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Abstract

We investigate scaling laws for stochastic momentum algorithms with small batch
on the power law random features model, parameterized by data complexity, target
complexity, and model size. When trained with a stochastic momentum algo-
rithm, our analysis reveals four distinct loss curve shapes determined by varying
data-target complexities. While traditional stochastic gradient descent with momen-
tum (SGD-M) yields identical scaling law exponents to SGD, dimension-adapted
Nesterov acceleration (DANA) improves these exponents by scaling momentum
hyperparameters based on model size and data complexity. This outscaling phe-
nomenon, which also improves compute-optimal scaling behavior, is achieved by
DANA across a broad range of data and target complexities, while traditional meth-
ods fall short. Extensive experiments on high-dimensional synthetic quadratics
validate our theoretical predictions and large-scale text experiments with LSTMs
show DANA’s improved loss exponents over SGD hold in a practical setting.

1 Introduction

When pretraining large neural networks, the loss typically scales like a power law with respect to
the amount of data, number of parameters, and total amount of compute [54]. Scaling laws for the
loss function P(θ) in their simplest form are P(θt) ≍ t−σ + d−τ where {θt ∈ Rd} is a sequence
of iterates generated by a stochastic algorithm.4 The exponents σ and τ are of practical importance
because they control the number of samples and parameters needed to attain a desired loss value.

While model architectures and training methods have advanced rapidly, it has long been unclear
whether innovations in optimization algorithms could fundamentally change the exponents of these
power laws [48]. Some evidence suggests that major advances like the Adam optimizer [56] primarily
improve the constants in the scaling law rather than improving its exponent [48].

Moreover, recent work has extensively investigated how various algorithmic parameters such as
learning rates [103] and batch sizes [70] should scale as the model sizes and compute grow. However,
momentum parameters are typically treated as fixed constants [93] rather than dimension/compute-
dependent quantities, despite their widespread use in large model training. This leads to the question:

∗Corresponding author; website: https://damienferbach.github.io/.
†Canada CIFAR AI Chair
‡The authors contributed equally to the paper.
4Notation: f ≍ g means there exist constants c and C (both independent of d) such that cg ≤ f ≤ Cg. We

use (x)+ to denote max{0, x}.
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Figure 1: For empirical runs and deterministic ODE (7) simulations of PLRF, DANA outscales SGD while
Schedule-Free SGD and Adam do not. (left) SGD & DANA fixed d, single run. Gray dashed line indicates
transition (t ≍ 1/γ3 ≍ d) where DANA-constant(κ2 = 1) shifts from SGD-like behavior to acceleration.
Deterministic ODE predictions (bold curves) match single runs of the stochastic algorithms (faded curves).
(middle) Deterministic ODEs for SGD, DANA and Schedule-free SGD [33], across d = {100×2i}, i = 1, .., 10.
DANA-decaying (κ3 = 1

2α
) outscales DANA-constant, which itself outscales SGD. Schedule-free SGD scales

similarly to SGD. (right) ODEs show Adam cosine decay [56] appears to have the same scaling law as SGD.
See Sec. M for details. In all figures, batch size is 1.

Can one select hyperparameters of stochastic momentum algorithms as a function of model size and
data to provably change the exponents in the scaling laws for the loss?

In this work, we answer in the affirmative, mathematically showing that one can indeed improve
the scaling law exponents over standard stochastic gradient descent (SGD) on a simple power law
random features (PLRF) model.

Outscaling. To address the question of scaling, let us consider the following learning problem,

min
θ∈Rd

{
P(θ) = Ex[R(θ;x)]

}
,where R : Rd → R, (1)

where d is the parameter count, and where x is drawn from an unknown distribution.

A training regime, t ≍ dℓ, ℓ > 0, is a scaling of iterations (or samples) to parameters. There are many
examples of training regimes, e.g., the proportional regime (t ≍ d) or the compute-optimal regime,
in which one selects the ℓ that yields the best loss under a fixed compute budget (see Sec. 5). Now
suppose the loss under an algorithm follows the scaling law

P(t, d)
def
= P(θt, d) ≍ t−σ + d−τ and suppose t ≍ dℓ, ℓ > 0 is a training regime. (2)

Then under this training regime, the loss satisfies P(dℓ, d) ≍ d−min{ℓσ,τ}. We call the absolute
exponent on d, the loss exponent. For a given training regime, we say an algorithm outscales another
algorithm if the loss exponent is larger.

We emphasize that this notion of outscaling differs in one key aspect from the more traditional
notion of “acceleration” from optimization theory. Acceleration is typically formulated for a fixed-
dimensional problem with constants that can have large d-dependence (e.g., ∥θ0 − θ⋆∥2). In other
words, acceleration generally denotes outperformance when t→∞ and d = O(1).

In this work, we are interested in scaling laws of one-pass, mini-batch SGD with momentum with
batch size B. At iteration t ≥ 0, we generate independent samples {xit+1}Bi=1 and update:

yt = (1−∆(t))yt−1 + γ1(t; d)
∑B

i=1∇R(θt;x
i
t+1),

θt+1 = θt − γ2(t; d)
∑B

i=1∇R(θt;x
i
t+1)− γ3(t; d)yt,

(Gen-Mom-SGD)

where ∆(t) : [0,∞)→ [0,∞) is a momentum hyperparameter and γi(t; d) : [0,∞)→ [0,∞) are
learning rates. This framework incorporates classical SGD and SGD-Momentum by setting

γ1(t) ≡ 1, γ2(t; d) ≡ γ2 = γ̃2d
−κ1 , γ3(t; d) ≡ γ3 = γ̃3d

−κ2 , ∆(t) ≡ δ, κi ≥ 0 (SGD-M)

as well as stochastic Nesterov, Schedule-Free SGD [33], and accelerated SGD [52, 94]. For a detailed
discussion on related work see Section A and Tables 2 & 3.

Main Contributions. In this work, we analyze Gen-Mom-SGD under the power law random
features (PLRF) – a four-parameter model with data complexity (1/α), target complexity (1/β),5

5See Assumption 2 for formal definition of α and β in the context of the power law random features model.
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Figure 2: DANA-decaying improves the loss exponent on LSTM language models. (left) Sweeping DANA-
decaying κ3 shows stability and divergence similar to PLRF (Fig. 3a). (center) DANA κ3 = 0.7 maximizes
the compute-optimal loss exponent and outscales SGD. (right) Compute-optimal loss exponents (top) and
validation loss for final iterate (bottom) vs DANA κ3. All loss exponents (Fig. 22) have R2 ≥ 0.984 and vary
smoothly across κ3, traversing the divergent, outscaling, and SGD-like regimes seen in PLRF (Fig. 6 x-axis).
Schedule-Free SGD is κ3 = 1.0 and matches SGD loss exponent. SGD-M matches SGD (Fig. 24). See Sec. L.

model parameter count d, and hidden dimensionality v – extensively studied for its scaling properties
[11, 69]. We derive a scaling rule for hyperparameters of Gen-Mom-SGD that improves loss
exponents over SGD across much of the (α, β)-phase plane under a variety of training regimes. We
denote this scaling hyperparameter rule as dimension-adapted Nesterov acceleration (DANA):

γ1(t; d) ≡ 1, γ2(t; d) = γ̃2d
−κ1 , γ3(t; d) = γ̃3d

−κ2(1 + t)−κ3 , ∆(t) = δ(1 + t)−1, (DANA)

where κi ≥ 0. These hyperparameters will further be made explicit for the PLRF.

To show this improvement in the exponents, we show that the loss curves for PLRF can be described
exactly by a system of differential equations, and derive precise theoretical scaling laws for SGD-M
and DANA. Using dimension- and data-dependent hyperparameters, DANA outscales SGD (see
Fig. 1) above the high-dimensional line (2α > 1) while performing no worse than SGD elsewhere.
In contrast, traditional SGD-M, with fixed, non-scaling momentum, ∆, produces identical scaling
laws to standard SGD across all regimes (see Fig. 24). DANA-constant (κ3 = 0) employs a decaying
momentum schedule (1+t)−1 with the momentum learning rate given as γ3 ≍ γ2 ·1/d, and outscales
SGD for 2α > 1 under many regimes. DANA-decaying (κ2 = κ1 = 0, κ3 > 0) replaces d with a
time-dependent effective dimension, resulting in a schedule for γ3 that outscales SGD for all regimes
and all 2α > 1, succeeding where DANA-constant cannot.

We then investigate the compute-optimal regime, explicitly deriving compute-optimal parameter, loss,
and data exponents. While the empirical Chinchilla laws [50] suggest compute-optimality occurs at
d ≍ t, we show DANA-decaying (for 2α > 1) has a different compute-optimal relationship between
d and t, emphasizing that outscaling can occur outside the Chinchilla regime. Moreover, for some
(α, β), DANA reduces the data exponent needed to reach compute-optimality compared to SGD.

We perform extensive PLRF experiments in Sec. K to validate our theory, showing excellent numerical
agreement for loss curves and compute-optimal exponents with the analyzed ODEs. Finally, we train
LSTMs on text data (Fig. 2) showing the DANA loss exponents (Fig. 2c & 22) vary smoothly over
κ3 and recover the divergent, outscaling, and SGD-like regimes predicted theoretically by Fig. 6.

While we show the existence of stochastic algorithms that provably outscale for 2α > 1, it remains
an open question as to whether outscaling SGD can occur in the high-dimensional setting (2α < 1).

2 The power law random features model (PLRF)

In this work, we analyze a four-parameter model called power law random features (PLRF) (3)
[11, 69, 80], which exhibits rich behavior and phenomenologically captures many aspects of scaling
law setups [16, 63, 80]. For a data vector x ∈ Rv we embed this vector in Rd using a matrix
W ∈ Rv×d and construct noiseless targets by dotting a fixed b ∈ Rv with the sample x. This leads to
the formal problem statement:

min
θ∈Rd

{
1
2P(θ)

def
= 1

2E x

[
(⟨WTx, θ⟩ − ⟨x, b⟩)2

]}
. (3)
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The matrix W allows the model to have variable capacity (d) independent of the data dimension, and
we choose the matrix W to have entries distributed as N(0, 1/d). The key structural assumptions are:

Assumption 1 (Data and targets, α and β). The samples x ∈ Rv are distributed according to
(xj) ∼ j−αzj for all 1 ≤ j ≤ v and {zj}vj=1 ∼ N(0, 1). The targets are scalars constructed by
dotting the sample x with a signal b ∈ Rv whose entries (bj) = j−β .

Power law type data distributions are ubiquitous in language, vision, and many other tasks, and these
distributions are largely responsible for making this model phenomenologically similar to scaling
law setups [69, Fig.2,3]. Without the random matrix W , (α, β) are related to what is known in the
literature as source and capacity conditions [22, 23, 36, 81] (see Sec. A and Tab. 1 for details).

The hidden dimensionality v is assumed to be large and proportionate to d, so that v/d→ r ∈ (1,∞).
In the case that 2α > 1, this assumption can be relaxed, in that one can take v larger as a function of
d or even v =∞. It should be noted that in many scaling law setups, such as [50], the task scales
with the parameter count, so that it is natural to assume v grows as d grows.6

3 Continuized analysis of general stochastic momentum algorithms

Continuized frameworks are widely used for the analysis of momentum algorithms (see especially
[38, 78, 92, 99]). When run on the PLRF model, the algorithm class (Gen-Mom-SGD) has a loss
curve that can be described exactly by a system of differential equations; Section C.1 and (22) for
details and derivation.

We use a common probabilistic trick for continuizing a discrete process called Poissonization in
which we let (Nt : t ≥ 0) be a standard Poisson process, and then define Yt = yNt and Θt = θNt .
Now we let (λj , ωj)

d
j=1 be the eigenvalue-eigenvector pairs for Ǩ ∈ Rd×d, which is the covariance

of the projected data W⊤x, and let Θ∗ be the minimizer of P(Θ). We then introduce the system of
variables, with the expectations taken over all randomness except W ,

ρ2j (t)
def
=E

[
⟨ωj ,Θt−Θ∗⟩2

]
, ξ2j (t)

def
=E

[
⟨ωj , Yt⟩2

]
, andχj(t)

def
= E

[
⟨ωj ,Θt −Θ∗⟩⟨ωj , Yt⟩

]
. (4)

In terms of these variables, we recover the expected loss by summing over the components of ρ2j (t).

P(t)
def
= E [P(Θt)] = E [P(Θ∗)] +

∑d
j=1 λjρ

2
j (t). (5)

Then we can derive a coupled linear system of differential equations:

ν(t;λj)
def
= (ρ2j (t), ξ

2
j (t), χj(t))

⊤, d
dtν(t;λj) = Ω(t;λj)× ν(t;λj) + P(t)g(t;λj), (6)

for an explicit matrix Ω and vector g which are polynomials in (λj ,∆, B, γ1, γ2, γ3) (see (22) for
the full formula).

These equations are sufficiently complicated that we simplify the ODE before performing the analysis.
This can be viewed as taking a “high-dimensional limit” (see Remark C.3), or, in short, as dropping
all terms from Ω and g which are more than first order in (∆, λj , γ3) to produce:

Ω(t;λj)
def
=

(−2γ2(t)Bλj 0 −2γ3(t)
0 −2∆(t) 2γ1(t)Bλj

γ1(t)Bλj −γ3(t) −∆(t)− γ2(t)Bλj

)
and g(t;λj)

def
= λjB

γ22(t)γ21(t)
0

 .

We formulate all results going forward for the simplified ODEs; see Sec. K and Fig. 8 for extensive
numerical validation of the simplified ODEs as a model for the risk curves of Gen-Mom-SGD. We
also note that these simplified ODEs correspond exactly to the risk evolution under the SDE model
of Gen-Mom-SGD:

dYt = −∆(t)Yt dt+ γ1(t)
(
B
2∇P(Θt) dt+

√
BǨP(Θt) dB

(1)
t

)
,

dΘt = −γ2(t)
(
B
2∇P(Θt) dt+

√
BǨP(Θt) dB

(2)
t

)
− γ3(t)Yt dt.

(7)

6In the case 2α < 1, there is a larger range of scalings of v that are possible, with d ≪ v ≪ d1/(1−2α).
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Figure 3: (left) & (center) DANA sweeps of κ2, κ3. A κ bigger than (stability) ⇒ divergence after some t;
DANA-decaying w/ κ3 = 1/(2α) is the envelope of the divergent algorithms. κ3 = 1/(2α), κ2 = 0 is optimal
in DANA. (right) Deterministic equivalent µF (8) vs empirical density estimate match. See Sec. M for details.

Here dB
(1)
t and dB

(2)
t are independent standard d-dimensional Brownian motions.7 Using Itô’s

formula (see (43) for details), one then can easily derive the simplified ODEs for the system ν(t;λj)
def
=

(ρ2j (t), ξ
2
j (t), χj(t))

⊤.

4 Deriving the scaling laws of (Gen-Mom-SGD) on the PLRF model

Random matrix theory of the PLRF. By solving these ODEs for P in terms of their initial data, we
can represent the curve P entirely as a function of the spectral data

(
λj , ρ

2
j (0)

)d
1
. A mathematically

convenient representation for this data is a pair of pure-point measures

µ̃F(dx) =
∑d

i=1 δλj
(dx)ρ2j (0) and µ̃K(dx) =

∑d
i=1 δλj

(dx)λ2j , (8)

in terms of which P can be represented as a solution of an integral equation (see (36), (56), (57)).

Random matrix theory (RMT) gives a prediction for these measures (µF, µK), using the so-called
deterministic equivalent; for details, see (33). Deriving such an equivalent is a textbook tool in RMT,
but the proof of equivalence in the case of PLRF falls outside of textbook RMT (see for example
[62]). To limit the scope of the theoretical analysis, all the scaling law statements that follow are
proven for the deterministic equivalent; the numerical agreement between µF and µ̃F is excellent
(see Fig. 3c).

Scaling laws for SGD on the PLRF. In [80], using the deterministic equivalent (µF, µK), the authors
show for SGD,

(deterministic loss curve) P(t) ≍ F̂(ϑ̂(t)) + γ2K̂pp(ϑ̂(t)), where F̂(t) = F̂pp(t) + F̂ac(t) + F0,

where ϑ̂(t) def
= 1 + 2γ2Bt. Here F̂ ◦ ϑ̂ can be viewed as the bias term and K̂pp ◦ ϑ̂ as the variance

due to the stochastic gradients. Each of these terms has an interpretation and an explicit scaling law:

Component Symbol Scaling Law Contributing Part of µ
Population bias F̂pp(t) ≍ t−(2α+2β−1)/(2α) Spikes (pure point part) in µF

Model capacity F0(t) ≍ d−(2α+(1−2β)+) Irreducible loss level, µF({0})
Embedding bias F̂ac(t) ≍ d−1t−1+1/(2α) Bulk (absolutely continuous part) of µF

Variance K̂pp(t) ≍ d(1−2α)+t−2+1/(2α) Pure point part of µK

4 Distinct Phases. For different regions of (α, β), one or more of these four terms may be fully
dominated by the others, yielding 4 different phases. See also Fig. 5 as an example. The different
components of the loss curves do not change across the algorithms, but the scaling exponents (σ, τ)
vary. The phase boundaries are determined by major quantitative and qualitative changes in the
problem geometry.

7We have also used two Brownian motions for additional simplification of the analysis; this would correspond
to using two independent stochastic gradient estimates in the two lines of (Gen-Mom-SGD).
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The high-dimensional line, which occurs where 2α = 1, separates gradient norms that grow with d
from constant ones. The line 2β = 1 determines if the ∥θ0 − θ⋆∥2 grows with d. The line α = β
determines if the target complexity or data complexity is higher, which determines the relevance of
gradient noise. Finally α = 1

4 determines where the gradient noise becomes high-dimensional and
has aspects which are not power law.

Scaling laws for momentum methods. Our main result is the extension of these scaling laws
to SGD-M, DANA-constant and DANA-decaying in the small batch setting.

Theorem 4.1. (Summarized Version of Thm G.1 (SGD-M), Thm H.3 (DANA-constant), Thm I.2,
(DANA-decaying)). Suppose that (α, β) are not on any critical line, that 2α+ 2β > 1, that α > 1

4 ,
and that β ≤ α+ 1. Suppose that batch size B is fixed independent of d. Consider DANA-constant,
DANA-decaying, SGD, and SGD-M. Define the time change

ϑ(t)
def
=

{
1 + 2(γ2 +

γ3

δ )Bt, (SGD-M),

1 + 2γ2Bt+
(∫ t

0

√
γ3(s)B ds

)2
, (DANA).

(9)

Then, provided the algorithm is stable8, which is to say that for some constant c sufficiently small,
independent of d (and where tr =

∑d
j=1 j

−2α ≍ d(1−2α)+ )
δ < 2, (γ2 +

γ3

δ ) ≤ cmin{ 1
B ,

1
tr}, (SGD-M),

cδ > 1, γ2 ≤ cmin{ 1
B ,

1
tr}, γ̃3d

−κ2 ≤ cγ2, (DANA) with κ3 ≥ 1
2α ,

cδ > 1, γ2 ≤ cmin{ 1
B ,

1
tr}, γ̃3d

−κ2 ≤ cγ2d2α(κ3− 1
2α ), (DANA) with κ3 < 1

2α ,

(stability)

one has the following scaling law where γ = γ2 for DANA and γ = γ2 +
γ3

δ for SGD-M

P(t) ≍ F̂(ϑ(t)) + γK̂pp(ϑ(t)). (10)

For DANA–decaying, we have the following additional requirements. We only consider 2α > 1, γ2
bounded below, and (1/2α) < κ3 < 1.

We remark that DANA-decaying/constant appear to be the most interesting (and optimal) DANA
cases (see Fig. 6). From (10), it is simple to produce explicit scaling laws for DANA

P(t; d) ≍ d−τ1t−σ1︸ ︷︷ ︸
population bias

+ d−τ2︸︷︷︸
model capacity

+ d−τ3t−σ2︸ ︷︷ ︸
embedding bias

+ d−τ4t−σ3︸ ︷︷ ︸
variance

, (11)

see for example Figure 5. The parameters σi and τi are explicit, depend on the algorithm, and vary
continuously in (α, β). We relegate the proofs to Sec. G, H, I and specific exponents to Table 4.

