do _GrenyiE 0 71(t,0)do
= oy
/m(m) HET (140 do
(1761)\/:;? 28—1 2 -6
+/ IOt e B (05 B(14 1))) do
MEVErY:TeeTs)
(14€1) 2B 26-1 ~ B(, ‘ 1 .
¥ 1+==— n+ 2 . 51) s
—|—/ (1)\/WO' a O7(e”)da+/ -)\/WU a ('yQBo' (1+t)) do
TN B €1) 7558
_o9_28-1 _9_28-1 %;‘H) vo s
= (\/7373(1%)) +O+((\/7:TB(1+16)> a / JpaeTs "sdu)
2+£
B [e3 _L
+o+(<g> B
—2-28=1 N2 B(1+1))
+OH(VRBED) T e W g

I C 7Y ER D)
Y2

_9_26-1

= (\/fyTB(l +t)>

In the first integral we have used that 1+ 2/3 L'> 1 <= 2a+28 > 1andthat &, (t,0) = 1+eif
ovv3B(1+1t) < c.. In the second 1ntegral we have made the change of variable u = oy/v3B(1 +t)

and used that § > 2 + 26;1 for the integral on u to converge when lSt — o0. In the last integral, we

261

have made the change of variable u? = v, Bo?t. We use again that 0>2+ to get that it is

negligible with respect to the other integrals

—g—28-1 Y2 B(1+t)

o 28—1
(723(1”)) N umBHEE g,
U=y 7372 ’
g_28-1 1 —2-
S(723(1+t)) S bl
Y2
_o_28-1

< (VsBa+n) T

Additionally, note that for o/y3B(1+t) < c., we clearly have F,, (t) fo o (14+6)do < 1.

Finally, in the case ¥ 733 2 1, it is still clear that if v/y3B(1 + ¢) < 1, only the first integral
contributes and we obtaln 51m11ar1y Fpp(t) < 1 while if \/v3B(1 +¢t) 2 1, the second integral is
capped and we still obtain F,(t) < (vy3B(1+1t)) "% 2w

o4l
A similar calculation shows that F,.(t) < cgd ™" (vV73B(1 + t)) ' The only difference is that

we require 2 — i > 0 for the first integral to exist and hence to have o > % It’s not a problem since
below we have bounds from [80] (see Proposition H.15). Additionally, for the second integral to
converge (and the third integral to be negligible) we require 6 > 2 — é

110

The case t < 22
RE]

Proposition H.14. Suppose that t < % Then, if 6 > max{1 + 2@;1, 1- i, 1}, 26 ¢ N and
2a0+ 26 > 1, for any M > 0 we have

5 28-1

9_28-1
Foplt) =< (VRBATD) i VRBAID>1
Tpp(t) <1 if /eB(l+1) <1

If additionally o > % and 8 > 3,

2;’_%
Faelt) < d* (V2B +t)) if Md® > /7B 1 1) > 1
Fac(t) <d™t if V/yB(+1)

Proof. Fort < %, the second region disappears. Let € = 2, €1 > 0 small enough and some c. > 0.

We first consider the case where —{y;’sBB < 1. For (1+ 61)\/3;%3 < \/y2;€(1+t) 1, we write:
(1=e1) 'j;gB 261 (1+e1) j;gB 1426=1 0\ 3pBo’t
Fpp(t) < / . olt™a (1ie)d0—|—/(1_61)@ o Of(e” 2)do
Y2
1
\/m 28-1 28-1)
/ JaTeiaE ot (1:|:e)da—|—(9+(/ . o't (1eBo?(1+t)) " do)
T mB 7T VmaBain
727213&—1 B 2+% o
x(72B(1+t)) +0+(<”3B) et
72

V12 B(14t)

=cCe¢

_ 26-1
u 204+1+=% du)

vor((vapaen) T [

_o_28-1

@

= (2B+ t))

Here we have used for both first and third integral that 1+ 2[3—_1 > —1 <= 2a+25 > 1. Inthelast
integral, we have made the change of variable u? = v, Bo? (1 +t) and used that § > 1+ 2’8 L —

—26 41+ 2=L1 < _1forthe integral on u to converge. Also note that we bounded the contrlbution
near the smgular point by noticing that

visB o 1 2
72 B V2Bt V3

On the other hand, if \/72B(1 4 t) < ¢, the last integral disappears, while the third one is cut at 1
and we obtain: F,, (t) fo 1+2B do = 1.

Finally, in the case ”33 > 1, we can check that necessarily ¢ < % = /Bt x % <1
while only the first 1ntegral remains and we obtain F, () =< 1.

A similar calculation shows when o > 1, 8 > 1 that F,.(t) =< d™* (Yo B(1+ t))i ©if

Y2 B(1 +t) > cc and Foo(t) < d=1if \/v2B(1 +t) < c.. In that case we need as previously that
o > % in the first and third integral and § > 1 — i — -20+1-— % < —1 for the last integral
on u to converge. O

We can state two simple bounds on F ..

111

Proposition H.15. Lera > 0, 2a+ 28 > 1, a # %7 B # % There exists a constant C(«, 3) such
that ¥Vt > 0:

Fac(t) SC x Fo(t) if 2a<1,28>1
Fact) =0 if 28<1

Proof. The proof is very similar to the one of [80, Proposition H.4]. First, if 28 > 1, ¢g = 0 and
hence Vt > 0, F,.(t) = 0.

Now, suppose that 2cc < 1,28 > 1. From Lemma H.1, we know that Vo > 0, V¢t > 0, ®¢,(¢,0) < 1.
Hence this brings:

1
Fac(t) S 05/ o' ad ' do

—a

Since we know that T (t) < d—20+tmax{0,1=28} 'ywe get the result.

O

Corollary H.1. VM > 0, 3C > 0, Vt > 0, if max{y2B(1 + t), (v3B(1 + t)?} > Md>** we
have:

Fpp(t) + Fac(t) < CFo(t)
Proof. This is a consequence of Propositions H.12 to H.15. O

Finally, we relate the forcing function F(¢) to the terms Fo(t), Tpp(t), Fac(t) that we just estimated.

Proposition H.16. Let o, > 0, 2a+28> 1, a+1> 3, o, # % Use Parametrization H. 1

with § > max{1,2 + 2[3(1—717 2 — i} and 26 ¢ N. Then there exists a constant C(«, 8, H) such that
Vvt >0,

é (Fo(t) + Fac(t) + Fpp(t)) < F(t) < C(Fo(t) + Faclt) + Fpp(2)) -

Proof. It is clear that for any ¢ > 0 and on the range of ¢’s where we can apply Proposition H.5
and Proposition H.8 that ®¢,(#,0) < 1. More precisely it corresponds to the range 0 < ——

~ 3Bt
and voBo < /4738 or the range o < \/ﬁ and v2Bo 2 +/4y3B. Hence the function (o —

o7, (¢, 0)) satisfies, up to a constant, the hypothesis of Proposition D.13 on this range of ¢’s. The
reader can check that the contribution from eigenvalues of this range lower-bounds F,(t), Foc(1).

Similarly, by upper-bounding the oscillatory part in cosine/sine appearing in Proposition H.9 and
Proposition H.6 by constants, one can upper-bound &9, (¢, s) by some function which satisfies the
hypothesis in Proposition D.13.

This implies the bound for some M, M7, My > 0 and some C > 0

1 1
1 bey i
o7, (t,0)(ps,, + pig,.)(do?) < / . o7, (t,0)ps(do®)
Md—2«
1

M
<c 7 % (t,0)(us,, + ps,.)(dd?).

Mzd—Qa

C 1\41 d72a

There remains to bound the integrals on segments [0, Md?*] U [4;,00] for some con-

stants M > 0. We know from Lemma H.l1 that for any ¢ > 0 and any

112

DANA-constant with { < 2:% DANA-constant with ¢ > 2%

Fo(t) = d—20c+max{0,1-25} Folt) = J—20+max{0,1-25}

—1

Fpp(t) < (V’VBB) i

C x Fo(t), if28>1,2a>1
ac t x .
Faclt) {07 if28 < 1.

i£28>1,20 > 1, Foe(t) = (V3B - £) 275 d™
—4+1/a
Kpp(t,0) < B3 (vasB 1)

Table 10: Large d behavior of the forcing function and kernel function for DANA -constant for
small and large ¢. Here the constant C' is independent of dimension.

_1_28-1
Fop(t) < (12Bt) '~ 72

C x Fo(t), if28>12a<1
act < .
7 ()_{0, if 28 <1

if28 > 1,20 > 1, Fac(t) < (Bryat) T2 4!

Kpp(t,0) < B3 (v2Bt)~2+1/(2)

o > 0, ®{,(¢t,00 < 1. Hence using Propositions D.4, D.6 and H.12 we
oa —2a
can bound for any M > 0, max{fol\fd 9, (t,0) 5 (do?), Oj\ﬁd 7, (t,0)(ng,, +
pg, N(do?)} < d2et(=28 < g(t). Additionally, using Propositions D.2
and H.9, we bound max{ [T @7, (¢t 0)us(do?) f ®7,(t,0)(ug,, + pg,.)(do?)} <
M

min{e 2BV CM) (\ /va B/Mt)70} < Fo(t) + Faelt) + ?pp() This concludes the proof. O

H.8 Necessary conditions for stability

In this section, we look for necessary conditions on learning rates and batch exponents k1, kg, Kk > 0
in Parametrization H.1 for the risk to remain bounded. We first state a technical lemma that shows
divergence of the solution to a Volterra equation when the forcing function is lower-bounded and the
kernel noise is too large.

Lemma H.3. Let J : R+ — R+, X: { (t, 3) €R%, t > s} — Ry. Let P : Ry — Ry solution to
the Volterra equation P(t)+ fo K(t, s) ds. Suppose that:

<Vt >0, F(t) > Fo >0,
» liminfysg [}, K(t,s)ds > 1.

Then,
lim P(t) =

t—o00

Proof. By assumption, we know the existence of 7' > 0 such that V¢t > T, ftt/Q K(t,s)ds >1+¢€
for some € > 0. It is then clear, by recursion, that

VEeNU{—1}, Vt > T x 2%, P(t) > (1+ € 15.

This proves that P(¢) "= 25 . O

Lemma H4. Let o > 1. Let 6 > max{1,4 — 1} 2§ ¢ N. Under Parametrization H.1, if

k1 < (1 —2a)4 or ke < k1 + 1 — Ky, then for d large enough,

t

lim inf K(t,s)ds > 1.
t20 Sy

Proof. We first consider the case where ko < 2k1 + 20 — Ky. This ensures that —ﬁf = d e,

Since Vt > s > 0, VJ >0, ®f,(t,s), P95(t,s) > 0, we use Fubini theorem to write for ¢ large

enough so that \/7(1“/2) < VWZ%,B

113

t 7%9 t
/ K(t,s)ds > 'ygB/ (/ D7, (¢, 8) ds) pac(da?)
t/2 =1 t

Vam 72
Y2
+ B/) (//2 DI, (L, s) ds) pac(do?).
o= —= t
NCTEE

Note that we integrate only up to —Vv;’g? < 7V3;%B as we only look for a lower-bound on the kernel

and this ensures we remain bounded away from the singular point. For the first term, we write for
oc [1 V3B }’

\/"ygB(lJrS) 7 v B

t t 2 141\
/ D7, (t,5)ds = / 56_’723‘7 (t=s) () 1+ cos(o/4y3B(t — s)
t

/2 t/2 1+s

1+1¢ (5’7230’ ((7230’))

+1o + (O + O(e ds

g<1+5> /4733_,),%3202) /3B (€)

y2Bo 1 1

> - -

~ (O (\/'YSB> " O(€)> " Y2Bo? * Y2 Bo?

> 1

~ y9Bo?

Here we used that 0v/73B > 72 Bo? and t large enough.

For the second term, a similar argument brings that again for o € { V333 } ,

N S
V7vy3B(1+s)’ v2B

! Py 2 1+\7°
/ 7y(t,s)ds = / e~ 12Bo(i=s) <) 1 — cos(o\/4v3B(t — s)
t /2 2Bo

/2 + 1+s

1+t 57230 (<")/QBO'>)
+1lo +10 + O(e ds
g(1+s> ,/4733_733202) /~sB (€)
V3 Yo Bo 1 1
> 12 - -
~ Bo? ((O <\/73B> +O(6)> " 32Bo? * 72302>
> s (1)
~ Bo?2 \ v9Bo?

Here we used that v, Bo? < /473 B to obtain that the oscillations from cos average in the integral.

It is hence clear using that —%3 2 d~“ and t large enough that

t = 5 1
K(t,s)ds = 'ygB/ ’ st (do?) + B ’ —732 X ——— pxc(do?)
t/2 o1 72Bo o1 Bo Yo Bo
V3B(1+s) V3B(1+s)
s \/V3B
mln{l,W} 1
> 2,31/ Bo3—1/a__ 13 d
= /w (72 o 12Bo? + Bo 7B o

e 72d<1_2“)+ + MENY]
Y2 B

The above shows that supposing ko < 2k1 + 20 — Ky, then if kK1 < (1 — 2a)4 or Ky < K1 + 1 — Kp,

then
t

lim inf K(t,s)ds = +oo.
t—o0 t/2

114

We know consider the second case where ko > 2Kk; + 2a¢ — Kp. [t is clear that we only need to con-
sider the case where k1 < (1 — 2a) 4 since

{%1 > (1—2a)4

= Ko > k1 +1— Kyp.
and ko > 2Kk1 + 200 — Ky 2= b

We use Proposition H.10 and obtain for given M > 0, 0 > max{~~ ”’33 ,Md=} and y202(1+s) > 1
that

11 (t,5) = (1+ O((12Bo(1 +)" + z)e1 () (i i t)

02
1
F O 42202 B (1+9) 2+ (uBo(1+) 2= (1)

d3
1+1¢
+ O(@? +2(12B0*(1+5)) " + (12B0*(1+ 1)) "2)er(=) (li)

Especially, the most important term is e (*~%) which gives rise to # in the kernel norm. To see
vy2Bo=t

that, notice that we can take s large enough so that (y2 Bo?(1 + s)) ! is negligible and 22 = V;’;’%Q
2
as small as we want by increasing d (or M in the particular case where ko = 2k1 + 2a). This brings

1.1
p "~ yeBo?

¢ 1+¢\%
/ (14 O((72Bo*(1 +)"t + x?)err(t=2) () ds >

t/2 1+s

It is additionally clear that the last term brings a negligible contribution since

t 1H\% 1
O(z? + (y2Bo?(1 + s))*l)e”(t’s) <) = Oz + (12Ba*(1+)71 x —
t/2 1+s 143
1
— O(.’EQ —+ (’YQBO'Q(l + S))_l) X ;
1

‘We mostly need to bound the second term which is done as follows

t

82 1
) ds = O((z* + (12Bo?(1 + 1))2)—)

1+¢

4 B 2 1 —2\ p2(t—s)
O + (2Bo(1 +))= (141

t/2

Y2 Bo V3
2
Col(EEY L,
We noticed that po =< % and x = ’\y/z? Additionally, we noticed that we can take ¢ as large as we
want. Additionally, (%)2 x2 =1

Finally, we obtain that

t 1
1
/ K(t,s)ds Z/ V2B 2ug<(d0)
t/2 o=d~ B

1
Z/ ,_Y2O,171/a) do
o=d~«

> wdu—za)-s-_

115

The above hence implies that supposing ko > 2k1 + 2a — K, then if kK1 < (2a0 — 1)4 we have
t
lim inf K(t,s)ds = +oo.
t/2

O

Corollary H.2 (Necessary condition for stability of DANA-constant). Let o > i. Let § >

max{1,4— 1}, 26 ¢ N. Under Parametrization H.1, suppose k1 < (1—2a)1 or ke < k141 — K.

Then for d large enough, P(t) "= 20

Proof. This is a direct consequence of Lemma H.3 and Lemma H.4 O

H.9 Sufficient condition for stability: upper-bound on the kernel norm

Lemma H.5 (Sufficient condition for stability of DANA-constant). Under Parametrization H.1, for
given o > ia #+ %,5 > max{1,4 — é}, 20 ¢ N, M > 0, we know the existence of C' > 0 such
that,

t
vt >0, / fK(t,s) ds< C (’7 dmln{O 20—1} +d-2 3)
0 Y2 B

As a consequence there exists some ¢ > 0 such that for any k1 > (1 — 2a) 1, ke > K1 — Kp + 1,
J2 < ¢ < cand any d > 1 we know that

"y><c

sup P(t) < oo.

t>0
Remark H.2. We believe the following stronger bounds to be true and could be shown in the
same way, although a little bit more technical. We discuss this in more detail in Section J. For
given o > i, 20+ 28> 1, o, B # % using Parametrization H.1 with parametrization vector H,
§ > max{1,4 — 1}, 26 ¢ N and for any M > 0 there exists C(c, 3, H, M) > 0 such that for any
t > 0with & < v, Bt < Md>*,

1 (1— 2a)+
Bt o Bt)1/(2) / K(t,
Yol (72(’72) + sz(s)

(1—2a)

=C (72(7231?) =t 73(wBt)l/(QQ)) '
Yo B

Additionally the kernel norm converges in the sense that 3C(«, 8, H, M) > 0 such that for any t > 0
with ﬁ < 9Bt > Md**

1
(wdﬂ 0 d T 13) / K(t,s)ds < C (wd(l 20+ g2)
C ’)/QB

Proof. We can bound ®1 (¢, s), P12(t, s) as follows

» from Propositions H.5 to H.7 if 0B < (1 — €)y/v3B, then ®11(t,s) =
O(e= 27" BU=5)) &y, (t, 5) = ;32(9(6*72”23(“5)) with a corresponding lower-bound,

s for 2Bo € [(1 — €)v73B, (1 + €)v/3B], Proposition H.11 brings that for ¢,s > 0,

Dy (t, s) = O(e—cs’)’zo-?B(t—s))’ Dyy(t,s) = «/\/BT;?O(—cev202B(t—).

* Propositions H.8 and H.9 bring that for v,0B > (1 + €)\/3B if 12Bo?s <
1, then ®yi(t,s) = O(e 27 BU=9) 4 (1,02B(t — s5))70), ®1a(t,s) =
2 O(em o127 Bi=9) 4 (1902 B(t — 5))"%) with ¢. > 0,C. > 20 > 2. Fi-
nally, Proposition H.10 shows that ®y1(t,s) = O(e= %20 B=5) L ((,02Bt)~2

116

_ (t=s)v3

x2)e” 2), Pia(t,s) = E;’(jQO(e*C”WZB(t*S) + ((720%Bt)"2 + 2%)e” " 2) with
r = VB
Yy2Bo *
We just need to integrate these estimates on s and o. It is clear that for o < (1 + e)—%"}f we have

t t
2
11 (t,5)ds ,S/ e 2B (t=9) g <
/S:O 5=0 '7230—2

t t
L Y3 ¢ BO’2(t73) 73 1
d larl ®i9(t,5)ds S ——e “N? ds S 5= X B
and similarly /S . 12(t,) SN/S o Bo2® ¥~ Bo? Yo Bo?

On the other hand, for o > (1 + ¢) VVZ%,B , we still obtain

t t 9
/ Dyq(t,8)ds S / <6—C6'}’230‘2(t—s) + ((\/@) n (1)e_(t_s)zg> ds
s=0 s

-0 2 Bo Y2 Bo?t)?
< 1
~ 49Bo?
Here we used that fg e 9% ds < min{t, 22. We combined that with

2
(\/’733)’y2<1 1 o 1 11

t
Y2Bo) 3~ v2Bo? (y2Bo?t)? ™ y9Bo? v, Bo*t ~ v, Bo?

where we used that in that range, ——; < 1. Similarly, we have
yoBo<t ~

¢
V3 1

Diy(t,s)ds < —= x .

/320 i2ftys)ds 5 Bo? ~yBo?

Now integrating against pg and using Proposition D.14 brings the desired upper-bound for some
constants ¢, C' > 0,

t t
/ K(t,s)ds = / (7§B<I>11(t, s) + B®1a(t, s)) ds
s=0 0

1
1 1
< 3-1/a (2 B3« d
~ /Cdfzao’ (72 7230’2 * Bo? ’YQBO'2 7

<C (72 x =200+ L B d) .
72B

The last claim is a straightforward consequence using the fact that F(¢) is bounded from Proposi-
tion H.16 and X (¢, s) is continuous. O

H.10 Upper-bound on the kernel function

In all this section, we assume k1 = (1 — 2a)4, 0 < K < K1, ke = K1 — Kp + 1. The previous
sections show that these are the largest stable learning rates. In this section we will estimate an
upper-bound on the pure-point term of the kernel function by:

* upper-bounding |cos(t)], |sin(¢)] < 1 in Propositions H.7 and H.10, hence defining
P11, P12,

* using the upper bound on pigc by pugc,, from in Section D.

117

Y2 B
1
e 1 ,/733(1+t) <o< x/’ygB(lJrs) VaBlts) <7 /
VA3 B(1+t) (= 1+t> H“) (= 1+s> 21;{)
o > \/4’)’3B
Y2 B
1 1
o< sz V2Bt <0< V72Bs 1 <o
(= t< & (= s<2) V12Bs

Table 11: Cuts of o domains for kernel function

We hence define

K(t,s) LK, 5) + K2(t, 5)

1
L 2p / B, (1, 5) du(0?) + 12 B / B, (1, 5) du(0?).
o=0

o=0

We additionally define the corresponding pure-point contribution of the upper-bound on the kernel.

Kpp(t, >‘*efﬂ<1 (t.5) + K2, (t,5)

23/_ o7 (t, 5) dppp (o)""YlB/ O (t, 5) dppp(0?)

o=0

D\»—‘

1
_%B/ 15 ts)da+B/ ~187. (¢, 5) dor

o=0

In the rest of this section we will provide upper-bounds on X,,,. We will divide the integral on o
in different parts, as explained in Table 11. We will show in the following that X, provides an
upper-bound on the kernel function using our estimates on px. We think this upper-bound is in
fact tight but we cannot (and don’t need to) entirely prove it with our current estimates on g from
Proposition D.14 due to the oscillatory nature of ®11, ®12 in Proposition H.7. Instead we will rely on
a slightly different argument for the lower-bound.

H.10.1 First term: SGD noise

We will use the asymptotic of &7 (t s) developed above to show the following bounds on szl,p(t, s):

Proposition H.17. Suppose o > + 1 OF %, 4 > max{4 — %, 1}, 26 ¢ N. Consider Parametriza-
tion H.1 with k1 = (1 — 2a)4, 0 < Kp < K1, kg = k1 — kp + 1 and let any M > 0. There exists a
constant C(o,, H, M) such that for any (s, t) € R% with s < t, we have the bound :

_ ——\ ~4t3 —_— !
K;p(t, s) < C’(min{’y%B (\/'ygB(t - s)) ,V2B(72B(t —s)) 22}

etn(151) (mEEa)),

Proof. The proof is divided in three sub-cases depending on the relative size of s, t, % Introduce
some €; > 0 small enough.

lstcase:%§1+s§1+t

We will suppose in the following \/y3B(1+t) 2 v/v3B(1+s) 2 Lland v2 B(1+t) 2 y2B(1+s) 2 1.
We additionally first assume that X12= "3B < 1. The other cases can be handled similarly by capping the
bounds of the integrals. We hence decompose

118

1 -
’Y%B/ “a®y(t,5)do = B/ o o3 7Dy, (t,5)do

=0
ﬁ (1=e1) ’f;gB 1
+’YQB/ ety (t, 5)d0+72B/ o® %Py (t,s)do
1 1

/473 B

(I+e1) Y55 3_1
—|—*yQB/(a@ll(t s dc‘f—!—'yQB/1+€)\/W a®qq(t, s)do.

Continuing, we have

B/ _Q‘I’11t8)d0<’Y§B/mt 3% x 1do
ke -5
—i-'yQB/ g3~ w2 B (0\/’733(1+t)) do
\/vTBf
Ner _
(1—e1) 2B 1 2 1+t o
B 3—= —v2Bo (t—s) [=T
+’Yz / . g ¢ 1+s do
2 (14€1) :;)3313 5 IO(_c51(tfs)73)d
+ / s 0 Qe o
ace s
+ B/l 3—i —ce,v2B 2(t—s)_’_(4+ xQ
o €1 7250 —_—
P oz ” ERCIEDE
02
]_ t—s]_“Ft
= Ve G174 d
T ot)¢ < >) 0
L
<72B('ygBt) “/
. o
(i) [e
Y2 e du
3 2
14t) w0 e
2 +55 3—1/a,—u
B B(t — = d
93 (Hs) el A
v3s
41
B o _ceq (t—9)3
o) e
V72 B(t—s)
2 o)) 241/ (2) 3—1 —a?
+ 75 B(72B(t — s)) <u_\/mu e " du
Y2
—4+1
57223(733?5)
(M)H/a if t-s<2
14+t -5 P V2) 73
+7§B<1+8) (2Bt —35)) 724 C if B<t-—s<it
(t=s)vp
e et 0f T oo

Y2
(12B(t —5))2" Y22 if ~B(t—s) <1
_ o e 1 _ 22
+ BBt —s)THEN § O I Sy <tms <

e m if 2<t—s
Y3

119

We have made the change of variable u = 0+/73B(1 + t) in the first and second integrals. We have
used o > l for the first integral to converge. In the last integral we used u? = v Bo?(t — s) and

noticed that the integral on u vanishes as % —o00,ieas s < , /t%. We check that this result is
equivalent up to a constant to the result in Proposition H.17.

We additionally bounded at the singular point for ¢ — s > 12 and hence 1j_t <t 7‘1)73

) (14€1) 'j;gB 51 ceq (E—9)73
“a R
¥4 B o TE o =20(e)do
—€1

Y2 B

B —0—241/(2cx) 1-1/a
<o (l=) (D)
Y2

Y2 B
1+t\"°
< (" B(t — 72+1/(2a).
S(15) GeBe-)

Fort —s < 12 we have %f < 1because 1 + s > YY? which brings the upper-bound directly. In both
cases, this term is absorbed by the other integrals.

We additionally observed that the following term is also absorbed by the others

1 2 2
2 3_1 [4 T 1 e G=ova (14t
B o €1 72 do.
38 [e ™ o G * o) +s)

v2 B

Indeed, we know that 1 +¢ > 1+ s > 12 > 7733 This implies that

)

Bo\ 2
Yo Ba*t > 49 Bo?s > (%) =2

hence we only need to bound

1 02
2 31 4 —¢, =21 (1+t>
v5 B o wgte T 2 do
2 (1+51)’/:;§B 1+s

B\ 't . e o (14t
<~2B ’7/72 / VIS E =3 do x e %1 A
~ 72 (,73B (1+51) 4,\%13 g g e 2 1 5
2

B —44+1/ B (t—5)n 1 ¢ —20
S 'VQQB e X e 1 g +
\/’YgB 1+s

-4
1+¢

< 2B B(t — —241/2a) [=T Y)
S 12 B(eB(t -) T+s

We used when ¢t — s 2> % that for v > 0,Vy > 1, e™¥ Sy " withn=—-2+ ;- Fort —s S 22

~ 73

Y2 B —4+1/a —2+4 2
we still have v2 B (@) < Y2B(v2B(t —5))"2T3a.

120

2ndcase: 1 +s5 <1+t < % We adopt the same strategy although we will go faster as some
computations are very similar

Nerea
1 . (14€1) Py .
733/ 037w ®yy(t,s)do < 'ySB/ 037 x 1 xdo
0 0
1

V2Bt 3— L1

+v3B 0’ @ x1xdo
(14e) 22"

1 1

+ 'yng/vas o3 me 2Bt g 4 'ygB/ o3 <672302(ts)

2 02
4 T 1 —e, U2 (141 d
+ (x + (v2Bo?2s)? + (72B02t)2) € ” 1+s 7

t

< A2B(7,Bt) 21/ / Tk g
u=0

Y2 B(t—s) . 1 R
+42B(yaB(t — 5)) 721/ (2) / ‘ uwdTwe™ du

u=

<3 B(hBt) 2/
(v2B(t — 5))>~ G if Bt —s) <1
+Y3B(pB(t —)20 O if g <t—s<s

e~ s if s<t—s.

where in the first 3 integrals we used the change of variable u = /72 Bo?t, that e < 1 for
0 < ——— and that & > 1 for convergence of the integral for small . In the last integral, we made
V2Bt 4

the change of variable u = /2 Bo2(t — s).

We additionally noticed that

[() () e

Ner Yo Bo 1+ s
v2Bs
5(7793>4/ e Git)é
V2 Vet 5
3)2 1 (1+t>52
S|——— Bs)2a [——
~ (72(72B> (72 S) 1+s

< (12 Bt)" s

for 6 large enough. 3rd case: 1 + s < % <14+t

121

1 1
’Y%B/ 037%@11(t,8)d0§7§B/ P g3 E 1 do
0 0

(1=e1) ’j;gB 1 2 =6
+72B/) o3 ae 2Bt (O’\/’Y3B(1 —|—t)> do

\/4v3 B
o+ [~2B (e s 3-% Jz[zg"Z(tfs)d
! P2 e 7 7
)Y

1
+vB [V e o3 e 2B qp 1 42 o35 e 2B (1=9) 4
\/m 1
(1+€1)
VA2Bs

—4+1/a [1
< 2B (733t> / w3V qu
u=0

(1—e) 22t

+ VSB(@t)_4+1/a/ B Vamd e gy

=1

ror((«227))
72

+ 73 B(y2Bt)” 2+1/(2a)/ _utee dy
u=(1+e1) 73

v2B(t—s) 2
+72B(v.B(t — s))_2+1/(20‘) / w1 eev qu

t—s

—4+1/«
S 'YQB (’YSBt>

(vaB(t —)21/) if 4B(t—s) <1
+3B(RB(t —s) PO L O i S <t-s<s

t—s

e s if s<t—s.

where we used in the first 2 integrals the change v = o+/v3Bt and that e™ < 1 foru < 1. O

H.10.2 Second term: momentum noise

We will use the asymptotics on @15 (t s) to show the following:

Proposition H.18. Suppose o > * 1 F %, 0 > max{4 — é, 1}, 26 ¢ N. Consider Parametriza-
tion H.1 with k1 = (1 — 2a)4, 0 < Ky < K1, ko = k1 — kp + 1 and let any M > 0. There exists a
constant C(o, H, M) such that for any (s,t) € R3 with s < t, we have the bounds

1 it P2 P2
o(t,8) ift —s < Zors< 2

.
9<%p<7> 0(BB+)+ ()" 4o (
52

Y2
’Y2 ’ 5> 2
= 53¢

—d
B apy)

Proof. The proof is again divided in 3 sub-cases. Let €; > 0 small enough, o > i and § > 4 — é
1st case: 372 <14+s<1+t¢t

122

1 1
B/ 7¢*<I>12 t,s)do =B / T 375@12(ﬁ,8)d0+3/ el 377(1)12(t s)do

= i
(1—e) o227) (14en) 222 .
+B/ 03_5@12(t,s)d0+3/ 0% = @1y(t,5)do
L (1-e1) L222 7
VasBs 72
1
+ B ")WU a®yy(t,s)do
1) ;B
1 2
VBl 5 1 Y3 14+t
<B e B(l1+t d
S8 [T o vmBl o) (11
\/71335 3-1 V3 —~2Bo2t
+B X ﬁ(OW/’YSB(l‘i_t)) e (J\/’Y3B(1+S)) d
Nared _
(-e) Y55 1+¢\7°
2 3-1 V3 uBo2(t-s) [1T
—|—B/ . o —B(ﬂe T+s do
V73Bs
Ny
(1+51) 2B
7 3—1 3 + (—nyBaz(t—s))
+/(1—51)\/W o —Bgz(’) 2 do
1 01
. 14+t
B 3-1 78 2 Bo2(1 pa(t—s)
B [e B (067 CaB 1) 2y (S
2

1+1¢
2 2 —2\ 2 (t—s)
+ O(x” + (2 Bo*(1+1t)) “)e <1+s>

+ O(:L'2 + z(72B02(1 + S))71 + (7230'2(1 + t))*2)6,us(tfs) (1 + t> 3 > do

1+s
1+t -2 e 1
S <1+s> (v 733(1+t))_2+5/ u?T e du

1+t -2 1 1 u272
- () (VB +0) 0 [7 s E e

1+s)
)
141t .
+73(1+) (m /\/W -
/2 B(t—s))
+ 73(723@ - S))_1+1/(2a) / = u_1_56_2u2 du

d

S (1”) (VAsBL+)72 15 (1“)5 (vaBE=9) "

1+s

where we have made the change of variable u = o+/3B(1 + t) in the first and second integral,
used that o > % for the first integral on u to converge, that § > 4 — é for the second integral on
u to converge, and note that % < 1. Finally, in the last integral we used the change of variable

us VeBo?(t — s).
Also note that we bounded the non-exponential term similarly as for K (¢, s), ie since know that
1+t>1+s> 12> %, this implies that

72BU>_2 _ .2
V3B

Y2 Bo’t 2 72 Bo’s 2 (

hence we only need to bound

123

1 P
3-1 V3 2 —co G=9)vs (141
b /<1+e yvims "Bt o\ v

-2 .1 —25
’)/QB 11 —c (t—s)v3 1+t
< a do X €17 7
~ (wTB) /mqu 7 7 L+s

V2B

—241/« . —20
S 73 728 x e ‘1 « wzhs 1+1
~ U \ViB 1+s

-5
_ 1+t
< 3(yeB(t —)72/ (o) () .