Understanding stability. The stability conditions listed in Theorem 4.1 are essentially sharp, in that
we can show the loss curves are unbounded in d if the hyperparameters have lower bounds that are on
the same order as these upper bounds.

8Stability is proved in Cor. G.1 for SGD-M, Cor. H.2 for DANA-constant, Prop. I.2 for DANA-decaying.
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Fig. 7, 12 for phase diagrams and Fig. 13,14,15 for loss curves.

Figure 5: Example of loss curves (Phase II, α > β > 0.5).

In the case of SGD-M, above the high-dimensional line (2α > 1), the effective learning rate γ2 + γ3

δ
can remain constant, but below it must scale with the parameter count d. This transition is precisely
captured by tr ≍

∑d
j=1 j

−2α.

For the DANA class, the simplest choice of γ3 is to take it constant, (i.e, κ3 = 0, DANA-constant).
The largest constant stable choice for γ3 is d−1 (see also a related algorithm [94]). This has a key
limitation: with such small γ3, the momentum term needs O(d) steps to reach the gradient magnitude
and to have any effect on the behavior of the loss. Thus, for early iterations, t ≤ d, DANA-constant
and SGD exhibit similar scaling behavior.

One can resolve this, and produce a faster algorithm by observing that after t iterations, only part of
the d-dimensional feature space is being used, i.e. there is an effective dimension of Ǩ at iteration t
[14, 61, 101, 110]. Quantitatively,

(effective dimension at iteration t) ≍ max{j : λj(Ǩ) > 1/(tB)} ≍ (tB)−1/(2α).

If we replace the fixed dimension parameter d in DANA-constant with (tB)−1/(2α), this yields the
DANA-decaying algorithm (see also [107]) with the smallest possible κ3. Fig. 3 shows DANA-
decaying with 1/(2α) appears to be optimal on PLRF when varying (κ2, κ3); see also Fig. 6.

The choice of δ in ∆(t) = δ(1 + t)−1 must be chosen sufficiently large to guarantee acceleration and
stability. We summarize the recommended DANA-constant and DANA-decaying hyperparameters
for PLRF in the table below, where tr =

∑d
j=1 j

−2α.

Algorithm Hyperparameters
(
δ
2 + κ3

4 > (2− κ3)max{ 2α+2β−1
α , 4− 1

α}
)

DANA-constant 2α > 1 κ1, κ3 = 0, κ2 = 1, γ2 = 1/(2 tr), γ̃3 = 1/5× γ2
2α < 1 κ1 = 1− 2α, κ2 = 1 + κ1, κ3 = 0

DANA-decaying 2α > 1 κ1, κ2 = 0, κ3 = 1/(2α), γ2 = 1/(2 tr), γ̃3 = 1/5× γ2

Hyperparameters beyond PLRF. In settings where (α, β) are unknown or meaningless, we recom-
mend setting γ2 to a stable SGD learning rate, γ3(t) = γ2× (1+ t)−κ3 and δ = 8. Then, sweep over
κ3; the minimum κ3 where DANA-decaying converges appears optimal (Fig. 2c & 20).
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Full DANA class. There are other stable scaling rules in the DANA
class (above red line). DANA-decaying w/ κ3 = 1

2α
is optimal (e.g.,

fewest iterations to optimum, best loss exponent) amongst the whole
class. (left, above high-d line, κ1 = 0, B = 1, α = 1.1): Plot
of logd(time to reach irreducible loss). DANA stability boundary
(red) at κ2 = −2ακ3 +1 with divergence below; DANA takes same
number of iterations as SGD at (pink) line, κ2 ≥ 2α(1−κ3). Darker
color = smaller number of steps. Iterations to reach irreducible loss,
d4α

2/(4α−1) ≤ dα+1/2 ≤ d2α (DANA-decay ≤ DANA-constant ≤
SGD). Stochastic Nesterov does not converge [38].

Figure 6: Full DANA class, time to reach irreducible loss.
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Figure 7: Comparison of SGD, DANA-constant, and DANA-decaying with compute-optimal curve
predictions. Numerical set-up: d = 100× 2i, i = 1, . . . , 15; Simplified ODEs (43) plotted for the scaling-law-
equivalent model. DANA-decaying outscales in all phases (Phase Ia, II, III) where 2α > 1. DANA-constant
outscales SGD in all phases 2α > 1 except Phase IIIb. Predictions for compute-optimality loss exponents match
empirical results. (see Sec. M for details).

5 Using Momentum to outscale SGD

SGD-M fails to outscale. The typical approach to momentum is to use a constant momentum
∆(t) ≡ δ, in practice usually set to 1 − δ = 0.9. Regardless of the choice of fixed ∆, SGD-M
produces the same scaling laws as SGD. In particular, most ‘speed up’ of SGD-M can be attributed to
a larger effective learning rate for SGD, resulting in improved scaling law constants, but not a change
in the loss exponent. There is an equivalence in risk dynamics when γSGD

2 = γSGD-M
2 + γSGD-M

3 /δ; see
Rem. G.2 for details and Fig. 16 and 24 for empirical equivalence on PLRF and LSTMs respectively.

DANA-constant outscales SGD for most (α, β) with 2α > 1. The limitation of DANA-constant’s
small γ3 learning rate is that the momentum term requires at least d iterations of the algorithm to
become noticable in the loss dynamics. Thus, for t ≤ d, DANA-constant and SGD have the same
scaling law (see Fig. 1a where gray line indicates t ≍ d). If one is able to reach F0 before d (which
occurs for 2α > 1), DANA-constant will outscale SGD in training regime t = dℓ with 1 < ℓ < 2α.
We note that once ℓ = 2α, no algorithm outscales SGD, as the irreducible loss level is reached.

DANA-decaying outscales DANA-constant for all (α, β) with 2α > 1. For any regime t = dℓ

with 0 < ℓ < 2α, DANA-decaying will outscale both SGD and DANA-constant, provided the former
is not already at the irreducible loss level F0. Hence DANA-decaying will always be both more
sample efficient and compute efficient than SGD and DANA-constant. One may look further at the
full DANA class of algorithms (Fig. 6), which may potentially contain other interesting scaling rules.

Moreover, many stochastic algorithms fall into Gen-Mom-SGD – Schedule-Free SGD [33], Nesterov
[75], AcSGD [94], Accelerated SGD [52, 61] (see Tab. 3 for param. comparison). For these,
deterministic ODEs (22) exactly describe the risk evolution. We give heuristics for the scaling laws
of these algorithms (Sec. B.5). See Tab. 2 for sample complexity comparison and Fig. 10 for scaling
behavior, in which DANA-decaying outperforms all (including Adam with cosine decay, see Fig. 1c).

In principle, one could also look at unstable scaling rules, which are stable in one training regime but
eventually diverge. For example, one could sweep over the γ3 in DANA-constant to find the γ3 that
minimizes P(t; d); this produces a schedule γ3(t; d), which on the PLRF is exactly DANA-decaying
with κ3 = 1/(2α) (see Fig. 3b & Section J.3). See also Fig. 3a on PLRF and Fig. 2a on LSTM for a
related sweep over κ3.
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Figure 8: Loss curves match almost exactly between empirical PLRF experiments and ODE solutions.
Compute-optimal loss exponents match approximately. (left) Loss curves for simplified ODEs (7) closely
match empirical PLRF across 13 d-values up to d = 12,800. Empirical loss exponent fit by Chinchilla Approach
1 [50]. (middle) Loss exponents η in P(f/d⋆; d⋆) = fη for fixed β = 0.7 across α’s. Theoretical predictions
(solid lines, see Tab. 5,6,7) match empirical (dots) within 0.09. (right) Compute-optimal parameter exponents
ξ in d⋆(f) = fξ match within 0.13 (top) and data exponents, ζ (bottom), for fixed α = 1 across β values. See
extensive experiments Sec. K across 84 values of (α, β) + discussion of error sources. Fig. details in Sec. M.

Compute-optimal regime. One natural training regime for d is the compute-optimal training regime
[16, 50, 63], where for a given compute budget f measured in flops, one chooses d⋆(f) to minimize
the loss. We measure f via:

Compute (flops f) = (iterations of alg. (t) × batch size (B)) × parameters (d). (12)

We plot the loss curve P(θt; d) = P(t; d) = P( f
d ; d) as a function of flops, and then we solve

for the compute-optimal parameter size d⋆(f) = arg mindP( f
d ; d) = fξ. With access to the explicit

functional form of the loss curve (11), it is straightforward to find d⋆. We denote ξ the parameter
exponent and η the loss exponent. Here P( f

d⋆ ; d
⋆) = f−η is known as the compute-optimal curve.

The data exponent is 1− ξ since iterations times batch equals amount of data used.

Given the form of the loss curves (11), compute-optimality must occur at an intersection point of
F̂pp, F̂ac,F0, and K̂pp. Thus, the phases are further broken down depending on the tradeoff location
of compute-optimality. We derive compute-optimal frontiers and present the exponents in Tab. 5,6,7,
Sec. E for proof details. See also Fig. 12 (phase diagrams) and Fig. 13,14,15 cartoon plots of loss
curves and compute-optimality. Fig. 9 gives a detailed example of the shape of the risk curves.
Predictions of exponents (ζ, η, ξ) match theory - see Fig. 8, Fig. 26-33. For specific details about the
different phases and algorithms, see Sec. E.5.

Compute-optimality main takeaways. The empirical Chinchilla law [50] showed the optimal
parameter count scales like d⋆(f) ≍ f1/2 on large language models while [80] observed theoretically
that SGD on PLRF reproduces this behavior in Phase III. However, for 2α > 1, DANA-decaying is
never compute-optimal with d⋆(f) ≍ f1/2: depending on the phase, the compute-optimal training
regime of DANA-decaying requires undertraining or overtraining relative to the Chinchilla law.

log
𝒫(

fρ ;f1−
ρ )

ρ

DANA-constant (slope):       ,      − α
2ℓ

1
2ℓ −2

DANA-decaying:        ,        − α
ℓ (1− 1

4ℓ ) 1
2ℓ − 1

4ℓ2 −1

ℱpp ℱac ℱ0

SGD/SGD-M (slope):        ,       ,       − α
2ℓ

1
2ℓ 2ℓ

Compute Optimal

0 10.5
Figure 9: Compute-optimal scaling laws
(Phase IIa, (α > (3+

√
5)/4, α > β > 0.5)).

We reparameterize Fig. 5 by fixing the compute
budget f and parameterizing the x-axis with
ℓ ∈ [0, 1], so that d = f1−ℓ and t = fℓ. This
shows the relationship between compute bud-
get and optimal parameter count.

Furthermore, the compute-optimal tradeoff point can
change based on the choice of algorithm. For exam-
ple, in Phase IIa/IIIa, for SGD it is compute-optimal
to stop training early, when the optimization enters the
F̂ac regime (which is slower to optimize). However, for
DANA-decaying, it is compute-optimal to continue train-
ing, and in fact, to continue training to the irreducible
loss level F0 because DANA-decaying is substantially
more sample/compute-efficient than SGD in this regime.
Moreover, even when the tradeoff point is the same as
SGD, such as in Phase Ia, DANA-decaying attains better
loss than SGD for the same compute or sample budget.

LSTM results. We train 2-layer LSTMs (Fig. 2) on the
C4 language dataset [84] and co-scale the embedding
and hidden dimensions to sweep model sizes. This in-
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duces a power-law regime for the compute-optimal fron-
tier on intermediate model sizes with all R2 ≥ 0.984,
similar to Fig 7 in [54]. For DANA-decaying, the loss
exponents (Fig. 22) vary smoothly with κ3 and closely match PLRF behavior (Fig. 6): diverging for
κ3 < 0.6, outscaling SGD for 0.6 ≤ κ3 ≤ 0.9, and matching SGD when κ3 ≥ 1.0 where κ3 = 1.0
is Schedule-Free SGD. We show equivalence for SGD-M and SGD in Fig. 24. For details see Sec. L.

Conclusion, limitations and future work. We have shown that DANA outscales SGD on PLRF in
the 2α > 1 regime by properly scaling Nesterov-type momentum in a data- and dimension-dependent
way. We validated Theorem 4.1 with extensive PLRF experiments; moreover, PLRF acts as a
useful proxy for LSTMs on text data where theoretical predictions for loss exponent improvements
hold. A full convergence argument beyond quadratics for DANA-decaying would be desirable, e.g.
theory for cross-entropy might suggest different momentum scaling strategies. It is an open question
if outscaling is possible for either the 2α < 1 case or for d-dependent batch sizes. Additional
limitations of our analysis include the use of fixed features which does not incorporate any kind of
feature learning, as well as deterministic learning dynamics based on an ODE description of the loss
evolution.

Additionally, while we compare DANA against other non-adaptive momentum methods, most real-
world problems benefit from adaptive methods such as Adam. Hence it would be interesting to
have an analysis of DANA combined with Adam or other preconditioned methods. Finally, in the
LSTM setting, the exact meaning of α is not clear, although empirically α = 0.71 (corresponding to
κ3 = 0.7) appears near optimal. Defining and measuring this α on real-world problems, particularly
determining whether 2α > 1, is an important direction for future work.
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Supplementary material
Broader Impact Statement. The work presented in this paper is foundational research and it is not
tied to any particular application. The primary set-up is on a simple well-studied random features
model with synthetic data and solved using commonly deployed algorithms – variants of stochastic
gradient descent with momentum. We present (theoretical) compute-optimal curves for this model.
While a common positive foreseeable impact of algorithms with better scaling properties is that it
would allow more efficient model training and hence lower energy consumption of AI, it is important
to acknowledge that, many times across history, cost-lowering technological improvements have led
to increase in consumption due to Jevons paradox. Regarding our experiments, we include results
on language models trained on a public language dataset that show the theoretical behavior holds
on more practical settings. We do not release any pretrained models but because the dataset we
used is based on common crawl which has potential issues of fairness, harmfulness, accountability,
and transparency we may be contributing to reinforce these issues by supporting the making of the
current C4 dataset as a standard in NLP, obfuscating these concerns. Finally, since our main results
are theorems regarding scaling laws, we anticipate that one potential negative impact of such a line
of research is that fundamental advance in scaling laws will advantage large entities that have more
computational resource, thus enhancing centralization of technological power.

Outline of the paper. The remainder of the article is structured as follows:

1. In Section A we discuss related works and compare previous convergence rates to ours.

2. In Section B we provide more details on the algorithms under study, i.e., SGD, SGD-M,
DANA-constant, DANA-decay. We additionally show that multiple existing algorithms
can be re-framed within the class (Gen-Mom-SGD). We then use our results to precisely
conjecture their scaling laws.

3. In Section C we derive the exact ODEs for the loss along with the exact Volterra equation.
We discuss the simplification of this ODE and the resulting Volterra equation. We finally
give some background on Volterra equations and how to reduce their complexity.

4. In Section D we derive the random matrix analysis of the deterministic equivalent measures
µF, µK. Previous results from [80] estimated the deterministic equivalent on a contour
enclosing the spectrum of the data covariance matrix. We reformulate and strengthen these
on the real line and provide general results for the integration of well-behaved real valued
functions against µF, µK.

5. In Section E we derive the compute-optimal scaling laws for SGD-M, DANA-constant and
DANA-decaying.

6. In Section F we analyse SGD with a general learning rate schedule.

7. In Section G we derive the scaling laws for SGD-M, and prove that they are identical to
SGD with a precise correspondence between the learning rates of these two algorithms.

8. In Section H we analyse the DANA-constant algorithm. We use Frobenius method to obtain
asymptotic estimates for the solutions of the simplified ODE system (43) in Sections H.2
to H.4. We use these estimates to derive stability conditions on the hyperparameters in
sections H.8 and H.9 and compute the forcing and kernel functions.

9. In Section I we analyse DANA-decaying above the high-dimensional line. We give estimates
on the solutions of (43) in Section I.1. We use these to derive the forcing and kernel functions,
and the scaling laws. Finally, we discuss in Section I.5 a heuristic generalization to the
algorithm class (DANA) with stability conditions and associated scaling laws.

10. In Section J we study whether non-stable learning rates can accelerate the dynamics early in
training. Especially we show that sweeping over the κ1 hyperparameter in DANA-constant
recovers the DANA-decaying schedule.

11. In Section K we discuss experimental details on the PLRF model and show numerical
agreement between empirical and theoretical PLRF behavior.

12. In Section L we discuss experiments on LSTMs on a language dataset.

13. In Section M we report further experimental details for figures.
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Notation. We use P(θt) = P(t) when we want to emphasize the iteration counter t. We say
A (t, v, d) ∼ A(t, v, d) for functions A (t, v, d),A(t, v, d) > 0 if for every ε > 0 and for all
admissible v and d, there exists t0, d0 such that for all d > d0 and t ≥ t0

(1− ε)A(t, v, d) ≤ A (t, v, d) ≤ (1 + ε)A(t, v, d).

For some v ∈ N∗, we denote the diagonal matrix D = Diag(j−2α : 1 ≤ j ≤ v).
ForA,B two matrices, comparisons of the formA ≤ B are understood coordinate-wise. Additionally,
∥A∥ denotes the matrix of the absolute values of coordinates of A. For x ∈ R+,

√
x ≥ 0 denote

the positive square root of x and
√
−x def

= i
√
x. H

def
= {z ∈ C, Im(z) > 0} denotes the complex

upper-half plane. For η > 0 and u ∈ R we denote the Poisson kernel Poisη(u)
def
= 1

π
η

u2+η2 . For

x ∈ R+, we denote x = max{1, x}. For x ∈ R, we use x+
def
= max{x, 0}.

Detailed proof sketch. We finally provide below a detailed proof sketch of our main result Theo-
rem 4.1

1. The first step is to derive an evolution equation for the quadratic risk using the raw algorithm
updates Equation (Gen-Mom-SGD).

• We adopt in Section C.1 a continuized analysis in Equation (Gen-Mom-SGD) by
replacing the update times by the jumps of a Poisson process of rate 1 (Equation (18)).
This allows us to reduce the analysis to ODE systems without sending the learning
rates to 0.

• In Section C.1.1 we derive ODEs for the projected risk on each eigenvalue direction of
the covariance matrix for two algorithms: the original one in Section C.1.1 and the coin-
flip algorithm in Section C.2.2. The coin-flip algorithm uses two independent Poisson
processes for the momentum and parameter updates in Equation (Gen-Mom-SGD)
which gives rise to much simpler ODEs.

• The ODEs obtained are theoretically solvable but a lot of small high-order terms make
the analysis difficult. Hence we drop high-order terms in λ in the exact and coin-flip
ODEs to obtain the ‘simplified ODEs’ (Section C.2.2). We prove in Section C.2.1
that the ‘simplified ODE’ exactly represents the evolution of the SDEs presented in
Equation (7).

• Finally, using these ODEs, we can derive a Volterra equation for the full quadratic risk
P(t) = F(t) + (K ∗P)(t) where P(t) is the risk, F(t) is the forcing function, K(t, s)
is the kernel function. This is done in Sections C.1.2 and C.2.3.
The rest of the proof focuses on computing asymptotics for F and K (Equation (55))
by quantifying the empirical distribution of the covariance matrix spectrum and solving
the ODEs.

2. Quantifying the spectrum of the data covariance matrix K̂.

• We first rewrite µF , µK in Equation (55) as integrals against two measures µF , µK
which are defined through the deterministic equivalent in Equation (63).

• Using Random Matrix Theory and previous results from [80], we provide upper and
lower bounds on the deterministic equivalent measures µF , µK in Sections D.1 and D.2.

• In Sections D.3 and D.4 we use these bounds to define diverse components of the forcing
function and kernel function (Equations (66) and (68)), formalized in Propositions D.13
and D.14.

3. We then solve the ‘simplified ODE’ Equation (54) for each class of algorithm in Equa-
tion (Gen-Mom-SGD) separately.

• For SGD-M we solve the ODE in Section G.1. These are the simplest as the ODE has
constant coefficients, and the solutions are exponentials.

• For DANA-constant, the ODE has time-varying coefficients. We employ Frobenius
theory to obtain asymptotic solutions of the ODE in Section H.2 to Section H.6.

• For DANA-decaying, we employ orthogonal polynomial theory to solve the ODEs in
Section I.1.

4. Finally, we need to solve the Volterra equation for the risk.
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• For each algorithm to remain stable, the kernel norm has to be smaller than 1. This
leads to stability conditions on the learning rates for SGD-M (Corollary G.1), DANA-
constant (Corollary H.2) and DANA-decaying (Proposition I.5).

• Using this stability condition we can simplify the Volterra equation as P ≍ F + K
using Kesten’s lemma (Propositions G.8, H.20 and I.5).

• We then compute F ,K for each algorithm by integrating the previous solutions against
µF , µK and obtain explicit scaling laws for the loss P . This is done in Proposition G.4
for SGD-M, Propositions H.13, H.14 and H.19 for DANA-constant and Propositions I.1,
I.3 and I.4 for DANA-decaying.

• Finally, we determine the compute-optimal regime in Section E by a comparison of the
different terms in the loss.

Contents

1 Introduction 1

2 The power law random features model (PLRF) 3

3 Continuized analysis of general stochastic momentum algorithms 4

4 Deriving the scaling laws of (Gen-Mom-SGD) on the PLRF model 5

5 Using Momentum to outscale SGD 8

A Related Work 22

B Additional Algorithm Set-up 28

B.1 Stochastic gradient descent (SGD) . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B.1.1 SGD with constant learning rate . . . . . . . . . . . . . . . . . . . . . . . 28

B.2 Classic (constant) momentum (SGD-M) . . . . . . . . . . . . . . . . . . . . . . . 29

B.3 Dimension-Adapted Nesterov Acceleration: DANA-constant . . . . . . . . . . . . 29

B.4 Data-Adapted Nesterov Acceleration (DANA-decaying): Time/Data-dependent learn-
ing rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.5 Comparison with Schedule-free, AcSGD, Stochastic Nesterov and conjectured scal-
ing laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C Deriving ODEs and Volterra equations 32

C.1 Derivation of exact ODEs and exact Volterra for the expected loss of meta stochastic
momentum algorithm, (Gen-Mom-SGD) . . . . . . . . . . . . . . . . . . . . . . . 32

C.1.1 Derivation of the Exact ODEs. . . . . . . . . . . . . . . . . . . . . . . . . 33

C.1.2 Derivation of the exact Volterra equation . . . . . . . . . . . . . . . . . . 36

C.1.3 Deterministic Equivalent of the Expected Loss . . . . . . . . . . . . . . . 38

C.2 Simplified ODEs and simplified Volterra . . . . . . . . . . . . . . . . . . . . . . . 39

C.2.1 Derivation of the simplified ODEs. . . . . . . . . . . . . . . . . . . . . . . 39

C.2.2 Simplified ODE as the large time limit of a coin-flip algorithm . . . . . . . 41

C.2.3 Derivation of the simplified Volterra equation . . . . . . . . . . . . . . . . 45

C.3 Background on Volterra equations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

20



C.4 Reducing the complexity in the Volterra equation . . . . . . . . . . . . . . . . . . 47

D Measure of the Deterministic Equivalent 48

D.1 Estimating µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

D.1.1 Upper bound on µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

D.1.2 Lower bound on µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

D.2 Estimating µK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D.2.1 Upper-bound on µK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D.2.2 Lower bound on µK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D.3 Forcing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

D.4 Kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

E Compute-optimal curves - General 60

E.1 Stochastic momentum (SGD-M), compute-optimal curves . . . . . . . . . . . . . 61

E.2 DANA-constant, compute-optimal curves . . . . . . . . . . . . . . . . . . . . . . 62

E.3 DANA-decaying, compute-optimal curves . . . . . . . . . . . . . . . . . . . . . . 64

E.4 Comparison of samples needed at compute optimality . . . . . . . . . . . . . . . . 67

E.5 Summary on compute-optimality results . . . . . . . . . . . . . . . . . . . . . . . 68

F Stochastic gradient descent (SGD) 74

F.1 Volterra equation for SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

F.2 SGD with learning rate schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

F.2.1 Simplifying the Volterra equation for SGD with learning rate schedule . . . 75

F.2.2 Forcing function for SGD with decaying learning rate schedule . . . . . . 79

F.2.3 Kernel function for SGD with decaying learning rate schedule . . . . . . . 81

G Classic Stochastic Momentum (SGD-M) 85

G.1 Solution to the ODE for classic stochastic momentum . . . . . . . . . . . . . . . . 85

G.2 Asymptotics of the kernel and forcing functions, SGD-M . . . . . . . . . . . . . . 85

H DANA-constant 95

H.1 Simplification of the ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

H.2 Getting asymptotic solutions of the ODE through Frobenius method . . . . . . . . 96

H.3 Fundamental solutions around zero and infinity . . . . . . . . . . . . . . . . . . . 97

H.4 Behavior of Φ11(t, s) and Φ12(t, s) . . . . . . . . . . . . . . . . . . . . . . . . . . 100

H.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

H.6 Bounds at the singular point γ2Bσ ∈ [(1− ϵ)
√
4γ3B, (1 + ϵ)

√
4γ3B] . . . . . . . 107

H.7 Estimation of the forcing function . . . . . . . . . . . . . . . . . . . . . . . . . . 108

H.7.1 Asymptotics of F0(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

H.7.2 Asymptotics of Fac and Fpp . . . . . . . . . . . . . . . . . . . . . . . . . 109

H.8 Necessary conditions for stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

21



H.9 Sufficient condition for stability: upper-bound on the kernel norm . . . . . . . . . 116

H.10 Upper-bound on the kernel function . . . . . . . . . . . . . . . . . . . . . . . . . 117

H.10.1 First term: SGD noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

H.10.2 Second term: momentum noise . . . . . . . . . . . . . . . . . . . . . . . 122

H.10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

H.11 Verifying the hypothesis of Kesten’s Lemma . . . . . . . . . . . . . . . . . . . . . 126

I DANA-decaying 132

I.1 Solutions to the simplified ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

I.2 Computing the forcing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

I.3 Stability condition for DANA-decaying. . . . . . . . . . . . . . . . . . . . . . . . 146

I.4 Kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

I.5 Extended heuristics for general algorithm . . . . . . . . . . . . . . . . . . . . . . 155

I.5.1 Forcing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

I.6 Stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

I.7 Kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

J Compute-optimality beyond stability and motivation for DANA-decaying schedule 158

J.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

J.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

J.3 DANA constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

J.4 DANA-decaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

K Power-Law Random Features Experiments & Numerical Simulations 162

K.1 Power-Law Random Features Experiment Details . . . . . . . . . . . . . . . . . . 162

K.2 Measuring the Empirical Scaling Law Exponents: Chinchilla Approach 1 . . . . . 162

K.3 Computing the deterministic equivalent for K̂ . . . . . . . . . . . . . . . . . . . . 163

K.4 Implementation of the ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

L LSTM Language Model Experiments 164

L.1 LSTM Results: DANA-decaying across κ3 . . . . . . . . . . . . . . . . . . . . . 164

L.2 LSTM Results: Loss Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

L.3 Equivalent risk dynamics for SGD-M and SGD . . . . . . . . . . . . . . . . . . . 169

L.4 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

M Additional Information on the Experimental Set-Ups for Figures 171

A Related Work

PLRF & Scaling laws on the PLRF. Our work builds on the study of compute optimality in
large language models, introduced by [50] and [54], who performed empirical investigations of this
phenomenon. The problem formulation follows [69], which examined data-limited scaling scenarios
but did not address compute optimality or algorithmic considerations. Related dynamical analyses

22



This work1 [DLM24]2 [Bahri+21]3 [MRS22]4 [BAP24]5 [Lin+24]6

Input
dimension d d d M M M

# of features v p P N N -

Iterations/samples t n D T P N

Capacity 2α α 1 + α 1 + α b a

Source 2α+2β−1
4α r 1

2 (1−
1
α )

1
2 (1−

1
α )

a−1
2b

b−1
2a , b > 1

Target decay
(in L2) α+ β αr + 1

2 0 0 a
2

b
2

1 [Paq+24] E. Paquette, C. Paquette, L. Xiao, J. Pennington. 4+3 Phases of Compute-optimal Neural Scaling
Laws. 2024

2 [DLM24] L. Defilippis, B. Loureiro, T. Misiakiewicz. Dimension-free deterministic equivalents for random
feature regression. 2024

3 [Bahri21] Y. Bahri, D. Dyer, J. Kaplan, J. Lee, and U. Sharma. Explaining neural scaling laws. 2024.
4 [MRS22] A. Maloney, D.A. Roberts, J. Sully. A solvable model of neural scaling laws
5 [BAP24] B. Bordelon, A. Atanasov, C. Pehlevan. A dynamical model of neural scaling laws. 2024.
6 [Lin24] L. Lin, J. Wu, S. Kakade, P. Barlett, J.D. Lee. Scaling Laws in Linear Regression: Compute,

Parameters, and Data. 2024

Table 1: Comparison of the source/capacity parameters across various related work. We note this table is
taken from Table 1 in [DLM24]2 and Table 4 in [Paq+24]1. [Paq+24] also uses the same notation as this paper
except samples are r instead of t.

through gradient flow in similar settings can be found in [16]. A significant body of research has
investigated scaling laws relating loss minimization to dataset size and parameter count across various
settings (linear models, random features, deep networks). Notable contributions include [11], [89],
and [91], which explore the "hidden-manifold" data model for one-pass SGD.

Scaling laws and compute-optimality for the PLRF model under one-pass SGD have been analyzed
by [16, 63, 80] with an extension to feature learning in [17]. This work notably follows and extends
the ideas of [80] to stochastic momentum algorithms. Particularly, [80] developed scaling laws for
SGD under a deterministic equivalent and showed that there exists 4 distinct phases. They used their
scaling law to find compute-optimality. Related work on ridge-regression gradient descent includes
[29] and [34]. Other theoretical guarantees for scaling laws beyond PLRF, typically for gradient flow,
have been established in works such as [74].

Scaling hyperparameters in large models. There is extensive literature studying the optimal
scaling of optimizer hyperparameters in large neural networks, particularly the initialization and
learning rate [39, 100, 103, 104], the batch size [70, 87, 109] and the epsilon hyperparameter in
adaptive optimizers [39, 100, 105]. While the momentum hyperparameters for large models are often
treated as fixed constants rather than scaled quantities, the GPT-3 model [20] set β2 = 0.95 rather
than the typical β2 = 0.99 or 0.999, which may improve stability with large batch sizes.

Random features and random matrices. Our work employs random matrix theory to examine a
random features problem that, from a statistical perspective, represents the generalization error of
one-pass stochastic momentum algorithms. Random matrix theory has played an increasingly large
role in machine learning (see for [28] for a modern introduction).

For our random matrix analysis, we require sample covariance matrices with power law population
covariance (i.e. linear random features). The analysis of sample covariance matrices precedes
their usage in machine learning (see e.g. [12]). A detailed study of all parts of the spectrum of
sample covariance matrices with power law population covariances appeared in [80] and has been
subsequently used in [17] to study one-pass SGD and multi-pass SGD [7]. The study of ridge
regression has been extensively investigated (see for e.g. [10, 24]), and the work [34] provides a
complete analysis of the ridge regression problem under power law random features when 2α > 1.
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There is a larger theory of nonlinear random features regression, mostly in the case of isotropic
random features. For isotropic random features with proportional dimension asymptotics, this
has been explored in works such as [71] and for some classes of anisotropic random features in
[31, 68, 72]. We note that lots of the complexity of the analysis of power law random features arises
from the analysis of self-consistent equations though the proof of these self-consistent equations falls
outside the typical random matrix theory setting from textbooks. The use of self-consistent equations
to study random matrix theory dates to [90], but the analysis of these equations (i.e, for Ǩ), as far
as we can tell, dates to [80]). This strongly motivates non-proportional scalings (which would be
inevitable in power law random features with nonlinearities); in the isotropic case, the state of the art
is [51].

Random features regression, ‘source/capacity’ conditions, and SGD. A large body of kernel
regression and random features literature is formulated for “source/capacity” conditions, which are
power law type assumptions that contain the problem setup here, when 2α > 1 (the low-dimensional
regime). For convenience, we record the parameters

αsource = 2α and rcapacity =
2α+ 2β − 1

4α
.

Here we have taken rcapacity as the limit of those r’s for which the source/capacity conditions hold
(see Table 1). We note that in this language rcapacity is often interpreted as ’hardness’ (lower is harder),
and that r ∈ (0, 0.5), r ∈ (0.5, 1.0) and r ∈ (1.0,∞) correspond to 3 regimes of difficulty which
have appeared previously (see the citations below); they are also precisely the 3 Phases Ia, II, and III.

Under source/capacity conditions, the authors of [85] establish generalization bounds for random
feature regression with power law structures in 2α > 1 case for one-pass SGD. These bounds were
sharpened in [29] and extended in [34] (see also [98]). An earlier work [22] shows kernel ridge
regression is ‘minimax optimal’ under various ‘source-capacity conditions’. We give a comparison to
these bounds in Table 2, but we note that the problem setup we have is not captured by ‘minimax
optimality’ (in particular minimax optimality is worst-case behavior over a problem class, and our
problem setup is not worst-case for the traditional source/capacity conditions). Moreover, the authors
[52, 94, 107] study stochastic momentum algorithms under source/capacity conditions (see below for
details).

We note that this paper is fundamentally about scaling laws, but the novel mathematical contributions
could also be recast in terms of generalization bounds of one-pass stochastic momentum algorithms.
For SGD, the work of [23] compares SGD to kernel ridge regression, showing that one-pass SGD
can attain the same bounds as kernel ridge regression and hence is another minimax optimal method
(again under ‘source-capacity’ conditions). See also [36] which considers similar statements for SGD
with iterate averaging and [81] for similar statements for multipass SGD; see also [35, 88] which also
prove the single-batch versions of these. These bounds attain the minimax-optimal rate, which are
worse than the rates attained in this paper (see Table 2 for a comparison).

Stochastic momentum algorithms. Recent research has established convergence guarantees for
stochastic classical momentum (SGD-M) in both strongly convex and non-strongly convex settings
[40, 41, 76, 86, 102]9. The latter references have established almost sure convergence results. For
quadratic minimization specifically, SGD-M iterates converge linearly (though not in L2) under
exactness assumptions [67], while under additional constraints on stochastic gradient noise, [55] and
[21] demonstrate linear convergence to a neighborhood of the solution. Batch size determination
significantly impacts the convergence rate of both SGD and SGD+M. For small batch sizes, SGD+M
does not necessarily outperform SGD [55, 78, 108], while some acceleration has been demonstrated
for large batch sizes [15, 30, 60].

Convergence results for stochastic Nesterov’s accelerated method [75] (SNAG) have been estab-
lished for both strongly convex and non-strongly convex settings [6, 9, 58]. Under stronger as-
sumptions—such as the strong growth condition [96] or additive noise on stochastic gradients
[59]—convergence to the optimum at an accelerated rate can be guaranteed. As noted in [38, Thm.
7] (see also references therein), a naive implementation of stochastic Nesterov acceleration fails to
converge in the non-strongly convex setting.

9This is a non-exhaustive list of work on stochastic momentum algorithms.
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The absence of general convergence guarantees showing acceleration for existing momentum schemes
in stochastic settings has prompted the development of alternative acceleration techniques, known
as "accelerated SGD" [2, 33, 43, 44, 46, 52, 55, 58, 61, 64, 73, 94, 107], see (Gen-Mom-SGD).
Recent empirical success in large transformer models indicates benefits of accelerated SGD methods
[83, 109], though theoretical understanding of hyperparameter scaling with model size [78, 94] and
rigorous proofs of improved compute-optimal scaling exponents remain open questions.

The idea of accelerated SGD emerged from [3, 52, 61, 75, 94]. They observed acceleration can
be obtained by coupling stochastic gradient descent and another update with aggressive stepsize.
Consequently one simply has to scale down the stepsize in the aggressive update to make it robust
to the gradient noise. In [61] (see also [66]), the authors produce an instance dependent risk bound
for an accelerated SGD algorithm using constant (dimension independent) hyperparameters (at least
above the high-dimensional line). We match the hyper-paramters of Accelerated SGD [61] to our
set-up in Table 3. Another popular algorithm, Schedule-free SGD [33], was proved to achieve the
worst-case rate (in the sense of classical analysis of algorithms) of SGD and can also be incorporated
into various other algorithms (e.g., Adam[56]). On benchmarks, it performs remarkably well. After
rewriting, we can express Schedule-free SGD in the form of (Gen-Mom-SGD); see Table 3.

The algorithms AcSGD [94] and DANA in [78], are shown to exhibit acceleration for non-strongly
convex quadratics by using momentum parameter (1 + t)−1 and dimension-dependent learning rates
on the order of 1/d. Specifically, DANA [78] showed acceleration in the high-dimensional setting
(samples and parameters are proportional) whereas AcSGD provides general bounds on quadratics in
the setting that 2α > 1 (above the high-dimensional line) under source/capacity conditions. AcSGD
achieves the rate E [P(θt)] ≲ min{ 1t ,

1
dt2 }∥θ0 − θ

⋆∥2 + d−2α+(1−2β)+ . Since ∥θ0 − θ⋆∥2 carries a
d-dependence, it is difficult to obtain a scaling law from this. If ∥θ0 − θ⋆∥2 ≍ 1 (as anticipated in
Phase II and III), the derived rate agrees with DANA-constant (with κ2 = 1/d) at the time t ≍ dα+1/2

that DANA-constant hits the irreducible loss level. Otherwise the derived rate is worse than the rate
at any other time given for DANA-constant with κ2 = 1; this makes sense as the AcSGD rate holds
for more general data covariances and it was derived without taking into account scaling. Moreover
we see that when t ≍ d, AcSGD behaves as 1/t, or SGD – similar to DANA-constant (κ2 = 1/d).
We match the hyperparameters in AcSGD with our set-up (see Table 3). Additionally, using our
Theorem 4.1, We derive heuristically the scaling law for AcSGD (see Sec. B.5) which asymptotically
matches DANA-constant with κ2 = 1/d and we perform experiments showing the close relationship
between DANA-constant and AcSGD, Figure 10.

In a recent work, the authors [107] introduced SGD with 1-memory, a one-pass algorithm, analyzed
on the (infinite) quadratic under the source/capacity constraints (2α > 1). In particular, the set-up
is infinite dimensional (d → ∞) and does not contain the embedding matrix W in PLRF. This
algorithm has the same form as (Gen-Mom-SGD). The authors propose a variant of DANA-decaying
(with κ3 = 1/(2α)) (see Table 3). While not proven, they heuristically expect in Phase Ia/II
(signal-dominated regime) that the rate matches our Fpp rate. We prove this rate, as well as the
rate for the noise-dominated regime (Phase III) (Theorem I.2). The work of [107] is based off the
deterministic result which looked at power law eigenvalue distributions on the conjugate gradient
algorithm, see [19]. In a concurrent work [106], the authors used constant momentum and learning
rates in (Gen-Mom-SGD) to show acceleration in the infinite dimensional (d→∞) set-up but using
∞-memory SGD. This would require storing multiple (in fact, infinite) vectors, each on the size of
the parameter space. They propose a finite memory version that approximates the infinite version.
Such a result is an interesting future direction to derive scaling laws.

In [40, 73], they showed many known algorithms could be rewritten in the form of (Gen-Mom-SGD).
We include Table 3 to provide an equivalence of hyperparameters of related work with
(Gen-Mom-SGD). These include stochastic Nesterov, AcSGD [94], Schedule-free SGD [33], accel-
erated SGD from [61], and SGD with 1-memory [107]. We perform scaling experiments with the
PLRF model on these algorithms in Fig. 10 and Fig. 1c.

Lastly, the notion of effective dimension has been used by [14, 61, 101, 110], but never quantified
directly as a time-dependent learning rate.