2nd case: 1—|—3§1—§§1+t

In that case,

1 1
— V3Bt a1
Kop(t,s) = B/ o5 Ds(t,5)do < B/ ot w3 (14 5)% do
0 0
(1—61) 4733

~o B
+B/1 e 1B (o 7 B(1 4)02 (1 + 5)? do
Weryers
. (1+€)\/g St ot Wd
+ (1—ey) Y38 ’
Y2 B
+ B3 ﬁ ey 0T R (V3 Bo (14 9))e P do
(1+e1) «,;g’

1 2
1 RV4 B . t—s
+0T (B o3 = C (3) (6_2723(’2“_5) +e 5)do

2
71235 Bo? \ y2Bo
1+ s)vs 2 aal
< By; <(72)) (VysB(1 + 1)~
S K, 5)

3rd case: s <t < %In that case we have:

_ L oo L) RS
Kf)p(t,s) :B/ 03_E<I>12(t,s)da,§B/ o3 ayi(1+s)*do
0 0
1
V2Bt 3— L
v (1+61)\/@U W) do
+B [V 0375%(723028)2672%30%da
1B Bo
V2Bt
1 N 2
+ 0Ot B/ o3—3 3 738 (6_272302(t_s)+6_t25)d0'
1 Bo? \ v2Bo
V7v2Bs
2
1+s o4 1 1+s
< By <(,y2)73) (v2Bt)~2*2s 4 (1+t> v3B\/72Bt
1
_ t—s)s\> [s \>*
BBt — s)) -2+ [¢
+ Byz (72 B(t —s)) o —
SK(t,9)

124

H.10.3 Summary

‘What we have shown can be summarized as:

. YRS
v2Bmin{l, (o B(t — s))"2T2a} if s<2t<2n

] wBUEBLag < zom L
Kpp(tss) S Kpp(tss) = op (14) 0. . —24
3B () min{l, (12B(t - 5) "2}

VY3B(VasB(1 + 1)~ Haif 2 <s <t

§5:C:ll,) if 5<A72 or t—sﬁ%
_ 1 ,
Kap(1:2) 5 (1) (12B(t = 5)) 71435 V3 B(VAsB(L+)+ (2

S>’Y2t s>’Yz
Y3 Y3

Hence Proposition H.17, Proposition H.18 together lead to the following proposition:

Proposition H.19. Let oo # L with a > § and § > max{1,4 — 1}. Denote 5:<pp(t, s) the kernel
defined for anyt > s > 0,

v2Bmin{l, (2 B(t — s)) 2Tz} if s< Lt<2B or t-s<
X VBB +1)" e if s <2222 <t 2
pp = -9 a1 i s
o (452) " OaBe o)A Vg BB+) (152

: Y2 2
ifs>2L2t—s> 12,
f >’Y3’ >'Y3

Then we know that VM > 0,3C(a, B, M, §), Y0 < s < t withmax{yeB(1+t), (\/y3B(1+t))?} <
Man,

K(t,s) < K(t,s) LK, 5) + K2(t,5) < OKpp(t, 5).

Proof. By non-negativity of pus, it is clear that V¢, s > 0, K(t,s) < K(t,s). Additionally, the

estimate we previously derived show that Ky, (¢, s) < Kpp (£, s). Hence we only need to show that
K(t,s) S Kpplt,s).

We constructed ®F; (t, s), 7, (¢, s) exactly to ensure that we can apply Proposition D.14 by bounding

their oscillatory part. Hence, Proposition D.14 brings the existence of M, My > 0 and C' > 0 such
that

.

M T u

| 3B + B ()
1

My ~
<C (V2B (1, 5) + VBBV, (L, 8))pisc,, (du).

Mod—2>

To conclude, we only need to show that the small and large eigenvalues o do not contribute too much
to the kernel, i.e.

Md~—2e
0
T (BBBY(t,5) + 2 BEYY (1) s (du)

(BB (1) + PBOY (b () g\

max

The above follows immediately from Propositions D.8 to D.11 for d large enough to apply Proposi-
tion D.9.

O

125

H.11 Verifying the hypothesis of Kesten’s Lemma

The goal of this section is to show that the upper-bound on the kernel X in Proposition H.19 satisfies
the hypothesis of Kesten’s Lemma.

Proposition H20. Ler o > %, o # 1, 6 > max{1,4— 1}, 26 ¢ N. Forany M > 0, € > 0,
there exists some C(«, §, M, 643 independent of d such that considering Parametrization H.1 with
k1> (1 —2a)4, ke > k1 — Ky + 1, kp < min{kq, Ko}, if max{Ja, %} < CthenV0 < s < t with

max{y2B(1 +t), (v/73B(1 + t))?} < Md>* we have

ﬂ:Cpp(t, r)fJ—Cpp(r, s)dr < eJ:C,,p(t, s).

r=Ss

Proof. This is a consequence of the form of fJ:CPP computed above. We differentiate different cases.

Istcase: s <t < % ort—s < % Then the proof sketch can be found in [80, Prop.G.2]. More
precisely, we have

" O e
Kpp(t,7)Kpp(r;8)dr S | 72 Br2B(t —7) 12 BB(r - s) dr

P S S 2 4
< 2BRBI s / Kot dr

< eKpp(t, s).

Here we used Lemma H.5 in the bound on the kernel integral.

2nd case: s < 1—2 and 31—2 < t Then we write:

202

/ jcpp(t 1) Kpp(r,s)dr S / A 3 B(y2B(r — S))_2+% X ’Y%B(\/’}/BiB(l + t))74+é)d7‘

=S

.
g . ((i) (2B(t =) 5 +93B(V2uB(1+)% ((1”)%)2)

22 ”2 72

< (3BO/RB) 0
! /ﬂmﬁz V3Bo((12B(t —1))7>"2%) x B B(VsB(1 +1) " =) dr

< 2 B(y/3B(1+1)) 4=

Indeed it is clear for the first and last term. For the middle term we distribute and bound for 7s, 3
small enough for a fixed e,

QB B g4 1 1417)A)
f 3"’2 /72 73 (1)) 0 ((72)) X ’YgB(\/’V?,iB(l T))_4+E (]7
5 72 (\/37(1 t)) a X _— VQB(\/’YiB(l))744»7]

7233 72
_ 1
S e B(VsB(1+1) "=

because

126

2
w N

/ <(1+%>2W53W%*B<1+r>>4+é dar

:2% V2
t— 22
73 1
S [BB) P
r=222 ’YQB

d7172Bda(71+1/a)+

And the other term,

1) (Bt - 1) x BB+)~ dr

ft_wz
73
_o02 73 (
r=2 3
1

-2 —4+3
SO (B) T (uB(-)T x BB+) dr
73

t— 22
3
SAEBWABO) [T B =) ar

< e2B(VsB(1+ 1)) *a

where we used the stability condition 7"2’31’9 <

Ul

3rdcase: s > 2 andt — s> 12
V3 V3

t = =
/ Kopp(t, r)Kpp(r, 8) dr
r=s g+ y

. /= (73 <1+t>_5 (Bt =) 7% +3B(\/33 B+ 1) e (M’)2>

1+T Y2

X ¥2By,B(r — s) s gy

+ /Tt_35 <73 (1”)5 (2B(t — 7)1 2% +42B(/ 3B+ 1)) a (M”f)

1+’I" Y2

. <73 (3 *’;)5 (12B(r —)55 + 2B(y/7eB(1 + 1)+ (“*”)) ar

72

. (73 (3 *’;)5 (1B(r —)15 + 3B(y/7eB(1 + 1))+ (“*”)) ar

72

Se (73 <1+z> (12B(t — 8)) "% +42B(\/3B(1 + 1)) "4 & (“*5)%)) .

V2

The last term is straightforward because of the stability condition on 7y, (which implies that we can de-
E—— W
crease 7 so that f::tflz 3By, B(t —1) 225 4y < fd /eB) 2 g B2 — 1) T2 g Se
Y3 - -

and the fact that ¢ < 7 in that integral. The first term is also straightforward for the same reason,
ie stability condition on ~» which and the fact that r < s in the first integral. For the first term we
develop and write

127

t—12 -4 -6
73 1+t IS 147 L
/ b (y) (BT o (s> (valr —)~ os dr

=S

1+t\"° =32
S 3 S) ('YQB(t — 5))_1-‘1-1/(2(1) ,73(,}/23(,],, _ S))—1+1/(2a) dr

Here we used the stability condition on 3 which implies that [t:_é% v3(y2B(r — 8)) =11/ () dr <

2a R
ff:s/(wB) ~Y3y2 Br /G 4 <e
We additionnally bound
t— 22 2
s _apx ((L+7)7s
/ <7§B(\/733(1 RO Gy)
r=s4212 72
x| v L7 75(B(r—s))_Hﬁ dr
73 11s 72
t— 212 2
3 a1 1+7r Y3
<[(ﬁB(\/vB,B(l woyies (L0)
r:s-i-:—a

[(22) e

SB(VsB(1+1) 4= ((1+s)73)

72

t—22 —542
1
/ . 73(H) (y2B(r — s)) "7 | dr
g2 1+s
T S+,Y3

< eB(vVAsB(1+1) 4% (M) .

72

b2

t77
Here we used that 6 > 2 and the stability condition on ~3 to get that 3 frzs:f 45 (Y2 B(r —
3

2a - 14-L
)7 dr S L0 B dr S e

We also write

L om0

x (viBMTB(l syt (G2) ar

72

So(/mB s (B 0 e b B) ar

72 :s+% 72B
YoB x d*C1R) i a <1

a1 [((I+s 2
S enB(VB(1+1) e (()%) dt x ’}/B<—VzB R s
2 m)

72

2
< e3B(yAsB(1+1) 4 ((HS)%) .

V2

Here we used the stability condition 772—3 <d !andthatd=® < V’YZSBB < 1.

128

Finally we only have to bound the following term.

t—22 14\ 7° —14.L 2 Cagr (Qt9))?
s (HE) T (B —) x 3B(AB(1+) E (L) g

t—22 —4+ 4
73 1+t o Cqa 1
5/ 3 () (Y2B(t — 7))~ '*2a

—s 1+r
2
1
<oB(AB() ()
2
(I+s)3s* [
44 L S 3 qa 1
SBB(WsB(1+1t) e (ﬂ) X/ Y3(7B(t — 1))t dr
2 r=s
28(./ —agr (L4 8)ys ?
S 6’Y2B(’YBB(l + t)) o T
where we used that § > 4 — é, and the stability condition on ~y3 for the second integral to be small.

O

Below we show an intermediary result that gives a lower-bound on the term F x X of the Volterra
equation solution.

Proposition H.21. Let o, 8 with o > i a, B # %, 20428 >1, a+ 1> B. Then for any M > 0,
there exists some C' > 0 such that for any t > 0, if max{~y2 Bt, (\/73Bt)?} < Md** and v2 Bt > 1,

1

[F* XK|(t) > m

Kpp(t,0).

Proof. We remind that under Parametrization H.1 ¥ 733 < 1. This ensures that —B < 3?

Using Propositions H.13, H.14 and H.16 we have precise asymptotics on the forcmg function F(¢ ()

for all times. Using these it is clear that for any T > 0 with 72 BT > 1 we have fo s)ds 2 - B.
We now differentiate the two cases ¢ < 22 and ¢ 2 22 for which K,p(t,0) shows two distinct
behaviors.

Fort 2 % we know that for any s > 0 with s < ¢,

K(t,s) /7331 ViB®S,(t,) dusc(do?)
M 1/2d a

v 3Bf 2 V3 2
B x —= xd d
—1/24-a Bo? Hacy, (do7)

—441
> v3(v/73Bt)
> Kpp(t,0).

Similarly if ¢ < % we write for any s > 0 with s < ¢

V2Bt
K(t,s) 2 3o (1 51d 2
/l’na.x{M 1/2d—« \/1373}72 11() ,LLJ(:()

\/’YQBt
max{M—1/2d—a V13— }

75 B(\/72Bt)

VB x 1 x dusx,, (do?)

_2+ 2a

129

The above directly brings that [* K|(¢) 2 (fot F(s) ds) Kpp(t,0) which concludes. O

Similarly, we now state an upper-bound result on the convolution between the forcing function and
the kernel function.

Proposition H.22. Let o, 5 with o > % a, B # %, 2a+ 26 > 1, a+ 1> B. Then for any M > 0,
there exists some C' > 0 such that for any t > 0, if max{y2 Bt, (\/73Bt)?} < Md>** and v, Bt > 1,

F %K,)(t) < C <72139:<pp(t,0) + CF(t)) .

Proof. Indeed, we distinguish two cases.

Istcaset < %, then we write

N t

- e ———2+41/(20)
% s (05 [a3pmBE=s

F(s)ds

2 9i1/(2a) t —————211/(20)
S [B0aBE—) F(s)ds + | BB F(s) ds
0 t/2

SRpp(t.0) [56 ds+50) [T Kpplt9)as
0 0
1 =
S —=Kpp(t,0) + F(t).
’YQB PP() ()
Here to bound the forcing function norm, we used that either 28 > 1 and 372 < i; —

(\/733)2 > J2a
Y2 B ~

P (s)ds < /3 Fo(s)ds + /73 Fpp(s)ds + /3 Foo(s) ds
0 0 0 0
2a 1 1

<d2 x + ——= 4+ 1logsrd P —=

L (1 . (')/2)1/2&)
7B 7B 2B V3
1

< .
Yo B

When 23 < 1 we do not need to worry about F,. and we write for the Fy term

= t o
Kpp(t,0) / Fo(s)ds < V3B, Bt ¥ 3a 1 g—20-26+1
0 —_—

JER— DT
< oo Bt taa J—20—26+1
_28-1

5 'YQBt71 2a
S F()

where we used 7o < d~(172%+ and v, Bt < d°.

Finally, for the pure-point term we write

t
= o4l 1 1 _26-1
X t,O/Er’~ s)ds <yaByeBt ~ *(—= + —— (72 Bt)” 2
oo)O () 2By (723 72B(vz))
< L% (60 +yamBE T
N,yziB pp(a)+7272
1 =
< —Kp,(8,0) + F(¢
')/QB pp() ()

130

1

R P I
where we used that v, < d~(1720+ <, Bt 27,
2nd case: t > 2%, we write

22 —4+1/a

[gchp * ?] (t) < /73 ’Y%Bm F(s)ds
5=0 E—
tf:% 14+ -5
- B(t — —1+41/(2a)
</ (w (124) GaBle-s)
73

2
+2B(\/y3B(1 4 t)) 41/ (T) >3"(5) ds

Vs

t e ——— (e}
+ / V2ByB —s) % 5(4) ds

—=t— 22
3

1
< F(t) + —=K,p(t,0).
(1) + 5%y (1,0)

Indeed, we used for the first term the same arguments than in the first case to directly obtain
b2

: 1 -
7 BB+ 0) () ds £ =2y (0.0) +5(0).

For the last term note that

t e —
/ v3B(y2B(t — s)
s=t—%

F(s)ds < (/t i Kot 5) ds)F(E) < F(1).

3

—2+1/(20)

The middle term needs more care. For the first part, we used that 6 > max{1,4 — i, 2+ 25(;1 1.
This ensures that F(s)(1 + s)° diverges as a power law. Hence we can write

S A
h — _ o))/ (20)

/S:ﬁ 73(1-1-3) (72B(t — 5)) F(s)ds
3

s+ 077 [T+ 1) x £] (1o Bt)HH1/C)

73 1/(20) 1 £
< F(t Bt + Ko (t
~ () X ’}/QB X (72) ’}/QB pp(9 0)

1
Kpp(t,0)

ST+ —
®) Yo B

where we used

/ PR (o) (14 5)0 ds < FO(1+1)° x ¢.

We additionally used the stability condition 1% < d=' < (v, Bt) .

For the other part we write

2 2
t—53 1+s
/ L BB(/B(1)Y (v F(s) ds
S=93 V3
t3
< (F(t) x + 3‘(1—2» x 13 B(v/43B(1 + t)) =4/
3

(=)

SF(t) x /3B x 1/B(y/A3(1 + 1)) "1 4 3’(%) X 5:<pp(t,0)
3
L %,.(t,0).

ST + —=
Q Yo B

131

Here we wrote that (using]%i 2 1 for the pure-point and absolutely continuous-part terms)

22 2
/:L:ss"(s)(1+s)2dsg?(t)(1+t)3+3,(%) y (Zi) |

73
We additionally used in the last step for the first term that either « < 1 and /3 B(1 +t) < d* and

Vs =d"V/2=(-20)4/2 or o > 1 and /3Bt > \%3% > 1 and ~3 < 1 to obtain that

$3~2 L B .
T(0) 3 x BBV RBO+0) ™% S0/ (VB +0) e S 30
2

1
Y2 B

For the second term, we used F (%) <1<

We can now state the main theorem for bounding the loss of DANA-constant.
Theorem H.3 (Bounds for stable algorithm). Let o, 8 # 1, a > 1, 20428 > 1, a+1 > 8.
Suppose 26 ¢ N, 6 > max{1,4 — é, 24 28=L 9 é} Under Parametrization H.1, there exists

[e3

some ¢ > 0 such that if k1 > (1 — 2a) 4, kg > K1 — kp + 1, kp < min{ky, K2}, F2 < ¢, % <g

then P(t) is bounded and there exists an M > 0 large enough and a constant C(cv, 8, M) such that
if Md?® > yoBt, (v/y3B(1 +t))? > 1 then:

% v <3"0(t) b Faelt) + Tpp(t) + wiBa?pp(t, 0)> < P(t)

- 1 -
< C x (go(t) + ?ac(t) + ?pp(t) + ﬁxpp(t, O)> .
2
Proof. Upper-bound

We first apply Lemma C.2. Using the bounds on the kernel norm and forcing function convergence
guarantees for ¢ small enough that if k1 > (1 — 2a) 4, ko > kK1 — Kk + 1, Kp < min{k1, Ko}, F2 <
c, % < cthen,

P(t) < C x (ff(t) + [Kpp * fﬂ(t)) .

We only need to estimate [K,,*F](t) which was done in Proposition H.22, and obtain for a potentially
different ¢, C,

[K,p * F](t) < C x <5f(t) + wlBﬂ_Cpp(t,O)) .

Lower bound

We know that Vt > 0, P(t) > F(t) + [F = XK](t) and hence only need to lower bound [F * XK](t). This
was done in Proposition H.21.

O

I DANA-decaying

Below we introduce the main parametrization for DANA-decaying that will be used throughout this
Section I.

Parametrization 1.1. For v, ¢ k constants

def _ . def e
=1, 1) =7, 10l ZLwu+0)"Lyel+1)" (108)

132

A Phase Ia A Phase Ib, Ic A Phase I1a
\ b=d dompute \ t=d compute
o - compute 14 : 4 optimal
el N\ Gtma E| \T7 ARG
(5] (5] d (5]
7] 7] t = 7]
§ \ § \ § \? ac
Jo Jo y 20
flops flops - flops
A Phase IIb A Phase IIla A Phase IIIb
t=d t=d t=d
’ compute Kpp compute Kpp compute
[2] 2]
Z Z Z
= = =
3] (5] (5]
wn w w
§ kgjﬂ,(f E \?(l(‘ E \P\?(l(‘
Jo vy J0 Jo
flops - flops - flops -
A Phase I'Va A Phase IVb
compute compute 0.75
E fTIMPI’ E ¥ pp hil;gxl:éd
g gl N\ o NP koo 3 =
2 t=d] t=d - =% 0.25
§ \Kpp § \D\Kpp DI EN k;wb
v, J0 Fo 0.53
flops flops (a) Phase Diagram:

DANA-constant

Figure 18: Cartoon Plots DANA-constant. Pictures for the scaling laws for DANA-constant in each
of the different phases. When ¢ < d, DANA-constant behaves like SGD/SGD-M. Observe that the
trade off point for compute-optimum changes across phases (see Sec. E for derivations and Table 6).
See Table 10 for summary of asymptotics of I, I, 7, and K,,,. This uses DANA-constant with
ko = 1 and batch size B = 1.

Assumption 6. In all this section, we suppose 1 > k > i with d-independent constant learning
rates v2 < 3 <X 1, and B = 1. Moreover, we only work above the high-dimensional line 2oc > 1
and under the technical assumption 5 < « + 1. Finally we suppose 2a + 26 > 1 and 5 # % We
also suppose § large enough (independent of d).

We will later heuristically extend the results in this section under this assumption to the general
(DANA) algorithm in Section L.5.

Remark I.1. We supposed o > % as it will become clear that for o < %, this algorithm is equivalent
to SGD. Indeed in that case 9(t) < 1 + 3 Bt. The scaling vo < v3 < land 1 > k > i will imply
the relation between momentum and SGD times for eigenvalue o2,

Vs(t)Bo(1+1t) 2 /72 Bo?(1+1).

2
We also remind the definition 1 + 2, Bt + (fg V73(s)B ds) that will be used throughout this

section.

133

I.1 Solutions to the simplified ODE

As before, we work with the simplified ODEs (43) and the resulting forcing function, kernel function
and simplified Volterra equation solution (55).

We now provide explicit estimates for the DANA-decaying solution, ®,2(t, s), to the simplified
ODEs (43).

Theorem 1.1 (Fundamental solutions). We summarize the results of this section below. Suppose that
§ + K > 1 and suppose that m' =" < ¢ < 1. Set for convenience

s(t) =c(14+t)"", and wm = v,Bo>. (109)
where k € (0, 1) is constant.

There is a ¢ > 0 so that for all € > 0 there is an wmy sufficiently small so that for all m < my, the
following hold.

We use the time scale T = m(1 + t) and

1= K/2 _ 7_1 K/2
&(1570) /\/ du—\[1—r/2 m /22,

We let £(7) = £(1;m) for short.

There are w1 (&) and wy(€) continuously differentiable functions with w? + w3 bounded away from 0
and above by a constant, and they satisfy

(28) = (@) v ot (28) =2 (SELER)) oo
for some constant w, (0).

Forany s > 0, we use 1o = m(1 + s) and &g the corresponding value of §. Then with p = 5{2:;%4,

we have the following uniform estimate for £y < €

‘I’ll(t' 5) i —2p w1 (€)* + O(e) >
(((1 e 7a0ey P12(t; s)> sy (W1(5)2(1 —5/t)” + O(e) (110)

+o(em5+“/292(r)e*fo* ”Wdu) where (u) = min{1, (€' (u))2}.

The error term O(€) also vanishes quadratically in the second entry as & — 0.

For all 9 < % with s large enough that &y > € there are other bounded oscillatory wy, ws

(o) =< (1)2” (ste &+ 00
ey 212(t8)) 1+ & w2(&;€0)* + O(e)

+0 (6m6+ﬁ/292(7‘)67 J7o Q) du) .

(smoutin) = (7o ") ro(arme o).

¥35(s)

If’7'0>%

We summarize the regimes for this fundamental solution below. In the first training regime, when ¢ is
small (¢ < 1), which is to say

é— = m1/2(1 _i_t)l—H/Q << 17

we have that the ODEs have not begun moving. On the time scale from & > 1 but 7 < 1 we are not
yet using the curvature, but we have decay like

¥ =m 1+)02,
Finally once ¢ > m~1, there is exponential decay with speed m.

In the remainder of this section, we prove this result.

134

Changing variables. We recall (99)

0 O 0
0 =20 2v,Bo? 0 2v3(t)
d®,z (t 0 0 -0 —en2B9 s
gz() _ T + 0 0 2nBo? | |®,:0t).
nBo? —y3(t) —y2Bo?
= def (I)l (t)
To simplify the computations, we will additionally do the change of variable ®(t) = | 52+ P2(t)
B D3l
on Equation (99) and get the new ODE
= 0 0 0 —2v,Bo? 0 —2v3Bo?
dd(t 1 ~
o o - 1 —y3Bo? —~yBo?
In terms of the variables m and s we can rewrite the simplified ODE (111) as
= 0 0 0 —2m 0 —2ms
d®(t 1 =
dE‘) =133 0 —26 0 |+ 0 0 2 D(1). (112)
o o0 -5 1 -ms -m

We now introduce a time change 7(t) &f m(1 + ¢) and defining &(7) &ef ®(t), in terms of which we

obtain the new ODE:

R 0 0 0 2 0 -2
do . 1
d(r) (iéf(R_i_A) dry=|=(0o 26 o|+[0 o 2 d(r). (113)
T T \o 0o ¢ = —s -1

Lemma L.1. Suppose that X and Y solve the ODE

= () -G) 6) i
Then the vector (XQ, Y2, XY) solves (113). Hence, a fundamental matrix for (113) can be given in
terms of solutions to (114) with initial data at time Ty given by
(X2 Y2, XY) where (X(1),Y(10)) = (1,0),
(X2 Y% XY) where (X(79),Y(70)) = (0,1/(Bo?)),
Im(X2, Y% XY) where (X(10),Y (1)) = (1,i/(Bc?)).

Proof. We just need to verify that the equation is satisfied by the vector (X?2,Y?2, XY).

®, X2 2x4X 2X(—1X —sY)

% D, | = % V2 2Y% = 2Y (X - 2Y)
B XY x4 pydX X(AX - 2Y)+Y(-1X —sY)
—20; — 253
= 29, — 220,
1o — 5Py — (14 2)03
This is precisely the equation (113). O

To formalize the estimates, we divide the range of 7 into three regimes. Set

12— k)2
pfm<1. (115)

135

* (Entrance) 7 < emP : (¢ < 1) Here we will approximate X and Y by simple power
expressions.

e (Transition) em? < 7 < %mp : (¢ =< 1) Here the fundamental matrix solves a non-
degenerate rescaled ODE, which after changing variables is an approximate solution of the
Bessel equation.

* (Bulk) %mp <7< % : (6 > 1 and 7 < 1) Here the system develops a very strong
oscillatory behavior which we can describe explicitly.

1
* (Exponential decay) % <7<em' "k :(7>>land¢ (1) > 1) Here we will give estimates
showing uniform exponential decay of the fundamental matrix.

1
* (Slow decay) em' " x < 7: (¢ (1) < 1) Here the fundamental matrix continues to decay,
but at a slower stretched-exponential rate.

First change of variables: Isotropic coordinates We start by making a change of variables.
Introduce Y = y/smY . Then, changing variables from (114) to), we get

dy d
ar ~ar Ve
d dY
= E (\/Em) Y + \/smg

_lds1

1
-——vsmY ++vsm | —X — éY
2drs m T

Since 5(t) = ¢(1+t)~* and 7 = m(1 + t), we have & = —k2. Thus:

5
dr

d 1 1)
W fy, emix- 2y
dr 2T m T

@;X(Hn/z)y

T

Therefore, our system becomes:

L) (4)6

We define fundamental matrices of this matrix equation

d 1 o E
EP(T;TO): (\/z _5@)7’(7;70), P(10;70) = 1d. (117)

Second change of variables: Rotating frame Define the orthogonal matrix R(7) by

Ririr) = (nfe) oot) . strim) = /\/?du (118)

We observe that the matrix R satisfies the following ODE:

i (e @)= (W)= o

©)-~6)

136

Thus if we set

then differentiating with respect to 7, we get
d (U\ d (X
w (7) i (2)
JIR(X) e d (X
- dr dr
e () ()

> we obtain:

Using equation (119) for and equation (116) for di (

d (U _ (a0 (0 -1 (X
i ()= (0)R 6
+R7! < . 5+n/2) < >
_ U /= U
et ()R e (U)R (v)
As we have chosen £ such that ' = \/g , then the off-diagonal terms cancel, and we get

d (U\ (-1 0 U
TR TG L R

We also introduce the fundamental matrix of this system

<

d -1 0

d—U(T; 0) =R! (0 5_,_,@/2) RU(T;70), U(T0570) = 1d. (121)
. _otr/2

We also record for convenience the relation between the fundamental matrices that we will need,

(with7 =m(1+¢t) and 7o = m(1 + s)):

Y)) 11(t,8)) _ P11(7;70)
P(r;70) = R(370)U(T570) and <@12(t,)= (Pratmm)(s(s))) (122)
To verify the second matrix entry, we use Lemma I.1 to show that
®o(t,s) = X2(t) where X(s)=0 and 1/(Bo?) =Y (s)=Y(s)/\/s(s)m.
Thus
s(s)m .\ 72s(s)
Bo?)? ~ Pro(7570) 2

Lemma 1.2 (Entrance). Suppose § > 2. In what follows we use £(1) = £(7;m). Thereisa ¢ > 0 so
that for all € > 0 sufficiently small, there is an my, so that if m < mg and m < 79 < 7 < emP (hence

£(r) S et/

D1o(t,s) = Pia(7570)

|P(T;70)11 — e_(T_T°)| < ce_(T_T°)§2(T) and |P(7;70)21 — I1 (75 70)| < c[1(7;70)§2(7),

T 0+rK/2
where 11(7';7'0):/ (E) f’(u)ef(“fm)du,

T0O T

and we note I (7;79) < ¢&(7;70). We also have that

|P(7570)12 — I2(T;70)| < CIQ(T;TO)§2(T) and |P(7;70)22 — (7/70)767“/2\ < clo(T;70)&(T),
T —0—K/2
where I5(T;79) = / (u> ¢ (w)e” T du.