Dynamical deterministic equivalents, Volterra equations and ODEs. Using the deterministic
equivalents for random matrix resolvents [47], we in turn derive deterministic equivalents for the risk
curves of stochastic momentum algorithms.
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This work This work

Algorithm one-pass DANA-decaying (κ3 = 1
2α

) one-pass DANA-constant (κ2 = 1), n ≥ d

Risk
P(n)

Phase Ia Θ(n−(ρ/(2α))·(2−κ3)∨d−ρ) Θ(dρ/(2α)n−ρ/α∨d−ρ)

Phase II Θ(n−(ρ/(2α))·(2−κ3)∨d−2α

∨d−1n−(2−κ3)(1−1/(2α))
Θ(dρ/(2α)n−ρ/α∨d−2α

∨d−1/(2α)n−2+1/α)

Phase III Θ(n−(2−1/(2α))·(2−κ3)∨d−2α

∨d−1n−(2−κ3)(1−1/(2α))
Θ(d2−1/(2α)n−4+1/α∨d−2α

∨d−1/(2α)n−2+1/α)

[VF22]10 (see also [52])

Algorithm one-pass Accelerated SGD (n ≥ d)

Risk
P(n)

Phase Ia O(dn−2∥θ0 − θ⋆∥2 ∨ d−ρ)

Phase II O(dn−2∥θ0 − θ⋆∥2∨d−2α)

Phase III O(dn−2∥θ0 − θ⋆∥2∨d−2α)

This work [Paq+24]1 [DLM24]2

Algorithm one-pass SGD/SGD-M RR + O(1)-ridge

Risk
P(n)

Phase Ia Θ(n−ρ/(2α)∨d−ρ) same as [Paq+24]1

Phase II Θ(n−ρ/(2α)∨d−1n−1+1/(2α)∨d−2α) same as [Paq+24]1

Phase III Θ(n−2+1/(2α)∨d−1n− 2α−1
2α ∨d−2α) Θ(n−2∨d−1n− 2α−1

2α ∨d−2α)

Minimax optimal789 [Lin+24]6

Algorithm
one-pass SGD,
very small stepsize

one-pass SGD, very small stepsize

Risk
P(n)

Phase Ia O
(
n−ρ/(2α+2β)

)
Θ(d−ρ+n−ρ/(2α)+min{ d

n
, n−1+1/(2α)})

Phase II O
(
n−ρ/(2α+2β)

)
does not cover

Phase III O
(
n−4α/(4α+1)

)
does not cover

7 Carratino, Rudi, Rosasco. Learning with sgd and random features. 2018
8 Dieuleveut and Bach. Nonparametric stochastic approximation with large stepsizes. 2016.
9 Pillaud-Vivien, Rudi, Bach. Statistical optimality of SGD on hard learning problems through multiple

passes. 2018.
9 Varre, Pillaud-Vivien, Flammarion. Last iterate convergence of SGD for least squares in the interpolation

regime 2021.
10 Varre, Flammarion. Accelerated SGD for Non-Strongly-Convex Least Squares 2022.

Table 2: (Nonexhaustive) Comparison of sample-complexity results. Let ρ def
= 2α+ 2β − 1. We use n =

sample size(t in our notation), d = parameters. [DLM24]1 can also be done with RR+optimal-ridge, which
yields same in Phase Ia, but different in Phase II/III. [VPF21]9 obtain P ≪ n−min{1/(2α),(2α+2β−1)/(2α)},
that is, they capture the Fpp, but not Fac. The minimax optimal SGD rates never achieve any of the rates (always
worse), which can be connected to overly conservative, small stepsizes. For derivation of the minimax rates,
we used Cor. 2 from [DB18]7 . [Lin+24]5 requires label noise order 1 and also a very small learning rate. For
[VF22]10, we believe (though not proven) after numerical experiments that ∥θ0 − θ⋆∥2 ≲ d1−2β in Phase Ia and
otherwise constant in Phase II/III. As it takes on the order of dα+1/2 to reach stationarity for DANA-constant,
we see that our bounds improve over [VF22]10, but similar. In particular, the two results agree as one approaches
stationarity. For all algorithms, we set batch size = 1.
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Equivalent Hyperparameters
in Alg. (Gen-Mom-SGD)

Good Choices for
Hyperparameters

AcSGD[94]
(α̃, β̃)

γ1(t) =
α̃(t+1)2

t+2
− t+1

t+2
β̃,

γ2(t) = β̃, γ3(t) = 1
t+1

,
∆(t) = 1

t+2

α̃ = c1/(d× Tr(D)), β̃ = c2/Tr(D),
c1, c2 constants;
See [94, Thm 3]

S-Nesterov
(γ̃)

γ1(t) =
γ̃(t+1)2

t+2
− t+1

t+2
γ̃,

γ2(t) = γ̃, γ3(t) = 1
t+1

,
∆(t) = 1

t+2

γ̃ = c2/Tr(D), c2 constant; See [40]
for details

Schedule-Free
SGD [33] (γ̃, β̃)

γ1(t) = 1, γ2(t) = γ̃(1− β̃),
γ3(t) =

γ̃β̃
t+1

, ∆(t) = 1
t+1

β̃ = 0.9, γ̃ = c2/Tr(D), c2 constant;
See [73] for equivalence proof.

ASGD [61]
(γ̃, α̃, β̃, δ̃)

γ1(t) = α̃(δ̃ − γ̃),
γ2(t) = α̃δ̃ + (1− α̃)γ̃,
γ3(t) = −(1− α̃)(1− β̃),
∆(t) = (1− β̃)α̃

See [61] for choices of
hyperparameters; Time-independent
hyperparameters (γ̃, α̃, β̃), but some

depend on 1/d.

SGD with
1-memory [107]

(q0, α̃, δ̃)

γ1(t) = 1,
γ2(t) = q0,
γ3(t) = (1 + t)−α̃,
∆(t) = (1 + t)−δ̃

Heuristic only (no specific constants)
0 < α̃ < (2α)−1,

0 < δ̃ ≤ 1.

Table 3: Other algorithms in the form of updates given by (Gen-Mom-SGD) and hyperpa-
rameters. See [40, 73, 94] for details. Although not proven, AcSGD [94] should attain similar
scaling laws as DANA-constant and ASGD [61] should attain similar scaling laws as SGD. We
note that ASGD [61] is not quite in the form of (Gen-Mom-SGD) as the update in yt uses a stale
gradient∇R(θt−1;xt) instead of∇R(θt;xt+1) for (Gen-Mom-SGD). SGD with 1-Memory [107]
is a heuristic algorithm independently developed at the same time as DANA-decaying and very
similar; No proof is given. We believe our result proves this algorithm as well.

The method of analysis of the risk curves in this paper is by formulation of a Volterra equation. For
SGD and stochastic momentum, these Volterra equations were studied in the high-dimensional regime,
see [60, 77, 78, 79, 80]. Particularly, we use the formulation that derives the Volterra equation via a
system of coupled difference equations for weights of the residuals in the observed data covariance.
This has been shown to generalizes beyond the least-squares context, at least under SGD, [26]; in
isotropic instances, this simplifies to a finite-dimensional family of ODES [4]. This can also be
generalized to momentum SGD methods [78] and large batch SGD methods [60]. Convolution-
Volterra equations are convenient tools, as they are well-studied parts of renewal theory [5] and
branching process theory [8].

Another method of analysis is dynamical mean field theory. The closest existing work to this one in
scientific motivations is [16, 17], which uses this technique. This formally can be considered as a
type of Gaussian process approximation, but for a finite family of observables (“order parameters”).
In instances of one-pass SGD (including in anisotropic cases), this is rigorously shown to hold in
[42]. The analysis of the resulting self-consistent equations is nontrivial, and [7, 16, 17] does some
of this analysis under simplifying assumptions on the structure of the solutions of these equations.

Besides these works, there is a large theory around generalization error of SGD. The work of [95]
gives a direct analysis of risks of SGD under “source/capacity” type assumptions which formally
capture the Fpp parts of the Phase Ia/II loss curves. The risk bounds of [111] give non-asymptotic
estimates which again reproduce tight estimates for the Fpp parts of the loss (note that to apply these
bounds to this case, substantial random matrix theory needs to be worked out first); see also [63]
where some of this is done.
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B Additional Algorithm Set-up

Let γ1, γ2, γ3 : [0,∞) → (0,∞) be learning rate schedules and ∆ : [0,∞) → [0,∞) be the
momentum schedule. To solve the PLRF (3), we use a class of one-pass (mini-batch) stochastic
momentum algorithms with batch size B. Let y−1 = θ0 ∈ Rd. At each iteration t ≥ 0, we generate
independent, new samples {xit+1}Bi=1 and update by

yt = (1−∆(t))yt−1 + γ1(t)×
B∑
i=1

WTxit+1

(
⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩

)
θt+1 = θt − γ2(t)×

B∑
i=1

WTxit+1

(
⟨WTxit+1, θ

i
t+1⟩ − ⟨xit+1, b⟩

)
− γ3(t)× yt,

(13)

where γi(t),∆(t) are non-negative functions. We will consider multiple versions of the algorithm
(13), that is, with different choices for the learning rates γ’s and the momentum schedule ∆(t). In
Section 3, we summarize the different algorithms we consider based on hyperparameters as well as
good choices for those hyperparameters.

B.1 Stochastic gradient descent (SGD)

An example of a known stochastic algorithm that falls within the update rule given in (13) is the
stochastic gradient descent (SGD) with learning rate schedule, γ2(t). This algorithm is determined
by setting γ1, γ3 ≡ 0, ∆ ≡ 1, and γ2(t) : [0,∞) → (0,∞) a learning rate schedule in (13).
Specifically, it updates by

θt+1 = θt − γ2(t)×
B∑
i=1

WTxit+1

(
⟨WTxit+1, θ

i
t+1⟩ − ⟨xit+1, b⟩

)
. (14)

In Section F, we derive the deterministic ODEs and analyze SGD for compute-optimality when the
learning rate schedule γ2(t) is a decreasing function.

B.1.1 SGD with constant learning rate

The compute-optimal curves for SGD when γ2(t) is a constant was studied extensively in [16, 63, 80].
In [80], a necessary and sufficient condition for convergence of the algorithm based on the learning
rate γ2 was established (see [80, Prop. C.2]). Particularly, the condition was

γ2 <
2

B + 1
and

∫ ∞

0

K (t) dt < 1,

where K is the kernel function for SGD (see Section F for a specific definition). Asymptotically, we
know that K ([80, Cor. G.1]) satisfies∫ ∞

0

K (t) dt ∼ γ2
2

v∑
j=1

j−2α.

Therefore, we have two cases to consider: 2α < 1 (below high-dimensional line) and 2α > 1 (above
high-dimensional line).

Remark B.1 (Stability conditions for SGD with constant learning rate). Let Tr(D)
def
=
∑v

j=1 j
−2α.

When 2α < 1, suppose that v
d → r ∈ (1,∞). The stability conditions for SGD with constant learning

rate γ2 are

(2α > 1) : γ2 <
2

B+1 and γ2 <
2

Tr(D)

(2α < 1) : γ2 <
2

B+1 and γ2 <
2

Tr(D) ∼
2(1−2α)
d(1−2α) .

This means that for 2α > 1, the learning rate is always constant (order 1) as the Tr(D) is summable.
Below the high-dimensional line, Tr(D) grows with the number of features d.
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B.2 Classic (constant) momentum (SGD-M)

In this section, we consider the classical stochastic momentum where the learning rates γ1 = 1, γ2 =
γ̃2d

−κ1 , and γ3 = γ̃3d
−κ2 , and momentum, ∆ ≡ δ, is constant (does not change with time and order

1 with respect to d). We call this algorithm stochastic gradient descent with momentum (SGD-M). In
particular, we note that (stochastic) heavyball [82] occurs when γ2 = 0 and γ3 and ∆ are specific
constants determined by the largest and smallest (non-zero) eigenvalue of Ǩ. In this case, the updates
in (13) with y−1 = θ0 = 0 follow

yt = (1− δ)yt−1 +

B∑
i=1

WTxit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)

θt+1 = θt − γ2
B∑
i=1

WTxit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)− γ3 × yt.

(15)

We will show a sufficient condition on the hyperparameters γ2, γ3, δ in Cor. G.1 for the simplified
Volterra equation (55) to remain bounded. However, we emphasis that there are discrepancies between
this stability condition and the actual stability condition of the algorithm. Indeed, the simplified
Volterra equation neglects ∆2 terms which makes any ∆ > 0 converge. On the other hand, it is
possible to make a similar analysis on a different set of ODEs (coin-flip ODEs (49)) with γ2 = 0. In
that case, we can derive an explicit condition for stability of the algorithm. Specifically, the stability
condition takes the form 2δ(2−δ)

2(2B+1)+δ(3B+1) > γ3 > 0 with δ ∈ (0, 2). The condition δ ∈ (0, 2)

is crucial to avoid exponential growth of the sequence (yt, t ≥ 0). This shows a limitation of the
simplified ODEs (43) which may miss some stability conditions.

B.3 Dimension-Adapted Nesterov Acceleration: DANA-constant

Another important algorithm we consider is DANA, introduced in [78], where it was shown to
accelerate SGD in the proportional d and sample setting (a.k.a. thermodynamic limit). The main
distinction with (DANA) over SGD-M is the momentum schedule. Following a Nesterov style
momentum, we set ∆(t) = δ

1+t . In DANA-constant, the learning rates are all set to be constant
(possibly dimension-dependent). We will consider a more general setting for DANA-constant in
the appendix then what was introduced in the main introduction. Setting y−1 = θ0 = 0, the
DANA-constant algorithm updates as

(DANA-constant)
yt = (1−∆(t))yt−1 + γ1 ×

∑B
i=1W

Txit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)

θt+1 = θt − γ2(d)×
∑B

i=1W
Txit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)− γ3(d)× yt.

where ∆(t) =
δ

t+ 1
, γ1 = 1, γ2(d) =

constant
dκ1

, and γ3(d) =
constant
dκ2

.

(16)
Here we have batch size B = dκb where the exponents κb, κ1, κ2 ≥ 0. For the DANA-constant
introduced in the main introduction, we set κ2 = κ1 + 1 and κb = 0. At times throughout the
appendix, we will reduce back down to DANA-constant with these specific parameters, but for the
proof, see Section H, we will use this more general DANA-constant setting.

Remark B.2 (Good choices for hyperparameters of DANA-constant.). In Lemma H.5, we give
sufficient conditions for stability of the solution to the Volterra equation (55) on the simplified system
of ODEs (43) that accurately predicts the dynamics of the stochastic algorithm DANA-constant. For
necessary conditions on the hyperparameters (on the simplified ODEs), see Corollary H.2. Some
good choices for hyperparameters of DANA-constant (in batch size B = 1) are

δ > 4×max

{
2α+ 2β − 1

α
, 4− 1

α

}
, γ1 = 1, γ2 =

c2
Tr(D)

, and γ3 =
c3

d× Tr(D)
,

satisfying
γ1γ3
2γ2

d+
γ2
2

Tr(D) < 1.

Here c2, c3 are positive constants and the matrix D = Diag(j−2α : 1 ≤ j ≤ v).
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(b) AcSGD, single run
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(c) Stochastic Nesterov, single run
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(e) AcSGD, scaling behavior
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Figure 10: Comparison of SGD, DANA with other known algorithms (Schedule-free, AcSGD,
Nesterov). Numerical setup: SGD (blue curves) learning rate γ2 = 0.5/Tr(D), DANA-constant
(green) has γ1(t) = 1, γ2(t) = 0.5/Tr(D), γ3(t) = 0.1/d, ∆(t) = δ/(1 + t) where δ = max{2−
1/α, (2α+2β−1)/α}+1; DANA-decaying (orange) same γ1, γ2, and ∆ as DANA-constant,γ3(t) =
0.1/(1 + t)1/(2α); Schedule-free SGD (red in 1st column) β̃ = 0.9 and γ̃ = 0.5/Tr(D) in [33];
AcSGD (red in 2nd column) α̃ = 0.1/Tr(D) × 1.0/Tr(D) and β̃ = 0.4/Tr(D) as defined in [94];
Stochastic Nesterov (red in 3rd column) α̃ = β̃ = 0.1/Tr(D) × 1.0/d1/2 as defined in [94]. Top
row: algorithms were run for 107 steps with d = 1000, v = 10000; Bottom row: algorithms run
using the ODEs with equivalences given in Table 3; 109 iterations of algorithm, d = {100 × 2i},
i = 1, . . . , 10 and v = 10 × d. (1st column: Schedule-free SGD [33]) Schedule-free SGD (red)
scales very closely with SGD (blue) for this (α, β). We see both DANA-decay and DANA-constant
accelerate. (2nd column: AcSGD [94]) AcSGD (red) gives scaling laws similar to DANA-constant
(green). Moreover, it has the same property of changing behavior at t ≍ d. Although an upper bound
was proven for AcSGD in [94], this is not optimal when applied to the PLRF and, in particular, one
would need to understand ∥θ0− θ⋆∥2. A similar technique as our approach to DANA-constant should
apply to AcSGD. (3rd column: stochastic Nesterov) Stochastic Nesterov is known to not converge
(see e.g., Thm.7 [38] and references therein).
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B.4 Data-Adapted Nesterov Acceleration (DANA-decaying): Time/Data-dependent learning
rates

In the same spirit as (16), we consider a variation of DANA-constant, called DANA-decaying. In this
case, we not only have a momentum time-dependent schedule, but we also allow the learning rates
to be time dependent. The motivation for a decaying γ3 schedule is, in light of Section 3, to avoid
the trivial behavior of DANA-constant for small t by using larger γ3 at the start, while decaying it
progressively to reduce the noise and preserve the stability of the algorithm. Therefore, we introduce
the DANA-decaying algorithm given by

(DANA-decaying)
yt = (1−∆(t))yt−1 + γ1 ×

∑B
i=1W

Txit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)

θt+1 = θt − γ2(d)
∑B

i=1W
Txit+1(⟨WTxit+1, θt⟩ − ⟨xit+1, b⟩)− γ3(t; d)yt.

where ∆(t) =
δ

t+ 1
, γ3(t; d) =

constant
(1 + t)κ3

, and γ2(d), γ1 = constants.

(17)
Here the exponent κ3 ≥ 0 and batch size B is independent of d. We only prove the result when
2α > 1 and γ2(d) ≍ 1, see Section I. In the setting of 2α > 1, this amounts to choosing (up to an
absolute constant) the maximal learning rate. We provide some good choices for the hyperparameters
that work well across scales on the PLRF.
Remark B.3 (Good hyperparameters for DANA-decaying, with B = 1). In Section I, we provide
some heuristics as to the correct sufficient conditions for stability of DANA-decay. More precisely for
any 1 ≥ κ3 > 1

2α (for DANA-decaying, one should pick κ3 = 1
2α ) the conditions are stated as

δ +
κ3
2
>
(
1− κ3

2

)
max

{
2α+ 2β − 1

α
, 4− 1

α

}
, γ1 = 1, γ2(d) =

c2
Tr(D)

,

and γ3(t; d) =
cγ2(d)

(1 + t)κ3
.

Here the constants c2, c > 0 should be chosen small enough and the matrix D = Diag(j−2α : 1 ≤
j ≤ v). Below the high-dimensional line (2α < 1), we are not certain if another choice of γ3 may
accelerate.

In the rest of the appendix, we use the following.

Remark B.4 (DANA-decaying/DANA-constant.). Unless it is clear that κ2/κ3 are being
used, e.g., in the proofs of DANA-constant/DANA-decaying (Section H and Section I), DANA-
constant refers to (κ2 = 1 + κ1, κ3 = 0) and DANA-decaying refers to (κ2 = 0, κ3 =
1/(2α)). In some cases, we will further reduce to the setting where batch size is order 1 in d.
We note when we refer to DANA-decaying we always assume that batch size is order 1.

B.5 Comparison with Schedule-free, AcSGD, Stochastic Nesterov and conjectured scaling
laws

Other algorithms (e.g., stochastic Nesterov, AcSGD [94], Accelerated SGD [52, 61]) can be written
in terms of Gen-Mom-SGD. For the equivalence of hyperparameters of these algorithms to the
hyperparameters in Gen-Mom-SGD, see Table 3. See also Figure 10 for their scaling performance
compared with DANA and SGD.

We conjecture that Theorem 4.1 can be extended to include a time-dependent γ1(t; d). In some sense,
the algorithm Gen-Mom-SGD is over-parameterized, that is, for Gen-Mom-SGD(γ1, γ2, γ3,∆ ≍
(1 + t)−1) such that

γ1(t; d)×γ3(t; d) = γ̂3(t; d) ⇒ Gen-Mom-SGD(γ1, γ2, γ3,∆ ≍ (1 + t)−1) ≈ DANA(γ2, γ̂3).

This is certainly true when γ1 is a constant (d-dependent allowed). It should also hold (at least
asymptotically) when γ1(t; d) and γ3(t; d) are time-dependent provided that γ1(t; d) is growing
and ∆(t) is nice. Intuitively, this is true as θt+1 in Gen-Mom-SGD gets updated by approximately
γ1(t; d)× γ3(t; d)× yt after unrolling the recursion on yt’s.
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Under this belief and using the equivalence with our parametrization in Table 3 we can very precisely
conjecture their scaling law behavior.

• Schedule-free SGD. In our parametrization, Schedule-free SGD uses the asymptotic learn-
ing rates γ1(t; d)γ3(t; d) = γ̃β̃

1+t and γ2(t; d) = γ̃(1− β̃) with γ̃ ≍ 1
Tr(D) , β̃ ≍ 1. Therefore,

we see Schedule-free SGD is approximately DANA-decaying with γ2(t; d) ≍ 1
Tr(D) and

γ3(t; d) = 1
Tr(D)(1+t) or, if you like, κ3 = 1. Then from Theorem 4.1, we have that the

function ϑ(t) ≍ 1 + 2γ2Bt. This leads to the conjectured behavior:

Conjectured Scaling Laws for Schedule-free SGD: For any α > 0, 2α+2β > 1,
Schedule-free SGD has the exact same scaling laws as SGD.

• AcSGD. In our parametrization, AcSGD [94] uses the asymptotic learning rates
γ1(t)γ3(t) = α̃ and γ2(t) = β̃ with α̃ ≍ 1

d×Tr(D) and β̃ ≍ 1
Tr(D) . We see that this exactly

corresponds for large time to the schedule for DANA-constant with γ3(t; d) = γ2(d)× 1
d .

Using our result on DANA-constant Theorem H.3, this leads to the conjectured behavior:

Conjectured Scaling Laws for AcSGD: For any α > 0, 2α + 2β > 1, AcSGD
has the exact same scaling laws as DANA-constant.

• Stochastic Nesterov In our parametrization, stochastic Nesterov uses the asymptotic learning
rates γ1(t)γ3(t) = γ̃ and γ2(t) = γ̃ with γ̃ ≍ 1

Tr(D) . We see that this exactly corresponds for
large time to the schedule for DANA-constant without the 1

d scaling in the γ3(t) learning rate.
Using our stability result on DANA-constant Corollary H.2, this leads to the conjectured
behavior (see related results in e.g., Thm.7 [38] and references therein):

Conjectured Scaling Laws for Stochastic Nesterov: For any α > 0, 2α+2β > 1,
Nesterov Momentum diverges for large times.

C Deriving ODEs and Volterra equations

In this section, we derive Volterra equations that match the dynamics of the meta stochastic momentum
algorithm updates in (13). We develop two systems of ODEs that culminate in two (related) Volterra
equations. In Section C.1, we deduce a system of ODEs and a Volterra equation that, in expectation,
matches the expected loss under the updates (13). We denote these as the exact ODEs and the exact
Volterra equation, resp. While numerically solvable, analyzing the exact ODEs presents significant
challenges. Therefore, we introduce a system of SDEs derived from studying stochastic momentum
algorithms in the high-dimensional optimization framework [78]. In Section C.2, we derive the ODEs
and Volterra equation for the SDE framework (simplified ODEs), resp. We empirically demonstrate
that this alternative simplified ODE system accurately model the behavior of SGD/SGD-M, DANA-
constant, and DANA-decaying (see Fig. 26, 27, 28, 29, 30, 31, 32, 33), and are considerably
simpler for analyzing scaling laws. Throughout our analysis, we clearly indicate which system of
ODEs/Volterra equation we are examining for each algorithm.

C.1 Derivation of exact ODEs and exact Volterra for the expected loss of meta stochastic
momentum algorithm, (Gen-Mom-SGD)

In this section, we derive a Volterra equation for the dynamics of the meta stochastic momentum
algorithm which updates using (13). Let Nt be an iid Poisson process. At a jump of Nt, we generate
{xi}Bi=1 new data points whose coordinates follow an α-power law and update by

Yt = (1−∆(t))Yt− + γ1(t)×
B∑
i=1

WTxiNt
(xiNt

)T (WΘt− − b)
def
= Yt− +∆y

t (Yt−,Θt−)

Θt = Θt− − γ2(t)×
B∑
i=1

WTxiNt
(xiNt

)T (WΘt− − b)− γ3(t)× Yt
def
= Θt− +∆θ

t (Yt,Θt−).

(18)
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Here we naturally extend time t to be a continuous parameter with Yt− = Yt−1 and we start this
process so that Θ0 = θ0 and Y0− = y−1, that is, at initialization the two stochastic algorithms agree.
This is a standard way to embed discrete processes into a continuous process.

For any (Θ, Y ) 7→ f(Θ, Y ) ∈ R, the mean behavior is given by
d

dt
E [f(Yt,Θt)] = E [f(Yt +∆y

t (Yt,Θt),Θt +∆θ
t (Yt,Θt))− f(Yt,Θt)]. (19)

C.1.1 Derivation of the Exact ODEs.

For this, we need to introduce statistics that are closed under differentiation as defined in (19).

To do so, we begin by writing Rv = Im(W ) ⊕W⊥. Thus, there exists a b̌ ∈ Rd and ḃ ∈ Rv such
that one can write b =Wb̌+ ḃ, that is, we can decompose b as an element in the image of W and an
element in the co-ker of W . Formally, we have that

b =Wb̌+ ḃ, where WTDḃ = 0.

We will now choose some specific functions/statistics that will close under differentiation. Let
Ǩ

def
= WTDW ∈ Rd×d and let (λj , ωj)

d
j=1 by the eigenvalue-eigenvector pairs for Ǩ. We will

consider the follow special statistics/functions for each eigenvector of Ǩ

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ].

(20)

We recover the expected loss function from the statistics (20) by

E [P(Θt)|W ] = E [P(Θ∞)|W ] +
∑
j

λjρ
2
j (t), where E [P(Θ∞)|W ] = lim

t→∞
E [P(Θt)|W ].

Therefore, knowing the evolution of ρ2j (t) and E [P(Θ∞)|W ] for every j allows us to recover
information about the evolution of the loss curve under Θt. Moreover, we will show that the functions
(ρ2j , ξ

2
j , χ

2
j ) close, that is, there is a closed system of ODEs that defined their behavior.

First, we observe that we will need moments of Gaussians via Wick’s formula. In particular, for fixed
vectors vi ∈ Rv , i = 1, 2, 3, 4 and xj = j−αzj where zj ∼ N(0, 1),

E x[x⟨x, v1⟩] = Dv1
E x[⟨x, v1⟩⟨x, v2⟩⟨x, v3⟩⟨x, v4⟩] = ⟨D, v1 ⊗ v2⟩⟨D, v3 ⊗ v4⟩+ ⟨D, v1 ⊗ v3⟩⟨D, v2 ⊗ v4⟩

+ ⟨D, v1 ⊗ v4⟩⟨D, v2 ⊗ v3⟩.

The (v × v)-matrix D def
= Diag(j−2α : 1 ≤ j ≤ v) is the covariance of x. Using these moment

computations, we can compute d
dt for the functions in (20).

ρ2j functions: Using (19) applied to E [f(Θt, Yt)] = ρ2j (t) yields,

d
dtρ

2
j (t) = 2E

[
⟨ω⊗2

j ,
(
− γ2(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⊗ (Θt − b̌)⟩ |W

]
+ 2E

[
⟨ω⊗2

j ,−γ3(t)(1−∆(t))Yt ⊗ (Θt − b̌)⟩ |W
]

+ 2E
[
⟨ω⊗2

j ,
(
− γ1(t)γ3(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⊗ (Θt − b̌)⟩ |W

]
+ 2E

[
⟨ω⊗2

j ,
(
− γ2(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⊗−γ3(t)(1−∆(t))Yt⟩ |W

]
+ 2E

[
⟨ω⊗2

j ,
(
− γ2(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)

⊗
(
− γ1(t)γ3(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⟩ |W

]
+ 2E

[
⟨ω⊗2

j ,−γ3(t)(1−∆(t))Yt ⊗
(
− γ1(t)γ3(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⟩ |W

]
+ E

[
⟨ω⊗2

j ,
(
− γ2(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)⊗2⟩ |W

]
+ E

[
⟨ω⊗2

j ,
(
− γ3(t)(1−∆(t))Yt

)⊗2⟩ |W
]

+ E
[
⟨ω⊗2

j ,
(
− γ1(t)γ3(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)⊗2⟩ |W

]
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For convenience, we drop the t’s on the learning rates γi(t) = γi and ∆(t) = ∆. Applying Wick’s
rule to the RHS, we get
d
dtρ

2
j (t) = −2γ2Bλjρ2j (t)− 2γ3(1−∆)χj(t)− 2γ1γ3Bλjρ

2
j (t)

+ 2γ2γ3(1−∆)Bλjχj + 4γ1γ2γ3Bλ
2
jρ

2
j (t) + 2γ1γ2γ3BλjE [∥D1/2(WΘt − b)∥2|W ]

+ 2γ1γ2γ3B(B − 1)λ2jρ
2
j (t) + 2γ23γ1(1−∆)Bλjχj(t) + γ22BλjE [∥D1/2(WΘt − b)∥2|W ]

+ 2γ22Bλ
2
jρ

2
j (t) + γ22B(B − 1)λ2jρ

2
j (t) + γ23(1−∆)2ξ2j (t)

+ γ21γ
2
3BλjE [∥D1/2(WΘt − b)∥2|W ] + 2γ21γ

2
3Bλ

2
jρ

2
j (t) + γ21γ

2
3B(B − 1)λ2jρ

2
j (t).

ξ2j functions: Using (19) applied to E [f(Θt, Yt)] = ξ2j (t) yields,

d
dtξ

2
j (t) = E

[
⟨ω⊗2

j ,
(
(1−∆(t))Yt + γ1(t)

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)⊗2⟩ |W

]
− E

[
⟨ω⊗2

j , Y ⊗2
t ⟩ |W

]
= 2E

[
⟨ω⊗2

j , Yt ⊗−∆(t)Yt⟩ |W
]
+ 2BE

[
⟨ω⊗2

j , Yt ⊗ γ1(t)
(
WTxtx

T
t (WΘt − b)

)
⟩ |W

]
+ E

[
⟨ω⊗2

j ,
(
∆(t)Yt

)⊗2⟩ |W
]

− 2BE
[
⟨ω⊗2

j ,∆(t)Yt ⊗ γ1(t)
(
WTxtx

T
t (WΘt − b)

)
⟩ |W

]
+ γ21(t)BE

[
⟨ω⊗2

j ,
(
WTxtx

T
t (WΘt − b)

)⊗2⟩ |W
]

+ γ21(t)B(B − 1)E
[
⟨ω⊗2

j ,
(
WTx1t (x

1
t )

T (WΘt − b)
)
⊗
(
WTx2t (x

2
t )

T (WΘt − b)
)
⟩ |W

]
.

Applying Wick’s rule, we get
d
dtξ

2
j (t) = −2∆ξ2j (t) + 2γ1Bλjχj(t) + ∆2ξ2j (t)− 2∆γ1(t)Bλjχj(t)

+ 2γ21Bλ
2
jρ

2
j (t) + γ21BλjE [∥D1/2(WΘt − b)∥2 |W ] +B(B − 1)γ21(t)λ

2
jρ

2
j (t).

χj functions: Lastly, using (19) applied to E [f(Θt, Yt)] = χj yields,

d
dtE [χj |W ] = E

[
⟨ω⊗2

j ,Θt − γ2
∑B

i=1W
Txit(x

i
t)

T (WΘt − b)

− γ3
(
(1−∆)Yt + γ1

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
− b̌

⊗
(
(1−∆)Yt + γ1

∑B
i=1W

Txit(x
i
t)

T (WΘt − b)
)
⟩ |W

]
− E

[
⟨ω⊗2

j , (Θt − b̌)⊗ Yt⟩ |W
]

Applying Wick’s rule, we get the following
d
dtE [χj |W ] = −γ2Bλjχj(t)− γ3(1−∆)ξ2j (t)− γ1γ3Bλjχj(t)−∆χj

+ γ2∆Bλjχj(t) + γ3∆(1−∆)ξ2j (t) + γ1γ3∆Bλjχj(t) + γ1Bλjρ
2
j (t)

− 2γ1γ2Bλ
2
jρ

2
j (t)− γ1γ2BλjE [∥D1/2(WΘt − b)∥2|W ]

− γ1γ2B(B − 1)λ2jρ
2
j (t)− γ1γ3(1−∆)Bλjχj(t)− 2γ21γ3Bλ

2
jρ

2
j

− γ21γ3BλjE [∥D1/2(WΘt − b)∥2|W ]− γ21γ3B(B − 1)λ2jρ
2
j (t).

Putting this altogether yields the following system of linear ODEs.

Exact ODEs for ρ2j , ξ2j , χj . Let (λj , ωj) be the eigenvalue-eigenvector pairs for Ǩ =

WTDW and decompose b = Wb̌ + ḃ such that WTDḃ = 0. Here the (v × v)-matrix
D = Diag(j−2α : 1 ≤ j ≤ v) and P(t)

def
= P(Θt) = ∥D1/2(WΘt − b)∥2. Additionally,

we drop the time in the learning rate and momentum schedules to simplify notation. The
functions

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ]

(21)
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form a closed system of linear ODEs:

d

dt
ν(t;λj) = Ω(t;λj)× ν(t;λj) + g(t;λj), (22)

where Ω(t;λj) = Ω̄(t;λj) + Ω̃(t;λj) and g(t;λj) = ḡ(t;λj) + g̃(t;λj) such that

Ω̄(t;λj)
def
=

−2γ2Bλj 0 −2γ3
0 −2∆ 2γ1Bλj

γ1Bλj −γ3 −∆− γ2Bλj

 ,

Ω̃(t;λj)
def
=

−2γ1γ3Bλj + (2γ1γ2γ3 + γ2
2 + γ2

1γ
2
3)B(B + 1)λ2

j γ2
3(1−∆)2 2γ3∆+ 2(γ2γ3 + γ2

3γ1)(1−∆)Bλj

γ2
1B(B + 1)λ2

j ∆2 −2γ1∆Bλj

−γ1γ2(B(B + 1))λ2
j − γ2

1γ3B(B + 1)λ2
j γ3∆(2−∆) (γ2∆− 2(1−∆)γ1γ3)Bλj

,

ḡ(t;λj)
def
=

γ2
2λjBE [P(t) |W ]

γ2
1λjBE [P(t) |W ]

0

 , g̃(t;λj)
def
=

(2γ1γ2γ3 + γ2
1γ

2
3)λjBE [P(t) |W ]
0

(−γ1γ2 − γ2
1γ3)BλjE [P(t) |W ]

 ,

and ν(t;λj)
def
=

ρ2j (t)
ξ2j (t)
χj(t)

 .

(23)
The initial conditions are such that

ν(0;λj) =

ρ2j (0)ξ2j (0)
χj(0)

 .

Remark C.1. We can write the functions (ρ2j , ξ
2
j , χj) in terms of the non-zero eigenvalues and

eigenvectors of the conjugate matrix K̂
def
= D1/2WWTD1/2.10 We show this equivalence below.

Proposition C.1 (Equivalence of (ρ2j , ξ
2
j , χj)). Suppose K̂ = D1/2WWTD1/2 where D =

Diag(j−2α, j = 1, . . . v). Then the following holds

ρ2j (t) = E

[ ⟨uj , (D1/2(WΘt − b)
)
⟩2

λj

∣∣∣∣W], ξ2j (t) = E

[
⟨uj , D1/2WYt⟩2

λj

∣∣∣∣W],
and χj(t) = E

[ ⟨u⊗2
j ,
(
D1/2(WΘt − b)

)
⊗D1/2WYt⟩

λj

∣∣∣∣W],
where (λj , uj)

d
j=1 are the nonzero eigenvalues/eigenvectors of K̂.

Proof. Let D1/2W = V ΣUT be the singular value decomposition where V = [u1, u2, .., uv] ∈
Rv×v, U = [ω1, ω2, . . . , ωd] ∈ Rd×d, and Σ ∈ Rv×d rectangular diagonal matrix with non-zero
singular values σj where j = 1, . . . , d. We prove the result for ρ2j (t) – noting that the results for ξ2j
and χj follow a similar argument.

We note that WTDḃ = 0 implies that WTD1/2(D1/2ḃ) = 0. In particular, this means that
UΣTV TD1/2ḃ = 0. By hitting both sides by ΣUT , we get that

ΣUTUΣTV TD1/2ḃ = 0 ⇒ ΣΣTV TD1/2ḃ = 0.

Thus for all nonzero singular values σj (or equivalently for all nonzero eigenvalues λj of Ǩ =

WTDW ), uTj D
1/2ḃ = 0.

Additionally, we have that

WTD1/2uj = UΣTV Tuj = UΣT ej = σjUej = σjωj ,

where ej is 0 except for a 1 in the jth position. Note this holds for all non-zero σj .

10These are precisely the statistics described in (4).
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We have that b =Wb̌+ ḃ where WTDḃ = 0. Therefore,
⟨uj , (D1/2(WΘt − b))⟩2

λj
=
⟨uj , D1/2W (Θt − b̌)−D1/2ḃ⟩2

λj

=
⟨uj , D1/2W (Θt − b̌)⟩2

λj
− ⟨uj , D

1/2ḃ⟩2

λj

=

(
σj⟨ωj , (Θt − b̌)⟩

)2
λj

.

The last equality follows since σ2
j = λj . Taking expectations, finishes the proof.

Remark C.2 (Initialization). If Θ0 = Y0− = 0, then ρ2j (0) = E
[ ⟨uj ,D

1/2b⟩2
λj

∣∣∣∣W ], ξ2j (0) = χj(0) =

0 for all j = 1, . . . , d.

Since the nonzero eigenvalues of K̂ are the same as Ǩ, and in light of Prop. C.1, these
{(ρ2j , ξ2j , χj)}dj=1 satisfy the same exact ODEs as in (22). Throughout the remaining sections, we
use {(ρ2j , ξ2j , χj)}dj=1 defined by the (nonzero) eigenvalues/eigenvectors of K̂ = D1/2WWTD1/2.

C.1.2 Derivation of the exact Volterra equation

In this section, we derive a Volterra equation that describes the expected loss using the exact ODEs.
To do so, requires abstractly solving the inhomogeneous ODEs.

To solve (22), we employ Duhamel’s principle. Let Φλj (t, s) for t ≥ s be the solution to the IVP
d

dt
Φλj

(t, s) = Ω(t;λj)Φλj
(t, s) such that Φλj

(s, s) = Id3 for all 1 ≤ j ≤ d. (24)

Then by Duhamel’s principle, we have for every j

ν(t;λj) = Φλj (t, 0)ν(0;λj) +

∫ t

0

Φλj (t, s)g(s;λj) ds.

As ρ2j (t) = ν(t;λj)1, we have that

E [P(t) |W ] = lim
t→∞

E [P(t) |W ] +

d∑
j=1

λj × ρ2j (t)

= lim
t→∞

E [P(t) |W ] +

d∑
j=1

λj
(
Φλj

(t, 0)ν(0;λj)
)
1

+

∫ t

0

E [P(s) |W ]

[
B
∑
j

λ2j × Φλj (t, s)h(s)

]
1

ds.