0 TO

137

We have that I5(1;719) < ¢£(70;0), and that

1-—k/2
I(ri70) = ——2=£(10; 0)(1 + o(1
2(7—77—0) S+ K — 16(7—070)(+ O())7
with the error o(1) tending to 0 as T/79 — o0 but T — 0.

Consequently, for ®, we have the following bounds in this regime:

B11(t,s) <1 and Bia(t,s) S ey2(1+)20,
Proof. Under the assumptions of the lemma, we have that for all 79 < 7 < emP

0<¢(r) <

<7 /2\/56175/2 and & (7)1 < ee! 7H/2,
— K

First column. We start with the first column of P(7; 7). The natural candidate for the solution to
the 11 entry is
P(1;70)11 = e (T=70),

So we introduce
P(r;70)11 = e T (1 + V(1)),
where V(79) = 0. From (116), we have
V(1) = =& (1)Pa21(7;70).
Integrating by parts, we have

V(r)=— /T & (u) P21 (u;m0) du

T

= —&(7)Pa1 (735 70) +/ 0 +uK/2

70

&(u) (f’(u)e_(T_TO)(l +V(u)) Por (u; 7'0)) du.

As for P31, we have

Por(T;70) = /TT (E)‘”“/? &' (we” 7™ (1 4 V(u)) du.

o T

Let v(7) = max,,<u<- |V(u)|. Then we have a bound

Patrim)l < @ +o0r) [() e au

T0 T
1 T B . 541 T

< % <\/Em 1/2+ /27-1;%/2) .

< (1 ;‘:(57)) (\/Em—1/2+n/27_1—5/2) _ (1 ;—f((;))f/(T)T.
So we have, substituting these bounds,

2 2
ol PP eme e+ S0+ vy + ST v,

and hence

V()| < C(8, k)ee®™" (1 + v()),
and so by monotonicity of v, we have

C(8, k)ce> ™"
o(r) < 1—C(8,Kk)ce2—*r"

This proves the first part of the lemma.

138

Second column. We now turn to the second column of P(7; 7). We again introduce a function
V(7) now defined by

Plri7o)an = (T) T V),

70

with V(79) = 0. Then changing variables, from (117), we have

- o+K/2
V(1) =¢'(7) () X Pr2(7370). (123)

As for P12, we have from (117)

Pia(;70) = — /T <“> A (w)e” T+ V(u)) du.

T0 TO

—0—r/2
Let 0(7) = max,,<u<r ((%) X V(u)|> Define

T —0—kK/2
B = [(£) 7 ¢we

7o
Then we have a bound
[Pr2(7;70) — La(7570)| < 0(7)&(7).
So we have, integrating (123) and using the above bound,

V(r) / ' (“)M/Q € () I (s 7o) | < S (T)M/Qum

> \70 “1+40—k \ 1o

Using that I is increasing, we have that
0+rK/2 2 0+kK/2
§r) (T &(7) T
% < —— | — I(T; — | — o(7).
| (T)|_1+6—/<; To (TTO)+1+5—/$ T0 (7)
This proves the second part of the lemma. This leads to the inequality

() I(T;10)
o(r) < 14+0—k—&(1)

(using boundedness of &) which in turn gives

< C(8,k)E(T)I(T570),

’ 0+K/2
V()| < O, m)E(r) () I(rim0).

70

and which concludes the proof.

Completing the proof. We start with
T\ 02 T\ 0R?
I(t;m0) = / () &' (u)e™ "W du = / <) Veu F2m /2R 2= (1) gy,

Dropping the exponential, we therefore have

—0—rK+1
I(7;79) < —° Vem /22
(64K — 17y 072
=0+k-— 1)_1\/5111_1/2"_”/27'_'{/24_1 -1 /2 £(70;0)
0 S+r—1""

Moreover, this inequality becomes an asymptotic when 7 /79 — oo but 7 — 0.

Turning to the claims on ®, in terms of P (122), we have (with 7 = m(1 + ¢) and 70 = m(1 + s))
Oy (t,s) =P (r;70) S 1.

139

Using &(79) < vem(1 + 5)' /2 and s(s) = (1 + 5) "

35(s 35(s _
Poa(ri) 22 < g2 22 < 21 4 200
m m
which concludes the proof.
O

Lemma 1.3 (Transition). For any € > 0, there is an mg, an My > 0 and My > 0 so that if m < mg
so that

1. Uniformly for em® < 19 < 7 < %mp, the fundamental matrices
[P 7o)l + P~ (75 70) || < M.

Moreover, the fundamental matrix is uniformly close to an explicit expression involving
Bessel functions.

2. For 1y < €2mP,
Pua(rim) 2* (& + 2, (0))
11(7;m —p cos(& + w, _1
o— = — —+ O € —|— O .
(rssmmparm) = (2) € ((GREL L)) 0w o)
In this regime, |£| is bounded above by a constant depending only on € and not on m.
Proof. Starting from (116), we have

% (ii) B (6’(; —‘m) <)3§>

We change time to &, which leads to
d <X> (—1/5’(7) ") <x)
T = 0+rK/2 .
dg \Y L 7o)\

_ 1-k/2
71 K/2 _ T /

1—k/2

We have by definition that
) m- 1/2+kK/2)

5—5(7;70)—\/5(

Hence solving for this, we have

7_1—:@/2 — jaml/Q—n/Q(l _ ;‘{/2) + 7_0175/2.

‘We also have that
75/(7’) — \/ETI—H/Zm—l/2+n/2 — §(1 _ K/Z) + 7_(}7,%/2rn—1/2+n/2 déf (5 + fo)(l o K/Q)

We note that 1/£'(7) = O(mP) and hence, in conclusion,

d /X O(mP?) -1 X where 0+ kK/2 o1
—_— = a a =
de \Y 1 —e /) \Y 1—-xk/2
We will use continuity of the fundamental solution in the limit as m — 0 to solve the equation (note

that |£| remains bounded independent of m). Therefore, it suffices to solve the equation where we
have taken this error term to 0. As a second order differential equation in &, this is

X"(&) + ﬂX/(f) + X (§) =0.

From [37, (10.13.4)], with v = (a — 1)/2 > 0 we have the solutions
X(§) = c1(§+ &) 7" Ju(§ 4 &o) + c2(§ + &)Y (§ + &o)

where J, and Y, are Bessel functions of the first and second kind, respectively. This leads to the
claimed estimates on the fundamental matrix 7P (7; 79) and an explicit expression in terms of Bessel
functions.

140

Matching solutions from the entrance regime. From the initial conditions which come from
Lemma 1.2, in the case that we start with (X (0), Y(0)) = (1, 0) we have with s corresponding to em?
that X (s) = 1+ O(e) and Y(s) = O(e). Now on sending £, — 0 we conclude that ¢c; = 1+ O(e)
and ¢y = O(£2¥) (using [37, (10.7.3)]).

If we instead start with (X (0), Y(0)) = (0, 1) we now get at s (provided 7o/ (emP) < €)
1-k/2
X(s) = —F— :0)(1
(5) = s E(mi O)(1 + 0(6))
(taking the asymptotic of I») whereas
Y(s) = O(&3(70;0)),
which therefore leads to the same c; and ¢y as in the first case, up to rescaling the solution by
L (r0:0)
0 .

o+rk—1
For), we have ¥
a
— = X.
€ " eve”
Using the integrating factor p(§) = (€ 4 £o)%, we multiply both sides:
d
(6+ &) S +ale + 601V = (€ +&)°X.
The left side is the derivative of (£ + &)%Y, so
d
dig((g +80)"Y) = (£ +&)"X.

Therefore
Y(E) = (€ + &) (sgy«» v [erxis ds> .
Using [37, (10.22.1)], we have
/05(5 +60)"X(s) ds = c1 (€ + &) T up1 (€ + &o) + e2(€+ €)Y (E+ &) + O(1),
and hence
V(&) = 1§+ o)™ Jos1(§ 4 &o) + c2(€§+ &) Yo (€ + &o) + O((€ + &)™)

We recall the following large £ asymptotic of the Bessel function:
From [37, (10.17.2)], we have

w(z)=2z-— QYT = g
and from [37, (10.17.3)], as z — oo with v fixed,
2\ }
Ju(z) ~ <> cosw, + 0(z7%/2),
TZ

Y, (z) ~ <2> i sinw, + 0(27%/?).

Tz

Hence we have (for large £) and with w, = w(& + &)

X(¢) = (2) (61 60)" 72 (1 + 0(6)) cosea, + O(e) sinw, + O(E™) |

™
Y(§) = (i) ' (E+&) 2 (14 0(e)) coswyr + O(€) sinw, 1 + O(E™)) .
Note that sin(wy 1) = — cos(w,,) and cos(wy11) = sin(wy).

141

Finally, we note that
1 a 6/24k/4
vt ==
22 (1-k/2)

We also note that £, = m'/2 which tends to 0.

Lemma 1.4 (Bulk). Forany e, ¢ > 0, there is an mg, if m < mg so that
(|P(r;70) — e_(T_TO)/Q(T/TO)_5/2_“/4R(T;7'0)|| < ce_(T_TO)/Q(T/To)_5/2_“/4.
Proof. We recall that the range of 7 is given by
I 1
-mt <7< -,
€ €
We first estimate U(7; 79), recalling that

d 1 (-1 0
EU(T;TO) = R 1 (0 _5+:/2) RZ/{(T;T(]).

Using trig identities, there are matrices with non-constant trig polynomials W; (&) (having no constant
terms) so that

R-1 (—01 _HOTW) R = ((‘21 _ W) Id+Wi(6) + iw2(§)> . (124)

We need an integration-by-parts estimate for oscillatory integrals.

Lemma L5 (Integration-by-parts estimate). Let p be a positive integer. There is a constant C(k) so

that for any absolutely continuous g,
C(k) / T
< l¢'"(w)|du+ sup |g(u)| |-
&) (. uetro

/ eipé(u)g(u) du
To
Proof. We recall that &' (1) = 7="/2m~1/2+%/2_ Applying integration by parts, we have

. . ipg’ (u)
elpf(u)g(u) ’ T ip€(u) d (g(u))
= 9w < du.
ie'(u) |, / du \ipg(w))

Expanding the derivatives and bounding, brings us to the claim. O
We now divide the range of time into two parts.

Large 7: 7 > 79 > €. Suppose that 7 > 7y > € as well. By standard approximation arguments, it
follows that for any bounded continuous function f on [—1/¢,1/¢],

/e 1/e
/ ezp.f(u)f(u) du / e¢p§(u)u71f(u) du
—1/e —1/e
as m — 0. It follows from (124) that the matrix converges weak-* as m — 0.
-1 0 -1 6/2 4
R™(7;0) (0 _5%/2) R(r;0) 222 (2 - /J;“/) Id.

Solving differential equations is continuous with respect to weak-* convergence, so it follows that

— 0 and — 0

U(r;0) w20, —T/2,-8/2-R/4 g,
And therefore for any ¢ > 0 (including those which depend on ¢) there is m sufficiently large so that

U (7;0)e™/27%/25/4 _1d|| < ¢ and |[U(7;0) — e /277027 R/Ad|| < .

142

Small 7: %mp < T < €. Wechoose %mp < 719 < T < €. Using (124), we change variables to let
V(1;710) = U(T; 7'0)6(777“)/2(7/70)5/2+”/4.
Then we have

Lv=(m@+ we) m)

Hence if we let || - ||max be the maximum entry norm, and we apply Lemma L.5 entrywise, we get

T d C(k) /T d
—V(u; 7 < —V(u; 7 du+ su V(u; 70) || max
|| < (e s s)
(125)
+ ?(K> / iL(u;To) du+ sup 7])(“; o) .
5 (TO)) du u max u€[10,7] U max
Now we use that a4 v) 4
u; T 1 1
And hence
d (V(u;7o) 1]d 1
Ry B St i 24 < —||—= . — .)
Jae ()], = 5 v+ e, s
We also use that i d
sup V(w5 70) ||l yax < 1—|—/ —V(u;70) du.
w€|[70,T] To du max

Combining all of these estimates, and rearranging (125), we have

</T ; maxdu> (1 20(x) _ 2C(r)) - C)

a5 m0) T T Emm) S Eln)

du

Recall that
¢ (m) =7 " Pm L,
and hence using that 1m? < 7,

5/(70)7_0 _ Té*f“»/2m—1/2+n/2 > e LR 20 (1=R) /2p 0 —1/245/2 > e 1HR/2.

We conclude that for e sufficiently small,

T d o
</ @V(u; 70) du> <2C(K)T 12mt/2=r/2,
T0 max
This leads to the estimate
IV(7370) = 1] 0 < 20()75 2m! /27572,

and hence for U/ we have

||U(T; 7_0) _ e—(T—-ro)/2(T/TO)—6/2—5/4IdH < QC(K/)T;/le/2—n/2e—(T—Tg)/Q(T/TO)—é/Q—n/4.

Combining the estimates. Using that P and U/ only differ by a rotation, we conclude that for any «,
for any 7y < 7 in the regime.

|P(7;70) — 67(777")/2(7/7'0)75/27”/472(7';7'0)|| < cef(TfT")/Z(7/70)75/27“/4.
O

Finally, for larger 7, while sharp asymptotics are possible, it suffices to bound the decay of the
solutions. We do this with two separate estimates.

143

Lemma 1.6 (Exponential Decay). Suppose § > 2. There is a constant ¢ > 0 and €, so that for all
e<eandT > 19> 1 and ¢ (1) = Jor " PmT/2R/2 > 1 /e

[P (T3 70)|| < (1 + ce)e™M/2NT=m0) (7 /7)) =8/2=r/4,

Proof. We compute the eigenvalues of the matrix that appears in (117). We have

11— 5%“/2 + \/(1 + M)z — 4(g")2
Ay = 5 .

In particular in the regime in which we operate, we have the eigenvalues are complex conjugate pairs
(as ¢’ is large), and in fact we have | Ay — +i¢’| < 1. We introduce a change of basis matrix H so that

d_ (A 0
P=H (0 A)HP.

We note that this eigenvector matrix is within e of (2 , owing to the magnitude of ¢’. In

i
1
particular we have H*H = Id 4+ O(e) and furthermore |H'|| = O(¢). Hence differentiating

d

5 (PTHTHP) = (P"H"(A + A")HP) + <7>* <d(H*H)) p) :

dr
Thus for any fixed vector v € C? if w(7) = ||HPv||?

d%_w < (—1 - M + O(e)) w,

and hence
[Po]|? < (14 O(e))e~M=T=70) (7 /70)=0=4/2,
O

Lemma L.7 (Slow Decay). Suppose 6 > 2. There is a constant ¢ > 0 and € so that for all € < €
and T > 19 > %

1P (s 0)| < (7/70) 027"/
We further have an improved estimate when &' (19) < i is small

T

max {|P11 (73 70)|, |Pra(m;)|} < e” ™) 4 C(k,) (€'()) exp (/

0

()P au).

Proof. From the equation (120) we have

By assumption we have 7 > % and hence the matrix in the middle is dominated by fMI .

Therefore
2
L (02rir) 4 V2mm)) < -T2

dr T

U?(15m0) + V2(1310)) -
Integrating this from 7 to 7 we get for any unit vector v € R?
let(rs mo)ol® < (r/70) 07"/,

and hence the operator norm of ¢/ decays the same way. Since P is a rotation of I/, it decays at the
same rate.

144

Improved estimate. We start with (117)
d (X -1 =¢ X
dr \y) ~\—¢g —==2)\y)-

N EXViE Gk
+ = 9 ’

We set

where we note the radical is real for the regime chosen and it approaches 1 as ¢’ — 0. Define W by

Wi =X+ /Ax/AL).

From a direct computation
1

VI—4(@)?

d K
7 lo8(A-/A4) = —

Hence we get
d
dr

where O(1/7) is bounded by C(k, §)/7. Uniformly over the range of 7 considered, we can bound
1 < e¢'(u), and so

Wi = AWo + (W = W_)O(1/7),

4
dr

C(k,0)

w24 w?) <2 (a4 SO0 (74 w2) <2(-(€0)P) (W + W)

Integrating from a 7 with &’ at 7o at most %,

(W2 +W2) (1) < (Wi +W?2) () exp (2/ —(¢'(u))? du) :
We have
Wy —W_
V) = VA
+ - —
so that for an absolute constant C' > 0
V()| < C&(r)\/ (W2 +W2) (1)
< e/ W2+ w2) e ([~ @) au).
7o
Returning to the differential equation,
d T _ ¢! T
3, €7 X(7) = =&(n)e" V(7).
Integrating both sides and bounding, we arrive at
X (r)| < X (r0)]e” ™)
O 2w e ([- @) an).
To

1.2 Computing the forcing function

In this section, we prove the scaling law for DANA-decaying as parametrized in Parametrization I.1
using the estimates in Theorem I.1.

We begin by estimating the forcing function.

145

Proposition L.1 (Forcing function). Let a > 1, 2a+28 > 1, o, # 3, a+ 1 > f. Suppose

1 2
that 2p < ffi > 2a+021671. Moreover, denote V(t) “4 2y Bt + (fg V73(8)B ds) =

4o
2
1+ (fg V3(s)B ds) and suppose Parametrization 1.1 holds. Then there exists some C(a,) > 0
such that for any t > 0 and d large enough

- (%(t) + Fuplt) + azcm) <5 <C (%(t) + Fplt) + mw)

where

_q1_28-1

Fo = d 2120+ F (1) = 9(t) el

=J(t)" e, if2a>1,28>1
and Fo(t) < Fo, faa<1,26>1
=0, else.

Proof. We define J, I, Foc as in Section D and use the estimate on @‘{f (t,0) from Theorem I.1
and more precisely Equation (110). Fy is unchanged, however for example for J,,(t) we compute

1 2
ffpp@) déf/ 0.1—&-25(;1 (e—’YzBaz(l-‘rt)(l 4V Y2cBo ((1 _’_t>1—g . 1))—2/)
0

-3

3

+ O(e(v2Bo?)* 5 (32 Bo>(1 + 1)) A 1>—6—“2‘>

min{ —1—, L w1}
V/v2 Bt -5 281
V/ T2EE vz Be(l4t) 2 4= 3
o

=0
28-1

=9(t) =,

where we used that —2p + 1 — 2'%7—1 < -1 <= 2p> 20“"0& A similar computation on F,.

gives the result, with the additional condition 2p > 2 — i which is automatically satisfied since

204281 1
T > 2 - a.

Finally, to bound JF using Fo (¢) +Fpp (t) +Fac(t) we proceed with a similar proof as Proposition H.16

by noting that in the range of interest (integral on second line), fb‘{f (t,0) satisfies the hypothesis in
Proposition D.13 (it is constant).

O

1.3 Stability condition for DANA-decaying.

We can now prove a stability condition for DANA-decaying.

Proposition I.2 (Stability of DANA-decaying using Parametrization 1.1 under Assumption 6). Con-
sider Parametrization I.1 under Assumption 6. Suppose that

5+ = 20+28—1 1
2p(1:ef1+410‘ >Inax{a+aﬁ,4—a} and 5+g>1. (126)
T da

Then we have for any € > 0 that there exists g(r,€) > 0 and dy large enough, such that for any
d > do if 2 = g and ¢ < g, then sup,> fot K(t,s)ds < e. In particular, since F(t) is bounded
(indep of d), we have sup 4> 4, | P|oc < 00.

Proof. We again consider the estimates in Theorem I.1. The goal is to have sufficient conditions so
that fot K (t,s)ds < eforany t > 0.

146

We compute the first term by bounding the oscillatory w! (&, £y) by constants and % < 1to get
that ®11(t,s) < e~ (T(M=7() For M > 0 large,

t t 1
/ X'(t,s)ds Sv3B / / o3 e 1B (79) 4o s
=qpd—
—1 (V)8)4 s (t) /72 (t—s)
+’YQB/S 0/ n(t)B (~Bo e do ds

< 1-1 —y2Bo?t 1-1/«
N’m/a—;/[d—aa a[l—e]doJr'yg/ W’)Q do

572-

B4 2

Here we used that [’ e 73")/72(=9)ds < 22 and that (7%(1‘/)3) < (7‘°’(t)B)
s= ~ ~3(t) vy2Bo ~

() 1

Y2 Y2Bo?”

For the second term we do the same to obtain that ®;5(t, s) < e~ (7(O)=7() 'ggz)

We write for 2 B(1 +t) < d*®
/ Kz t,s)ds < B/ / (1 +38)” 56*72302@75) do ds
— g Bo?

3% M) BE] K 773(15)@,8)/,»,2
+B/o /a_ws(;)BU (YoBo Bg2(1+5) e dods
Y2

1
S,'YS/ o'~ min{(1+1t)~"
o=-Lld-«

M

W, (1 +t)_m+1}d0'

1 1 717%
S%/‘”B(”“ ol w (14t d0+’yg/ 1+t
1
VY2 B(1+t)

91+ 07 (B0 +0) T + (140 (B4 1)

do

Yo B

Here we bounded for o > Y 12%)3,

t
-3 (M) 3 ko= ()(t=9)/72 g
/0 o -2 Do Bo? ——(1+s)""e s

Y 73(t) B4
Smln{?é)(w) 3(t)t}

Smin{(1+¢)~"

1 —K

When 42 B(1 +t) = d*“ the first term vanishes and we obtain

1
5(2 t,s)ds < Bk ——(1+t)" o "% do
V2B Lo

<73

1 .
’yzB(+t) " xd

. 2a . ey ..
Evaluating at the worst case t < i—B yields the stability condition

3 [d*\ " <
—_— 1. 12
Y2 B <72B) XA (127)

147

1.4 Kernel function

Now that we have shown stability of Parametrization 1.1 under Assumption 6, we can proceed with
computing the kernel function. For that we define upper on the solutions of the ODE:

-2
s (558

o= ((1)=7(s)) <1+£(t))72p 1) 4 O1)2e” J7, 2w du <1+£(t)>72p

1+€(s) Bo? 1+&(s)
def if&(s) > 1

and &yt 5) = I T O D) 2 20~ J7, S du (11w)7
e (HE0) ™ %) (0B +) + Q)26 o 20 4 (110
if ¢(s) < 1.

We define accordingly forallt > s > 0

1
T (t,5) & / 3B, (¢, 5) dpisc(07)
0

1
K2(t,5) < [2B 5) dux(o?)
0

def

K(t,s) = K(t,s) + K2(t, 5),

1

= def =

K;p(t,s)é/ 7§B<I>11(t,s)d,ug<w(02)
0

1
- def =
X2, (t,s) = /O VB, (t, s) dux,, (0%)

and K, (t,5) = KL (4, 5) + K2, (1, 9).

Proposition 1.3 (Upper-bound on Kernel). Consider Parametrization 1.1 under Assumption 6. Then
an upper-bound on the kernel function is

K(t,s) S Kb (t,s) + K2, (t,s)

X %6
where for some & with § °=5° o

] | . o
K3, (t.5) =138 ((1 b=) ()4 (Ve +t>1-2>—4+0> ,

1+s

X -4
Iop(t,8) = y2e(1+)" ((1 + (2Bt —) HHae (1 + t) +
(V2eB(L+8)'78) 7% 73(s>B(1+s>>2>.

Proof. We know since ps is a positive measure and ®F, (t,s) < ®F,(t,5), ®Iy(t,s) < BG,(t, s)
that

K(t,s) < K(t,s). There remains to upper-bound K (¢, s), K?(t,s). For that, notice that since

@ff (t,s), @‘1’22 (t, s) are well-behaved in the o variable, then using Proposition D.14 and by a similar
proof as in Proposition H.19, we have V¢t > s > 0

le(t, s) S fkjlop(t, s)
K2(t,s) S K2 (L, s).

148

We only need to upper-bound K3, (¢, s), K2 (t, s). For the first term we have in the case ¥ 12 5— 2

W (the other cases can be handled similarly)
v3(s s

7 ./;p -3 3.1 _ 24—
KL (t,) VSB/ R gt a7 g

+ VQB/\/Wch(H)=z 3_ée_72302(t_5) (J ,.Y3(t)Bt)—(5+%) do
V2Bt TE

RVARIOL] 645
2P —1 —yBo?(t-s) (Lt 2
S 1+4+s
VAzeB(14s) 2
1 —2p
2 3-L 2.~ 7 ewde (1 +E(0)
B a t T S\ d
o /V:zS?B PRI (G5) e
1 1+t - . 1
<7iB <(1 + 7 B(t —s)) e <1+s> + (V/72eB(1+ t)l—z)—4+a> .

Here we made the change of variable © = o+/73(t)Bt. Notice that the integral behaves as
uwd—au—OFR/2) Ttis integrable for ¢ large enough, ie § + k/2 > 4 — é We also computed

T ~oBo? (1+t)
[@wpra= [T),
o0 vy2Bo?(1+s) 'YQBU
73(t)(1+t)]t

= v B 2[
Yoo 'Y%BOQ

dt(w) _ 1 : _ 2
where we used du = 7,B0 Since u = Yo Bo“t.

This allowed to bound the non-exponential term as

1 —2p
3-1 2 —f:o Q(u) du 1+£(t)>
/ o= Q(t)%e <1 —¢(s) do

1 —2p
< / LR (M)“e—(mwu—s))m 1+E®) ™ o,
~ \/13;? Yo Bo 1+&(s)
—5 1
S e = 73“)3)4 L+t o 1% do
~ Yo B 1+s VARIDL
2

1)
5(&)4 (1”) o~ (a(O(t=5)/72

’}/QB 1+ s

-5
1+1¢

< (2Bt —s)) 2 () .
S (uBlt =)t (o

(B)(t—s) —2+55 _
Indeed, when w 2 1 we know that e~ — < (W) ** and when w <
4—1
1 we have <7”12%)B < (72B(t — s))~2%2a . Hence the error term is absorbed into the other
terms. We additionally used that

149

(F89) s

—(6+%)
1+t
< t)2°
< (1) +ew)
—(6+%)
< (1+) _|_t—(1—f€3)2p
1+s

-5
< 1+t .
~\1l+s
where ¢ can be chosen arbitrarily large by choosing § arbitrarily large.

We proceed similarly for the second term

L (t,5) S B/‘/W(H” o agfé—;f;e*”&’z(t*s)(l +8) " (o\/v3(s)Bs)? do

_|_B/\/ 2{‘B(1+<) =3 03—56—72302(1‘,—3)(0 VS(t)B) (o+%5);2 (1 —|—S) (O‘ ’)/3(8)38)2 do

1— &
,/vaB(1+1) 2

| ~(6+5)
1 1+t 2 C
+B/ 1 03756*V2B¢72(t78) <) ;io.z(l + 8)7K do

_ 1+s
VaacB(14+s)t T2

' 1 — T 1+£(8)\ % 23(5)
B 3=2 Q)2 fﬂ'o Q(u) du 3
* /ﬁ 7 1+¢)) B2

-5
1+t
< yge(14+8) " (1 + 9Bt — 5)) "1 tea
S v2e(1 + 5) ((+72B(t —) 155

+ (Vs(s)B(1 4 9))* (V93 B(1 +)"~)“).

Here in the second integral we made the change of variable u = /73 (t) Bt. We used that § + x/2 >
— é for the integral to converge.

O

Proposition 1.4 (Lower bound on Kernel). Consider Parametrization I.1 under Assumption 6. Then
a lower bound on the kernel function is ¥Vt > s > 0

K(t,8) 2 ¥3B(v/2eB(1+14)!7F) e,

Proof. Note that w! (&) < 1 around 0. This gives a lower-bound for o < 7#)&

o Cry—rey [(LEEB N
(I)ll(t’s)ze ¢ (1-’-5(8)

2 e O +gt)

Since ®,(t, s) is positive, that gives a lower bound on the kernel by integrating
1
1—E
K(t,s) 2 42B [V2P0 2 6375 x 1do
d [e%
1

2 BBVl +)' 73w

150

Now just integrate as we did for the forcing function and apply Proposition D.14 since o

e~ T (1 4 £(t)) 2 is approximately constant in the region o < m. O

2 2
Corollary L1. Let 0(t) < 1+ 29.Bt + (fot Vs(8)Bds) =1+ (fot M’y;;,(s)Bds) . For

Parametrization 1.1 under Assumption 6, if v Bt > 1 and 9(t) < d*>*, we have

[F % K](t) 2 43B(I(t) 5. (128)

Proof. Just apply Proposition .4 and note that fot F(s)ds 2 fot Fpp(s)ds 2 1. O

Proposition 1.5 (Kesten Lemma). For Parametrization 1.1 under Assumption 6, and for) large
enough, define

2
= def S)S _ 1
Kop(t,s) 2 (7352)) ~2B(\/3(t) Bt) =43

-3
1+t 1
Bt —)" 1H1/Q2a) [Z T 7 2p -)
+ (2Bt =) 1+s & 723(t-8)+73(3)

Then under the assumptions in Proposition 1.2 (stability conditions), we have ¥t > s > 0 with
9(t) < max{ye Bt, (\/73(t) Bt)?} < d**,

t = =
/ ﬂzpp(t,) Kpp(r, 8) dr < eXpp(t, s).
r=s

Proof. To prove this upper-bound, the idea is to use that 9:<pp(t, s) behaves as a power law and that the
stability condition Proposition 1.2 ensures that its integral sums at most to one fstzo Kpp(t,s)ds S 1.

For-example we compute for any t > s > 0

() ammmn ot « [(M) ga(ywmEn e

V2 V2

A

S

< (22 (v

2

Here we used that ("’?’7(7;)7) V2B(y/3(r)Br)~4ta < p2-26-44 54261 i integrable for k =
1

55 < L.

In the same way we have

t -
/: (2 B(t —r)~1+1/) Gi;) (73372,%1_70) + 73(?))

147\ 1
B(r — g)~1H1/@a) (Z T ° 2p_— d
X (v2B(r —s) T s 73 723(74_5)+73(8) r

1+t\ % ot
S X / (72 B(t — r) " O (3, B(r — 5) =1/ ()
1+ s r—s

2 1 2 1
X <W2BW’25W—T) +73(7")) (“YQBAW_S) +73(5)> dr.

151

There are four possibilities.

We write

t
/ (Y2 B(t —)T CO (1, B(r — 5)) T2 g (r)y5(s) dr
s+t

< / T (12B(t — 1)V (B — 5))) g () (s) dr

=S

t
* / (Y2 B(t —)" CO (1, B(r — 5)) T2 g (r)y5(s) dr
r= s+t

2

< y3(8) (12 B(t — s)) 71/),
Here we used for the first integral that v3(7) (72 B(r — s))~'t1/(2%) is integrable when x > i ind
for the second integral that 3 (r) (72 B(t — 7))~ 11/ (2%) is integrable.