(25)

Here the vector h(s) ∈ R3 is given by

h(s)
def
=

γ22 + (2γ1γ2γ3 + γ21γ
2
3)

γ21
(−γ1γ2 − γ21γ3)

 ,

where the learning rate schedules γi, i = 1, 2, 3, are time-dependent. We denote the components
of h(s) as hi(s) where i = 1, 2, 3. Therefore, the expected loss satisfies a Volterra equation (not
necessarily convolution-type)

E [P(t) |W ] = F (t) +

∫ t

0

Kt(s)× E [P(s) |W ] ds, (26)

where F (t)
def
=

d∑
j=1

λj ×
(
Φλj

(t, 0)
)
11
× ρ2j (0) + lim

t→∞
E[P(t) |W ]

and Ks(t)
def
= B

∑
j

λ2j ×
[
h1(s)

(
Φλj

(t, s)
)
11

+ h2(s)
(
Φλj

(t, s)
)
12

+ h3(s)
(
Φλj

(t, s)
)
13

]
.
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Let K̂ = V ΛV T . Define DΦλ,11
(t, s)

def
= Diag((Φλj

(t, s))11 : 1 ≤ j ≤ v) and Φ11
K̂
(t, s)

def
=

V DΦλ,11
(t, s)V T . Here we define for the v − d zero eigenvalues of K̂ to have (Φλj

(t, s))11 = 1.
Where might this come from? By allowing some leniency in the definition of the ODE (24), we can
view λ as a parameter (in the case we looked at above, we set λ to be an eigenvalue of Ǩ). If one
plugs λ = 0 into (24), then due to the initial conditions, we get that Φ11(t, s) ≡ 1 for λ = 0. Using
the ρ2j (t) as defined in Prop. C.1,

F (t) = lim
t→∞

E [P(t) |W ] +

d∑
j=1

λj(Φλj
(t, 0))11ρ

2
j (0) = ⟨Φ11

K̂
(t, 0), (D1/2(WΘ0 − b))⊗2⟩.

Similarly defining DΦλ,1k
(t, s)

def
= Diag((Φλj (t, s))1k : 1 ≤ j ≤ v) and (ΦK̂(t, s))1k

def
=

V DΦλ,1k
(t, s)V T for k = 2, 3,

Ks(t) = B
∑
j

λ2j ×
[
h1(s)

(
Φλj

(t, s)
)
11

+ h2(s)
(
Φλj

(t, s)
)
12

+ h3(s)
(
Φλj

(t, s)
)
13

]
= B × Tr

(
K̂2
[
h1(s)Φ

11
K̂
(t, s) + h2(s)Φ

12
K̂
(t, s) + h3(s)Φ

13
K̂
(t, s)

])
.

(27)

Therefore we can write Volterra equation for K̂.

From now on, we consider a specific initialization setting.
Assumption 2 (Initialization). We assume at initialization, θ0 = Θ0 = 0 and y−1 = Y0− = 0.

We thus can represent the expected loss function as a Volterra equation

E [P(Θt) |W ] =
forcing func.

F (t)︸ ︷︷ ︸
deterministic alg.

+

∫ t

0

Kt(s)× E [P(Θs) |W ] ds︸ ︷︷ ︸
stochastic noise

. (28)

The forcing function F (t) and kernel function Kt(s) are explicit functions of the eigenvalues of the
matrix K̂ = D1/2WWTD1/2 where D = Diag(j−2α : 1 ≤ j ≤ v). In particular, we have that

F (t) = ⟨Φ11
K̂
(t, 0), (D1/2b)⊗2⟩

and Ks(t)
def
= B × Tr

(
K̂2
[
h1(s)Φ

11
K̂
(t, s) + h2(s)Φ

12
K̂
(t, s) + h3(s)Φ

13
K̂
(t, s)

])
with d

dtΦλj
(t, s) = Ω(t;λj)Φλj

(t, s) such that Φλj
(s, s) = Id3 for all 1 ≤ j ≤ v and Φ1k

K̂
(t, s) =

V Diag((Φλj
(t, s))1k : 1 ≤ j ≤ v)V T for k = 1, 2, 3.

(Exact ODEs) Volterra equation for K̂ = D1/2WWTD1/2 = V TΛV . Set the (v × v)-
matrix D = Diag(j−2α : 1 ≤ j ≤ v) and P(t)

def
= P(Θt) = ∥D1/2(WΘt − b)∥2. Let

Φλj
(t, s) for t ≥ s be the solution to the IVP

d

dt
Φλj (t, s) = Ω(t;λj)Φλj (t, s) such that Φλj (s, s) = Id3 for all 1 ≤ j ≤ d. (29)

Then by Duhamel’s principle, we have for every j

ν(t;λj) = Φλj
(t, 0)ν(0;λj) +

∫ t

0

Φλj
(t, s)g(s;λj) ds.
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The expected loss under the iterates (Gen-Mom-SGD) satisfies a Volterra equation

E [P(t) |W ] = F (t) +

∫ t

0

Kt(s)× E [P(s) |W ] ds,

where F (t)
def
= ⟨Φ11

K̂
(t, 0), (D1/2(WΘ0 − b))⊗2⟩,

Ks(t)
def
= B × Tr

(
K̂2
[
h1(s)Φ

11
K̂
(t, s) + h2(s)Φ

12
K̂
(t, s) + h3(s)Φ

13
K̂
(t, s)

])
,

and h(s) =

γ22 + (2γ1γ2γ3 + γ21γ
2
3)

γ21
(−γ1γ2 − γ21γ3)

 .

(30)

Here Φ1k
K̂
(t, s) = V Diag((Φλj (t, s))1k : 1 ≤ j ≤ v)V T for k = 1, 2, 3 and hi are the

components of the vector h.

While these representations are easy to see from the derivation of the Volterra equation, a more
useful representation of the forcing function and kernel function is through contour integrals over the
spectrum K̂. Let Γ be a contour containing the spectrum of K̂ (recall, K̂ is normalized so that the
largest eigenvalue of K̂ is 1; thus Γ is a contour containing [0, 1]). Then the forcing function takes
the form (

forcing function
for algorithm

)
F (t)

def
=
−1
2πi

∮
Γ

⟨(K̂ − z)−1, (D1/2b)⊗2⟩(Φz(t, 0))11 dz (31)

and the kernel function takes the form(
kernel function
for algorithm

)
Ks(t)

def
= B × Tr

(
−1
2πi

∮
Γ

z2
[
h1(s)(Φz(t, s))11 + h2(s)(Φz(t, s))12

+h3(s)(Φz(t, s))13
]
× (K̂ − z)−1 dz

)
.

(32)

C.1.3 Deterministic Equivalent of the Expected Loss

The forcing function F (t) and kernel function Ks(t) are random as they depend on the random
matrix W . Moreover the expressions via contour integration show that both of these functions can be
described in terms of the random matrix K̂ = D1/2WWTD1/2. Indeed it is the resolvent of K̂,

R(K̂, z)
def
= (K̂ − z)−1,

which plays a significant role in F and K . To analyze the power law behavior of the expected loss,
we remove the randomness in K̂, i.e., the matrix W . We do this by finding a deterministic equivalent
for the resolvent of K̂, R(K̂, z), using techniques from random matrix theory. Intuitively, we want
to take the expectation over the random matrix W ; though not formally true.

Formally, we define the deterministic equivalent for the resolvent R(K̂, z), denoted by R(z) implicitly
via a fixed point equation

m(z)
def
=

1

1 + 1
d

∑v
j=1

j−2α

j−2αm(z)−z

where R(z)
def
= Diag

(
1

j−2αm(z)− z
: 1 ≤ j ≤ v

)
.

(33)
As mentioned earlier, this deterministic equivalent R(z) can be viewed, roughly as,

E W [(K̂ − z)−1] = E W [R(K̂, z)] ≈ R(z);

though it is not formally the expectation over W .

Using this deterministic expression for the resolvent of K̂, we define deterministic expressions for
the forcing function via the contour representation of F (t) in (31)

F(t)
def
=
−1
2πi

∮
Γ

⟨R(z), (D1/2b)⊗2⟩(Φz(t, 0))11 dz (34)
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and the kernel function in (32)

Ks(t)
def
= B × Tr

(
−1
2πi

∮
Γ

z2
[
h1(s)(Φz(t, s))11 + h2(s)(Φz(t, s))12

+ h3(s)(Φz(t, s))13
]
× R(z) dz

)
.

(35)

Additionally, the deterministic equivalent defines two measure on the real line, which come from
Stieltjes inversion,

µF(dx)
def
= lim

ε↓0

1

π
Im(⟨R(x+ iε), (D1/2b)⊗2⟩ dx

and µK(dx)
def
= lim

ε↓0

1

π
Im
(
Tr(R(x+ iε)x2

)
dx.

(36)

Using these measures, we can define the forcing and kernel functions on the real line with the forcing
function defined as(

forcing function
deterministic equivalent

)
F(t) =

∫
R
(Φx(t, 0))11 µF(dx) (37)

and the kernel function defined as( kernel function
deterministic

equivalent

)
Ks(t) = B ×

∫
R

[
h1(s)(Φx(t, s))11 + h2(s)(Φx(t, s))12

+ h3(s)(Φx(t, s))13
]
µK(dx).

(38)

Using the deterministic expressions for the forcing function F and kernel function K, we define the
deterministic function P : R→ R as the solution to the Volterra equation:

P(t) = F(t) +

∫ t

0

Ks(t)× P(s) ds. (39)

Moreover, we know quite a bit about these two measure µK and µF from [80]. See Section D for
details. In Section C.3, we provide some background information on solving Volterra equations.

C.2 Simplified ODEs and simplified Volterra

In general, it is quite difficult to analyze the exact ODEs in (22). Instead, as way to analyze the
scaling laws of (Gen-Mom-SGD), we derive a system of ODEs using an SDE. These SDEs were
studied in [78] on a high-dimensional least squares problem and were shown numerically to reproduce
the learning dynamics of the stochastic algorithms (Gen-Mom-SGD) for a variety of learning rate
and momentum schedules. We will use these SDEs (and more importantly, the ODEs, denoted by
simplified ODEs), to analyze SGD-M, DANA-constant, and DANA-decay in Section G, Section H,
Section I, respectively.

Letting Ǩ =WTDW , we consider the following

dYt = −δ(t)Yt + γ1(t)
(
B∇P(Θt) +

√
BP(Θt)Ǩ dB

(1)
t

)
dΘt = −γ3(t)Yt − γ2(t)

(
B∇P(Θt) +

√
BP(Θt)Ǩ dB

(2)
t

)
,

(40)

where the initial conditions given by Θ0 = θ0, Y0 = y0, and (B
(1)
t ,B

(2)
t : t ≥ 0) are two independent

d-dimensional standard Brownian motions. We note here that ∇P(Θt) =WTD(WΘt − b).

C.2.1 Derivation of the simplified ODEs.

In this section, we derive a system of ODEs that describe the behavior of the expected loss under
the SDEs (40). We denote this system of ODEs as simplified ODEs. This system will be used
to analyze SGD-M, Sec. G, DANA-constant, Sec. H and DANA-decaying, Sec I. To this end, we
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suppose {(λj , ωj)}dj=1 are the eigenvalue/eigenvector pairs of Ǩ and we write b =Wb̌+ ḃ where
WTD · b = 0.

As before, we will consider the follow special statistics/functions for each eigenvector of Ǩ

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ].

(41)

Instead of using Wick’s formula, we now apply Itô Calculus. First, consider the functions Πj
def
=

⟨ωj ,Θt − b̌⟩, and Ξj
def
= ⟨ωj , Yt⟩. A simple computation yields for j = 1, . . . , d,

d⟨ωj , Yt⟩ = ⟨ωj , dYt⟩ = (−δΞj + γ1BλjΠj) dt+ γ1
√
BP(Θt)

√
λj dB

(1)
t,j

d⟨ωj ,Θt − b̌⟩ = ⟨ωj , dΘt⟩ = (−γ3Ξj − γ2BλjΠj) dt− γ2
√
BP(Θt)

√
λj dB

(2)
t,j .

Here (B
(1)
t,j ,B

(2)
t,j : t ≥ 0) are two 1-dimensional Brownian motions. Applying Itô Calculus,

d(⟨ωj , Yt⟩)2 = dΞ2
j = 2(Ξj ×

(
(−δΞj + γ1BλjΠj) dt+ γ1

√
BP(Θt)

√
λj dB

(1)
t,j

)
+ 2γ21λjBP(Θt) dt

d(⟨ωj ,Θt − b̌⟩)2 = dΠ2
j = 2(Πj ×

(
(−γ3Ξj − γ2BλjΠj) dt− γ2

√
BP(Θt)

√
λj dB

(2)
t,j

)
+ γ22λjBP(Θt) dt.

As for the cross term, we have

d(⟨ωj , Yt⟩⟨ωj ,Θt − b̌⟩) = d(ΞjΠj) = −γ3Ξ2
j − γ2BλjΞjΠj − δΞjΠj + γ1BλjΠ

2
j

− γ2Ξj

√
BP(Θt)

√
λj dB

(2)
t,j

+Πjγ1
√
BP(Θt)

√
λj dB

(1)
t,j .

Now taking expectations conditioned on W , we have that E [Π2
j |W ] = ρ2j ,E [Ξ2

j |W ] = ξ2j and
E [ΠjΞj |W ] = χj . Thus,

ρ2j = −2γ2Bλjρ2j − 2γ3χj + γ22λjBE [P(Θt)|W ]

ξ2j = −2δξ2j + 2γ1Bλjχj + γ21λjBE [P(Θt)|W ]

χj = −γ3ξ2j − γ2Bλjχj − δχj + γ1Bλjρ
2
j .

Putting this altogether yields the following system of linear ODEs, denoted by Simplified ODEs.

Simplified ODEs for ρ2j , ξ2j , χj . Let (λj , ωj) be the eigenvalue-eigenvector pairs for Ǩ =

WTDW and decompose b = Wb̌ + ḃ such that WTDḃ = 0. Here the (v × v)-matrix
D = Diag(j−2α : 1 ≤ j ≤ v) and P(t)

def
= P(Θt) = ∥D1/2(WΘt − b)∥2. Additionally,

we drop the time in the learning rate and momentum schedules to simplify notation. The
functions

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ]

(42)

form a closed system of linear ODEs:

d

dt
ν(t;λj) = Ω(t;λj)× ν(t;λj) + g(t;λj), (43)
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where

Ω(t;λj)
def
=

−2γ2Bλj 0 −2γ3
0 −2∆ 2γ1Bλj

γ1Bλj −γ3 −∆− γ2Bλj

 ,

g(t;λj)
def
=

γ2
2λjBE [P(t) |W ]

γ2
1λjBE [P(t) |W ]

0

 and ν(t;λj)
def
=

ρ2j (t)
ξ2j (t)
χj(t)

 .

(44)

Under Assumption 2, the initial conditions are such that

ν(0;λj) =

ρ2j (0)ξ2j (0)
χj(0)

 =

E [⟨ω2
j , b̌

⊗2⟩|W ]
0
0

 .

C.2.2 Simplified ODE as the large time limit of a coin-flip algorithm

In the previous paragraph Section C.2.1 we have seen that the simplified ODE (43) models the
risk under a particular system of ODEs (40). Although precise, this characterization has obvious
limitations. Indeed, the SDE formulation requires the learning rates to vanish, with a correct scaling
with the time and dimension. This hence does not model a practical algorithm which makes any
discussion about compute in the scaling laws.

Instead, in the following we show that we can also view the simplified ODEs in (43) as dropping
terms that arise due to the higher-order moments of the Gaussian data x in the ODEs of a coin-flip
algorithm.

The coin-flip algorithm is a simple two-staged version of (13) where at each iteration we flip a coin
and update either the momentum iterate Y or the gradient update Θ. Let Ny

t , Nθ
t be iid Poisson

processes (i.e, the coin flips) and let the initialization be such that Θ0 = θ0 and Y0− = y−1. At a
jump of Ny

t , N
θ
t , we generate (xi, x̃i)Bi=1 new data points whose coordinates follow a power law

with parameter α and update by

Yt = (1−∆(t))Yt− + γ1(t)×
B∑
i=1

WTxiNt
(xiNt

)T (WΘt− − b)
def
= Yt− +∆y

t (Yt−,Θt−)

Θt = Θt− − γ2(t)×
B∑
i=1

WTxiNt
(xiNt

)T (WΘt− − b)− γ3(t)× Yt
def
= Θt− +∆θ

t (Yt,Θt−).

(45)
We naturally extended time t to be a continuous parameter with Yt− = Yt−1. This is a standard way
to embed discrete processes into a continuous process.

For any (Θ, Y ) 7→ f(Θ, Y ) ∈ R, the mean behavior is given by

d

dt
E [f(Yt,Θt)] = E [f(Yt +∆y

t (Yt,Θt),Θt +∆θ
t (Yt,Θt))− f(Yt,Θt)]. (46)

Derivation of the coin-flip ODEs. In this paragraph, we derive the system of ODEs that describe
the behavior of the expected loss under the coin-flip algorithm. For this, we need to introduce statistics
that are closed under differentiation as defined in (46).

As previously, we begin by writing Rv = Im(W ) ⊕W⊥. Thus, there exists a b̌ ∈ Rd and ḃ ∈ Rv

such that one can write b =Wb̌+ ḃ, that is, we can decompose b as an element in the image of W
and an element in the co-ker of W . Formally, we have that

b =Wb̌+ ḃ, where WTDḃ = 0.

Indeed, denote b̄ ∈ Im(W )⊥ with b− b̄ ∈ Im(W ). Then we are looking for some ḃ ∈ Im(W ) + {b̄}
satisfying WTDḃ = 0 ⇐⇒ Dḃ ∈ Im(W )⊥ ⇐⇒ Db̄ ∈ Im(W )⊥ +D Im(W ). Hence such ḃ
exists in particular if D Im(W )⊕ Im(W )⊥ = Rv . This is clearly the case since dim(D Im(W )) =
dim(Im(W )) = v − dim(Im(W )⊥) and because D never sends a vector x on a perpendicular one,
ie ∀x ∈ Rv, ⟨x,Dx⟩ = 0 ⇐⇒ x = 0 since it is diagonal with strictly positive eigenvalues.
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Letting Ǩ def
= WTDW ∈ Rd×d and (λj , ωj)

d
j=1 by the eigenvalue-eigenvector pairs for Ǩ, we

consider the same special functions as in (20),

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ].

(47)

As before, knowing the ρ2j ’s suffices to recover the expected loss under the coin-flip algorithm. We
proceed like in Section C.1 using Wick’s rule to get a closed formula for (ρ2j , ξ

2
j , χj).

ρ2j functions: Using (46) applied to E [f(Θt, Yt)] = ρ2j (t) yields,

d
dtρ

2
j (t) = 2E

[
⟨ω⊗2

j ,
(
− γ2(t)×

B∑
i=1

WT x̃it(x̃
i
t)

T (WΘt − b)− γ3(t)Yt
)
⊗ (Θt − b̌)⟩ |W

]
+ E

[
⟨ω⊗2

j ,
(
γ2(t)×

B∑
i=1

WT x̃it(x̃
i
t)

T (WΘt − b)
)⊗2⟩ |W

]
+ γ23(t)E

[
⟨ω⊗2

j , Y ⊗2
t ⟩ |W

]
+ 2γ3(t)E

[
⟨ω⊗2

j ,
(
− γ2

B∑
i=1

WT x̃t,ix̃
T
t,i(WΘt − b)

)
⊗ (−Yt)⟩ |W

]
= −2γ2(t)Bλjρ2j (t)− 2γ3(t)χj(t) + 2γ22(t)Bλ

2
jρ

2
j (t)

+ γ22(t)λjBE [∥D1/2(WΘt − b)∥2 |W ] +B(B − 1)γ22(t)λ
2
jρ

2
j (t) + γ23(t)ξ

2
j (t)

+ 2γ3(t)γ2(t)Bλjχj(t).

ξ2j functions: Using (46) applied to E [f(Θt, Yt)] = ξ2j (t) yields,

d
dtξ

2
j (t) = E

[
⟨ω⊗2

j ,
(
(1−∆(t))Yt + γ1(t)

B∑
i=1

WTxit(x
i
t)

T (WΘt − b)
)⊗2⟩ |W

]
− E

[
⟨ω⊗2

j , Y ⊗2
t ⟩ |W

]
= 2E

[
⟨ω⊗2

j , Yt ⊗−∆(t)Yt⟩ |W
]
+ 2BE

[
⟨ω⊗2

j , Yt ⊗ γ1(t)
(
WTxtx

T
t (WΘt − b)

)
⟩ |W

]
+ E

[
⟨ω⊗2

j ,
(
∆(t)Yt

)⊗2⟩ |W
]

− 2BE
[
⟨ω⊗2

j ,∆(t)Yt ⊗ γ1(t)
(
WTxtx

T
t (WΘt − b)

)
⟩ |W

]
+ γ21(t)BE

[
⟨ω⊗2

j ,
(
WTxtx

T
t (WΘt − b)

)⊗2⟩ |W
]

+ γ21(t)B(B − 1)E
[
⟨ω⊗2

j ,
(
WTx1t (x

1
t )

T (WΘt − b)
)
⊗
(
WTx2t (x

2
t )

T (WΘt − b)
)
⟩ |W

]
= −2∆(t)ξ2j (t) + 2γ1(t)Bλjχj(t) + ∆2(t)ξ2j (t)− 2∆(t)γ1(t)Bλjχj(t)

+ 2γ21(t)Bλ
2
jρ

2
j (t) + γ21(t)BλjE [∥D1/2(WΘt − b)∥2 |W ] +B(B − 1)γ21(t)λ

2
jρ

2
j (t).

χj functions: Lastly, using (19) applied to E [f(Θt, Yt)] = χj yields,
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d
dtE [χj |W ] = E

[
⟨ω⊗2

j , (Θt − b̌)⊗
(
(1−∆(t))Yt + γ1(t)

B∑
i=1

WTxit(x
i
t)

T (WΘt − b)
)
⟩ |W

]
− E

[
⟨ω⊗2

j , (Θt − b̌)⊗ Yt⟩ |W
]

+ E
[
⟨ω⊗2

j ,Θt − γ2
B∑
i=1

WT x̃it(x̃
i
t)

T (WΘt − b)− γ3(t)Yt − b̌⊗ Yt⟩ |W
]

− E
[
⟨ω⊗2

j , (Θt − b̌)⊗ Yt⟩ |W
]

= −∆(t)E
[
⟨ω⊗2

j , (Θt − b̌)⊗ Yt⟩ |W
]

+BE
[
⟨ω⊗2

j , (Θt − b̌)⊗ γ1(t)
(
WTxtx

T
t (WΘt − b)

)
⟩ |W

]
− γ2(t)BE

[
⟨ω⊗2

j ,
(
WT x̃x̃T (WΘt − b)

)
, Yt⟩ |W

]
− γ3(t)E

[
⟨ω⊗2

j , Y ⊗2
t ⟩ |W

]
= −∆(t)χj(t) + γ1(t)Bλjρ

2
j (t)− γ2(t)Bλjχj(t)− γ3(t)ξ2j (t).

Putting this altogether yields the following system of linear ODEs.

Coin-flip ODEs for ρ2j , ξ2j , χj . Let (λj , ωj) be the eigenvalue-eigenvector pairs for Ǩ =

WTDW and decompose b = Wb̌ + ḃ such that WTDḃ = 0. Here the (v × v)-matrix
D = Diag(j−2α : 1 ≤ j ≤ v) and P(t)

def
= P(Θt) = ∥D1/2(WΘt − b)∥2.

ρ2j (t) = E [⟨ω⊗2
j , (Θt − b̌)⊗2⟩|W ], ξ2j (t) = E [⟨ω⊗2

j , Y ⊗2
t ⟩|W ],

and χj(t) = E [⟨ω⊗2
j , (Θt − b̌)⊗ Yt⟩|W ]

(48)

form a closed system of linear ODEs:

d

dt
ν(t;λj) = Ω(t;λj)× ν(t;λj) + g(t;λj), (49)

where

Ω(t;λj)
def
=

−2γ2(t)Bλj +B(B + 1)γ2
2(t)λ

2
j γ2

3(t) 2γ3(t)(−1 + γ2(t)Bλj)
γ2
1(t)B(B + 1)λ2

j −2∆(t) + ∆2(t) 2γ1(t)Bλj(1−∆(t))
γ1(t)Bλj −γ3(t) −∆(t)− γ2(t)Bλj

 ,

g(t;λj)
def
=

γ2
2(t)λjBE [P(t) |W ]

γ2
1(t)λjBE [P(t) |W ]

0

 , and ν(t;λj)
def
=

ρ2j (t)
ξ2j (t)
χj(t)

 .

(50)
The initial conditions are such that

ν(0;λj) =

ρ2j (0)ξ2j (0)
χj(0)

 .

We see that dropping some high-orders terms in the eigenvalue λ def
= σ2 and learning rates/momentum

schedules from the ODEs (22) yields the simplified ODEs in (43). This is the reason why we believe
that working with (43) should not affect our main results. Indeed, when studying the asymptotics for
large time t, the contribution to the risk of the different eigenvalues will come mainly from small
eigenvalues σ2 (and especially σ2 ≲ 1

γ2Bt ), as for larger σ’s, solutions to the ODE have exponential
decay.

Simplified ODE as a high-dimensional limit and re-deriving the SDE system (40) without Itô
calculus The goal of this section is to relate the solutions of the simplified ODE Equation (43)
to limits of solutions of the ODE eq. (49). This allows to re-derive without Itô calculus, some
positiveness result on the sign of the simplified ODE solutions since we know the sign of the coin-flip
ODE solutions.

In the following suppose that γ1(t) ≡ 1 and that γ2(t), γ3(t), ∆(t) are three continuous functions.
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Do the change of variable Φ̃(t)
def
=

 Φ1(t)
γ3(t)
γ1Bσ2Φ2(t)√

γ3(t)√
γ1Bσ

Φ3(t)

 on Equation (43) and get the new ODE

dΦ̃(t)

dt
=

−2γ2Bσ
2 0 −2

√
γ3γ1Bσ

0 −2∆(t) + γ̇3(t)
γ3(t)

2
√
γ1γ3Bσ√

γ1γ3Bσ −
√
γ3γ1Bσ −γ2Bσ2 −∆(t) + γ̇3(t)

2γ3(t)

 Φ̃(t). (51)

Lemma C.1. Let γ1(t) ≡ 1, let B, σ > 0, and γ2(t), γ3(t),∆(t) be three continuous functions with

γ2(t), γ3(t) > 0. Let λ
def
= σ2, s > −1 and Ms ∈M3×3(R). Denote Ψ : (−1,∞)→M3×3(R) the

solution of the simplified ODE (51) with initial condition for s > −1, Ψ(s) = Ms. Let d̄ > 0 and

denote Φ(t) the solution of the ODE (49) where we used ∆̃(t)
def
= ∆(t/d̄)

d̄
, γ̃i(t) =

γi(t/d̄)

d̄
for i ∈ [3].

Additionally denote Φ̂(t)
def
=


Φ1(d̄t)

γ3(t)
γ1(t)Bσ2Φ2(d̄t)√

γ3(t)√
γ1(t)Bσ

Φ3(d̄t)

 and write the initial condition Φ̂(s) =Ms. Then

∀T > −1,

sup
t∈[s,T ]

∥∥∥Ψ(t)− Φ̂(t)
∥∥∥ = O(1

d̄
).

Proof. Denote κ = B+1
B ∈]1, 2]. We obtain

dΦ̂(t)
dt = d̄


−2γ2(t)Bσ2

d̄
+

B2κγ2
2(t)σ

4

d̄2

γ3(t)γ1(t)Bσ2

d̄2 2

√
γ3(t)γ1(t)B

d̄
(−1 + γ2(t)Bσ2

d̄
)

γ3(t)γ1(t)

d̄2 Bκσ2 −2∆(t)

d̄
+ ∆(t)2

d̄2 + γ̇3(t)
γ3(t)

2

√
γ3(t)γ1(t)B

d̄
σ(1− ∆(t)

d̄
)√

γ3(t)γ1(t)B

d̄
σ −

√
γ3(t)γ1(t)B

d̄
σ −∆(t)

d̄
− γ2(t)B

d̄
σ2Φ̂(t) + γ̇3(t)

2γ3(t)

 Φ̂(t)

=


 −2γ2(t)Bσ2 0 −2

√
γ3(t)γ1(t)Bσ

0 −2∆(t) + γ̇3(t)
γ3(t)

2
√
γ3(t)γ1(t)Bσ√

γ3(t)γ1(t)Bσ −
√
γ3(t)γ1(t)Bσ −∆(t)− γ2(t)Bσ2 + γ̇3(t)

2γ3(t)

+OB,κ,σ,t(
1
d̄
)

 Φ̂(t)

which implies the result.

Remark C.3. Lemma C.1 shows that the simplified ODE (51) is a "high-dimensional" limit of SGD,
where the learning rates are scaled inversely proportionally to the dimension with the correct scaling,
as was done in [78]. Hence one will note in the following the proximity of our results to results from
[78]. However, we underline that our argument in favor of using the simplified ODE (51) is because
this gets rid of higher order terms in the eigenvalue σ, whose we believe the contribution to vanish
for large time t. Indeed, we avoid taking the learning rates to vanish for large dimension, as this
would make the compute-optimal scaling laws useless. Hence it is surprising that dropping higher
order terms in the eigenvalues σ (looking at the dynamics for large t) is equivalent to dropping higher
order terms in the learning rates γ1,2,3 (looking at a non-degenerate, high-dimensional limit of the
algorithm for fixed time t). We leave the study of the links between both for future work.

Corollary C.1. Under the same conditions as in Lemma C.1 denote Ψ : (−1,∞)→ R the solution
of the simplified ODE (51) with initial condition for s > −1, Ψ(s) = Diag(a1, a2, a3) with ai > 0
for i ∈ [2]. Then, ∀t > −1, Ψij ≥ 0 for i, j ∈ [2].

Proof. For any d̄ > 0, consider the solution Φ(t) of the ODE (49) where ∆̃(t)
def
= ∆(t/d̄)

d̄
, γ̃i(t) =

γi(t/d̄)

d̄
for i ∈ [3] and with initial condition Φ(s) = Diag(a1, a2

d̄2σ2B
γ1γ3

, a3
d̄σ

√
B√

γ1γ3
). We know that

(ρ2j (t), ξ
2
j (t), χj(t)) follows the same ODE as Φ. Hence, if the initial condition is admissible, we can

deduce that the first and second coefficients, being squares, are positive. We know that Φ:1(s),Φ:2(s)
are admissible which directly brings that ∀t > −1,Φ11(t),Φ12(t),Φ21(t),Φ22(t) ≥ 0. Then we can
pass to the limit-inf when d̄→∞ by using lemma C.1 to get the same result on Ψ.
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C.2.3 Derivation of the simplified Volterra equation

We follow the exact same ideas as in Section C.1.2 replacing the matrix Ω(t;λ) in the exact ODEs
(23) with Ω(t;λj) from (44). First, we let Φλj

(t, s) for t ≥ s be the solution to the IVP

d

dt
Φλj

(t, s) = Ω(t;λj)Φλj
(t, s) such that Φλj

(s, s) = Id3 for all 1 ≤ j ≤ d. (52)

where Ω(t;λj) is defined in (44).

Following Section C.1.2, we represent the expected loss function under the SDE (40) as a Volterra
equation following an application of Duhamel’s principle, that is,

ν(t;λj) = Φλj
(t, 0)ν(0;λj) +

∫ t

0

Φλj
(t, s)g(s;λj) ds. (53)

Note that in this case the function h(s) simplifies,

h(s) 7→

γ22γ21
0

 .

(Simplified) Volterra equation for K̂ = D1/2WWTD1/2 = V TΛV . Set the (v × v)-
matrix D = Diag(j−2α : 1 ≤ j ≤ v) and P(t)

def
= P(Θt) = ∥D1/2(WΘt − b)∥2. Let

Φλj (t, s) for t ≥ s be the solution to the IVP

d

dt
Φλj

(t, s) = Ω(t;λj)Φλj
(t, s) such that Φλj

(s, s) = Id3 for all 1 ≤ j ≤ d, (54)

where Ω(t;λj) is defined in (44). The expected loss under the iterates of the SDE (40)
satisfies a Volterra equation

E [P(t) |W ] = F (t) +

∫ t

0

Kt(s)× E [P(s) |W ] ds,

where F (t)
def
= ⟨Φ11

K̂
(t, 0), (D1/2(WΘ0 − b))⊗2⟩,

and Ks(t)
def
= B × Tr

(
K̂2
[
γ22(s)Φ

11
K̂
(t, s) + γ21(s)Φ

12
K̂
(t, s)

])
.

(55)

Here Φ1k
K̂
(t, s) = V Diag((Φλj

(t, s))1k : 1 ≤ j ≤ v)V T for k = 1, 2.

Deterministic equivalent for the SDEs. As the (simplified) forcing and kernel function only
depend on K̂, like the (exact) forcing function (31) and kernel function (32), we use the same
deterministic equivalent of the resolvent in (33) and the measures, µF and µK in (36). Therefore
define the deterministic equivalences for the forcing and kernel functions of the simplified ODEs on
the real line as ( (simplified)

forcing function
deterministic equivalent

)
F(t) =

∫
R
(Φx(t, 0))11 µF(dx) (56)

and the kernel function defined as( (simplified)
kernel function
deterministic

equivalent

)
Ks(t) = B ×

∫
R

[
γ22(s)(Φx(t, s))11 + γ21(s)(Φx(t, s))12

]
µK(dx). (57)

Using the deterministic expressions for the forcing function F and kernel function K, we define the
deterministic function P : R→ R as the solution to the Volterra equation:

P(t) = F(t) +

∫ t

0

Ks(t)× P(s) ds. (58)
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We know quite a bit about these two measures µK and µF defined in the forcing and kernel function
from [80]. This knowledge allows us to derive scaling properties for the algorithms in Section B.
See Section D for details. In the next section, we provide some background information on solving
(general) Volterra equations.

In the rest of the appendix, we will use this simplified system of ODEs to analyze SGD-M, DANA-
constant, DANA-decaying in Section G, H, I.
Assumption 3 ((Simplified Forcing and Kernel Functions and Simplified Volterra Equation)). From
now on, we will only work with the (simplified) forcing function and (simplified) kernel function as
defined in (56) and (57). The same holds for the corresponding (simplified) Volterra equation (55).
We will drop the reference to simplified in the forcing and kernel functions and Volterra equation from
now on.

We finish this section with a remark.
Remark C.4 (Thm. 4.1 F̂(ϑ(t)) vs. F(t) in this section.). We note the following connection with
Theorem 4.1 in the introduction, which we hope does not add too much confusion. We have

(Theorem. 4.1) F̂(ϑ(t)) corresponds to F(t) (Section C, (56) & Appendix).

In particular, the function F(t) (56) derived in this section and considered in the rest of the appendix,

in an asymptotic sense, includes the ϑ(t) defined in Theorem 4.1. For K(t)
def
= K0(t), it is a slightly

more complicated correspondence, here

(Theorem. 4.1) K̂(ϑ(t)) corresponds to 1
γ2BK(t) (Section C, (57) & Appendix),

where γ is defined in Theorem 4.1. This holds true also for Ks(t) ≍ Kpp(t, s) which we will define
properly in the next few sections.

C.3 Background on Volterra equations

While Volterra equations such as (58) are quite nice and well-studied in the literature (see, e.g., [45]),
we need an approximation of the solution to them in order to have a better understanding of the
scaling laws. In particular, we need the (deterministic equivalent) loss function P(t) to be a constant
multiple of the forcing function F and kernel function K. We state this idea more precisely at the end
of the section.

To do this, we need some background on general Volterra equations of the form:

P (t) = F (t) + (K ∗ P )(t), where (K ∗ P )(t) =
∫ t

0

K(t, s)P (s) ds, (59)

and where F (t) is a non-negative forcing function and K(t, s) is non-negative and monotonically
increasing in second variable and monotonically decreasing in the first variable kernel function. In
general, we define (K ∗K)(t, s) =

∫ t

0
K(t, r)K(r, s) dr.

Let us define K∗n(t, s)
def
= (K ∗K ∗ · ∗K ∗K)︸ ︷︷ ︸

n times

(t, s), the n-fold convolution of K where K∗1 =

K(t, s). Under mild assumptions such as ∥K∥ def
= supt∈[0,∞)

∫ t

0
K(t, s) ds < 1 11 (we call this

quantity the kernel norm) and the forcing function F is bounded, there exists a unique (bounded)
solution P (t) to (59) and the solution is given by repeatedly convolving the forcing function with K
(see, e.g., [45]),

P (t) = F (t) +

∞∑
j=1

(K∗j ∗ F )(t) = F (t) + (K ∗ F )(t) + (K ∗K ∗ F )(t) + (K ∗K ∗K ∗ F )(t) + .

This representation of the solution to (59) enables us to get good bounds on P (t). More precisely, [45,
Theorem 1] shows that if K : R+ × R+ → R is continuous, K(t, s) = 0 for t > s and F bounded,
then a solution to the Volterra equation is as written above. [45, Theorem 3] shows that if additionally
lim supt≥0

∫ t

0
|K(t, s)| ds < 1 then the above solution is bounded.

11In the case that K is of convolution type, that is K(t, s) can be expressed as K(t− s), this definition of
∥K∥ simplifies. Particularly, we define ∥K∥ =

∫∞
0

K(t) dt.
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C.4 Reducing the complexity in the Volterra equation

First, we state and prove a lemma attributed to Kesten’s Lemma [8, Lemma IV.4.7].
Lemma C.2 (Generalized Kesten’s Lemma). Suppose K(t, s) is a positive kernel . Suppose that for
some constant C(K), for all t ≥ r ≥ 0:∫ t

r

K(t, s)K(s, r)ds ≤ C(K)K(t, r). (60)

Then, for all n ≥ 0:

sup
t≥r≥0

{
K∗(n+1)(t, r)

K(t, r)

}
≤ C(K)n.

Proof. We follow the proof in [80, Lemma C.1]. Define

an
def
= sup

t≥r≥0

K∗n(t, r)

K(t, r)C(K)n−1
.

Then it is immediate that a1 = 1. If we can show that

an ≤ 1,

then we are done. By definition of the operator we have that:

K∗(n+1)(t, r)

C(K)n
=

∫ t

r

K(t, s)K(s, r)

C(K)
× K∗n(t, s)

K(t, s)(C(K))n−1
ds ≤ an ×

∫ t

r

K(t, s)K(s, r)

C(K)
ds.

By the hypothesis in (60),

fort ≥ r ≥ 0,
K∗(n+1)(t, r)

C(K)n
≤ anK(t, r).

Hence the result is shown.

Often we will not be able to analyze directly the forcing and kernel function, F and K resp., in the
Volterra equation. Instead, we have access to upper and lower bounds on F and K. Using these upper
and lower bounds (together with Kesten’s Lemma), we can still give a non-asymptotic bound on the
solution to the Volterra equation.
Lemma C.3 (Non-asymptotic Volterra bound). Suppose the same conditions as Lemma C.2 hold.
Suppose additionally that C(K̄) < 1 and F (t) ≤ F (t) ≤ F̄ (t), K(t, s) ≤ K(t, s) ≤ K̄(t, s) with
non-negative F,K. Then,

F (t) + (K ∗ F )(t) ≤ P(t) ≤ F̄ (t) + C × (K̄ ∗ F̄ )(t),

where C =
1

1− C(K̄)
.

Proof. This proof parallels the proof in Lemma C.2 in [80]. We include the proof for completeness.
We consider the upper and lower bound separately.

Lower bound: Since K and F are non-negative,
∑∞

j=1(K
∗j ∗ F )(t) ≥ (K∗1 ∗ F )(t) = (K ∗ F )(t).

Recall the solution to the Volterra equation takes the form.

P (t) = F (t) +

∞∑
j=1

(K∗j ∗ F )(t).

It immediately follows from
∑∞

j=1(K
∗j ∗ F)(t) ≥ (K ∗ F)(t) the lower bound.

Upper bound: By Lemma C.2, there exists a C(K) < 1 such that

K∗j(t, r) ≤ (C(K))j−1K(t, r),
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Hence, we have that
∞∑
j=1

(K̄∗j ∗ F̄ )(t) =
∞∑
j=1

∫ t

0

K̄∗j(t, r)F̄ (r) dr ≤
∞∑
j=1

C(K)j−1(K̄ ∗ F̄ )(t)

=

(
1

1− C(K)

)
(K̄ ∗ F̄ )(t).

The upper bound is thus shown.