Additionally,

t
/ VBBt =) TV CO (1, B(r — 5) 7T COys(s) dr

=s
s+t

2
S / Y B(r2B(t =)V O (1, B(r —)T Oy (s) dr

t
+ / L BBORB(t =) TN (1, B(r — 5)) T B (s) dr

2

< 73()(723(75 _ 8))71+1/(20¢).

Here we used for the first integral that f = *yQB('ygB(t — 7)Y Ay < yp(1B(t —
5))~1+1/(29) and for the second integral that [... Y2 B (12 B(t — 1))~ 2T/ dr < 4y (1o B(t —
- 2
8))*1+1/(2a) S 1.

Similarly,

t
[aBlE =) (Bl —) B

AN

/ (2 B(t — 1))~ CD (1) (12 B(r — 5) VOB ar

,(2B(t =) T3 () (12 B(r — 5)) 2TV CO 2B ar

< ><sz< 5)) Y0 4 2B (v, B(t —)72z,

We used in the first integral that v5(r) < ~3(s) and that (v, B(r — s)) "2 2« integrable. We used in
the second integral that (v B(t — 7))~ Ty (20)y5(7) is integrable.

1

Finally it is clear since (72 B(t — r))~2* 2 is integrable that

t
| 23BOaB(E 1) BB - 5)) P
s+t

2
B / ¥ B(12B(t =) OBy, B(r — 5) "> G dr
r=s

t
i / L BBaB(t =) Y CNEB(B(r — 5)) Y dr

r=23

< V3 B(yB(t —s)) 2),

~

152

There remains to bound

[() smomm s

-9
_ o [(1+T 1
% (12 B(r — 5))~1+1/(2) (1 - S) (7223723@ 5+ %(s)) dr

2
< (292 (B

t - 14 —54+2(1+k) 1
X /T:S(WB(T)] 11/ze) <1+S> 72237_8) +73(s) | dr

t 147 —542(14x)
+/T:S '73(3)('723(?” - 8))_1+1/(2a) (1—|—8> dr
v3(8)s :
< (22 s/

Here we used for the first term that (12 B3(r — s)) =2t 2= is integrable and for the second term that
—6+2(1 4 K) < —k so that (1 B(r — s) "1t 2« x (14 7)~" is integrable since x > 5= and that
v3(s)(1 4+ s)" < 1.

Finally, we need to bound the symmetric term i.e.

[<73§§)S)27§B<WT)4+;

14+t)° 1
X (y2B(t — 7“))_1+1/(2a) <1+r> <V§B%B(t—r) + 73(7“)> dr

< (V,Y()) 2B(\As (B

! —14+1/2« 1 t s “ 2 1
X / (v2B(t — 1)) /(2e) <”> (Wsz Bt —1) +73(T)> dr
< (73) ~2B(\/~3(0) Bt)
Y2

Here we used that —(6 + %) + 4 — 1 < 0 and that

=S

K 1
Bt —r) /I 2~ dr < 1.
[uBte-n) BB g+ lr) | r <

Proposition 1.6 (Upper-bound on kernel contribution). Denote for & large enough

9‘{1070(15,5)‘16’((73) V2B(\/73(t) Bt)~
72
-5
1+t 1
Bt —)" 1H1/Q2a) [Z T 7 2p -)
+ (2Bt =) 1+s 72 ’ygB(t—s)+73(S)

153

Then if yv2 < 1 and 3 < 1 and under stability in Proposition 1.2 we have Vt > s > 0 with 9(t) < d**

[F % Kpp] () S T(E) + K ().

Proof. IJ:CPP (t, s) has two main terms we treat separately. For the first contribution of the first term,

2
there are two cases, whether F(¢) x (%) is integrable or not.

Not integrable Then we check that

/?(8) (73’(5)3> V2B(VAMBA + 1)~ ds
0 72

S JF(t) x (%,g)t) (14 t)y2B(\/v3()B(1 +)"+
< F).

Here we used that since o > %

(”i"“’t) (1 + D2 B3 OB(+ 1)

Y2
= (1+t) e
1.

N)

Integrable Then we write

/0 F(s) (73(8)8) VB(\/3()B(1 +t)) 4t ds

72
t 2
< [[36) % (22 atm/mmBa +)
< Kpp(t,0).

For the contribution of the second term, just notice that since 0 is large enough, F(s)(1 + s)° is not
integrable. By cutting the integral in two pieces and noticing that fot 9_<pp(t, s)ds < 1, we obtain that
the contribution is smaller than F(¢). This concludes the proof.

O

Theorem I.2 (Scaling Law for DANA-decaying). Let o > % and B =< 1. Consider Parametriza-

tion 1.1 under Assumption 6. Suppose that § is large enough, ie § > 5(/{, a,), '3 Then for any € > 0
there exists g(k,€) > 0, C > 0 and dy large enough, such that for any d > do if y2 = gandc < g
we have

é(% + Fac(t) + Fpp(t) + Kpp(t)) S P(E)
< 0(3:0 + gjaC(t) + ‘rfpp(t) + j<pp(t))

where Fo, Fpp, Foc have the asymptotics given in Proposition 1.1

Kpp(t) = V2 B(1 + /73(t) Bt) 7.

3We believe § to behave at least such that ff—% > max{ 224201 4 — 11 and (6 + K/2) > 2+ 3k
2

154

. Specific learning rate schedule,
General learning rate schedule, 3 () N (t) ~ (1 + 1)1/ (2e)

St()(t) = d—2a+max{0,1—2ﬁ} St()(t) = d—2a+max{0,1—2ﬁ}

-1

. Bt~ if2a < 1
Fonlt) = Ty (91(0) Tonlt) = {EV(t)i e

Fo(t), if 28 > 1,2a < 1
<

Faclt) 5 0, if28 <1

if28 > 1,20 > 1,

Fac(t) < Fac(I(t))

Fo(t), if 28 > 1,2a > 1
<
Faclt) 5 {0, if2p <1

if28 > 1,2a > 1, Fae =< (7(t)) 2T/ (@ g1

. _ | By (7eBt) 2T if2a < 1
Kpp(t,0) < wngKpp(ﬂ(t)) Kpp(t,0) = {B’yg(r(t)Q)Hl/(Qa), if2a>1

Table 12: DANA-decaying: Large d behavior of the forcing function and kernel function for
general and specific v3 schedules. See Section B.4 for details about the algorithm. The constant C
is independent of dimension and the function 7 (¢, s) & f; Vv3(u)B du with 7(t) & 7(t,0) and we
remind from Theorem 4.1 that 9(t) < 1 4 vo Bt + 7(t)2. In the case where y3(t) ~ (1 4)1/,
7(t,0) ~ B(1 4 t)'~1/(42)_ The definitions of F; and K, can be found in the introduction.

Proof. We know that the solution of the Volterra equation can be written by repeated convolution of
the forcing with kernel function, i.e. V¢ > 0

P(t) = F(t) + i[&"* KR (8).

k=1

For the lower-bound, we apply Proposition I.1 and Corollary I.1. For the upper-bound we apply

Lemma C.3 with Kesten’s Lemma Proposition 1.5 on the upper-bound X, on the kernel (Proposi-
tion 1.3) with the upper-bound on F *x X from Proposition 1.6. O

1.5 Extended heuristics for general algorithm

In the following we discuss heuristics to justify the scaling laws of the general (DANA) algorithm
that are formulated in Theorem 4.1 and more precisely (10).

Claim L1. Denote v1(t) =1, ~2(t) = Fod™"t, ~3(t) = zd™ "2 (1 +¢)7", A(t) = §(1 +
of 3453
t)~1 and B = ¢,d"*. Denote p « 2+;§: .

T2

For o > take 2p > max{%ﬂl — LY and 2p(1 — k3/2) > 1.

* k3 > 1, my = n3 = 0. Same scaling laws as SGD.

* 1> k32> i, 1o = n3 = 0. Scaling laws in-between DANA-decaying and SGD.

e 0< k3 < i, ne =0, n3 = 20[(% — Kk3). Scaling laws in-between DANA-constant and
DANA-decaying.

The scaling laws are given by (10).

If 2p < max{m"s'TQﬁ_l, 4 — é} then the exponent in F,p, F e, Kpp is replaced by the minimum
between its exponent and p plus SGD exponent after it started accelerating.

155

LI.5.1 Forcing function

Claim 1.2 (Forcing function). Let o > 0, 2o + 26 > 1, o, 8 # %7 a+ 1 > B. Suppose that

def 5+~ — . .
2p = :ﬁ > % There exists some C(a, B > 0 such that under Parametrization I.1, denote
4o

2
9(t) ' + 27y, Bt + (fg V73(s)B ds) we have for any t > 0 and d large enough

% (90(15) + T (t) + fr",w(t)> <) <C (%(t) + T () + %c(t)>

where
Fo = d*2a+(1*25)+ ,

28-—1

Fpp(t) Xﬂ(t)ili 2o,

= J(t)" e if2a>1, 28> 1
Fac(®) C SFoif2a<1,28>1
0 else.

Idea: We define Jy, Fp,,, T, as in Section D and use the estimate on <I)‘1’f (t,0) from Theorem I.1.
Fo is unchanged, however for example for F,,(t) we compute

1 /
e — B 2 K
g:pp(t)d:f/ 01-&-2/3&1 <6—72B02(1+t)(1+ V250 ((1+t)1_7 _1))—2/)
0

-3

+ O(E(’)’QBJ2)6+%€7C’WBUQ))

: 1 1
min ,1
v/ { 725t [Be(1+) T 2 }a'lJrL:l do
o=0
_1_26-1
= 9(t) T

28—1

Where we used that —2p + 1 — < -1 < 2p> hﬂlﬂ Similar computation on J,,

brings the result, with the additional condition 2p > 2 — é which is automatically satisfied since
20426-1 9 1
« a’

Finally, to bound JF using Fo(t) + Fpp(t) + Fac(t) we proceed with a similar proof as Proposi-

tion H.16 by noting that in the range of interest (last integral), <I>‘1712 (t,0) satisfies the hypothesis in
Proposition D.13 (it is constant).

L.6 Stability conditions

Claim 1.3 (Necessary and sufficient conditions for stability above the high-dimensional line o > %
and with batch B = 1). Let o > % Consider Parametrization 1.1 with B =1, k > 0, 72 > 0.
Suppose that 2p > max{hﬁlﬂ, 4 — 1}, We have

* (Sufficient condition) For any € > 0 there exists g(k,€) > 0 and dy large enough, such that
for any d > dg if(k> 5 y2=gandc<g)or(k < 5=, 72 =gand c < gd?o(v—35))
then sup,~ [, K(t,s)ds < e. In particular, since F(t) (is bounded indep of d), we have
SUPg> 4, [|Plloc < o0

* (Necessary condition) For any € > 0, any g > 0 and any dy € N large enough, for any
d>doandif (k < 5=, v2 = g and ¢ = gd* with 0 > & > 20(k - 5—)), then there exists
o1 > 0, oy > 0 such that for any d*® > t > d**~1 we have ft/2 K(t,s)ds > d°2. In
particular under this scaling sup ;s g, || P|loc = o0

156

» For any € > 0 and k > 0, there exists some g > 0 such that if vo < g then for dg large
enough and any d > dp, limsup,_, . f(f K(t,s)ds < e and as a consequence, ||P||o < oc.

Idea: Sufficient condition We again consider the estimates in Theorem I.1. The goal is to have
sufficient conditions so that fg K(t,s)ds < e forany ¢t > 0.

We compute the first term by bounding the oscillatory w! (£, &), w? (€, &) by constants and % <1
For M > 0 large,

t t 1
/iKl(t,s)dsS,A@B// 03w e 12BN (1=5) 45 s
0 0 Jo=3rd—=
1
1 1

S / ol w 1= e 2B do
L

For the second term we do the same and use that (12¢'(7(s)))? =< £ (1 + s)™" to write for
YeB(1+1t) < d*

t t 1
/ K2(t,s)ds < B/ / 03—$£2(1 + S)—Ne—’YzBU2(t—5) do ds
0 0 Jo=}d= Bo

1
1
< =S min{(1+4) " ——— (1 +#)~t1d
N%/GWQU min{(1 +t) 72Bag,(+)7" }do

1 11

o

1
Son [T A ey et [(e
— 1 —a 1
o=1rd Nerree i

S+ (B4 1) a4 %SBQ +1) T (B + 1))

When 42 B(1 +t) > d>“ the first term vanishes and we obtain

t 1
/ K2(t,5)ds < L1+ t)"‘/ o 1% do
O B

Y2 rd—e
< Bt xd
V2B

. 2a . eqe o e
Evaluating at the worst case ¢ < i—B yields the stability condition

d2a
T ym g <. (129)
V2B 7B
Necessary condition To obtain the necessary condition, just observe that the previous upper-bounds
-5
are in fact tights. Indeed, for &y < &, the term % can be treated as constant. Since we

additionally know lower-bounds on w'(€),w?(¢) we deduce the corresponding lower bound on
XK1(t,s),XK?(t,s). This brings that for t < d?*
¢ = 1
K(t, s)ds = yg(t) (72 Bt)/) > dF(1 4)" F2a
t/2

Since by assumption, & + 2a(—k + %) > (0 we obtain the existence of oy > 0, oo > 0 such that
Yt > d2*~91 we have fttﬂ K(t,s)ds > d°2. Now we know that V¢t > 0, Va > 0, F(t) = d—2*.

157

After t > d?>*~71 we hence obtain by recursion that the loss grows as d?2)'°#2(%) This brings that
P(d>*) > d—2d7271 1082(d) We see that this diverges as d — oo which concludes.

Third point The last point in the proposition states that even when the conditions for stability are
broken, the loss remains bounded (even though it can increase arbitrarily with dimension for times

t < d?®. To see it just observe as before that fg K (t,s)ds < 79 and that for vo Bt > d**, we have
Jo XK2(t,8)ds S (1+1) %25 x d — 0.
1.7 Kernel function

Now that we have the stability conditions we can compute the kernel function. We will focus on the
contribution from ®, (¢, s) which we remind the behavior from Theorem I.1

_ ey (LHEDN T
Oy (t,s) < e 7 (1—1—5(3))

Then we can give the behavior of X1 (¢,0).
Claim L4. If9(t) < d>® we have

%'(t,0) = 3B <(%Bt)2+21a + (V) B+ t))‘**i) .
Idea: As for the forcing function, there are two cases depending on which contribution from -y, Bt or

(\/73(t)Bt)? is dominant in 9J(¢). Hence we decompose

B 1 1
mln{ ~2 Bt \/Wt }

K(t,s) = 'ygB/ e TO=TEN (1 4 £(4) "% do

= 72BY(t) 2t 2.

—a

J Compute-optimality beyond stability and motivation for DANA-decaying
schedule

In the previous sections, we restricted the learning rates domain to describe a stable algorithm,
i.e. requiring that the risk P(¢) stays bounded for all time ¢ € (0, c0). In this section, we ask and
heuristically answer the following question:

Does there exist for classical momentum (equiv. SGD) or DANA-constant a scaling in d of the
learning rates 7y, 3 which yields a better compute-optimal frontier without requiring the algorithm
to be stable for any time ¢ € R ?

J.1 Strategy

In the previous study, we imposed stability of the algorithm by controlling the kernel norm V¢ >

0, fot XK(t,s)ds < 1. This, combined with a corresponding Kesten’s lemma (see [80, Lem. C.1] for

SGD, Lemma F.3 for classical momentum, Lemma C.2 for DANA-constant) ensures that the resolvent

r(t,s) =] > ne, X**(t, s) of the Volterra equation (55) is bounded for all time and leveraging [45]

implies that the solution P(¢) = F(t) 4 [F r](¢) is bounded.

Instead it is clear by following the same steps, that if for some T > 0, Vi < T, fot K(t,s)ds < 1, we

can recover that P(t) stays bounded for ¢ < T'. More precisely, retracing the same steps in the proofs
that give rise to Eq. (62) (see Theorem G.1 for SGD-M, see Theorem H.3 for DANA-constant), we

would obtain V¢ < T, P(t) = F(t) + 515 K(t,0). On the other hand, if for ¢ > T, [3K(t,s)ds > 1
then, starting ¢t > T, P(t) will start diverging exponentially. Taking 7' = oo (or equivalently
d?*® /(72 B) for SGD and min {d?*/(v2B),d* /+/73B} for DANA-constant) recovers the previous
study.

158

Largest -y, stable at

w compute-optimality Compute-optimal 7
Phases

Ta, II, III Any P2 =1 r2 =1

Phase Ib Kk =2« vy < d?e1 v < d2et
a(2a—1) a(2a—1)

Phasele r = 5. 49° Yo < dEarit Yo < dEarit
20—1 e

Phase I'Va 2 Yo X d Yo < d~ 2oF28-1 (cf [80])

(200—1)2 a?—4a
Phase IVh x = 222D o) = g5 5 @201 gy = d- 57201 (cf [80))

Table 13: « and optimal v, across the 4 phases for SGD.

J.2 Stochastic Gradient Descent

We will focus on SGD, although classical momentum can be handled entirely similarly. From [80,
Sections 1.1, 1.2] batch has no effect on the compute-optimal frontier. We choose WLOG B = 1.
We additionally know from [80, Prop. G.1, H.5] and Proposition G.5 that for v, Bt < d?* we have
K(t,s) < y3Bmin{l, (voB(t — 5))~ 2t/ (22} It is hence clear that

t
VT < d*°, sup/ K (t,s)ds =< yo min{1, (1o BT) "1+ ()},
0

t<T

Taking ~, BT = d?* we recover the stability for all time condition v, < d™#*{0:2¢=1} " Additionally,
if o > % we still get the stability condition 2 < 1 independent of 7. However, for a < %, we now

obtain for 1 < 4, BT < d? the condition vy < (7o BT) ™Y/ (Z)+1 > g2a—1,

The question is now: for a < %, can such a larger 2 improve the compute-optimal frontier? To
that end, denote 7" the time at which compute optimality is reached. Further introduce « such that

Y2 BT = d*. For a < %, we hence obtain the condition 5 < d=r(=1t35),

We can now proceed to the same compute-optimal study as in Section E with the new « variable
which gives results summarized in Table 13. Above the high-dimensional line, we obtain the same

results as in Table 5. In phase L.b, since compute optimality is reached for v2 BT, we do not see
2a(2a—1)
improvement over Table 5. In phase I.c, we obtain v, < dZe¥25-1 >> d2*~! which yields faster

compute-optimal curve. However in this phase, we do not have proofs about the kernel asymptotics
which stops being power law. In fact it may be possible that a much larger learning rate can in fact
be used. finally in phase IV, although the learning rate could be chosen larger, [80] showed that
compute-optimality was reached by a smaller learning rate.

J.3 DANA constant

The kernel is slightly more complicated in DANA constant and for simplicity we will use here a
simplified form which becomes valid for s 2 % and ii; > % This will not affect the main results
as this is the dominant term in the kernel norm. To see that, the reader can either notice that the
upper-bound X derived in Section H.10 is in fact tight, or directly integrate the estimates ®11, ®12

first on time and then on o for a complete proof.

K(t,s) = Ki(t,s) + Ka(t, s) < 3 B(12B(t — 5)) 7225 +3((12B(t — 5)) "+ 2s.
Again, denote for T' > 0, 72 BT = d" the compute-optimal time for some x« > 0.
As for SGD, we obtain the stability conditions

12+ 25(12BT)VC) <1 i 20> 1,
Y2(ye BT) =11/ (0) 4 2o (9, BT)Y () <1 if 20 < 1.

159

Optimal 5 Optimal 3

Phase Ia vo =1 Y

Phase I1a yo <1 v3 =< d” T

Phase IIb v2 <1 g < d”Fda=T

Phase I1la ya <1 S

4o

Phase IIIb Yo =<1 3 =< d @a-D?

Table 14: Optimal 5, 5 for DANA constant for o > % The results are valid up to a constant
independent of the dimension

Again, if we use the upper-bound v, BT = d®, we find the stability conditions v, < g™ir{0.2a—1}
and 7;/733 < d. However, these bounds are overly conservative, and we can use our study of DANA-

constant to improve them by computing «. For that, we use the write P(t) < Fo(t)+Fpp () +Fac(t) +

55 Kpp(t, 0) with F(t) = T3P (12 BtV (V13 Bt)?), Kpp(t, 0) = KpiP (12 BtV (V3 Bt)?). We
believe this can be made formal with an entirely similar proof as we did in Section B.3 by using our
estimates of @11 (¢, s), 12(¢, s) although this is technical and not very enlightening. Again we will
focus on B = 1 and more precisely on o« > % which has slightly easier stability conditions. For
o> %, we necessarily have the bound v, < 1. Therefore, we can easily compute 7" as a function of

d, s, B at compute optimality, and hence deduce % Using this bound, we can also check that it is
feasible which means T" > %, which we used for the derivations, and hence find the results for phase
Ia, II, III in Table 14.

Finally, one will note that (/73 BT)? < 7(t)? the corresponding time of DANA-decaying around
compute-optimality time 7. This implies the following:

The previously computed 3 for DANA-constant induces the same dynamics as
DANA-decaying around the compute-optimal time 7" after which DANA-constant starts
diverging exponentially.

J.4 DANA-decaying

Exactly as we did originally for DANA-decaying, we can try to construct a better learning rate
than DANA-constant, by making sure that the value 3 wanted is attained at compute-optimality
Yor = d”. In other words, suppose that in some phase, DANA constant asks for v3 = v2 Bd~"* and
that compute optimality is attained at v BT = d*. Then DANA-decaying would use a schedule as
3(t) = 12 B(y2Bt)~"3/7.

Computing these values from Table 14 recovers exactly in all cases (at least above the high-dim)
(14 t)1/(2%)_ This is because this step-size is already optimal by ensuring that fsT:o Ka(t,s)ds <
Zfz—(;)(wgBT)l/ (22) < 1 is on the verge of diverging as ¢ — oo. Note that this was also the criterion
chosen for DANA-constant in the previous section at the point of compute optimality which explains
the correspondence.

Above the high-dimensional line, we can write the three equivalent characterizations of the
DANA-decaying learning rate v5(t) & 7o B(v2 B(1 + t))~1/(2):

* the largest power law decay that satisfies the DANA-constant condition YYSZ—(tB) < %

for t = d?“ the time where the problem starts being strongly convex and the
solutions stop behaving as power law and decay-exponentially,

160

e the largest power law such that the stochastic noise induced by momentum
fg Ko(t,s)ds < Yf;—(g('ygBt)l/(z“) remains bounded for all time ¢ > 0,

* the power law which recovers v3(7") = 3 the constant DANA-constant learning
rate computed in section Section J.3 for which the kernel norm remains bounded up
to the compute-optimal time 7.

161

K Power-Law Random Features Experiments & Numerical Simulations

In this section, we describe the PLRF experiments, measurements of the empirical scaling law
exponents, and the numerical simulations of the ODEs shown in Figure 8, Figures 25-33 and
Figures 34-42.

K.1 Power-Law Random Features Experiment Details

For each («, 3) pair, we run the stochastic algorithms for SGD, DANA-constant, and DANA-decaying
on PLRF with parameters

d € [200, 300, 400, 600, 800, 1200, 1600, 2400, 3200, 4800, 6400, 9600, 12800].

and set v = 4 x d. We selected 84 pairs of («a, 3)’s that provide a good representation of all the
different phases spanning o € [0.2,2] and 8 € [—0.15, 1.4]. We use batch size = 1 for all PLRF
experiments and compute the mean population risk across a set of random seeds. We use 10 random
seeds for most experiments but use 100 random seeds when 8 < 0.3 due to the increased gradient
noise when (3 is small.

We calculate flops'* as the number of training steps x d. We train all models for 112 flops or
convergence, whichever occurs sooner.

The loss curves in Figures 25-33 and Figures 34-42 show nearly perfect agreement with the numerical
simulations of the simplified ODEs (23) across all three algorithms and all values of («, 8) and d. In
particular, this numerical agreement validates that the simplification in the ODEs between (6) and (7)
has a trivial numerical effect.

We define Tr(D) o Zle je

K.2 Measuring the Empirical Scaling Law Exponents: Chinchilla Approach 1

To measure the empirical scaling law exponents for the loss and parameter count, we follow Chinchilla
Approach 1 [50]. We note that for SGD on PLREF, similar experiments in [80] found close agreement
for exponent measurements between Chinchilla Approach 1 and Approach 2. We do not expect
perfect agreement between theoretical predictions for the scaling exponents due to noise in the loss
curves, discretization in the parameter counts, and finite-size effects noted in Approach 0 in [80] that
showed the ‘instantaneous’ power-law exponents vary as a function of flops well beyond practical
scales for experimentation.

We follow Chinchilla Approach 1 as described in Section 3.1 of [50]. First, we choose a flops window
[fmin, fmax| and construct §;’s using a geometric spacing between f; = fmin and f, = fmax. For each
flops slice f;, we find the minimum loss across all d. We denote this minimum value of the loss,
Z7*(f;), and its associated parameter count, d*(f;). This creates an ‘envelope’ of optimal losses vs
flops as shown in Figures 25-33 or a ‘staircase’ of optimal parameter count vs flops as shown in
Figures 34-42.

The compute-optimal loss exponent is found by plotting
{(f5. Z27(f;) hi<i<n. (130)

and fitting a power law curve of the form £*(f) = ¢ x f~". For the 84 different pairs of («, 3),
we plot the fitted power law exponents and list the predicted theoretical loss exponents (see Ta-
ble 5 (SGD/SGD-M), Table 6 (DANA-constant), and Table 7 (DANA-decaying)) in the legends
in Figures 25, 26, 27 for SGD, Figures 28, 29, 30 for DANA-constant, and Figures 31, 32, 33 for
DANA-decaying. The (absolute) maximum difference between theory vs. empirical is 0.09. Figure 8
(middle) used the loss exponents from Figures 25-33.

The compute-optimal parameter exponent is found by plotting,
{(F, d*(F3)) hi<i<n- (131)

'“Note that for consistency with the theoretical setup, for the PLRF experiments we omit the 6 in the
6 x num parameters X tokens heuristic [50, 54] often used for calculating flops. We include this 6 in the LSTM
experiments for accuracy and consistency with the empirical scaling laws literature.

162

and fitting the function d* = ¢ x f* where c, b are constants. The empirical parameter exponent
measurement is given by the exponent b. For the 84 different pairs of (v, 3), we plot the fitted power
law exponents and list the predicted theoretical parameter exponents in the legends in Figures 34, 35,
36 for SGD, Figures 37, 38, 39 for DANA-constant, and Figures 40, 41, 42. The predicted theoretical
parameter exponents can be found in Table 5 (SGD/SGD-M), Table 6 (DANA-constant), and Table 7
(DANA-decaying). The absolute maximum difference between theory and Approach 1 is 0.132.
Figure 8 (right) used the parameter exponents from Figures 34-42.

It is important to note that the fit of the exponents is sensitive to the choice of the flops window;
changing the window can have a dramatic effect on the predictions. For Approach 1, we have a
discrete set of parameter counts d that approximate the ‘true’ compute-optimal frontier that would
result from an arbitrarily dense sweep over parameter counts. We therefore want to fit the power
laws for Approach 1 within the range of flops where the parameter counts in our experiments act as a
good approximation of the compute-optimal frontier. More specifically, as a heuristic, we want to fit
Approach 1 within the flops window whose minimum is the flops where the two smallest models
crossover, and whose maximum is the flops where the two largest models crossover. In particular,
for larger values of alpha, the loss curves from the larger values of d do not intersect because the
experiment could not run long enough, so we want the flops window maximum to be the crossover
between the two largest models that did reach a crossover.

As a first pass, we used this heuristic to determine the flops window for each algorithm and («, 3)
pair using smoothed loss curves to locate the crossover points between model sizes. However, due to
noise in the loss curves, it is nontrivial to systematically distinguish which crossovers in the noisy
curves are due to noise and which represent the location of the ‘true’ crossover that would result if
averaging over an arbitrarily large number of random seeds. We therefore manually adjusted the flops
windows using visual inspection to adhere to the intent of this heuristic.

K.3 Computing the deterministic equivalent for K

In order to derive a fully deterministic curve for the loss, we need get a precise estimate for the
deterministic equivalent of K = DY2WW7T D'/2 where D = Diag(j72* : 1 < j < v}. In
particular, we need to solve the fixed point equation in (33),

_ 1
- 2 L —2a
L+ é Z;:l j—2£m(z)—z

1
m(z) where R(z) = Diag <j

_2am(z)—z : 1§]§v>.

(132)
In order to implement and solve such a fixed point equation, given that HK llop & 1, we uniformly
discretize the 2’s from € x 572 to 1 + ¢ for some small € and add a small imaginary component. For
each of these z’s values, we solve the fixed point equation in (33) with Newton’s method constrained
so that the Newton update always remains in the upper half plane.

K.4 Implementation of the ODE

To implement the ODEs in (23), we use implicit Euler with step h and use the deterministic equivalent
as the initialization. While other ODEs can be used, implicit Euler is known to work well on problems
whose solution is exponentially decreasing, but ill-conditioned — exactly our setting. To improve
the speed of implicit Euler, we perform a time change mapping ¢ — ¢!. This allows for log-spaced
time and an exponential speed up in solving the ODEs. We note that one does need to solve d ODEs
simultaneously, but the ODEs form a nearly decoupled system of 3 ODEs as the coupling only occurs
through the forcing function (Z?(t)). Numerical experiments in this section (Sec. K) and Fig. 8 use a
step length of A = 10~2 (after changing into log spacing). All other numerical experiments in the
paper use a step length of h = 1072,

163

L. LSTM Language Model Experiments

In this section we present experiments for SGD and DANA-decaying on LSTMs trained on text data.
We constructed a language model setup using a cross-entropy loss on next-token prediction on the C4
text dataset [84]. We use the LSTM [49] architecture from [53] with standard parameterization.

To sweep model sizes, we co-scale the embedding and hidden dimensions while keeping the depth
(number of layers), sequence length, batch size and vocabulary size fixed. The embedding sizes
used are [16,24, 32,48, 64,96, 128,192, 256,512, 1024, 2048, 4096] and the hidden dim is set to
2 x emb dim. All models use depth = 2 layers, sequence length = 20 and batch size = 32.

L.1 LSTM Results: DANA-decaying across x3

In this section, we train models with SGD with learning rate = 0.5 and DANA-decaying with
~v2 = 0.5 andy3(t) = 2 x (1 + t) "3 where we sweep x3 € [0.0,...,1.4].

We first consider a single model size for the LSTMs (embedding dim = 128). In Figure 19, we
repeat Figure 3a on the left and Figure 2a on the right to show side-by-side that the behavior of
DANA-decaying across k3 is qualitatively similar on PLRF (left) and LSTM (right). On PLREF,
we see that DANA-decaying diverges when k3 < 1/2a. On LSTMs, we see that DANA-decaying
similarly diverges for k3 < 0.6. Moreover, we see that for moderate values of k3 DANA-decaying
outperforms SGD in both model settings, and that as k3 approaches 1.0, DANA-decaying smoothly
deteriorates back to SGD.

a=17,B8=1.0d=2800,yst)=(t+1)""
100 B 0, y3(t) = (t+1) o Ks
= —— theory, dana-decaying, ys(t) x 0 14
\ oy 1.2
theory, sgd 0.8 S 9 o
10-2 \N— theory, dana-constant 5 0'9
theory, dana-decaying, k3 = 1.0/(2*a) 0.7 % 8 0:8
062 @ 0.75
10~ : S 0.7
< 052 § 7 0.65
o € B 06
= 048 = 0.55
10 = S 05
032 6 0.4
= 03
o
10-8 029 0.2
2 0.1
0.1 2 0.0
10-10 . . . — = N © - DANA-decaying
10 10 10 10 10
flops 103 104 10° 10° 107 10% 10° 10'°

Training Tokens

Figure 19: DANA-decaying shows similar stability and divergence behavior across 3 on PLRF
and LSTMs. (left) We repeat Figure 3a on PLRF where «3(t) =< (1 + ¢)~"¢. This shows DANA-
decaying diverges when k3 < 1/2« and degrades to SGD as k3 goes towards 1.0. (right) We repeat
Figure 2a on LSTMs with embedding size = 128 showing DANA-decaying diverging when x3 < 0.6
and degrading to SGD when k3 exceeds 1.0.

We next repeat this experiment across model sizes, with embedding sizes ranging from 16 to 4,096.
In Figure 20 we see that the behavior of DANA-decaying is qualitatively similar across model sizes:
we continue to see divergence on small k3 values, outperforming SGD on moderate 3 values, and
degrading back to SGD on x3 values above 1.0.

One interesting question is whether the optimal value of k3 is consistent across model sizes. To
investigate this, we plot the final loss versus k3 in Figure 21. We see that the optimal xg3 is fairly
consistent across model sizes, with the optimal value of x5 falling within 0.55 to 0.75 on all model
sizes with a trend towards 0.75 for the large models. We note that the largest models may slightly
overestimate the optimal kg3 if they did not run far enough to reach divergence. Using the PLRF as an
analogue where k3 = i, this optimal 3 near 0.75 would correspond to o« = 0.67, but we note that
the precise meaning of « is not clear for LSTMs. We leave this question about how to measure and
interpret v on real-world problems for future work.

164

Embed dim: 16

Embed dim: 24

Embed dim: 32

Validation Loss

4{ — SGD — SGD 4{ — SGD
—— DANA-decaying —— DANA-decaying — DANA-decaying
10° 10% 10° 10° 107 108 10° 10° 10% 10° 10° 107 108 10° 10° 104 10° 10° 107 108 10° 10*
Embed dim: 48 Embed dim: 64 Embed dim: 96

Validation Loss

4| — sGD — sGD 4 — sGD
— DANA-decaying — DANA-decaying —— DANA-decaying
T0® 105 105 107 108 10° 10° 1o+ 1os 106 107 10® 10° 10 103 To® 105 1o¢ 107 108 10°

Embed dim: 192

Validation Loss

— DANA-decaying

103

10°

Validation Loss

— DANA-decaying

—— DANA-decaying

10°

10%

10° 108 107
Training Tokens

108

0.2

03

0.4

—— DANA-decaying

10® 10% 10° 10° 107 108 10°
Training Tokens

05 0.55 0.6 0.65 0.7 0.75 0.8

DANA-decaying K3

0.9

10° 10% 10° 10° 107 108

Training Tokens

1.0 12 14

Figure 20: Sweeps of «3 for DANA decaying show qualitatively similar behavior across model
sizes. Small values of k3 diverge, moderate values of k3 outperform SGD, and large values of k3
trend back towards SGD. Each panel shows one model size with SGD in black and DANA-decaying
in bright colors indicating the value of k3.

165

Emb Dim
4096

2048

1024

512

Final Loss

256

128

3.5

04 05 06 07 08 09 10 1.2
DANA-decaying K3

Figure 21: Final loss versus DANA-decaying 3 showing the «3; which optimizes final loss is
fairly consistent across model sizes. The optimal value of 3 for the final loss is between 0.55
to 0.75 on all models with a trend towards 0.75 for the largest model sizes. Color indicates model
size. Black dotted lines indicate the final SGD loss for the model size indicated by the color of the
highlight.

L.2 LSTM Results: Loss Exponents

We next measure the LSTM loss exponents for SGD and for each individual value of x5 for DANA-
decaying, by plotting the loss curves across model sizes and considering the compute-optimal frontier
defined by the lower envelope of these curves. We observe that the compute-optimal frontier appears
to follow a power-law trend for an intermediate set of models, but the power law breaks on the largest
model sizes similar to what was observed in Figure 7 of [54] on a similar LSTM scaling setup.

We perform a version of Chinchilla Approach 1 [50] using an intermediate set of model sizes ranging
from embedding size 16 to 192. We use an abbreviated version of this method where we fit power
laws through the crossover points in the loss curves between adjacent model sizes. Due to the
smoothness in the loss curves, the locations of the crossover points between model sizes can be
precisely determined. The power law fits have very high R? values, exceeding 0.99 on all settings
except the most unstable x5 = 0.0 which has R? = 0.984.

In Figure 22, we show the loss curves and compute-optimal power law fits for each algorithm and
value of k3, and report the loss exponents and R? values in the legends. Finally, in Figure 23a we
plot the loss exponents as a function of k3 and show the SGD loss exponent as a baseline. The
magnitude of the DANA-decaying loss exponent is maximized when k3 = 0.7 and exceeds the
SGD loss exponent magnitude. We note that the measurement of k3 = 0.7 that maximizes the loss
exponent magnitude is very close to the x3 near 0.75 that optimizes the final loss, which is interesting
because the loss exponent measurement is determined using earlier phases of training whereas the
final loss values naturally describe the behavior from late in training. While the numerical differences
between the SGD and DANA exponents are small, the high R? values and the smoothness of the
DANA-decaying loss exponents as a function of k3 indicates that these measurements might be
robust and imply a true improvement in the loss exponent over SGD.

More notably, the DANA-decaying loss exponents traverse exactly the regimes seen in PLRF:
diverging for small values of k3, outscaling SGD for intermediate values of 3, and reverting back
to SGD-like scaling for k3 > 1.0. We note that k3 = 1.0 corresponds to Schedule-Free SGD and
shows almost exactly the same loss exponent as SGD for LSTMs.

166

Kk3=0.
V //
o
2
S
5 77
2 \
© \g
2
o
>
af af af af
—— Loss exp = -0.058 (R2=0.9997) —— Loss exp = -0.018 (R?=0.9844) —— Loss exp = -0.022 (R?=0.9909) —— Loss exp = -0.028 (R?=0.9920)
I T B T o T B (ST T T
Kk3=0.. k3=0.35 K3=0.4 k3=0.45
= | — — ~|
g
S
c = L
S = Z T =
: i
s T I
©
>
af- af af af
—— Loss exp = -0.034 (R?=0.9942) —— Loss exp = -0.038 (R?=0.9945) —— Loss exp = -0.043 (R?=0.9942) —— Loss exp = -0.048 (R?=0.9960)
o " S e
Kk3=0.475 Kk3=0.5 Kk3=0.55 Kk3=0.6
po— po— — —

N l, W \
= =

Validation Loss
/@ i

| — Loss exp = -0.050 (R2=0.9960) | — Loss exp = -0.052 (R?=0.9970) | — Loss exp = -0.057 (R?=0.9981) | — Loss exp = -0.060 (R?=0.9991)
v e 1o 1o
K3=0.65 Kk3=0.7 K3=0.75 k3=0.8

W\, \ \ N

.,
P
8
g
2
=
©
B
©
g % X
——— Loss exp = -0.062 (R?=0.9997) —— Loss exp = -0.062 (R?=0.9998) —— Loss exp = -0.062 (R?=0.9999) ~—— Loss exp = -0.061 (R?=0.9999)
% s % s
k3=0.9 Kk3=1.0 K3=1.2 K3=1.4

\

«
g
3
c
o
2
©
o=
©
g
af- af- af- af-
—— Loss exp = -0.060 (R?=0.9999) —— Loss exp = -0.058 (R?=0.9986) —— Loss exp = -0.059 (R2=0.9999) —— Loss exp = -0.059 (R2=0.9996)
; : : | : : : | : : r | ; : r
o o o o o o o o o o o o o o o o o o o o
Flops Flops Flops Flops

Figure 22: Loss exponents for SGD and DANA-decaying across ~3. Loss curves across model
sizes (black or light blue) and power law fits (orange) through the compute-optimal frontiers showing
the loss exponent measurements (with R? values) for SGD and DANA-decaying. The first panel
shows SGD and remaining panels each represent one value of k3 for DANA-decaying.

167

—0.050

1 2.2
\ —o- DANA 2a S(.BD

—0.052 v e SGD Divergence 214
“ —— Stability boundary g
_0.054 \‘ SGD boundary 2.0%
o \ 5
el
 -0.056 ! 199
c \ E
g X 5
di -0.058 c 185
o U ped L RREEEIEE EEECCIEEe SR 5
o - ———— o]
= ~0.060 LY o 172
\ v 5]
\ / 32
%)
-0.062 - 162
o
o

1.5

-0.064 \- stero
0 \A\\\\\k\\\\\\\\
0.4 0.6 0.8 1.0 A%.O 0.2 0.4 1/(20)0.6

DANA-decaying K3

Figure 23: DANA-decaying loss exponents show improvement over SGD, and traverse the
regimes seen in PLRF. (left) Loss exponent versus x3 for DANA-decaying. The loss exponent
for SGD is shown with a black dotted line. The loss exponents for DANA-decaying have higher
magnitude indicating an improvement in the loss exponent for 0.6 < k3 < 0.9. (right) We repeat
Figure 6 showing the regimes for PLRF as a function of k3. We note that the LSTM loss exponents
(left) traverse the same regimes as the x-axis of the right figure: divergence for small values of x3,
outscaling SGD for intermediate values of 3, and reverting back to SGD-like scaling for k3 > 1.0.

Note k3 = 1.0 corresponds to Schedule-Free SGD, and shows almost exactly the same loss exponent
as SGD for LSTMs.

168

10 4.0
(]
< 2.0
9 o
" g 1.0
c
E 8 s o5
s 3
=] "E 0.2
© [}
S 7 T | tox
© 2 :
> =]
& | to.0s
[a)]
61 — sGD Q| to.02
---- SGD + momentum = 0.9
—-— SGD + momentum = 0.95 0.01
------- SGD + momentum = 0.99
5

103 104 10° 106 107 108 10°
Training tokens

Figure 24: The equivalence in risk dynamics between SGD and SGD-M holds approximately
in LSTMs. We sweep different values of momentum (different line styles) and different effective
learning rates where effective learning rate = learning rate / (1 - momentum). Color corresponds to
the effective SGD learning rate. Loss curves of the same color have similar dynamics showing that
the equivalence in PLRF dynamics extends fairly closely to the LSTM setting.

L.3 Equivalent risk dynamics for SGD-M and SGD

As noted in Section 5 and Remark G.2, there is an equivalence in risk dynamics on PLRF when
~45GD — SGD-M | SGD-M /5.

In Figure 24, we show this equivalence holds closely in the LSTM setting especially after the
early phase in training. We perform a two-dimensional sweep across learning rates and momentum
values. We train SGD (corresponding to m = 1.0) and SGD-M with three different momentum
values of m € [0.9,0.95,0.99]. Following the equivalence, we sweep the SGD “effective learning
rate” denoted by 7 and set the learning rate to 1/(1 — m) for each value of m. We sweep 7 €
[0.01,0.02,0.05,0.1,0.2,0.5,1.0,2.0,4.0].

In Figure 24, we see that all values of momentum have similar risk dynamics for the same effective
learning rate (same color), particularly after the early phase of training. While we do not measure
the loss exponent for SGD-M directly, this equivalence suggests that SGD-M should have nearly
identical scaling behavior to SGD and result in the same loss exponent.

L.4 Experiment Details

Initialization. We use standard parameterization to initialize the LSTM parameters. All matrix
parameters use Gaussian initialization with zero mean. The embedding parameters are initialized with
standard deviation = 0.1 and the hidden (LSTM cell kernel and recurrent) parameters and readout
parameters are initialized with standard deviation 1/+/fan-in. Bias parameters are initialized to zero.

Dataset. All models are trained on the C4 language dataset [84] encoded with the TS Senten-
cePiece [57] tokenizer, with an additional beginning-of-sequence (BOS) token, resulting in the
vocabulary size of V' = 32,001 (32, 000 original vocabulary + 1 BOS). The effective vocabulary
dimension in experiments is 32, 101 due to 100 unused tokens. Both training inputs and evaluation
inputs are padded rather than sequence-packed. We use the ‘train’ split for training and the ‘validation’
split for evaluation from the TFDS [1] version of the dataset.

We train in the single epoch regime: the C4 dataset contains 156 billion tokens, but our models never
train past the first few billion tokens and we never repeat training examples.

Implementation details. Our LSTM implementation started from a fork of the code released with
[53], with changes made for performance, initialization, and switching the dataset. The LSTM

169

implementation uses JAX [32] with Optax optimizers [32]. We use a modified version of the data
pipeline from NanoDO [65].

Hyperparameters. We first swept the SGD learning rate and selected a stable learning rate of 0.5
which we use for all SGD experiments except the learning rate sweeps in Fig. 24.

For DANA-decaying, we set o = 0.5 to correspond to the SGD learning rate, and v3(t) = 2 x (1 +
t)~"3. We then sweep over x3; the minimum 3 where DANA-decaying converges appears optimal
(Fig. 2¢ & 20). Since § just needs to be large, we set § = 8.

Flops calculation. We compute flops as 6 x non-embedding parameters X training tokens using
the ‘6ND’ heuristic [50, 54]. We follow the common practice of counting only the non-embedding
parameters as this has been shown in [50, 54] to induce better power law fits.

170

M Additional Information on the Experimental Set-Ups for Figures

In this section, we provide additional information regarding the experimental set-ups used to generate
some of the figures. For most figures, we have included these in the captions. Due to space limitations,
some figure experimental set-ups are included here.

Figure 1a. Experimental setup: d = 500, v = 2500, batch size = 1, 107 iterations, with learning
rates v2 = 0.5/Tr(D) for all methods, 3 = 0.1/(Tr(D) x d) for DANA-constant, and v3(t) =
0.1(1 + ¢)~+/(2@) for DANA-decay.

Figure 1b. Numerical setup: SGD (blue curves) learning rate o = 0.5/Tr(D), DANA-constant
(green) has v, (t) = 1, v2(t) = 0.5/Tr(D), v3(t) = 0.1/d, A(t) = §/(1 + t) where 6 = max{2 —
1/a, (2a+28—1)/a}+1; DANA-decaying (orange) same 71, 2, and A as DANA-constant,y3(t) =
0.1/(1 + t)'/(2); Schedule-free SGD (red) 5 = 0.9 and 4 = 0.5/Tr(D) in [33]. Algorithms run
using the ODEs (43) with hyperparameters given in Table 3 for Schedule-Free SGD; 10 iterations
of algorithm, d = {100 x 2},i =1,...,10 and v = 10 x d. Schedule-free SGD (red) scales very
closely with SGD (blue) for this («, 3). We see both DANA-decay and DANA-constant accelerate.

Figure 1c. PLRF setup: number of iterations for all algorithms is 107, o = 1.2, 8 = 0.7, batch
size 1 with d = {250, 500, 1000, 2000} and v = d x 2. Adam [56] algorithm was run from Optax
[32] where the default parameters (i.e., 81 = 0.9, f2 = 0.999, ¢ = 10~8) were applied. For
the Adam learning rate, a cosine-decay schedule, also from Optax, was used. Initial value for the
cosine learning rate is 0.001. For each d-value, multiple runs of adam with the decay steps in the
cosine-decay learning rate given by 2 x 1000 x m, m = 0, 1,... until decay steps is greater than
total iterations, 107. For each d, (solid green) lower envelope of the Adam runs; (faded green) one
single run of Adam with a fixed decay step. SGD (solid orange) and DANA-decaying (sold blue)
plotted using ODEs. DANA-decaying hyperparameters: 6 = max{2 + (28 — 1)/a),2 — 1/a} + 1
with A(t) = §/(1 + t); v3(t) = 0.1/Tr(D) x (1 +)~/ 2 x5 (t) = 0.3/Tr(D); 71 (t) = 1. SGD
hyperparameters: v2(t) = 0.3/Tr(D).

Figure 3a and Figure 3b. Optimal learning rate schedule, varying x3 and k5 in learning rate
3 (t). Numerical set-up: d = 800 and v = 5 x d; batch size is 1, number of iterations is 10°. SGD:
learning rate is v2 = 0.5/Tr(D) where Tr(D) = »_7_, j~**; DANA-constant: 7, same as SGD,
v3(t) = 0.1/(Tr(D)) x d~"3 where k3, if not specified is 1, A(t) = /(1 + t) where 6 = max{2 +
(26 —1)/a,2 — 1/a} + 1; DANA-decaying: -, same as SGD, ~y3(t) = 0.1(1 +¢) =" x 1/Tr(D)
where k3, if not specified, is 1/(2«a), A(t) same as DANA-constant. Curves generated by using
the ODE:s in (7) with the deterministic equivalent for K;In Fig. 3a, if k3 < 1/(2a) in 73, DANA-
decaying will eventually diverge, but until it does it exactly follows the curve for DANA-decaying
with k3 = 1/(2a). Moreover when k3 = 1/(2«) in Fig. 3a, DANA-decaying does not diverge
and it appears optimal. When k3 = 1, i.e., momentum is a pure average, the loss curve is similar
to SGD and does not accelerate. Similarly, in Fig. 3b, for DANA-constant with 3 (t) =< d~"2,
ko = 1 is the only power in d for which the algorithm does not diverge, however the algorithm is
slower. For ko < 1, initially the curves decrease before diverging and, up until divergence, follow the
trajectory of DANA-decaying with y3(t) = (1 + ¢)~'/(2%)_ This justifies the learning rate schedule

v3(t) =< t~/(2%) in DANA-decaying.

Figure 3c. Numerical set-up: 100 randomly generated K = DWWTD and the p;’s computed; for
empirical density 5, 500 bins equal spaced on log scale from 10~% to 1 and counted the number
of); that fall into each bin weighted by p;’s and then averaged over the 500; For deterministic
equivalent g, solved fixed pointed equation (33) using Newton Method on a grid of x-values.

Figure 6. Suppose x; = 0 and we are above the high-dimensional line, 2« > 1. Using Theorem 4.1,
you can find the number of iterations needed to reach the optimum, J¢, when 2a¢ > 1; it is independent
of which phase (Phase Ia, II, III). In particular, we have that

9(t) < max{t, d "2t~ "2},

171

For 2a > 1 and B = 1, a quick calculation shows that

. 2a+kKo) f 2a+kK2 > 0
time to reach irreducible loss, t < d” where 7 = mm{ 2-k3’ o, i 2—K3
2a, else.
When ¢ =< d2¢, this is the same amount of time that SGD requires to reach the irreducible loss level.
Equality holds in the minimum exactly at the (magenta) line, k2 = 2a(l — K3).

In terms of divergence, we can look at the stability condition (stability) in Theorem 4.1. From this,
we have divergence if ko < —2a X k3 + 1. This is precisely below the (red) line. We plotted the
values of n for a = 1.1.

Figure 7. Numerical set-up: d = 100 x 2¢,i = 1,...,10 for Phase I, IIa, Illa, d = 100 x 2¢, i =
10, ..., 15 included for Phase IIb, IlIb; 6 > max{2+ (2+5—1)/«a,2—1/a} withv = 5 x d; SGD:
learning rate is y2 = 0.5/Tr(D); DANA-constant: v, same as SGD, y3(t) = 0.15/(Tr(D)) x d~1,
A(t) = 0/(14t) where 6 = max{2+ (28—1)/a,2—1/a}+1; DANA-decaying: 72 same as SGD,
v3(t) = 0.25(1 + t) 1, A(t) same as DANA-constant; colored lines computed using deterministic
ODEs (7) over different d and black lines the predicted compute-optimal curves from Table 5,6,7. Our
predictions match the scaling laws of the deterministic ODEs and show that DANA-decaying yields
better scaling laws. Phase diagram, (bottom, right). Green region: both DANA-constant and DANA-
decaying accelerate; red dashed region: DANA-constant doesn’t accelerate but DANA-decaying
does; red region: neither DANA-constant nor DANA-decaying accelerate.

Figure 8. (left) Simplified ODEs (43) and exact ODEs (22) match the stochastic algorithms across
multiple d-values. Prediction for the loss exponents match empirical (Approach 1 used from [50]).
(middle) Plotted is the loss exponent 7, P(f/d*;d*) = §" against the our predicted 7’s given in
theory (see Table 6, 5, 7) by fixing 8 = 0.7 and going through different o values; as o 1 go
through Phase Ic — IVa — IVb — III — II. Solid dots computed from multiple runs of the
stochastic algorithm using Approach 1 from [50] (see Section K for details). Predictions match well
estimated values and show that as SGD, DANA-constant, and DANA-decaying all coincide when in
IV. Exponent of DANA-constant and DANA-decay are significantly larger than SGD in IIT and II. In
Ic, there is a small discrepancy with theory versus estimated due to dimensonality, d, effects (see [80]
for more details). (right) Same plot for params exponents (top), £ on d* = §¢ and data exponents
(bottom), ¢, i.e., exponent at compute-optimum for number of samples; Fixed o = 1.0 and varying (.

172

SGD: (@, 8) =(0.2,0.7) Y SGD: (a, B) =(0.25,0.7) N SGD: (a,8) =(0.26,0.7) SGD: (a, B) = (0.27,0.25)
0 10 seeds. 10 - 10 seeds. 10 10 seeds. 100 seeds
4x10°
3% 100
X -
o 10 0
| — Empirical 23100
0 Simplified ODE —_—
Empirical exp = -0.16, Empirical exp = -0.22, Empirical exp Empirical ex
77T Theory exp = -0.22 77T Theory exp = -0.28 " Theory exp " Theory exp .
1072
10° 10° 107 10° 10' 10° 10° 107 107 10M 10° 107 107 107 10' 167 10° 104
SGD: (a, B) =(0.27,0.3) SGD: (a, B) = (0.27,0.4) SGD: (a, B) = (0.27,0.5)
3x100 100 seeds _ 10 seeds. 10 seeds. 100 10 seeds.
10°
10°
2x10°
™
»
4 10
101 Empirical 107
Simplified ODE
____ Empirical exp = -0.06, ___ Empirical exp = 0.1, . Empirical exp = -0.19, . Empirical exp = -0.23,
. Theory exp = -0.07 Theory exp = -0.17 Theory exp = -0.27 . Theory exp = -0.28
10° 10° 107 107 101 10° 10° 107 10° 101 10° 10° 107 10° 10% 10° 10° 107 =
" SGD: (a, B) =(0.27,0.7) SGD: (a,8) =(0.27,0.8) SGD: (a,B)=(0.27,0.9) SGD: (a,B) =(0.27,1.0)
0 10 seeds. = 10 seeds. 10 seeds 10 seeds
T T =
101 107
~ 107
o 101
a
—— Empirical
simplified ODE ot 1072
_____ Empirical exp = -0.24, 10 Empirical exp = -0.26, __ Empirical exp = -0.27, __ Empirical exp = -0.28,
10-2 Theory exp = -0.29 Theory exp = -0.29 Theory exp = -0.30 Theory exp = -0.30
10° 10° 107 10° 101 10° 10° 107 10° 101 10° 10° 107 10° 101 10° 10° 107 10° 101
SGD: (a,B8) =(0.27,1.1) N SGD: (a, B) =(0.28,0.7) - SGD: (@, 8) =(0.3,0.7) o SGD: (@,B) =(0.4,0.7)
10 seeds 10 — 10 seeds. B 10 seeds. = 10 seeds
107t
101 10t
1077
—— Empirical
1072 Simplified ODE 1072 o
___ Empirical exp = -0.28, 102| ___ Empirical exp = __ Empirical exp = -0.29, ___ Empirical exp
Theory exp = -0.30 Theory exp Theory exp = -0.3 Theory exp
10° 10° 107 10° 101 10° 10° 107 10° 101 10° 10° 107 10° 101 10° 10° 107 10° 10
. SGD: (a,8) =(0.5,0.7) Y SGD: (@,) =(0.6,0.7) SGD: (@, 8) = (0.7, —0.15) SGD: (@, 8) =(0.7,-0.1)
0 10 seeds. 1o 10 seeds 100 seeds . 100 seeds
3% 10°
101 10"
2x10°
102 100
1072
k'
o 1073
1073 10°
—— Empirical 1o
Simplified ODE
1074 Empirical exp = -0.50, .| Empirical exp = -0.57, - 6x107 Empirical exp = -0. . Empirical exp = -0.08,
Theory exp = -0.50 10 Theory exp = -0.58 8 Theory exp = -0. Theory exp = -0.08
10° 10° 107 10° 101 10° 10° 107 1067 101 10° 10° 107 1067 10™ 10° 10° 107 167 10
SGD: (a,B)=(0.7, —0.05) SGD: (a, 8) =(0.7,0.0) SGD: (a,B)=(0.7,0.2) SGD: (a,) =(0.7,0.3)
100 seeds 100 seeds 100 — 100 seeds b 100 seeds
10° N\
10° P
107t
107"
~
) 107
o
1072
— Empirical 107 5
Simplified ODE o
10| ___ Empirical exp = -0.13, . Empirical exp = -0.17, . Empirical exp = -0.33, . Empirical exp = -0.41,
Theory exp = -0.12 Theory exp = -0.17 1072 Theory exp = -0.33 Theory exp = -0.42 N
10° 10° 107 107 107 10° 10° 107 107 107 10° 10° 107 10° 10 107 10° 10° 107 10° 10%
) SGD: (a,B) =(0.7,0.4) N SGD: (a,B) =(0.7,0.5) . SGD: (a,B)=(0.7,0.6) N SGD: (a,B)=(0.7,0.7)
o 10 seeds o s 10 seeds o » 10 seeds. 1 . 10 seeds
\— -1
10 10 107t N \ 1o
o 102 107
1072
k] " 10
o 1073, o
107 107
—— Empirical . 107+
Simplified ODE 10 100
1070 Empirical exp = -0.48, _____ Empirical exp = -0.54, 10 Empirical exp = -0.59, ______ Empirical exp
Theory exp = -0.50 . 105 Theory exp = -0.58 . Theory exp = -0.62 . Theory exp
107 -
10° 10° 107 10° 10 10° 10° 107 10° 10" 10° 10° 107 10° 10" 10° 10° 107 10° 101
Flops Flops Flops Flops

Figure 25: SGD loss curves and compute-optimal loss vs. theory on PLRF. For various («, 3), we plot the
mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures) for SGD (solid
lines) with 2 = 0.375/Tr(D). Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic
runs of SGD match the solutions of the simplified ODEs in (43) (dotted lines) nearly perfectly. The empirical
compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where the solid
red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly match theory
for all (v, B) tested, with absolute maximum difference of 0.08.

173

Risk

SGD: (a,8) =(0.7,1.0) SGD: (a,8)=(0.7,1.1)

SGD: (a,B) =(0.7,0.8) SGD: (a,8) =(0.7,0.9)

10° 10° 100 10°
10 seeds 10 seeds. 10 seeds 10 seeds
107, 107" 107" 1071
1072, 1072, 1072 1072
102 102 1077, 103
107 10 107 1074
—— Empirical .
-5, 1075 107
105 Simplified ODE 0
____ Empirical exp = -0.64, 75 _ Empirical exp = -0.66, 10l Empirical exp = -0.66,
10-. Theory exp = -0.64 . 10 64 N Theory exp = -0.64 Theory exp = -0.64 .
107 10° 107 107 10 107 10° 107 10° 101 107 10° 107 10° 101 10° 10° 107 10° 107
100 SGD: (a,B)=(0.7,1.2) 100 SGD: (a,B)=(0.7,1.3) 100 SGD: (a,B)=(0.7,1.4) o0 SGD: (a,B)=(0.8,0.7)
10 seeds 10 seeds. 10 seeds 17 seeds
1072 1072 1072 102
10 107 10~ 107
107 107 1074 1074
Los] — Empirical 105 10-5 10
Simplified ODE
10-¢] ____ Empirical exp = -0.65, _ Empirical ex _ Empirical exp R Empirical exp = -0.66,
Theory exp = -0.64 . Theory exp Theory exp 10 Theory exp = -0.67
10° 10° 107 107 10" 10° 10° 107 10° 101 10° 10° 107 10° 107 107 10° 107 10° 107
. SGD: (@, 8) =(0.9,0.7) N SGD: (a,B) =(1.0,0.7) N SGD: (@, 8) =(1.0,0.8) . SGD: (a,8) =(1.0,0.9)
10 18 seeds. 10 @ 16 seeds 10 10
107 10 107
10-2 10-2. 102
10-2 107 1072
ot 10-4 1074,
- 100 107
—— Empirical - 107
o p 10

Simplified ODE

Empirical exp = -0.68, _ Empirical ex Empirical exp Empirical exp
Theory exp = -0.69 § Theory exp . Theory exp Theory exp
10° 10° 107 10° 107 10° 10° 107 107 107 107 10° 107 107 10 107 10° 107 107 10T
. SGD: (a,8) = (1.0,1.0) i SGD: (a,8) =(1.0,1.1) - SGD: (@, 8) = (1.0,1.2) - SGD: (a,8) = (1.0,1.3)

10 seeds. 10 seeds. 10 seeds 10 seeds

1072 1072 1072 102
107 10+ 10 1074
. 1075 10-5. 1075
W Empirical
Simplified ODE
Lo-s) ____ Empirical exp = -0.75, 10| Empirical exp 10-{ __ Empirical exp w6l Empirical exp = -0.76,
Theory exp =-0.75 - Theory exp . Theory exp . Theory exp =-0.75
10° 10° 107 10° 10° 10° 10° 107 10° 107 10° 10° 107 107 10™ 10° 10° 107 107 10™
" SGD: (a,8) =(1.0,1.4) . SGD: (@,8)=(1.1,0.7) . SGD: (a,B8)=(1.2,0.7) . SGD: (a,B)=(1.2,0.8)
10 10 seeds. 0 . 20 10 seeds. 0
10- 1071
10-2 102 1072 107
10- 1073
1074 10 10 0
10-5 1075
106 ~ 106
—— Empirical 107 107
Simplified ODE o 107
10 Empirical exp = -0.76,) | ___ Empirical exp 0o} Empirical exp = -0.75,
Theory exp = -0.75 10°¢; Theory exp . Theory exp Theory exp = -0.75
10° 10° 107 10° 107 10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 101
N SGD: (@,) =(1.2,0.9) . SGD: (a,B8) =(1.2,1.0) . SGD: (2, 8)=(1.2,1.1) . SGD: (a,8)=(1.2,1.2)
10 10 seeds. 10 < 10 seeds 10 10 seeds. 10 10 seeds.
1072 1072 1077 1072
107 107+ 107* 1074
10°° 107%- 10°¢. 10°%
—— Empirical
Simplified ODE os oe
10 Empirical exp = -0.77, Empirical ex Empirical exp Empirical exp = -0.80,
” Theory exp =-0.76 " Theory exp . ~ Theory exp T Theory exp = -0.79
10° 10° 107 107 107 107 16° 107 107 107 10° 10° 107 10° 16T 107 10° 107 10° 16T
N SGD: (@, B)=(1.2,1.3) SGD: (a,B)=(1.2,1.4) . SGD: (a,B)=(1.4,0.7) . SGD: (a,B) =(1.4,0.8)
10 10 seeds. 2 10 seeds. 10 10 seeds. 0 o 10 seeds.
10"
1072 102 10-2
1073
07 1074 107
1075
10 106 10
—— Empirical 1077
o Simplified ODE
__ Empirical exp = -0.80, _ Empirical exp ot Empirical exp = -0.78,
Theory exp =-0.79 . . Theory exp Theory exp =-0.77
10° 10° 107 10° 107 10° 10° 107 10° 10 10° 10° 107 107 10™ 10° 10° 107 107 10
Flops Flops Flops Flops

Figure 26: SGD loss curves and compute-optimal loss vs. theory on PLRFE. See Figure 25 for details.

174

SGD: (a,B) =(1.4,0.9)

SGD: (a,8) =(1.4,1.0)

SGD: (a,8)=(1.4,1.1)

SGD: (a,8) =(1.4,1.2)

00 19 seeds. 100 16 seeds. 18 seeds. 18 seeds.
1070 107"
1072 1072
103 107
~ 107 107
) 107 10
o
107 10¢
—— Empirical 1077 107
o simplified ODE 100
__ Empiricalexp=-0.78, | e | [Empirical exp Empirical exp = -0.80, 1o Empirical exp = -0.81,
Theory exp = -0.78 Theory exp Theory exp = -0.80 Theory exp = -0.81
10° 10° 107 10° 107 10° 10° 107 10° 107 10° 10° 107 10° 107 10° 10° 107 10° 107
SGD: (a,8)=(1.4,1.3) SGD: (a,B)=(1.4,1.4) N SGD: (a,B)=(1.6,0.7)) SGD: (a,B) =(1.6,0.8)
19 seeds. 10 seeds. 10 15 seeds. 10 10 seeds.
107 107!
1072 1072
10 1073
o 10 107
10 107
o
107 100
107} Empirical 107
simplified ODE 1o 107
109 Empirical exp = -0.82, 10 Empirical exj Empirical exp Empirical exp %
7 Theory exp = -0.81 Theory exp Theory exp " Theory exp
107 10° 107 10° 10" 107 10° 107 10° 10 107 10° 107 10° 10 107 10° 107 10° 10
SGD: (a,8) =(1.6,0.9) SGD: (@, B) =(1.6,1.0) SGD: (a,8)=(1.6,1.1) SGD: (@, B8) =(1.6,1.2)
T6seces 10seccs 19 seccs Tasesos
107 107 1071 10"
1077 1073 107 107
x
Do 107 107 10
o
107 — Empirical 1077 1077 1077
Simplified ODE
Empirical exp = -0.83, 1070 _____ Empirical ex; Empirical exp Empirical exp
Theory exp = -0.80 Theory exp] Theory exp Theory exp
16° 10° 107 10° 107 16° 10° 107 10° 10 16° 10° 107 10° 10 16° 10° 10° 10
SGD: (a,8) =(1.6,1.3) SGD: (a,B)=(1.6,1.4) " SGD: (a,B)=(1.8,0.7) SGD: (@, 8) =(1.8,0.8)
10 seeds. 16 seeds. 10 16 seeds. 15 seeds.
1071 107 107"
1077
107 103 10
~ 107
w1 10 105
o
1076
-7 1077
27— Empirical 107
simplified ODE 107
104 Empirical exp L Empirical ex Empirical exp 102 Empirical exp
Theory exp Theory exp Theory exp Theory exp
10° 10° 107 107 107 10° 10° 107 107 10 10° 10° 107 107 107 10° 10° 107 107 10%
SGD: (a,B)=(1.8,0.9) SGD: (a,B)=(1.8,1.0) SGD: (a,8)=(1.8,1.1) SGD: (a,8)=(1.8,1.2)
1o seeds Taseeds 19 seecs
107 1077 1070 107"
107 1077 1073 107
B0 10 10 10
o
. - -7 107
1071 Empirical 10 o
simplified ODE
107 ___ Empirical exp = -0.82, 107 Empirical exp __ Empirical exp
Theory exp = -0.81 Theory exp Theory exp Theory exp
10° 10° 107 10° 10 10° 10° 107 10° 107 10° 10° 107 10° 107 10° 10° 107 10° 107
SGD: (a,8)=(1.8,1.4) SGD: (@, B) =(2.0,0.7) SGD: (a,8) =(2.0,0.8) SGD: (a, 8) =(2.0,0.9)
Toseces T6seecs T2 seecs 17 seecs
1070 107! 107
1073 107 107
10-5 10 1078
—— Empirical 107 107 10-
. simplified ODE
10 Empirical exp = -0.86, 10 Empirical exp 10 Empirical exp
77 Theoryexp =-0.84 | 0| T T Theory exp Theory exp " Theory exp
107 10° 107 10° 107 107 10° 107 10° 107 107 10° 107 10° 167 167 10° 107 10° 107
SGD: (@, B) =(2.0,1.0) SGD: (a,B)=(2.0,1.1) SGD: (@, B) =(2.0,1.2) o SGD: (@,) =(2.0,1.4)
18 seeds. 19 seeds. 10 seeds. 10 16 seeds.
107 1077 107
1077
1077 1073 107
107
%10 10 10
-4 1076
1077 1077 10-7
— Empirical 1078
simplified ODE . 1o
10° __ Empirical exp = -0.84, R Empirical ex) Empirical exp | Empirical exp
Theory exp = -0.83 Theory exp Theory exp 10 Theory exp
16° 10° 107 107 100 16° 10° 107 107 100 16° 10° 107 107 100 16° 10° 107 107 107
Flops Flops Flops Flops

Figure 27: SGD loss curv

and compute-optimal loss vs. theory on PLRF. See Figure 25 for details.

175

DANA-constant: (a, 8) =(0.2,0.7) 100 DANA-constant: (a, 8) = (0.25,0.7)) DANA-constant: (a, 8) = (0.26,0.7) DANA-constant: (a, B) =(0.27,0.25)

10 10 seeds. 10 seeds. o 10 seeds. 100 seeds
4x10°
3x10°
¥ =
o 107 10
Lo — Empirical 2x100
Simplified ODE
Empirical exp = -0.16, Empirical exp N Empirical exp . P Y
77 Theory exp = -0.22 7 Theory exp 7 Theory exp . 77 Theory exp = -0.02
10° 10° 107 10° 10" 10° 10° 107 1067 10M o 10° 10° 107 167 10" 167 10° 107 10° 104
DANA-constant: (a, B) =(0.27,0.3) DANA-constant: (a,) =(0.27,0.4) DANA-constant: (a, 8) = (0.27,0.5) DANA-constant: (a, 8) = (0.27,0.6)
3x100 100 seeds] 10seeds 10 seeds. 10seeds.
10°
10°
2x10°
~
»n
o
10°¢ —— Empirical 107
Simplified ODE
Empirical exp = -0.06, Empirical exp = -0.14, Empirical exp = -0.19, Empirical exp = -0.23,
77 Theoryexp = -0.07 77 Theoryexp =-0.17 77 Theory exp = -0.27 77 Theory exp =-0.28
610 10° 10° 107 107 101 10° 10° 107 10° 101 10° 10° 107 10° 101 10° 10° 107 107 104
. _DANA-constant: (a, B) =(0.27,0.7) DANA-constant: (a,) =(0.27,0.8) DANA-constant: (a, 8) = (0.27,0.9) DANA-constant: (a, 8) = (0.27,1.0)
0 10 seeds. == 10 seeds. 10 seeds. e 10 seeds.
A\
10 107
ot
%100 b
2
Empirical
Simplified ODE 102 1072
Empirical exp = -0.25, 1072 Empirical exp = -0.26, Empirical exp = -0.27, Empirical exp = -
102f 777 Theory exp = -0.29 77 Theoryexp =-0.29 7 Theory exp =-0.30 7 Theory exp =
10° 10° 107 10° 10" 10° 10° 107 10° 101 10° 10° 107 o 10° 10° 107 10° 10
DANA-constant: (a, 8) =(0.27,1.1) ,_DANA-constant: (@, 8) = (0.28,0.7) » DANA-constant: (a, B) =(0.3,0.7) o0 DANA-constant: (a, 8) = (0.4,0.7)
= 10 seeds 1o - 10 seeds. B 10 seeds = 10 seeds.
\)
107%
107
107"
X 107!
2
o 1072
—— Empirical
1072 Simplified ODE 1072 o
____ Empirical exp = -0.28, . 10-2| ____ Empirical exp = -0.26, __ Empirical exp = -0.29, __ Empirical exp = -0.40,
Theory exp = -0.30 Theory exp = -0.29 Theory exp = -0.30 Theory exp = -0.40
107 10° 107 10° 10" 10° 10° 107 10° 161 10° 10° 107 107 101 107 10° 107 10° 10"
. _DANA-constant: (@, 8) =(0.5,0.7) ,_DANA-constant: (a, 8) =(0.6,0.7) DANA-constant: (a, 8) = (0.7, =0.15) DANA-constant: (a, 8) = (0.7, —0.1)
0 10 seeds. 10 ” 10 seeds. 100 seeds . 100 seeds
3%10°
101 107
2% 10°
102 100
v 102
°a
4 107
107 10°
—— Empirical 1ot et y
Simplified ODE = **f‘g
10 Empirical exp = -0 .| ___ Empirical exp = -0.57, 6x10| _ Empirical exp = -0.05, =« _____ Empirical exp
Theory exp = -0. 10 Theory exp =-0.58 Theory exp = -0.05 Theory exp .
10° 10° 107 107 101 10° 10° 107 1067 101 10° 10° 107 107 101 10° 10° 107 10° 10
DANA-constant: (a,) = (0.7, —0.05) DANA-constant: (a, 8) = (0.7,0.0) DANA-constant: (a, 8) =(0.7,0.2) DANA-constant: (@,) = (0.7,0.3)
100 seeds N 100 seeds 100 100 seeds. L e 100 seeds
10°
10°
107t
10!
~
n 1072
< o
) 102
gy 107
—— Empirical jorey 107
Simplified ODE \
107 Empirical exp = -0.13, . . Empirical exp = -0.18, 103 .. Empirical exp = -0.34, __. Empirical exp = -0.42,
Theory exp =-0.14 . Theory exp =-0.18 ~ Theory exp = -0.36 Theory exp = -0.45 b
10 -
10° 10° 107 10° 101 10° 10° 107 10° 107 10° 10° 107 107 101 10° 10° 107 10° 101
DANA-constant: (a, 8) = (0.7, 0.4) ,_DANA-constant: (a,B)=(0.7,0.5) ,_DANA-constant: (a,) =(0.7, 0.6) . DANA-constant: (a, B) =(0.7,0.7)
1 10 seeds 0 — 10 seeds o » 10 seeds. o 10 seeds
1o 10 107
10- 10
™ 1072
0 107
o 103
107
—— Empirical - 107
. Simplified ODE
1o ___ Empirical exp = -0.49, ____ Empirical exp = -0.55, | 10°°f _ Empirical exp = -0.59, ____ Empirical exp
Theory exp = -0.55 105 Theory exp = -0.64 AN Theory exp = -0.64 Theory exp
10°¢.
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 10" 10° 10° 107 10° 101
Flops Flops Flops Flops

Figure 28: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. For various («, 3),
we plot the mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures)

for DANA-constant (solid lines) with v1 = 1,72 = §55, 13 = % X g5y, A(t) = 6(1 +1)71,6 =

max{%, 2 — é} + 1. Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic
runs of DANA-constant match the solutions of the simplified ODE:s in (43) (dotted lines) nearly perfectly. The
empirical compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where
the solid red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly
match theory for all («, 8) tested, with absolute maximum difference of 0.09.

176

100

102

100

100

1077

DANA-constant: (a, 8) = (0.7,0.8) o DANA-constant: (a, 8) = (0.7,0.9) o DANA-constant: (@, 8) =(0.7,1.0) o DANA-constant: (a, 8) =(0.7,1.1)
=" 10 seeds P~ — 10 seeds - — 10 seeds — 10 seeds
0 N 101 10
1077 102 1072
1073 107 107
107, 107 10-4
—— Empirical s .
s - 10
Simplified ODE 10 o
____ Empirical exp = -0.64, _ Empirical exj __ Empirical exp soe| Empirical exp
Theory exp = -0.64 . Theory exp S Theory exp Theory exp
107 10° 107 10° 10" 10° 10° 107 10° 101 10° 10° 107 10° 107 10° 10° 107 10° 10"
DANA-constant: (a,8) =(0.7,1.2) 100 DANA-constant: (a,) =(0.7,1.3) 00 DANA-constant: (@, 8) = (0.7,1.4) . DANA-constant: (a,8) =(0.8,0.7)
- — 10 seeds —— 10 seeds — 10seecs | 1° 10 seeds
107 1071 100
102 1072 102
102 10 10
10+ 10 10
—— Empirical 1075 107 107
Simplified ODE
Empirical exp = -0.65, 1076 Empirical ex Empirical exp . Empirical exp = -0.66,
Theory exp = -0.64 " Theory exp Theory exp . 10 Theory exp = -0.70
10° 16° 107 1067 161 10° 10° 107 10° 161 10° 10° 107 10° 107 10° 10° 107 167 107
DANA-constant: (a, 8) =(0.9,0.7) ___DANA-constant: (a, 8) =(1.0,0.7) | __DANA-constant: (a,) =(1.0,0.8) . __DANA-constant: (o,) =(1.0,0.9)
- 10 seeds. 10 —— 20 seeds 10 e 10 seeds. 10 _—— 10 seeds.
1072, 1077 1072
10-2 10 1072
10+ 10 10
107 10 10
— Empirical 10°¢ 107 v
simplified ODE 1077 1047
Empirical exp = -0.70, Empirical exp . Empirical exp 1o Empirical exp = -0.75,
77 Theoryexp =-0.75 " Theory exp 100 77 Theoryexp =-0.80 | O] T Theory exp = -0.80
10° 10° 107 10° 107 10° 10° 107 10° 100 10° 10° 107 107 10™ 10° 10° 107 107 10
DANA-constant: (a,) =(1.0,1.0) . DANA-constant: (a,) =(1.0,1.1) . DANA-constant: (a,) =(1.0,1.2)) DANA-constant: (a,8) =(1.0,1.3)
10 seeds. 10 3 10 seeds. 10 . 10 seeds. 10 - 10 seeds.
\\\ N
1072 1072 . 1077
10°* 10 107
1075 10°¢ 10°%
—— Empirical
Simplified ODE
Empirical exp = -0.75, Empirical exp 107 Empirical exp = -0.76,
" Theory exp = -0.80 " Theory exp 7 Theoryexp =-080 | |~ | | T Theory exp = -0.80
10° 10° 107 10° 107 10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 101
DANA-constant: (@, 8) =(1.0,1.4) . DANA-constant: (a,) =(1.1,0.7) . DANA-constant: (a, 8) =(1.2,0.7) . DANA-constant: (a, 8) =(1.2,0.8)
- 10 seeds. 10 e 10 seeds 10 10 seeds B - 10 seeds.
N\ N
1074 107 107
107 1076
107 debe—Aebits
—— Empirical el
Simplified ODE | e 10-¢
Empirical exp = -0.76, Empirical ex = Empirical exp Empirical exp = -0.87, s
77 Theoryexp = -0.80 " Theory exp " Theoryexp =-089 | || |7 Theory exp = -0.89 g
10° 10° 107 107 107 107 16° 107 107 107 10° 10° 10° 106 107 10° 107 10° 16T
DANA-constant: (a, 8) =(1.2,0.9) DANA-constant: (@, 8) = (1.2,1.0) DANA-constant: (@,) =(1.2,1.1) DANA-constant: (@,) =(1.2,1.2)
T0seeas - T0seeds. . 10 seeds " 10 seeds
10 \ 10 \\\\ 107 N
\)
| N
1073 = 107 107
107 105 1075
. e ey
—— Empirical »J—W« 1077 1077 1077
Simplified ODE et
____ Empirical exp = -0.86, S 1os| ... Empirical ex 1o-s] . Empirical exp o) Empirical exp = -0.82,
Theory exp = -0.89 ~Z Theory exp Theory exp Theory exp = -0.89
10° 10° 107 107 107 10° 10° 107 10° 104 10° 10° 107 107 10 107 10° 107 107 10
DANA-constant: (a, 8) =(1.2,1.3) DANA-constant: (a,) =(1.2,1.4) DANA-constant: (a,) = (1.4,0.7) DANA-constant: (a,) =(1.4,0.8)
T0seeds - Toseeds T0seeds 10 seeds
107 N 107 107
10 10 10
. 105 1075 10-5
10 107 ey
—— Empirical Qi““““’“;‘» 1077
S S}
simplified ODE Vgl 1o T m—y
___ Empirical exp = -0.81, e 1os] __ Empirical ex; _ Empirical exp = -0.96, | Sae | | Empirical exp = -0.95, e
Theory exp = -0.89 = Theory exp Theory exp Theory exp = -0.97 _
10° 10° 107 107 107 10° 10° 107 10° 107 10° 10° 107 10° 10 107 10° 107 10° 101
Flops Flops Flops Flops

Figure 29: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. See Figure 28 for
details.

177

Risk

Risk

10°¢

1070

1070

Risk

1070

10-10

Risk

Risk

107

Risk

Risk

DANA-constant: (a, 8) = (1.4,0.9)

DANA-constant: (@, B) = (1.4,1.0)

DANA-constant: (a,8) =(1.4,1.1)

DANA-constant: (a,) =(1.4,1.2)

100

10 seeds 10 seeds 10 seeds. 10 seeds
1072 1072 1077
1074 107+ 107
107° 1076 10°-
Gt b,
— empirical = . ek | g QB | 0 T
Simplified ODE Feane ey (v v
pusawt - v - sty gl
. Empirical exp = -0.95. et I [Empirical exp = -0.95, Sl I L Empirical ex S] Empirical exp e
Theory exp = e Theory exp = -0.97 = Theory exp g Theory exp S
10° 10° 107 10° 10" 10° 10° 107 10° 10" 107 10° 107 10° 101 10° 10° 107 10° 10"
DANA-constant: (@, 8) = (1.4,1.3) __ DANA-constant: (a,) = (1.4,1.4) DANA-constant: (a, 8) = (1.6,0.7) DANA-constant: (a, 8) = (1.6,0.8)
10 seeds. 10 10 seeds. 10 seeds 100 10 seeds
1077 1072 1077
107 10 104
106 107 106
gty
—— Empirical 100 Qe | 1070 107,
Simplified ODE Sy ol
Empirical exp = -0.94,] Empirical exp = -0.94, _ Empirical ex Empirical exp
Theory exp g Theory exp =-0.97 Theory exp Theory exp
167 16° 107 167 107 10° 10° 107 10° 107 10° 10° 107 10° 16T 10° 10° 107 107 107
DANA-constant: (a,8) = (1.6,0.9) DANA-constant: (@, B) = (1.6, 1.0) DANA-constant: (@, 8) =(1.6,1.1) DANA-constant: (@, B) = (1.6,1.2)
10 seeds. 100 10 seeds. < 10 seeds ” 10 seeds.

107"
107 1072
107
1074 107+
107%
10°¢ 107%-
1077
— Empirical 070 10t .
simplified ODE B 10
__ Empirical exp L Empirical exp = -1.01, 107 Empiricalexp=-1.01, | W&o | | Empirical exp
Theory exp Theory exp = -1.03 Theory exp 107 Theory exp
10° 10° 107 10° 10% 10° 10° 107 107 107 10° 10° 107 107 10™ 10° 10° 107 10° 10
DANA-constant: (a, 8) =(1.6,1.3) DANA-constant: (a, 8) = (1.6, 1.4) DANA-constant: (a,8)=(1.8,0.7) DANA-constant: (a,) =(1.8,0.8)
10 seeds 10 seeds 10 seeds. 10 seeds.
107! 107" 107%
107 107 10
105 10-5 10
—— Empirical e] . 107 1070
Simplified ODE % 0
. Empiricalexp = LOL | NG |l Empirical exp = -1.01, ol ol Empirical exp
Theory exp 107 Theory exp = -1.03 Theory exp Theory exp
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 10 10° 10° 107 10° 101
DANA-constant: (a,) = (1.8, 0.9) DANA-constant: (a, 8) =(1.8,1.0) DANA-constant: (@, B) =(1.8,1.1) DANA-constant: (a, 8) =(1.8,1.2)
10 seeds 10 seeds 10 seeds. 10 seeds
107 1073 107
107 1073 107
107° 107 1075
1077 1077 1077
— cmricl |
Simplified ODE X
- Empirical exp = -1.06, wnf Empirical exp = -1. w0uf Empirical ex wonf Empirical exp
Theory exp = Theory exp = -1.09 Theory exp Theory exp
107 16° 107 167 107 10° 10° 107 10° 1067 107 10° 107 10° 16T 10° 10° 107 10° 10T
DANA-constant: (a,) =(1.8,1.4) DANA-constant: (a,) = (2.0,0.7) DANA-constant: (a, 8) = (2.0,0.8) DANA-constant: (a,) = (2.0,0.9)
10 seeds. 10° 10 seeds 10 seeds 100 10 seeds.
102 1077 1072
107 107+ 10
10°° 107%- 107
10°¢ 107%. 107
— Empirica s
Simplified ODE 1071 107 1072
_ Empirical exp =-1.06, g [Empirical exp =-1.07, el | | o Empirical exp
Theory exp = -1.09 102 Theory exp = -1.14 10732 Theory exp 10 Theory exp
16° 10° 107 167 107 10° 10° 107 107 100 10° 10° 107 107 10% 10° 10° 107 107 107
DANA-constant: (a,) =(2.0,1.0) DANA-constant: (a,) =(2.0,1.1) DANA-constant: (a,) =(2.0,1.2) DANA-constant: (@, 8) =(2.0,1.4)
10 seeds. 10° 10 seeds. 10 seeds 10° 10 seeds
1072 1072 102
1074 107+ 107+
10°° 107%- 107
107% 1078 107
—— Empirical Y .
Simplified ODE 10 o
.. Empirical exp = -1.08, P Empirical exp = -1.09, o o I Empirical exp
Theory exp = Theory exp =-1.14 Theory exp =
107 10° 107 10° 107 10° 10° 107 10° 10t 107 10° 107 10° o 10° 10° 107 10° 101
Flops Flops Flops Flops

Figure 30: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. See Figure 28 for
details.

178

Risk

DANA-decaying: (a, 8) =(0.2,0.7)
10°

DANA-decaying: (a, 8) = (0.25,0.7)

DANA-decaying: (a, B) = (0.26,0.7)

DANA-decaying: (a, B) = (0.27,0.25)

10° 10°
10 seeds 10 seeds 10 seeds 100 seeds
4x10°
3x10°
@
I3 100 10
| — Empirical 2100
10 Simplified ODE .
Empirical exp = -0.15, Empirical exp = -0.21, Empirical exp = -0.22, Empirical exp
7 Theory exp = -0.22 . 77 Theoryexp =-0.28 . 7 Theory exp =-0.28 ™ Theory exp .
10° 10° 107 10° 10’ 10° 10° 107 1067 10M 10° 10° 107 167 10° 167 10° 107 10° 104
DANA-decaying: (a, 8) =(0.27,0.3) DANA-decaying: (a, 8) = (0.27,0.4) DANA-decaying: (a, B) = (0.27,0.5) DANA-decaying: (@,) = (0.27,0.6)
3x100 100 seeds 10 seeds. 10 seeds. 10° 10 seeds.
100 § <
10°
2x10°
107t
1°F — Empirical 10
Simplified ODE
. Empirical exp = -0.06, ___ Empirical exp = -0.13, . Empirical exp = -0.19, . Empirical exp = -0.22,
oxto Theory exp = -0.07 Theoryexp =-0.17 . Theory exp =-0.27 . Theory exp = -0.28
x10-1
10° 10° 107 107 10’ 10° 10° 107 10° 101 10° 10° 107 10° 10° 10° 10° 107 =
, DANA-decaying: (a, 8) =(0.27,0.7) DANA-decaying: (a, 8) =(0.27,0.8) DANA-decaying: (a,8) = (0.27,0.9) DANA-decaying: (a,) =(0.27,1.0)
o 10 seeds. 10 seeds. 10 seeds. 10 seeds.
~ 101 107t
010
o
—— Empirical
simplified ODE 102
___ Empirical exp = -0.24, 102| . Empirical exp = -0.25, 107 Empirical exp = -0.26, ___ Empirical exp = -0.26,
10 Theory exp = -0.29 . Theory exp = -0.29 . Theory exp = -0.30 Theory exp = -0.30
10° 10° 107 10° 10’ 10° 10° 107 10° 101 10° 10° 107 10° 10° 10° 10° 107 10° 10
DANA-decaying: (a,B) =(0.27,1.1) o DANA-decaying: (a,) = (0.28,0.7) 0 DANA-decaying: (a,) =(0.3,0.7) 0 DANA-decaying: (a,8) =(0.4,0.7)
10 seeds. B v 10 seeds. 10 seeds. 10 seeds.
107!
1071 N
X 10 1
4 P
—— Empirical
102 Simplified ODE -
___ Empirical exp = -0.27, | ___ Empirical exp = -0.25, ___ Empirical exp = -0.27, 07 ___ Empirical exp
Theory exp = -0.30 0 Theory exp = -0.29 8 Theoryexp = -0.30 . Theory exp .
107 10° 107 10° 10’ 10° 10° 107 10° 161 10° 10° 107 107 10° 107 10° 107 10° 10"
._DANA-decaying: (a, 8) =(0.5,0.7) _DANA-decaying: (@, 8) =(0.6,0.7) DANA-decaying: (a,B) =(0.7, —0.15) DANA-decaying: (a,B8) = (0.7, —0.1)
0 10 seeds. 10 " 10 seeds. 100 seeds 100 seeds
3%10°
1077
1071
2x10°
1072 10°
v 102
%
4 103
107 100
—— Empirical 10+
Simplified ODE " |
10 Empirical exp = -0 10-s] ____ Empirical exp = -0.58, 6x1071| ___ Empirical exp = -0.04, ”‘\ . Empirical exp = -0.09,
Theory exp = -0. Theory exp = -0.63 . Theory exp = -0.05 Theory exp = -0.10 9
10° 10° 107 107 10° 10° 10° 107 1067 101 10° 10° 107 107 101 10° 10° 107 10° 10
DANA-decaying: (a,8) = (0.7, —0.05) DANA-decaying: (a, 8) = (0.7,0.0) DANA-decaying: (a, B) = (0.7,0.2) DANA-decaying: (a,8) =(0.7,0.3)
100 seeds 100 seeds 10°1 100 seeds 10° o 100 seeds
10°
10° 10-1
107"
X 102
= 1072
5. 100
—— Empirical Y 1072
Simplified ODE Q
1071 Empirical exp = -0.13, o . Empirical exp = -0.18, 107 Empirical exp = -0.36, . Empirical exp
Theory exp = -0.14 S Theory exp =-0.19 Theory exp = -0.38 N 107 Theory exp
10° 10° 107 10° 101 10° 10° 107 10° 107 10° 10° 107 107 101 10° 10° 107 10° 101
. DANA-decaying: (a, B) =(0.7,0.4) N DANA-decaying: (a,) =(0.7,0.5) . DANA-decaying: (a,) =(0.7,0.6) . _DANA-decaying: (a,8) =(0.7,0.7)
10 % 10 seeds. 10 % 10 seeds. 10 ” 10 seeds. 0 & 10 seeds.
10"
107t
1072
1072
% 107
= 3
10- 10
—— Empirical
107 Simplified ODE 10
___ Empirical exp = -0.53, __ Empirical exp = -0.59, __ Empirical exp __ Empirical exp
Theory exp = -0.57 “ Theory exp = -0.67 Theory exp - 107 Theory exp S
10 g 105
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 10" 10° 10° 107 10° 101
Flops Flops Flops Flops

max

{2o¢+(2¥B7172 _

179

55 8(t) = Grpizmars Al) =61 +18)7,8 =

Tr

Figure 31: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. For various (o, 3),
we plot the mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures)
for DANA-decaying (solid lines) with 1 = 1,v2 =

é} + 1. Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic
runs of DANA-decaying match the solutions of the simplified ODEs in (43) (dotted lines) nearly perfectly. The
empirical compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where
the solid red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly
match theory for all (o, 3) tested, with absolute maximum difference of 0.085.

DANA-decaying: (a,8) = (0.7,0.8)

DANA-decaying: (a, 8) = (0.7, 0.9)

DANA-decaying: (a, B) =(0.7,1.0)

DANA-decaying: (a,B) =(0.7,1.1)

100 10 seeds. 00 10 seeds. 10 10 seeds. 10 10 seeds.
107t 107! 1075 107%
1072 1072 1072 1072
~ 107 1072 10- 107
2
= 1074 107 1074 107
10| — Empirical 1075 107> 107
Simplified ODE
Los] ... Empirical exp = 0.8, -] Empirical exp = -0.68, . w0 Empirical ex w0ef Empirical exp
Theory exp = N Theory exp =-0.72 . Theory exp . Theory exp
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 10" 107 10° 107 10° 101
. DANA-decaying: (a, 8) =(0.7,1.2) o0 DANA-decaying: (a,) =(0.7,1.3) o0 DANA-decaying: (a, 8) =(0.7,1.4) . DANA-decaying: (a,B) =(0.8,0.7)
10 seeds. 10 seeds. 10 seeds 10 10 seeds.
107 1077 1074 107"
1072 1077, 1072 1072
Ny 107 10 10 107
2
& 10 107 10 07
103] —— Empirical 10-5 107
Simplified ODE .
Empirical exp = -0 sa Empirical exp = -0.67, _ Empirical ex 10 Empirical exp
Theory exp Theory exp =-0.72 . Theory exp - Theory exp
07 10° 10° 107 10° 107 107 10° 10° 107 10° 107 w07 10° 10° 107 107 101 10° 10° 107 10° 10
DANA-decaying: (@, 8) = (0.9,0.7) DANA-decaying: (a, 8) =(1.0,0.7) DANA-decaying: (a, 8) = (1.0, 0.8) DANA-decaying: (a, 8) =(1.0,0.9)
10° 10° 10°
10 seeds - 30 seeas < Toseeds < 10seads
107%
102 10-2
107
1074 10
107
S e Y 1076 107
10— Empirical 107
107 Simplified ODE - 107
1o-s] .. Empirical exp R Empirical exp =-0.86, | w._ | | __ Empirical ex S Empirical exp
Theory exp Theory exp = -0.88 Theory exp 10 Theory exp
10° 10° 107 10° 10° 10° 107 107 107 10° 10° 107 107 10™ 10° 10° 107 107 101
DANA-decaying: (a,8) =(1.0,1.0) DANA-decaying: (a,8) =(1.0,1.1) DANA-decaying: (a,8) =(1.0,1.2) DANA-decaying: (a,) =(1.0,1.3)
< 10 seeds = 10 seeds = 10 seeds. = 10 seeds.
107 107 1073 107
107 1073 1073 107
2 1075 107 10°% 10°*
107 — Empirical 107 1077 107
Simplified ODE
10| Empirical exp = 087, o] Empirical exp = -0.87, w0 10 Empirical exp
Theory exp Theory exp = -0.90 Theory exp Theory exp
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 107 10° 10 10° 10° 107 10° 101
DANA-decaying: (a,8) =(1.0,1.4) DANA-decaying: (a,8) =(1.1,0.7) DANA-decaying: (a,8) =(1.2,0.7) | DANA-decaying: (a,8) =(1.2,0.8)
10 seeds. 10 seeds. 10 seeds 10 10 seeds.
107 107" 107"
1077
102 107 1073
107*
%10 107 107
10°¢
-7. ; 7. 107
1071 — Empirical 1o | e
Simplified ODE .
109 Empirical exp = -0. se 100 Empirical exp = -0.91, o Empirical ex o Empirical exp
~ Theoryexp =-090 | T~ | |77 Theoryexp =-092 | >~ | |7 Theory exp 2070 Theory exp
107 16° 107 167 107 10° 10° 107 10° 1067 107 10° 107 10° 16T 10° 10° 10° 10T
DANA-decaying: (a, 8) =(1.2,0.9) DANA-decaying: (a, 8) =(1.2,1.0) DANA-decaying: (a,8) =(1.2,1.1) DANA-decaying: (a,8) =(1.2,1.2)
10° 10 seeds. 10 10 seeds 10° 10 seeds 10° 10 seeds.
1072 1072 1072 1077
107 107 107+ 10
~
2
10 107 107 107
10-2| — Empirical 100 107 107
Simplified ODE
__ Empirical exp = i Empirical exp = -0.97, J00] Jres i Empirical exp
Theory exp = Theory exp =-0.97 Theory exp Theory exp
16° 10° 107 167 107 10° 10° 107 107 100 10° 10° 107 107 10% 10° 10° 107 10° 107
DANA-decaying: (a, 8) =(1.2,1.3) DANA-decaying: (a,8) =(1.2,1.4) DANA-decaying: (a,B) =(1.4,0.7) DANA-decaying: (a,B) =(1.4,0.8)
10° 10 seeds. 100 10 seeds. 100 = 10 seeds —— 10 seeds
107
107 102 107
107
1074 104 107+
~ 1075
) .
x 10° 106 10
1077
10+f —— Empirical 100 107 .
Simplified ODE 10
__ Empirical exp = -0. 94 e I Empirical exp = -0.95, 107 Empiricalexp=-1.04, | | Empirical exp
Theory exp = Theory exp =-0.97 10 Theory exp
107 10° 107 10° 107 10° 10° 107 10° 10t 107 10° 107 10° 101 10° 10° 107 10° 101
Flops Flops Flops Flops

Figure 32: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. See Figure 31 for

details.

180

Risk

Risk

Risk

Risk

Risk

Risk

Risk

DANA-decaying: (a,B) =(1.4,0.9)

DANA-decaying: (a,B8) =(1.4,1.2)

10 seeds

DANA-decaying: (a,8) =(1.4,1.0)

10 seeds

DANA-decaying: (a,B8) =(1.4,1.1)

i 10 seeds.

10 seeds

107" 10" 107"
103 107% 107
107 1075 10°%
1077 1077 1077
—— Empirical el 1o o o
Simplified ODE &
Empirical ex Empirical exp = -1.05, Empirical exp = -1.04, ~ Empirical exp
,,,,,,, S p— T R Y —
Theory exp 10 Theory exp = -1.04 10 Theory exp = -1.04 = 10 Theory exp
10° 10° 107 10° 10" 10° 10° 107 10° 10" 107 10° 107 10° 101 10° 10° 107 10° 10"
DANA-decaying: (a,B)=(1.4,1.3) DANA-decaying: (a, 8) = (1.4,1.4) DANA-decaying: (a, 8) =(1.6,0.7) DANA-decaying: (a,) =(1.6,0.8)
10 seeds 10 seeds 10 seeds. e 10 seeds.
10 10 10 N
10 107 1073 h
10- 10-5 1075
107 10-7 1077
—— Empirical 1o 107 107
Simplified ODE
7777777 Empirical ex .| Empirical exp = 10| Empirical exp = -1.12, 101 Empirical exp
Theory exp 10 Theory exp = Theory exp = -1.10 Theory exp
167 16° 107 167 107 10° 10° 107 10° 107 10° 10° 107 10° 16T 10° 10° 107 107 107
DANA-decaying: (a, 8) = (1.6,0.9) DANA-decaying: (a, B) = (1.6, 1.0) DANA-decaying: (a,B) =(1.6,1.1) DANA-decaying: (@, 8) = (1.6,1.2)
s 10 seeds < Toseeds| 10T Toseeas| 20T 10 seeds.
107 N
10 ol N
107
107+ 107
10°%
10°¢. 107
107
107%. 10°%
—— Empirical 107
Simplified ODE 10710 10
7777777 Empirical ex 3 1 Empirical exp = -1.11, ____ Empirical exp = -1.11, ______ Empirical exp
Theory exp & Theory exp =-1.10 10712 Theory exp =-1.10 1072 Theory exp
10° 10° 107 10° 10% 10° 10° 107 107 107 10° 10° 107 107 10™ 10° 10° 107 10° 101
DANA-decaying: (a,8) = (1.6,1.3) DANA-decaying: (a, 8) = (1.6, 1.4) DANA-decaying: (a, 8) = (1.8,0.7) DANA-decaying: (a, 8) = (1.8, 0.8)
~ Toseeds| 101 Toseeds | 10°T g 10seeds| 107 10 seeds
N Hy
N 1072 1072 1072
107 107+ 1074
107% 107 10-6.
10°¢ 10-*- 10-¢.
—— Empirical o o
Simplified ODE G| 107 o
7777777 Empirical ex o _____ Empirical exp = Los| .. Empirical exp = -1.18, 10| ___ Empirical exp
Theory exp 1072 Theory exp = Theory exp =-1.16 Theory exp
10° 10° 107 10° 107 10° 10° 107 10° 10" 10° 10° 10° 10 10 10° 10° 10° 107 107
DANA-decaying: (a,B) =(1.8,0.9) DANA-decaying: (a,8) =(1.8,1.0) DANA-decaying: (a,8) =(1.8,1.1) DANA-decaying: (a,B)=(1.8,1.2)
10 seeds. 10° < 10 seeds. 10° 10 seeds 100 10 seeds.
1072 1072 1077
107 10°* 10
10°° 1076 107°-
107% 107¢ 107
—— Empirical Lo Lot Lo
Simplified ODE
7777777 Empirical ex 10-2| ___ Empirical exp = -1.17, 102 Empirical exp = -1.17, 102 Empirical exp = -1.
Theory exp Theory exp = -1.16 Theory exp =-1.16 Theory exp 116
16% 10° 16° 161 107 107 10° 10° 107 107 10° 106° 10° 107 167 10% 10° 10° 101 107
DANA-decaying: (a,8) =(1.8,1.4) DANA-decaying: (a, B) =(2.0,0.7) DANA-decaying: (a, B) = (2.0, 0.8) DANA-decaying: (a, 8) =(2.0,0.9)
10 seeds . 10 seeas 10 seeas 10 seeds.
10" R 10! = 107%
107 107> 107
107° 1075 107
107 1077 1077
10°° 107%- 107
—— Empirical
Simplified ODE hend | 1071 10718 10711
7777777 Empirical ex 17, STl ______ Empirical exp = ____ Empirical exp = -1.23, _____ Empirical exp
Theory exp 16 1072 Theory exp = 107 Theory exp =-1.22 1072 Theory exp
10° 10° 10° 101 167 10° 10° 10° 107 167 10° 10° 10° 107 1617 10° 10° 10° 10%0 107
DANA-decaying: (a, B) = (2.0,1.0) DANA-decaying: (a, B) = (2.0,1.1) DANA-decaying: (a,B) =(2.0,1.2) DANA-decaying: (a, B) = (2.0,1.4)
. 10 seeds I 10 seeds I = 10 seeds] 10 seeds
S 10 S 10 10-
W
- 107 107* 107
107° 107 1075
1077 1077 1077
107 1079 107%
—— Empirical
Simplified ODE 107 107 107
7777777 Empirical ex .| Empirical exp = -1.22, .| ___ Empirical exp = -1.22, 1o13] ... Empirical exp
Theory exp 10 Theory exp = -1.22 10 Theory exp =-1.22 Theory exp
10° 10° 10° 1010 0% 10° 10° 10° 10 072 10° 10° 10° 10 012 10° 10° 10° 107 012
Flops Flops Flops Flops

Figure 33: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. See Figure 31 for
details.

181

SGD: (@, 8) =(0.2,0.7)

SGD: (@, B) =(0.25,0.7)

SGD: (a, B) =(0.26,0.7)

SGD: (a, B) =(0.27,0.25)

1o¢| * Optimal Param Count 1o¢]| * Optimal Param Count 10+) % Optimal Param Count % Optimal Param Count
Empirical exp = 0.54 Empirical exp = 0.59 Empirical exp = 0.60 . Empirical exp = 0.58
Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.57 10 Theory exp = 0.50 i
o
€
H
°
o
L
2 . 9
% 10 10 10 o
&
&
o0 o7 g 5 o0 o7 T g o o7 o7 T R
SGD: (@, B) =(0.27,0.3) SGD: (a,B) =(0.27,0.4) SGD: (a,B) =(0.27,0.5) SGD: (a, B) = (0.27,0.6)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
10¢ Empirical exp = 0.54 10t Empirical exp = 0.52 10t Empirical exp = 0.55 G| 108 Empirical exp = 0.56
— Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.54
- -
€
H
2
o
o
L
9]
£10° 10 0
I
E 108
Tor 07 o o° 07 67 To° 07 o 3 Tor o7 o°
SGD: (a, B) =(0.27,0.7) SGD: (a, B) =(0.27,0.8) SGD: (a,B) =(0.27,0.9) SGD: (a,B)=(0.27,1.0)
1oe| * Optimal Param Count | * Optimal Param Count .| * optimal Param Count .| * optimal param Count
Empirical exp = 0.59 10 Empirical exp = 0.61 10 Empirical exp = 0.61 10 Empirical exp = 0.63
Theory exp = 057 Theory exp = 0.59 Theory exp = 0.60 Theory exp = 0.61
€
H
°
o
9]
-1
1]
£10°
I 108 100
c
&
10 o0 Ll 107 o7 1o 0 00 07
SGD: (a,8) =(0.27,1.1) SGD: (@, 8) =(0.28,0.7) SGD: (@,B)=(0.3,0.7) SGD: (@, B) =(0.4,0.7)
.| * Optimal Param Count .| * Optimal Param Count | # optimal Param count 10¢| * Optimal Param Count
10 Empirical exp = 0.63 1 Empirical exp = 0.50 10 Empirical exp = 0.59 Empirical exp = 0.59
Theory exp = 0.62 Theory exp = 0.58 Theory exp = 0.50 Theory exp = 0.50
o
€
H
°
o
191
-1
1]
£
©10° 100 10 10°
&
To° o7 o0 o7 e To7 L2 L3 o
SGD: (a,B)=(0.5,0.7) SGD: (a,8) =(0.6,0.7) SGD: (@, B) = (0.7, —0.15) SGD: (@, 8) =(0.7,-0.1)
10¢] * Optimal Param Count Lot % Optimal param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.56 Empirical exp = 0.5 100 Empirical exp = 0.43 10t Empirical exp = 0.43
Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.42 Theory exp = 0.42
- ‘e
€
3
°
o
L
1]
g 10° 10°
510 0
a
o o7 T o7 To7 T o o0 o7 T o0 o0
SGD: (a,B) =(0.7, —0.05) SGD: (a,B)=(0.7,0.0) SGD: (@, 8) =(0.7,0.2) SGD: (@, B) =(0.7,0.3)
% Optimal Param Count % Optimal Param Count 10¢| * Optimal Param Count % Optimal Param Count
1o¢| — Empirical exp = 0.44 104] _ Empirical exp = 0.42 Empircal exp = 0.41 1041 Empirical exp = 0.42
Theory exp = 0.42 Theory exp = 0.42 heory exp = 0.42 heory exp = 0.42
" -
€
H
o
O
o
9]
S
o s
% 10° 100 10 10°
&
&
167 T o0 o 0w 100 o7 o0 o 0T 100 07 00 o0 o0 10 T o0
SGD: (@, B) =(0.7,0.4) SGD: (a,B) =(0.7,0.5) SGD: (a,B) =(0.7,0.6) SGD: (a,8) =(0.7,0.7)
% Optimal Param Count .||+ optimal Param Count % Optimal Param Count % Optimal Param Count P
. Empirical exp = 0.43 10 Empirical exp = 0.45 10° Empirical exp = 0.48 o 10 Empirical exp = 0.49 e
10 Theory exp = 0.42 o Theory exp = 0.42 Theory exp = 0.46 Theory exp = 0.50
€ P
H
°
o
9]
-1
1]
E100 10°
I 100
&
Tor To7 Tor e 165 Tor o7 Tor 3 Tor 107 o0 o Tov o7 o0
Flops Flops Flops Flops

Figure 34:

SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal

for each value of flops using the loss curves from Figure 25. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.

182

SGD: (a,8) =(0.7,0.8) SGD: (a,8) =(0.7,0.9) SGD: (a,8) =(0.7,1.0) SGD: (a,8)=(0.7,1.1)

% Optimal Param Count Lo+ % Optimal param Count 101 % Optimal Param Count 10| Optimal Param Count
. Empirical exp = 0.51 Empirical exp = 0.55 Empirical exp = 0.54 Empirical exp = 0.54
10 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50
o
€
H
°
o
L
9]
&
S 100
&
o o0 o7 o0 o o0 o7 o o7 (3 o0 o7
SGD: (a,8)=(0.7,1.2) SGD: (@, 8)=(0.7,1.3) SGD: (a,B)=(0.7,1.4) SGD: (a,8) =(0.8,0.7)
10¢] % Optimal Param Count % Optimal Param Count % Optimal Param Count 1o+ % Optimal Param Count
Empirical exp = 0.53 10¢ Empirical exp = 0.58 " Empirical exp = 0.57 Empirical exp = 0.46
Theory exp = 0.50 Theory exp = 0.50 10 Theory exp = 0.50 Theory exp = 0.47
o
€
H
2
o
o
L
9]
£ 100
S
G 10 10°
&
100
0 o7 07 00 o7 16 v 0 e To° To7 To°
SGD: (a,8) =(0.9,0.7) SGD: (a,B)=(1.0,0.7) SGD: (a,8) =(1.0,0.8) SGD: (a,B)=(1.0,0.9)
* Optimal Param Count % Optimal Param Count % Optimal Param Count J % Optimal Param Count
. Empirical exp = 0.45 Empirical exp = 0.38 S| 100 Empirical exp = 0.43 . Empirical exp = 0.45
10 Theory exp = 0.44 i BT Theory exp = 0.41 - Theory exp = 0.44 100 Theory exp = 0.47 o
€
H
°
o
9]
-1
1]
% 100 100
o 100
c
&
(3 o0 107 o0 o (3 00 o7 o0 o0 o0 o0 107 o T 100
SGD: (a,8) =(1.0,1.0) SGD: (@,8)=(1.0,1.1) SGD: (a,B)=(1.0,1.2) SGD: (a,8) =(1.0,1.3)
Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.45 10¢ Empirical exp = 0.48 - . Empirical exp = 0.52 Empirical exp = 0.54
1ot Theory exp = 0.50 - Theory exp = 0.50 10 Theory exp = 0.50 100 Theory exp = 0.50
- - —
€
H
°
o
191
-1
1]
£
Cip 107 100 100
&
Tor o7 Tor o0 Tos o7 Tor 160 o7 16 o0 To7 t
SGD: (@,8)=(1.0,1.4) SGD: (@,B8)=(1.1,0.7) SGD: (@, 8)=(1.2,0.7) SGD: (a,8) =(1.2,0.8)
% Optimal Param Count | % optimal param count -+ % Optimal Param Count —“-. % Optimal Param Count
Empirical exp = 0.52 10 Empirical exp = 0.35 - Empirical exp = 0.32 Empirical exp = 0.41
10+ ™ Theory exp = 0.50 Theory exp = 0.39 Theory exp = 0.37 - Theory exp = 0.40
o
€
3
°
o
L
1] 100
£ 108
S
&
a
o o7 o & Tov To7 00 R o0 o0 o7 o0 100 T To7 o o
SGD: (a,8)=(1.2,0.9) SGD: (a,8)=(1.2,1.0) SGD: (a,8)=(1.2,1.1) SGD: (a,8)=(1.2,1.2)
101 % Optimal Param Count % Optimal Param Count % Optimal Param Count 3 % Optimal Param Count
Empirical exp = 0.42 104 Empirical exp = 0.41 o 10t Empirical exp = 0.49 Empirical exp = 0.50
Theory exp = 0.43 Theory exp = 0.45 Theory exp = 0.48 . Theory exp = 0.50
- L 10
€
H
o
O
o
9]
@
108
£
o 10°
& 100
&
108
o0 Ll 00 o o0 o 00 o0 00 o7 00 o o
SGD: (@,8)=(1.2,1.3) SGD: (a,B)=(1.2,1.4) SGD: (a,B)=(1.4,0.7) SGD: (a,B)=(1.4,0.8)
Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count El
Empirical exp = 0.50 Empirical exp = 0.53 Empirical exp = 0.31 Empirical exp = 031
Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.33 Theory exp = 0.36 e
2100
H
°
© 100
9]
-1
1]
£
I
e
&
100
Tor o7 o o0 1o 3 Tos To7 Tor 1o o0 Tos To7 Tor Tor o0
Flops Flops Flops Flops

Figure 35: SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal
for each value of flops using the loss curves from Figure 26. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.

183

SGD: (a,8) =(1.4,0.9) SGD: (a,8) =(1.4,1.0) SGD: (a.8) =(1.4,1.1) SGD: (a,8) =(1.4,1.2)

101 % Optimal Param Count d % Optimal Param Count * Optimal Param Count A * Optimal Param Count
Empirical exp = 0.39 10¢ Empirical exp = 0.40 10¢ Empirical exp = 0.41 Empirical exp = 0.44
Theory exp = 039 = 104 Theory exp = 0.46
- -
€
H
°
o
L
@,
10
£
o 10° 100
&
&
o0 o7 o0 T o0 T o7 o0 o o0 Tor v To7 T g o0
SGD: (a,8)=(1.4,1.3) SGD: (a,8)=(1.4,1.4) SGD: (@, B) =(1.6,0.7) SGD: (a,8) =(1.6,0.8)
% Optimal Param Count % Optimal Param Count % Optimal Param Count - % Optimal Param Count "
Empirical exp = 0.46 Empirical exp = 0.44 Empirical exp = 0.24 Empirical exp = 0.25
Theory exp = 0.48 Theory exp = 0.50 Theory exp = 0.30 sy Theory exp = 033 [r
o
€10t
H
2
o
o
L
9]
£
o
© 100
&
Tor o7 o° o7 o Tor 0 Tov o7 o o 10 1 100 10w o0 mon 17 10° 107 1or 10" 100 1o
SGD: (a,B)=(1.6,0.9) SGD: (a,B)=(1.6,1.0) SGD: (a,B)=(1.6,1.1) SGD: (a,B)=(1.6,1.2)
101 % optimal Param Count u .|+ optimal Param count + % Optimal Param Count % Optimal Param Count
Empirical exp = 0.27 10 Empirical exp = 0.30 Empirical exp = 0.32 - Empirical exp = 0.39
Theory exp = 0.36 Theory exp = 0.36 10 Theory exp = 0.41 - Theory exp = 0.43
2 104
H
°
o
9]
S .
100
£
o
s 100
10°
o 1or 107 10r 107 100 To0 1o 6 10r 107 10° 107 10° 100 o o0 100 o0 ot o7 o0 100 o0 o
SGD: (a,B) =(1.6,1.3) SGD: (a,8) =(1.6,1.4) SGD: (a,8)=(1.8,0.7) SGD: (a,B)=(1.8,0.8)
Optimal Param Count % Optimal Param Count % Optimal Param Count - % Optimal Param Count —-—-
Empirical exp = 0.41 Empirical exp = 0.53 Empirical exp = 0.24 Empirical exp = 0.26
Theory exp = 0.45 Theory exp = 0.47 Theory exp = 0.28 Theory exp = 0.31 -t
€
S0t
°
o
191
-1
1]
£
e
&
100
To7 Tor Too o0 o o7 16 it o0 o7 160 167 oo Tou 16w o7 160 To7 b R T
SGD: (@, B) =(1.8,0.9) SGD: (a,8) =(1.8,1.0) SGD: (a,8)=(1.8,1.1) SGD: (@,B8)=(1.8,1.2)
10t % Optimal Param Count - | % optimal param count 1 % Optimal Param Count - % Optimal Param Count
Empirical exp = 0.29 . 10 Empirical exp = 0.32 104 Empirical exp = 0.30 ——- Empirical exp = 0.32 -
" Theory exp = 0.33 Theory exp = 0.36 Theory exp = 0.38 10t Theory exp = 0.40 S—]
- B
€
3
°
o
L
Sy
g0 100
© 100
&
a
To7 o0 R o0 fon 1@ To7 00 g o0 1ot 1o¢ o7 100 o0 LT T o7 T o7 U LT T
SGD: (@, B) =(1.8,1.4) SGD: (@, 8) =(2.0,0.7) SGD: (a,8) =(2.0,0.8) SGD: (a,8) =(2.0,0.9)
% Optimal Param Count % Optimal Param Count - % Optimal Param Count - % Optimal Param Count w
Empirical exp = 0.44 Empirical exp = 018 Empirical exp = 0.21 Empirical exp = 0.26
Theory exp = 0.44 eory exp = 026 Theory exp = 0.29 | Theory exp = 0.31
20 100
S . —
8 10°
- 100
4] 6x 102
S
9]
£
I ax10?
S0
& 3x10°
- 2x10°
07 o8 o0 o0 o 107 00 o0 o0 1ot 1% o 00 o o0 1ot 1% o7 T o0 o0 1ot 100
SGD: (a,f) =(2.0,1.0) SGD: (a,8) = (2.0,1.1) SGD: (a,) = (2.0,1.2) SGD: (a,B) =(2.0,1.4)
Optimal Param Count e 101 optimal Param Count e % Optimal Param Count % Optimal Param Count
Empirical exp = 0.27 Empirical exp = 0.29 Empirical exp = 0.38 * 1 Empirical exp = 0.36
Theory exp = 033 - heory exp = 0.35 10¢ Theory exp = 0.37 *] Theory exp = 0.41 o b oo s
€
H
°
o
8o
£ w .
10
e
&
To7 Tor 7o oo fou 1= To7 Tor o7 oo fou 16w To7 Tov To? oo Tou 16w o7 160 Tor oo Tou 1o¢
Flops Flops Flops Flops

Figure 36: SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal
for each value of flops using the loss curves from Figure 27. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.

184

DANA-constant: (a, 8) =(0.2,0.7)

DANA-constant: (a, B) = (0.25,0.7)

DANA-constant: (a, B) = (0.26,0.7)

DANA-constant: (a, 8) = (0.27, 0.25)

% Optimal Param Count 1oe| % Optimal Param Count 1ot % Optimal Param Count % Optimal Param Count
104] __ Empirical exp = 0.56 - ___ Empirical exp = 0.59 ___ Empirical exp = 059 10 __ Empirical exp = 0.51
Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.57 Theory exp = 0.50
- e
€
H
°
o
£
9]
€100 100 109
o 108
&
&
v o7 g o o0 o7 o o o0 o7 T o0 o7 o0
DANA-constant: (a, 8) =(0.27,0.3) DANA-constant: (a, 8) = (0.27,0.4) DANA-constant: (a, 8) = (0.27,0.5) DANA-constant: (a, 8) = (0.27,0.6)
% Optimal Param Count 1o¢| % Optimal Param Count % Optimal Param Count % Optimal Param Count
100 Empirical exp = 0.53 Empirical exp = 0.49 Empirical exp = 0.57 100 Empirical exp = 0.5
" Theory exp = 050 ~— Theory exp = 0.50 104 = Theory exp = 050 " Theoryexp =054
" L
€ ™
H
°
o
g
£
109 100 100
o 100
&
&
o0 o7 o0 T To7 T 105 v o7 o0 05 o0 To7 T
DANA-constant: (a, B) =(0.27,0.7) DANA-constant: (a, 8) = (0.27,0.8) DANA-constant: (a, 8) = (0.27,0.9) DANA-constant: (a, 8) =(0.27,1.0)
.| % optimal param Count .| % optimal Param Count | % optimal Param Count .| * optimal Param Count
101 __ Empirical exp = 0.59 101 __ Empirical exp = 0.61 101 __ Empirical exp = 0.61 10 __ Empirical exp = 0.62
Theory exp = 0.57 Theory exp = 0.59 Theory exp = 0.60 Theory exp = 0.6
€
H
°
o
3
-1
1]
£
© 100 108 108 100
c
&
100 07 107 07 00 0 107 0
DANA-constant: (a, 8) =(0.27,1.1) DANA-constant: (a, B) =(0.28,0.7) DANA-constant: (a, B) =(0.3,0.7) DANA-constant: (a, 8) = (0.4,0.7)
.| % optimal param Count | % optimal param count .| * optimal Param Count 10¢| * Optimal Param Count
101 __ Empirical exp = 063 101 __ Empirical exp = 059 10 __ Empirical exp = 0.59 ___ Empirical exp = 0.58
Theory exp = 0.62 Theory exp = 0.58 Theory exp = 0.50 Theory exp = 0.50
o
€
H
°
o
£
1]
£
© 10° 100 100 100
&
Tov o7 Tov o7 Tov o7 fta e To7
DANA-constant: (a, 8) =(0.5,0.7) DANA-constant: (a, 8) = (0.6,0.7) DANA-constant: (a, 8) = (0.7, =0.15) DANA-constant: (a, 8) = (0.7, —0.1)
10¢] * Optimal Param Count 10¢] * Optimal Param Count % Optimal Param Count % Optimal Param Count
__ Empirical exp = 0.56 __ Empirical exp = 0.54 101 __ Empirical exp = 0.46 10 __ Empirical exp = 0.46
Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.45 Theory exp = 0.45
€
H
°
o
g
1]
£ 108 100
I
510
a
o o7 o> T o7 To7 o0 o Tor T To7 00 g T
DANA-constant: (a, 8) = (0.7, —0.05) DANA-constant: (@,) = (0.7, 0.0) DANA-constant: (a, 8) = (0.7,0.2) DANA-constant: (a, 8) = (0.7,0.3)
% Optimal Param Count % Optimal Param Count 10¢| * Optimal Param Count .| % optimal Param Count
10 __ Empirical exp = 045 10 __ Empirical exp = 0.45 __ Empirical exp = 0.41 10 __ Empirical exp = 0.42
Theory exp = 0.45 Theory exp = 0.45 Theory exp = 0.45 Theory exp = 0.45
€
H
o
o
3
S
9]
£10° 100 100 108
o
&
&
o0 Ll o0 o0 o0 o7 o8 o 100 1o o8 o0 To° o7 00 o0
DANA-constant: (a,) =(0.7,0.4) DANA-constant: (a,) =(0.7,0.5) DANA-constant: (a,) =(0.7,0.6) DANA-constant: (a,8) = (0.7,0.7)
Optimal Param Count | * Optimal Param Count | % optimal param Count % Optimal Param Count .
100 Empirical exp = 0.43 Empirical exp = 0.43 10 Empirical exp = 0.47 100 Empirical exp = 0.49 -
— Theory exp = 0.45 =] 104 == Thcory exp = 0.45 - ~— Theory exp = 0.4 . A ~— Theory exp = 0.5
= -
H
°
o
o}
-1
1]
E10
o
©
&
Tor To7 Tor o7 165 Tor To7 1o Tor 10 o8 o7 o0 165 Toe o7 o0
Flops Flops Flops Flops

Figure 37: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 28. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.

185

DANA-constant: (a, 8) =(0.7,0.8) DANA-constant: (a,) =(0.7,0.9) DANA-constant: (@, 8) = (0.7,1.0) DANA-constant: (@, 8)=(0.7,1.1)

% Optimal Param Count .| % optimal param Count 10| % Optimal Param Count 100 % Optimal Param Count
___ Empirical exp = 0.51 0% Empirical exp = 0.55 ___ Empirical exp = 0.54 ___ Empirical exp = 0.54
10 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50
o
€
]
o
o
£
o
£ 3
g 10 10
&
10° 10° 107 10° 10° 10° 107 10° 107 0% 10° 107
DANA-constant: (a,) =(0.7,1.2) DANA-constant: (a,8) =(0.7,1.3) DANA-constant: (@,) = (0.7, 1.4) DANA-constant: (@,) =(0.8,0.7)
104 % Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.53 10t Empirical exp = 0.58 . Empirical exp = 0.57 Empirical exp = 0.43
~—— Theory exp = 0.50 —— Theory exp = 0.50 10'1 == Theory exp = 050 104~ Theory exp = 043 -
€
H
o
o
o
L
@
£
5 100
10°
10° 10° 107 10° 10° 107 10° 107 0% 10° 107 10° 10°
DANA-constant: (a,) =(0.9,0.7) DANA-constant: (a,) =(1.0,0.7) DANA-constant: (a,) =(1.0,0.8) DANA-constant: (@, 8) =(1.0,0.9)
10¢] * Optimal Param Count % Optimal Param Count - % Optimal Param Count % Optimal Param Count
Empirical exp = 0.40 - 104 Empirical exp = 0.36 " Empirical exp = 035 Empirical exp = 0.40 .
= Theory exp = 0.42 T — Theory exp = 0.40 104 = Theory exp = 0.40 | 04| = Theory exp = 0.40 S
= -
H
o
o
3
L
2 3
% 10 10° 10 100
s
&
10° 10° 107 10° 10° 10° 10° 107 10° 10° 10 0° 10° 107 10° 10° 10 10° 10° 107 10° 10°
DANA-constant: (@, 8) =(1.0,1.0) DANA-constant: (a,) =(1.0,1.1) DANA-constant: (a, 8) =(1.0,1.2) DANA-constant: (a, 8) =(1.0,1.3)
% Optimal Param Count Optimal Param Count # Optimal Param Count Optimal Param Count
Empirical exp = 0.40 Empirical exp = 0.49 Empirical exp = 0.49 Empirical exp = 0.50 Py
" Theory exp = 0.40 P | T Theory exp = 0.40 i ™ Theory exp = 0.40 104} T Theory exp = 0.40 s
o 10° - 10
c 10" -
] .
o
o
o}
L
o
&
10° i
100 s 10
10
&
10° 10° 107 10° 10° 10° 10° 107 10° 10° 10° 10° 107 10° 10° 10° 10° 107 10°
DANA-constant: (a, 8) =(1.0,1.4) DANA-constant: (a, 8) =(1.1,0.7) DANA-constant: (a, 8) =(1.2,0.7) DANA-constant: (a, B) =(1.2,0.8)
* Optimal Param Count 10°4 * Optimal Param Count * Optimal Param Count - * Optimal Param Count - -
Empirical exp = 0.50 Empirical exp = 0.3 Empirical exp = 0.27 Empirical exp = 0.30
100 T Theory exp = 0.40 > - T Theory exp = 0.38 - T Theory exp = 0.37 - " Theory exp = 0.37 -
€
E
2
o
g
@
£
O
510
&
10° 10° 107 106° 10° 10° 107 10° 1067 10 10° 10° 107 106° 1067 107 10° 10° 107 10° 10° 10
DANA-constant: (a,) =(1.2,0.9) DANA-constant: (a, 8) = (1.2,1.0) DANA-constant: (a,8) =(1.2,1.1) DANA-constant: (a,8) =(1.2,1.2)
% Optimal Param Count - - % Optimal Param Count - - % Optimal Param Count - % Optimal Param Count Ap—
__ Empirical exp = 028 ___ Empirical exp = 0.28 __ Empirical exp = 0.27 __ Empirical exp = 028
Theory exp = 0.37 Theory exp = 037 S Theory exp = 0.37 Theory exp = 0.37
o - - g
€
S
o
o
U 9
g 10 10
o
£
o
s
&
10° 10° 107 10° 10° 101 10° 10° 107 10° 10° 101 10° 10° 107 10° 107
DANA-constant: (a,) =(1.2,1.3) DANA-constant: (a,) =(1.2,1.4) DANA-constant: (a,8) =(1.4,0.7) DANA-constant: (a,) =(1.4,0.8)
Optimal Param Count - * Optimal Param Count - # Optimal Param Count * Optimal Param Count -
0% Empirical exp = 0.37 s 104 Empirical exp = 0.42 e Empirical exp = 0.33 Empirical exp = 0.33
— Theory exp = 0.37 "~ Theory exp = 0.37 "~ Theory exp = 0.34 = Theory exp = 0.34
€
]
o
o -
o} 100 100
L
o
£10°
©
o
&
10° 10° 107 10° 10° 10° 10° 107 10° 10° 10° 107 10° 10° 10 101 10° 107 10° 10° 10 10"
Flops Flops Flops Flops

Figure 38: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 29. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.

186

DANA-constant: (a,) = (1.4,0.9) DANA-constant: (a, 8) = (1.4,1.0) DANA-constant: (a,8) =(1.4,1.1) DANA-constant: (a,8) =(1.4,1. 2)
% Optimal Param Count - * Optimal Param Count - * Optimal Param Count - Optimal Param Count
__ Empirical exp = 033 , __ Empirical exp = 0.33 ‘ — Empiical exp = 0.33 . __ Empirical exp = 030 -
Theory exp = 0.3 Theory exp = 0.34 Theory exp = 0.3 Theory exp = 0.34
- -
€
]
o
o
g
o
£
o
s
&
106° 107 10° 10° 1010 16 10° 107 10° 107 1610 16T 10° 107 10° 107 167 01 10° 107 10° 10° 167 0T
DANA-constant: (a,8) =(1.4,1. 3) DANA-constant: (@, 8) = (1.4, 1. 4) DANA-constant: (a, 8) = (1.6, 0. 7) DANA-constant: (@, B) = (1.6, 0. 8)
% Optimal Param Count % Optimal Param Count 10° % Optimal Param Coun(10 * Optimal Param Count
__ Empirical exp = 031 } __ Empirical exp = 031 L __ Empirical exp . ___ Empirical exp = 032 ;
Theory exp = 033 Theory exp = 0.3 Theory o2 033 Theory exp = 0.32
" "
€
H
o
o
o
Ba0®
@
£
o
s
&
10° 107 10° 107 101 10 10° 107 10° 10° 101 10% 107 10° 10° 10% 107 107 107 10° 107 10 10 107
DANA-constant: (a, B) =(1.6,0.9) DANA-constant: (a,) =(1.6,1.0) DANA-constant: (a,8) =(1.6,1.1) DANA-constant: (a, B) =(1.6,1.2)
101 % Optimal Param Count = 10'F5 optimal Param Count =] 10" % optimal Param Count w104 optimal Param Count -t
Empirical exp = 0.33 Empirical exp = 0.32 Empirical exp = 0.32 Empirical exp = 0.32
™ Theory exp = 0.32 1 ™ Theory exp = 0.32 T — Theory exp = 0.32 1 " Theory exp = 0.32 1
€
H
o
o
3
O
10
£
o
s
&
107 10° 10° 101 10 107 107 10° 107 10 101 101 107 10° 10° 10 107 107 107 10° 10° 101 10 107
DANA-constant: (@, 8) =(1.6,1.3) DANA-constant: (a, B) =(1.6,1.4) DANA-constant: (a, 8) =(1.8,0.7) DANA-constant: (a, B) =(1.8,0.8)
101 % Optimal Param Count s | 10T 4 Optimal Param Count - % Optimal Param Count v # Optimal Param Count 1
Empirical exp = 0.32 Empirical exp = 0.32 Empirical exp = 0.32 . ___ Empirical exp = 033 -
" Theory exp = 0.32 1 ™ Theory exp = 0.32 T Theory exp = 0.30 Theory exp = 0.30
o
=
]
o
o
o}
L
2w
o
&
107 10° 10° 1610 16 107 107 10° 107 10 017 1017 10° 10° 10 101 107 10° 10° 101 017 107
DANA-constant: (a,8) = (1.8, 0. 9) DANA-constant: (a,8) = (1.8, 1. 0) DANA-constant: (a,8) = (1.8, 1. l) DANA-constant: (a,8) = (1.8, 1. 2)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.32 - Empirical exp = 0.32 - Empirical exp = 0.29 Empirical exp = 0.30
= Theory exp = 0.30 — Theory exp = 0.30 — Theory exp = 0.30 -y — Theory exp = 0.30 g
€
E
2
o
£,
3 10
£
o
s
&
106° 10° 161 107 167 10° 10° 167 104 1617 10° 1067 10 10% 107 10° 16° 1610 10% 167
DANA-constant: (a,8) =(1.8,1.4) DANA-constant: (@, B) = (2.0,0.7) DANA-constant: (a, B) = (2.0,0.8) DANA-constant: (a, 8) =(2.0,0.9)
% Optimal Param Count 1 % Optimal Param Count “ % Optimal Param Count - % Optimal Param Count b
__ Empirical exp = 031 - __ Empirical exp = 0.32 __ Empirical exp = 031 ___ Empirical exp = 031
Theory exp = 0.30 Theory exp = 0.2 1 2 Theory exp = 0.20
o
€
S
o
o
9] 10 100
g 100
£
o
s
&
10° 10° 100 107 107 10° 107 10 101 101 10° 10° 10 100 107 10° 10° 101 100 107
DANA-constant: (a, 8) =(2.0,1.0) DANA-constant: (a, 8) =(2.0,1.1) DANA-constant: (a, B) = (2.0, 1. 2) DANA-constant: (a, 8) =(2.0,1.4)
Optimal Param Count i * Optimal Param Count " # Optimal Param Count * Optimal Param Count
— Empiicalexp = 031 ___ Empirical exp = 0.31 ___ Empirical exp = 031 ___ Empirical exp = 029
Theory exp = 3 Theory exp = 0.29 4 heory exp = 0.28 4 Theory exp = 0.29 -
€
]
o
o
S
o
€
©
o
&

T3

Flops

o

Tom

g Tor

Flops

o ¢t

To° o

Flops

Tow

o

Flops

Tom Tom

Figure 39: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 30. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.

187

DANA-decaying: (a,8) =(0.2,0.7) DANA-decaying: (a, B) =(0.25,0.7) DANA-decaying: (a, B) =(0.26,0.7) DANA-decaying: (a, 8) = (0.27,0.25)

% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
100 __ Empirical exp = 0.53 104 __ Empirical exp = 0.53 104 __ Empirical exp = 053 .| Empirical exp = 0.58
Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.57 10° Theory exp = 0.50 L
o
€
]
o
o
£
@
€10
o
s
&
10° 107 10° 10° 106° 107 10° 0> 10° 107 10° 107 106° 10°
DANA-decaying: (a, B) =(0.27,0.3) DANA-decaying: (a, B) =(0.27,0.4) DANA-decaying: (a, B) =(0.27,0.5) DANA-decaying: (a, B) = (0.27,0.6)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
10%f __ Empirical exp = 0.54 10°f __ Empirical exp = 0.50 10°f __ Empirical exp = 0.52 104}/ . Empirical exp = 0.54
Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.50 Theory exp = 0.54 —
. ¢ -
€ -
H
2
o
g
@
€100 10° 107
o
© 10°
&
10° 107 10° 107 10° 107 10° 10° 107 10° 0% 10° 107 10°
DANA-decaying: (a, 8) = (0.27,0.7) DANA-decaying: (a, 8) = (0.27, 0.8) DANA-decaying: (a, 8) = (0.27,0.9) DANA-decaying: (a, 8) = (0.27,1.0)
Optimal Param Count Optimal Param Count Optimal Param Count % Optimal Param Count
Empirical exp = 0.58 Empirical exp = 0.57 Empirical exp = 0.56 Empirical exp = 0.55 -
104] T Theory exp = 0.57 104] T Theory exp = 0.59 e | 10¢] T Theory exp = 0.60 | 10e] T Theory exp = 0,61 -
€
H
o
o
3
L
o
£
o 100 108 100
s
&
10° 107 10° 10° 107 10° 10° 107 10°
DANA-decaying: (a,B) =(0.27,1.1) DANA-decaying: (a, B) =(0.28,0.7) DANA-decaying: (a,8) =(0.3,0.7) DANA-decaying: (a,B8) =(0.4,0.7)
% Optimal Param Count % Optimal Param Count % Optimal Param Count 10¢] * Optimal param Count
104} ___ Empirical exp = 0.63 ___ Empirical exp = 0.58 ___ Empirical exp = 0.53 ___ Empirical exp = 0.54.
Theory exp = 0.62 . Theory exp = 0.58 108 Theory exp = 0.50 Theory exp = 0.50
10 e
o
=
]
o
o
£
o
€
&
10° 107 10° 10° 107
DANA-decaying: (a,8) = (0.5,0.7) DANA-decaying: (a,8) = (0.6,0.7) DANA-decaying: (a,8) = (0.7, —0.15) DANA-decaying: (a,B8) = (0.7, —0.1)
104{ * Optimal Param Count 100 * Optimal Param Count. * Optimal Param Count % Optimal Param Count
Empirical exp = 0.53 Empirical exp = 0.53 Empirical exp = 0.46. 10¢ Empirical exp = 0.49
T Theory exp = 0.50 "~ Theory exp = 0.54 10°f = Theory exp = 0.48 B T Theory exp = 0.48
€
E
2
o
g
£
3 10°
g ‘“
5 10
&
10° 106° 107 106° 107 107 10° 107 167 10° 107 106° 107
DANA-decaying: (a,8) = (0.7, —0.05) DANA-decaying: (a, 8) = (0.7,0.0) DANA-decaying: (a, 8) =(0.7,0.2) DANA-decaying: (a,) =(0.7,0.3)
1o¢| % optimal Param Count % Optimal Param Count ge| % Optimal param count 10¢] * Optimal Param Count
___ Empirical exp = 0.46 10¢) . Empirical exp = 0.49 0% Empirical exp = 0.47 ___ Empirical exp = 0.46
Theory exp = 0.48 Theory exp = 0.48 Theory exp = 0.48 cory exp = 0.48
€
S
o
o
3
8
o
£10° 100 10° 10°
o
s
&
10° 107 108 107 10° 107 10° 107 10° 10° 107 10° 0° 10° 107 10°
DANA-decaying: (a,8) =(0.7,0.4) DANA-decaying: (a,) =(0.7,0.5) DANA-decaying: (a,) =(0.7,0.6) DANA-decaying: (@, 8) =(0.7,0.7)
10¢| * Optimal Param Count 1oe| * Optimal Param Count Optimal Param Count w 10¢|. * Optimal Param Count
___ Empirical exp = 0.45 ___ Empirical exp = 0.47 - 10¢] . Empirical exp = 0.50 ___ Empirical exp = 053
Theory exp = 0.48 Theory exp = 0.48 T Theory exp = 0.52 - Theory exp = 0.56
2 -
]
o
o
o}
L
o
€ 100
100 .
5 10
&
10° 10° 107 10° 10° 10° 107 10° 0" 10’ 10° 10° 3
Flops Flops Flops Flops

Figure 40: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 31. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.

188

DANA-decaying: (a, 8) = (0.7, 0.8)

DANA-decaying: (@, 8) = (0.7,0.9)

DANA-decaying: (a,8) =(0.7,1.0)

DANA-decaying: (a,8) =(0.7,1.1)

Optimal Param Count

% Optimal Param Count

10

*

Optimal Param Count

% Optimal Param Count

10*
___ Empirical exp = 0.53 ___ Empirical exp = 0.53 ___ Empirical exp = 0.54 __ Empirical exp = 0.53
Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.56 £ Theory exp = 0.56
o
€
]
o
o
£
o
£
e .
510 10
&
10° 107 10° 106° 107 0° 106° 107 10° 10° 107
DANA-decaying: (a,8) =(0.7,1.2) DANA-decaying: (@, 8) = (0.7,1.3) DANA-decaying: (a,8) =(0.7,1.4) DANA-decaying: (a, B) =(0.8,0.7)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
10°f __ Empirical exp = 0.57 10 __ Empirical exp = 056 104} ___ Empirical exp = 0.56 10%f __ Empirical exp = 0.51
Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.56 Theory exp = 0.5
= - *
€
H
o
o
o
L
@
£ o
o
© 107
&
10°
10° 10° 107 10° 107 10° 107 10° 10° 107 10°
DANA-decaying: (a,8) =(0.9,0.7) DANA-decaying: (a,8) =(1.0,0.7) DANA-decaying: (a,8) =(1.0,0.8) DANA-decaying: (a,8) =(1.0,0.9)
104] * Optimal Param Count % Optimal Param Count 10{ % Optimal Param Count % Optimal Param Count
Empirical exp = 0.48 Empirical exp = 0.45 Empirical exp = 0.48 100 Empirical exp = 0.53 R -
™ Theory exp = 0.53 v Al 1044 = Theory exp = 0.51 ™ Theory exp = 0.55 — Theory exp = 0.57
2 L
H
o
o
3
°
£10 g 10 100
g 10
s
&
10° 10° 107 10° 10° 107 10° 10° 10° 107 10° 0% 10° 107 10°
DANA-decaying: (a,B) =(1.0,1.0) DANA-decaying: (a,8) =(1.0,1.1) DANA-decaying: (a,8) =(1.0,1.2) DANA-decaying: (a,B8) =(1.0,1.3)
% Optimal Param Count -+ % Optimal Param Count % Optimal Param Count % Optimal Param Count
10¢] __ Empirical exp = 0.52 - __ Empirical exp = 054 __ Empirical exp = 0.54 __ Empirical exp = 0.53
Theory exp = 0.60 10t Theory exp = 0.60 S Theory exp = 0.60 S Theory exp = 0.60
= -
]
o
o
o}
L
o
£
S 108 108 100
&
10° 107 10° 10° 107 10° 10° 107 10° 10° 107 10°
DANA-decaying: (a,B)=(1.0,1.4) DANA-decaying: (a,8)=(1.1,0.7) DANA-decaying: (a,8)=(1.2,0.7) DANA-decaying: (a,B) =(1.2,0.8)
% Optimal Param Count % Optimal Param Count " 10¢| * Optimal Param Count % Optimal Param Count
Empirical exp = 0.53 104 Empirical exp = 0.46 s Empirical exp = 0.42 Empirical exp = 0.47 - -
1oe| T Theory exp = 0.60 e ~ Theory exp = 0.50 " Theory exp = 0.48 — A 104~ Theory exp = 0.51 i s
2 e
E
2
o
g
@
£ 109
O
s
&
106° 107 10° 10° 107 10° 1067 10° 107 106° 10° 107
DANA-decaying: (a,) =(1.2,0.9) DANA-decaying: (a, 8) = (1.2,1.0) DANA-decaying: (a,B8) =(1.2,1.1) DANA-decaying: (a,8) =(1.2,1.2)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
104 __ Empirical exp = 0.48 ___ Empirical exp = 0.47 ___ Empirical exp = 0.46 __ Empirical exp = 0.48
Theory exp = 0.54 10t Theory exp = 0.57 1ot heory exp = 0.59 Theory exp = 0.61
2 10°
S
o
o
e
Q
8
o
£
o
© 107
&
10° 100
10° 107 10° 10° 10° 107 10° 107 10° 107 10° 10°
DANA-decaying: (a,B8) =(1.2,1.3) DANA-decaying: (a,B) =(1.2,1.4) DANA-decaying: (a,B) =(1.4,0.7) DANA-decaying: (a,8) =(1.4,0.8)
Optimal Param Count - Optimal Param Count 0%} & Optimal Param Count % Optimal Param Count
104} ___ Empirical exp = 0.52 — 104} ___ Empirical exp = 0.61 ___ Empirical exp = 0.41 10% _ Empirical exp = 0.42
Theory exp = 0.61 Theory exp = 0.6 heory exp = 0.37 Theory exp = 0.37
€
]
o
o
o}
L
o
€
©
o
&
10°
10° 10° 10° 10° 107 10° 101 10° 107 10° 10

107
Flops

107
Flops

Tor
Flops

10°
Flops

Figure 41: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 32. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.

189

DANA-decaying: (a,B) =(1.4,0.9) DANA-decaying: (a,B)=(1.4,1.0) DANA-decaying: (a,8)=(1.4,1.1) DANA-decaying: (a,B)=(1.4,1.2)

% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
10t — Empirical exp = 0.43 ___ Empirical exp = 0.43 ___ Empirical exp = 0.43 __ Empirical exp = 0.40
Theory exp = 0.37 10¢ Theory exp = 0.37 Theory exp = 0.37 . Theory exp = 0.37 .
= - 100 100
€
H
°
o
£
o
Ew 100
o 100
5 100
106° 107 10° 10° 1010 106° 107 106° 10° 161 10° 107 10° 1067 107 10° 107 10° 10° 107
DANA-decaying: (a,8) =(1.4,1.3) DANA-decaying: (a,B) =(1.4,1.4) DANA-decaying: (a,8) =(1.6,0.7) DANA-decaying: (a, B) = (1.6, 0.8)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.38 Empirical exp = 0.37 10¢ Empirical exp = 0.38 Empirical exp = 0.39
T Theory exp = 0.37 T Theory exp = 0.37 T Theory exp = 0.35 101~ Theory exp = 0.35
4w 10* 104
€
H
o
o
o
L
9]
£
I 108 100
S 100
10° 107 10° 107 1010 10° 107 10° 10° 101 107 10° 10° 107 107 107 10° 107 100 107
DANA-decaying: (a, 8) = (1.6,0.9) DANA-decaying: (a, 8) = (1.6, 1.0) DANA-decaying: (a,8) = (1.6,1.1) DANA-decaying: (a, 8) = (1.6, 1.2)
Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 038 i Empirical exp = 0.38 Empirical exp = 0.34 -~ [Empirical exp = 034 -
104} = Theory exp = 0.35 - o — Theory exp = 0.35 - Loo| T heoryexp = 035 — Theory exp = 0.35
108
€
H
o
o
3
-1
o
£
S 100
&
10°
107 10° 10° 101 10 107 10° 10° 10 101 107 10° 10° 10 107 107 10° 10° 10 107
DANA-decaying: (a,) =(1.6,1.3) DANA-decaying: (a, 8) =(1.6,1.4) DANA-decaying: (a,8) =(1.8,0.7) DANA-decaying: (a,B) =(1.8,0.8)
% Optimal Param Count Optimal Param Count # Optimal Param Count % Optimal Param Count
Empirical exp = 033 Empirical exp = 0.33 L Empirical exp = 0.35 . Empirical exp = 0.32 P ,..,
" Theory exp = 0.35 T Theory exp =035 101} ™ Theory exp = 0.32 <] T Theory exp = 0.32
o 100 o ar 10
€
H
o
o
o}
-1
o
£
e
&
10° 10°
107 10° 10° 1010 16 107 10° 10° 10 161 10° 10° 10 101 107 10° 10° 101 017 107
DANA-decaying: (a,8) =(1.8,0.9) DANA-decaying: (a,B) =(1.8,1.0) DANA-decaying: (a,8)=(1.8,1.1) DANA-decaying: (a,B) =(1.8,1.2)
% Optimal Param Count % Optimal Param Count % Optimal Param Count % Optimal Param Count
Empirical exp = 0.33 Empirical exp = 0.32 Empirical exp = 0.32 Empirical exp = 0.31
T Theory exp = 0.32 - T Theory exp = 0.32 " T Theory exp = 0.32 "~ Theory exp = 0.32 —
o 104 10¢ 100 100
3
°
o
g
1]
£
o
&
a
10° 10° 10° 10°
106° 10° 161 107 167 10° 10° 167 104 1617 10° 1067 10 10% 107 10° 16° 1610 10% 167
DANA-decaying: (a,B) =(1.8,1.4) DANA-decaying: (a,) =(2.0,0.7) DANA-decaying: (a, 8) =(2.0,0.8) DANA-decaying: (a, B) = (2.0, 0.9)
% Optimal Param Count % Optimal Param Count b d % Optimal Param Count —" % Optimal Param Count —-
___ Empirical exp = 0.30 104y ___ Empirical exp = 033 0%} Empirical exp = 0.31 10% ___ Empirical exp = 0.30 -
Theory exp = 0.32 — Theory exp = 030 Theory exp = 0.30 Theory exp = 0.30
o 10°
€
H
o
o
o
Q
S
o
£
o 10°
&
&
10°
10° 10° 100 107 107 10° 10° 10 100 101 10° 107 107 101 107 10° 10° 101 101 107
DANA-decaying: (a,) =(2.0,1.0) DANA-decaying: (a, 8) =(2.0,1.1) DANA-decaying: (a,8) =(2.0,1.2) DANA-decaying: (a,8) =(2.0,1.4)
Optimal Param Count —“" * Optimal Param Count —“—- Optimal Param Count - * Optimal Param Count -
104} __ Empirical exp = 0.30 - = 104} __ Empirical exp = 0.29 - 10*{ __ Empirical exp = 0.30 - 10t} __ Empirical exp = 0.29 -
Theory exp = 0.30 Theory exp = 0.30 Theory exp = 0.30 Theory exp = 0.30
€
H
o
o
o}
-1
o
€
I
e
&1
10° 10° 1010 10" 107 10° 10° 10 1o 107 10° 10° 10 10 107 10° 10° 101 0 107
Flops Flops Flops Flops

Figure 42: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 33. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.

190

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The statements in the abstract and introduction accurately reflect the paper’s
contributions. The introduction/abstract make clear which of the algorithms we have proven
(e.g., we only provide a heuristic for DANA-decaying). We also make it explicit in the
statements of the theorems, propositions, etc, the assumptions that we are making. We also
verify these assumptions in figures.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: At the end of the main paper, we provide a ‘Limitations’ section. In our
statements of propositions, theorems, etc, we make very clear our assumptions. For example,
we are explicit that we do create the deterministic system of ODEs directly from the
stochastic algorithms but rather SDE (see Section 3). Another example is in Section H,
we are clear that we can not solve the system of ODEs in (22) directly instead we solve a
simplified system of ODEs and show empirically that the solution to this simplified system
of ODEs matches DANA-constant.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

191

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems, lemmas, etc are proven in the Supplementary Materials. We
provide a short outline of the arguments in the main document. In some cases, e.g., DANA-
decaying, we only prove for 2ac > 1, but we make this explicitly clear in the main document
as well as in Section I. All assumptions are clearly stated in the statements of the theorems.
For example, we make it clear that one of our main theorems only holds for o > 1/4 and
o+ 1 > . We do provide numerical experiments which show that our results hold beyond
this setting.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In each of the figures, we provide an explicit description of how the image
was generated including the numerical set-up. In some cases, due to space limitations, the
experimental set-ups are discussed in detail in Section M. We provide a description of the
power law random features model (PLRF) in Section 2 and experimental details in Section K
which allows for reproducibility of our model on the synthetic data. We also provide explicit
description of the set-up for the LSTM experiments in Section L; we include a citation to
the datasets that we are using as well.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case

192

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments that require significant code. The
model we analyze is a simple power law random features model (PLRF) applied to synthetic
data. As such, the code can be readily produced by following the set-up seen in the captions
and/or our numerical simulations section, Section K. The model has been used before in
other papers. Additionally for the LSTM experiments, we are using a set-up similar to other
papers [54] and reproducing Fig. 2 with DANA-decaying and the C4 text dataset [84].

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so ’No’ is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

193

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The experimental design, including the power law exponents, hyperparameters,
fixed stepsizes, choices of d and v, and the numerical simulations for solving the ODEs are
all written in the captions of the figures and/or Section K, Section L or Section M. We also
intend to release the code for numerically computing the ODEs.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We record how we generate the empirical compute-optimal exponents using
statistical tools that were first deployed in other papers such as [50]. We report the number
of random seeds used for each PLRF experiment in Section K. We report R? values for all
LSTM loss exponents. We are careful to explain when and why the theory deviates from the
numerical simulations. Often this is due to finite d and v effects and the slow behavior of
the theory to the asymptotics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As this paper is about compute-optimal curves, we provide details on the
exact number of flops required to perform the experiments in Section K and Section L.
The compute resources are also well known in the community using the standard 6 N D
heuristic [50, 54] for flops.

Guidelines:

* The answer NA means that the paper does not include experiments.

194

9.

10.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics. We have made our utmost attempt to
adhere to the guidelines provided by NeurIPS. We do not use any human subjects nor any
datasets. We did our best to cite all the relevent related work. Given that our work is in the
foundational research, it is difficult to mitigate all the risks as the downstream effects of
theory are long, but we have done our best. The model is completely synthetic using the
standard stochastic momentum-type algorithms; thus we don’t, to the best of our knowledge,
anticipate any risks. We have included a "Broader Impact" statement at the beginning of the
"Supplemental Materials."

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work presented is purely foundational research and is not directly tied to
any particular application. We study a simple random features model with power law data
and target and we solve the model using a common algorithm SGD. Given the theoretical
nature of this work, we do not anticipate any direct ethical and societal issues. See our
Broader Impact Statement in the appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

195

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. The majority of the work is theoretical and
focuses on the power-law random features using only synthetic data generated from a
normal distribution. This model is a standard statistical model (e.g., least squares) which is
a textbook learning problem. The LSTM experiments serve only to illustrate the theoretical
results act as a proxy in a more realistic setting, and are trained on a public language dataset
(C4,[84]). We do not release any data or pretrained models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We acknowledge via citations that the model we study was introduced before
by others (e.g., Maloney, Roberts, and Sully paper). We cite the datasets we are using,
e.g., C4 language dataset [84] and software use [18]. We include an extensive relate work

section in Section A where we provide tables comparing sample complexity across multiple
algorithms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

196

paperswithcode.com/datasets

14.

15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not intend to release any new assets. The work is a theoretical analysis
of random features model along with limited language model experiments that illustrate the
theoretical behavior. We will release some code for solving the ODEs.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The work is purely theoretical on a simple model.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work does not involve crowdsourcing nor research with human subjects.
The data used in this work is generated synthetically.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

197

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core development of the research in this paper does not involve LLM as
any important, original, or non-standard components. LLMs were used to clean up some of
the grammar aspects as well as make our code more efficient, but the ideas and proofs (core
of this work) did not involve any LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

198

https://neurips.cc/Conferences/2025/LLM

	Introduction
	The power law random features model (PLRF)
	Continuized analysis of general stochastic momentum algorithms
	Deriving the scaling laws of (Gen-Mom-SGD) on the PLRF model
	Using Momentum to outscale SGD
	Related Work
	Additional Algorithm Set-up
	Stochastic gradient descent (SGD)
	SGD with constant learning rate

	Classic (constant) momentum (SGD-M)
	Dimension-Adapted Nesterov Acceleration: DANA-constant
	Data-Adapted Nesterov Acceleration (DANA-decaying): Time/Data-dependent learning rates
	Comparison with Schedule-free, AcSGD, Stochastic Nesterov and conjectured scaling laws

	Deriving ODEs and Volterra equations
	Derivation of exact ODEs and exact Volterra for the expected loss of meta stochastic momentum algorithm, (Gen-Mom-SGD)
	Derivation of the Exact ODEs.
	Derivation of the exact Volterra equation
	Deterministic Equivalent of the Expected Loss

	Simplified ODEs and simplified Volterra
	Derivation of the simplified ODEs.
	Simplified ODE as the large time limit of a coin-flip algorithm
	Derivation of the simplified Volterra equation

	Background on Volterra equations
	Reducing the complexity in the Volterra equation

	Measure of the Deterministic Equivalent
	Estimating F
	Upper bound on F
	Lower bound on F

	Estimating K
	Upper-bound on K
	Lower bound on K

	Forcing function
	Kernel function

	Compute-optimal curves - General
	Stochastic momentum (SGD-M), compute-optimal curves
	DANA-constant, compute-optimal curves
	DANA-decaying, compute-optimal curves
	Comparison of samples needed at compute optimality
	Summary on compute-optimality results

	Stochastic gradient descent (SGD)
	Volterra equation for SGD
	SGD with learning rate schedule
	Simplifying the Volterra equation for SGD with learning rate schedule
	Forcing function for SGD with decaying learning rate schedule
	Kernel function for SGD with decaying learning rate schedule

	Classic Stochastic Momentum (SGD-M)
	Solution to the ODE for classic stochastic momentum
	Asymptotics of the kernel and forcing functions, SGD-M

	DANA-constant
	Simplification of the ODE
	Getting asymptotic solutions of the ODE through Frobenius method
	Fundamental solutions around zero and infinity
	Behavior of 11(t, s) and 12(t, s)
	Summary
	Bounds at the singular point 2B[(1-)43B, (1+)43B]
	Estimation of the forcing function
	Asymptotics of F0(t)
	Asymptotics of Fac and Fpp

	Necessary conditions for stability
	Sufficient condition for stability: upper-bound on the kernel norm
	Upper-bound on the kernel function
	First term: SGD noise
	Second term: momentum noise
	Summary

	Verifying the hypothesis of Kesten's Lemma

	DANA-decaying
	Solutions to the simplified ODE
	Computing the forcing function
	Stability condition for DANA-decaying.
	Kernel function
	Extended heuristics for general algorithm
	Forcing function

	Stability conditions
	Kernel function

	Compute-optimality beyond stability and motivation for DANA-decaying schedule
	Strategy
	Stochastic Gradient Descent
	DANA constant
	DANA-decaying

	Power-Law Random Features Experiments & Numerical Simulations
	Power-Law Random Features Experiment Details
	Measuring the Empirical Scaling Law Exponents: Chinchilla Approach 1
	Computing the deterministic equivalent for
	Implementation of the ODE

	LSTM Language Model Experiments
	LSTM Results: DANA-decaying across 3
	LSTM Results: Loss Exponents
	Equivalent risk dynamics for SGD-M and SGD
	Experiment Details

	Additional Information on the Experimental Set-Ups for Figures