A main tool for analyzing the deterministic equivalent. We are now state one of the main tools
used to analyze the deterministic equivalent loss function (58),

P(t) = F(t) +

∫ t

0

Ks(t)× P(s) ds.

For each algorithm, we will show that the forcing function F and kernel function Ks(t) have upper
and lower bounds, that is,

F(t) ≤ F(t) ≤ F(t) and Ks(t) ≤ Ks(t) ≤ Ks(t). (61)

Moreover, we will show that the scaling laws for F and F (same for Ks(t)) are the same. Therefore,
for each algorithm separately (with the expection of DANA-decaying), we will show the following

Informal Theorem. [Reduction of the Volterra Equation] Let K(t)
def
= K0(t) and define simi-

larly K(t) and K(t). Suppose 2α + 2β > 1, α + 1 > β, and α > 1
4

12. For various assump-
tions specific to the individual algorithms, there exists an M > 0 large enough and constants
C̃(α, β,M, alg), c̃(α, β,M, alg) such that if γBt > M then:

c̃×
(
F(t) +

1

γB
K(t)

)
≤ P(t) ≤ C̃ ×

(
F(t) +

1

γB
K(t)

)
. (62)

We denote γ def
= γ2 +

γ3

δ for classic momentum and γ def
= γ2 for both DANA algorithms and SGD.

We prove versions of this informal theorem, see Theorem G.1 for SGD-M, see Theorem H.3 for
DANA-constant, see Proposition F.9 for SGD with decaying learning rate schedules.

For the upper/lower bound on the kernel and forcing functions (61) for each algorithm are given
in Section F for SGD, Section G for SGD-M, Section H for DANA-constant, and Section I for
DANA-decaying. The general asymptotics for the forcing and kernel function can be found in
Section D.3 and Section D.4 with specifics for each algorithm in the individual algorithm sections.

D Measure of the Deterministic Equivalent

In light of the Informal Theorem above, to understand scaling laws, we need to analyze the (up-
per/lower bounds) forcing and kernel functions under the deterministic equivalent for K̂. We recall
the (simplified) forcing function, F(t) defined in (56) by

F(t) =

∫ ∞

0

(Φx(t, 0))11µF(dx),

and the (simplified) kernel function, Ks(t) in (57)

Ks(t) = B ×
∫ ∞

0

[
γ22(s)(Φx(t, s))11 + γ21(s)(Φx(t, s))12

]
µK(dx),

where the measures µF(dx) and µK(dx) are defined in (36) via the Stieltjes inversion,

µF(dx) = lim
ε↓0

1

π
Im(⟨R(x+ iε), (D1/2b)⊗2⟩) dx

and µK(dx) = lim
ε↓0

1

π
Im(x2Tr(R(x+ iε))) dx.

(63)

12While we need α > 1
4

and α+ 1 > β formally, we believe they are only the result of the proof technique
and not necessary. We believe the result would hold without these conditions.
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Figure 11: Deterministic equivalent of the forcing function measure µF. Numerical set-up: 100
randomly generated K̂ = DWWTD and the ρj’s computed; for empirical density µF, 500 bins
equal spaced on log scale from 10−8 to 1 and counted the number of λj that fall into each bin
weighted by ρj’s and then averaged over the 500; For deterministic equivalent µF, solved fixed
pointed equation (33) using Newton Method on a grid of x-values. Fig. 11a: deterministic density of
µF (63) under the deterministic equivalent for K̂ (red) matches the empirical density of µF. Fig 11b:
slopes of the densities µF for all β agree at the left edge, but the slopes diverge on the right edge
as β changes. Number of ‘point masses’ on the right edge are the same for all β. Fig. 11c: Left
edge cutoff evolves like d−2α as illustrated here. Number of ‘point masses’ and slope of the density
change as α changes. These slopes effect the scaling laws.

Here R(z) is the deterministic equivalent of the resolvent of K̂, given by the fixed point equation

m(z) =
1

1 + 1
d

∑v
j=1

j−2α

j−2αm(z)−z

where R(z) = Diag
(

1

j−2αm(z)− z

)
.

For verification that the deterministic measures in (63) match the behavior of the random matrix K̂,
see Figure 11.

We begin with a first technical lemma stating that will allow us to show that µF, µK put no mass on
intervals [1 + ϵ,∞) for d large enough.

Lemma D.1. Let α > 0, α ̸= 1
2 and ϵ > 0. There exists d > 0 such that ∀d ≥ d, admissible v,

and any z ∈ [1 + ϵ,∞), the fixed point equation m(z) = 1

1+
1
d
∑v

j=1

j−2α

j−2αm(z)−z

has a real solution

m(z) ∈ [1− ϵ/2, 1 + ϵ/2].

Proof. The proof boils down to showing that for any z ∈ [1 + ϵ,∞), the function G(m; z)
def
=

1

1+ 1
d

∑v
j=1

j−2α

j−2αm−z

has a fixed point in [1− ϵ/2, 1 + ϵ/2] for d large enough. Clearly for all d > 0,

G(m; z) is continuous inm on [1−ϵ/2, 1+ϵ/2]. We write ∀m ∈ [1−ϵ/2, 1+ϵ/2], ∀z ∈ [1+ϵ,+∞)∣∣∣∣∣∣1d
v∑

j=1

j−2α

j−2αm− z

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1d

v∑
j=1

j−2α

|1 + ϵ/2− z|

∣∣∣∣∣∣ ≤ 2

ϵ

∣∣∣∣∣∣1d
v∑

j=1

j−2α

∣∣∣∣∣∣
≤ 2C(α)

ϵ
d−1+max{0,1−2α}.

The above can be made arbitrarily small for large d. Hence, by definition of G(m; z), this brings
the existence of d(α, ϵ) such that ∀d ≥ d, ∀z ∈ [1 + ϵ,∞), G(m; z) is a continuous self-map on
[1− ϵ/2, 1 + ϵ/2]. Hence it admits a fixed point in [1− ϵ/2, 1 + ϵ/2].
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D.1 Estimating µF

In the following section, we provide upper and lower bounds on the deterministic equivalent measure
of the forcing function µF to compare it to reference measures µF0 , µFac , µFpp so that integrating it
against any function f can simplify as∫

σ∈R+

f(σ) dµF(σ
2) ≈

∫
σ∈R+

f(σ) d(µF0 + µFac + µFpp)(σ
2).

This is formalized in Proposition D.13 below.

We begin by noting for all j ∈ [v] that we can define µ(j)
F (dx) by Stieljes inversion, i.e. ∀z ∈ H,∫ ∞

0

µ
(j)
F (dx)

x− z
def
=

1

j−2αm(z)− z
,

or equivalently µ
(j)
F (dx)

def
= lim

ϵ↓0

1

π
Im

(
1

j−2αm(x+ iϵ)− (x+ iϵ)

)
dx.

(64)

We therefore rewrite µF(dx) =
∑v

j=1 j
−2α−2βµ

(j)
F (dx).

Now let’s notice an important identity, which will be very useful to get upper and lower bounds on
µF. That is for any z = x+ iη(x) ∈ H we can rewrite

1

π
Im

(
1

j−2αm(x+ iη(x))− (x+ iη(x))

)
=

1

π
Im

(∫ ∞

0

µ
(j)
F (ds)

s− (x+ iη(x))

)

=

∫ ∞

0

1

π

µ(j)(ds)η(x)

(s− x)2 + η(x)2

=
(
Poisη(x) ∗µ

(j)
F

)
(x).

Hence, estimating the left-hand term allows to evaluate the result of the convolution between µ(j)
F

with Poisson kernels. We can hence use the bounds from [80] on a specific contour in the complex
plane to estimate µF. For that, we will need a technical lemma comparing indicators on segments
and specific combinations of Poisson kernels.

Lemma D.2. Let ϵ, c, α > 0. Consider for u ∈ [d−2α, 1], η(u)
def
=

(log(1/ϵ)/c)max{u1+1/(2α), π
2α

u1−1/(2α)

d } and denote P (u)
def
=

∫ 5C/3

x=4C/3
Poisη(x)(u − x) dx.

There exists a constant C̃(ϵ, c, α) independent of d, v, such that ∀C ∈ [d−2α, 12 ], we have

(i)

∀s ∈ R, 1[C,2C](s) ≤ C̄

(∫ 2C

u=C

Poisη(u)(s− u) du

)
.

(ii) {
if u ∈ [C, 2C] P (u) ≤ C̃
and if u /∈ [C, 2C] P (u) ≤ C̃min

{
1, η(C)C

d(u)2

}
with d(u)

def
= d(u, [ 4C3 ,

5C
3 ]).

Proof. (i) First note that ∀u ∈ [C, 2C], η(u)
ϵ,c,α

≲ C. We can define a def
= infu∈[C,2C] η(u),

b
def
= supu∈[C,2C] η(u) and notice that there exists a constant C̄(ϵ, c, α) such that

∀C > 0 ∀s ∈ R, 1[C,2C](s) ≤ C̄

(∫ 2C

u=C

Poisb(s− u) du

)
.

From the definition of η(u) which follows a power law, we know that b
a ≤ 21+1/(2α). Hence

this brings that ∀s ∈ [−C,C], supη∈[a,b] Poisη(s)

infη∈[a,b] Poisη(s)

ϵ,c,M,α

≲ 1. This proves the result.
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(ii) Similarly, we know that for potentially different constants C̄(ϵ, c, α), C̃(ϵ, c, α) we have

∀C > 0 ∀s ∈ R,

(∫ 2C

u=C

Poisb(s− u) du

)
≤ C̄.

This brings using
supη∈[a,b] Poisη(s)

infη∈[a,b] Poisη(s)

ϵ,c,M,α

≲ 1 that if u ∈ [C, 2C], P (u) ≤ C̃. Additionally,

notice that for a potentially larger C̃

∀u /∈ [C, 2C], ∀x ∈ [
4C

3
,
5C

3
], Poisη(x)(u− x) ≤ C̃

η(C)

d(u, [4C3 ,
5C
3 ])2

,

we obtain that still for a potentially larger C̃,

∀u /∈ [C, 2C] P (u) ≤ C̃min

{
1,
η(C)C

d(u)2

}
with d(u) def

= d(u, [
4C

3
,
5C

3
]).

D.1.1 Upper bound on µF

We begin by proving the upper bound by decomposing the real line into different ranges of ‘singular
values’, σ’s: large σ’s, σ = 0, small σ’s, and intermediate σ’s.

A first observation is that µ(j)
F is a probability measure.

Proposition D.1. Let α > 0. For any j ∈ [v], µ(j)
F is a positive measure and µ(j)

F (R+) = 1.

Proof. By definition, µ(j)
F (dx)

def
= limϵ↓0

1
π Im

(
1

j−2αm(x+iϵ)−(x+iϵ)

)
dx. Since for all z ∈ H, m(z)

is defined as the fixed point of (33) with negative imaginary part [80, Prop. E.1], it is clear that µ(j)
F is

a positive measure. Additionally, since the support of µ(j)
F is bounded and 1

j−2αm(z)−z ∼
z=it,t→∞

−1
z

we see that µ(j)
F has mass 1.

This implies a first bound on the mass of µF for large σ.
Proposition D.2 (Upper bound for large σ’s). Let α > 0. Suppose 2α + 2β > 1. Then there is a
constant C(α, β) such that ∀M > 0, we have

µF([M,+∞]) ≤ C(α, β).

Additionally, for any ϵ > 0, there exists some d > 0 such that ∀d ≥ d, µF([1 + ϵ,+∞]) = 0.

Proof. We know from Proposition D.1 that

µF(R) =
v∑

j=1

j−2α−2βµ
(j)
F (R) =

v∑
j=1

j−2α−2β <∞

since 2α+ 2β > 1. Finally, the last claim is a direct consequence from Lemma D.1.

Proposition D.3 (Point mass at 0). Let α > 0. Suppose 2α + 2β > 1. Then µF has an atom at 0
and there exists some C > 0 such that∣∣∣∣∣∣µF({0})−

v∑
j=1

j−2α−2β

1 + j−2αd2ακ(v/d)

∣∣∣∣∣∣ ≤ Cd−2α+(2β−1)+−1

where κ(v/d) solves
∫ v/d

0
κ

κ+u2α du = 1.

In particular, we know µF({0}) ≍ d−2α+(2β−1)+ .
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Proof. This is a direct consequence of [80, Prop. E.3, F.1, H.3] and the weak convergence of the
Poisson kernels to the Dirac.

Proposition D.4 (Upper-bound for small σ’s). Let α > 0. There exists some constant c(α) > 0
independent of d such that

∀x ∈ (0, cd−2α), µF(dx) = 0.

Proof. We know that µF(dx) = limε↓0
1
π Im(⟨R(x+ iε), (D1/2b)⊗2⟩) dx. Using [80, Prop. E.3],

we know the existence of c(α) > 0 such that m(z) is analytic in B(0, c(α)d−2α) and

∀x ∈ (0, cd−2α), m(x) < 0

which implies the result.

Proposition D.5 (Upper-bound for intermediary σ’s). Let α > 0 with α ̸= 1
4 , α ̸=

1
2 , and β ̸= 1

2

with 2α + 2β > 1, 2α + β ̸= 1
2 and 2α + 1 > β. There exists M, C̃ > 0 depending only on α, β

such that for any C ∈ [d−2αM, 1
M ],

µF([C, 2C]) ≤ C̃
(
C1+ 2β−1

2α +
cβ
d
C1− 1

2α

)
.

Proof. Using lemma D.2, we only need to estimate
∑v

j=1 j
−2α−2β 1

π Im
(

1
j−2αm(z)−z

)
where z =

u + iη(u). Applying [80, Prop. E.5], we get the existence of ϵ, c,M > 0 such that for any
u ∈ [d−2αM, 1

M ], and with η(u) = (log(1/ϵ)/c)max{u1+1/(2α), π
2α

u1−1/(2α)

d } we have

m(z(u)) = (1 + δ1) + i(1 + δ2)
π

2α
u−1/(2α)d−1 with (δ1, δ2) ∈

[
−1

3
,
1

3

]2
.

Applying the summation lemma [80, Prop. E.4] we obtain for u ∈ [d−2αM, 1
M ] and some constants

¯̄C,
¯̄̄
C of α, β, c, ϵ,M ,

v∑
j=1

j−2α−2β 1

π
Im

(
1

j−2αm(z(u))− z(u)

)
≤ ¯̄C

(
u

2β−1
2α +

cβ
d
u−

1
2α + cβη(u)u log(1/u)

)
≤ ¯̄̄
C
(
u

2β−1
2α +

cβ
d
u−

1
2α

)
.

Here, we used 2α+ 1 > β to get η(u)u log( 1u ) ≲ u
2β−1
2α .

We conclude by writing

µF([C, 2C]) =

∫
R+

1[C,2C](s)µF(ds)

≤ C̄
∫

R+

(∫ 2C

C

Poisη(u)(s− u) du

)
µF(ds)

= C̄

∫ 2C

C

(
Poisη(u) ∗µF

)
(du)

≤ C̄ ¯̄̄
C

∫ 2C

C

(
u

2β−1
2α +

cβ
d
u−

1
2α

)
du

≤ C̃
(
C1+ 2β−1

2α +
cβ
d
C1− 1

2α

)
.

There is some intermediate σ’s that still need to be bounded, σ2 ∈ [c(α)d−2α,Md−2α]. This is done
in the next proposition.
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Proposition D.6. Let α > 0 with 2α + 2β > 1. Then for any c2 > c1 > 0 there exists a constant
C(α, β, c1, c2) such that

µF([c1d
−2α, c2d

−2α]) ≤ C(α, β, c1, c2)d−2α+(1−2β)+ .

Proof. We use the estimate in [80, Prop. E.3] using points z ∈ ([c1, c2]+i)d
−2α and the upper-bound

1[c1,c2](x) ≤ C̃
∫ c2
c1

Pois1(x− s) ds for some C̃(c1, c2) > 0 and all x ∈ R+.

D.1.2 Lower bound on µF

To obtain a lower-bound, we will use the lower-bound on the indicator 1[C,2C] using Poisson kernels
proved in Lemma D.2. This introduces some error terms due to the tail of the Poisson kernels that
need to be controlled using the previous upper-bounds. In particular, we will need η(u)≪ u, for this
bound to be non-vacuous.

Proposition D.7 (Lower bound for intermediary σ’s). Let α, β > 0, α > 1
4 , α ̸=

1
2 , 2α+2β > 1, α+

1 > β there exists some M > 0 large enough and C̃(α,M) such that for any C ∈ [Md−2α, 1
M ],

µF([C, 2C]) ≥
1

C̃

(
C1+ 2β−1

2α +
cβ
d
C1− 1

2α

)

Proof. We consider as in Lemma D.2 P (u) def
=
∫ 5C/3

x=4C/3
Poisη(x)(u−x) dx where x ∈ [d−2αM, 1

M ]

and η(x) = (log(1/ϵ)/c)max{x1+1/(2α), π
2α

x1−1/(2α)

d } with ϵ, c,M given by [80, Prop. E.5]. We
write using some constant C̃ from Lemma D.2

C̃µF([C, 2C]) ≥
∫ 5C/3

x=4C/3

1

π
Im((x+ iη)(−v + (1−m(x+ iη))d))−

∫
u/∈[C,2C]

P (u)µF(du).

We hence have using some constant C̃1 that

C̃µF([C, 2C]) ≥
∫ 5C/3

x=4C/3

1

π
Im

 v∑
j=1

j−2α−2β

j−2αm(x+ iη)− (x+ iη)


−
∫
u/∈[C,2C]

P (u)µF(du)

≥
C1+ 2β−1

2α +
cβ
d C

1− 1
2α

C̃1

−
(∫ C

u=0

P (u)µF(du)

+

∫ 1

u=2C

P (u)µF(du)
)
.

We need to upper-bound both integrals on the right-hand side using Proposition D.5. For the first one
we decompose∫ C

u=0

P (u)µF(du) ≤
∞∑
i=1

(
max

u∈[2−i−1C,2−iC]
P (u)

)
×
∫ 2−iC

2−i−1C

µF(du)

≲
log(d2αC)∑

j=1

η(C)C

C2

(
(2−iC)1+

2β−1
2α +

1

d
(2−iC)1−

1
2α

)

≲
η(C)

C
×
(
C1+ 2β−1

2α +

{
1
dC

1− 1
2α if 2α > 1

d−2α if 2α < 1

)
.
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Here, we used Proposition D.6 for the left edge and, in the second line 1 + 2β−1
2α > 1. There is left to

check when 2α < 1 that
η(C)

C
d−2α ≤ C1+ 2β−1

2α +
1

d
C1− 1

2α

⇐⇒

{
C ≥ d−α and C1/(2α)d−2α ≤ C1+ 2β−1

2α + d−1C1−1/(2α)

C ≤ d−α and C−1/(2α)

d d−2α ≤ C1+ 2β−1
2α + d−1C1−1/(2α)

.

The second case is always valid but the first case is true in particular when β < α+1. For the second
integral, we similarly expand

∫ 1

2C

P (u)µF(du) ≲
log(1/C)∑

i=1

(
max

u∈[2iC,2i+1C]
P (u)

)
×
∫ 2−iC

2−i−1C

µF(du)

≲

log( 1
C )∑

j=1

η(C)C

(2iC)2

(
(2iC)1+

2β−1
2α +

1

d
(2iC)1−

1
2α

)

≲
η(C)

C

(
C1+ 2β−1

2α +
1

d
C1− 1

2α

)
.

Here we used Proposition D.2 for the right edge of the integral, β < 1
2 + α for the first term and

α > 0 for the second term. In fact for the first term, we can reduce to the less restrictive condition
β < 1 + α by noticing that η(C)

C ≲
(
C1+ 2β−1

2α + 1
dC

1− 1
2α

)
under this condition.

D.2 Estimating µK

Similarly to the previous sections, we will now upper and lower bound µK to prove in Proposi-
tion D.14 upper and lower bounds for the integral of functions with respect to µK.

We can rewrite, using [80, Lemma E.1] and dropping the −xv term which vanishes

µK(dx)
def
=

1

π
lim
ϵ↓0

Im ((x+ iϵ)(1−m(x+ iϵ))d)) equivalently
∫ ∞

0

µK(ds)

s− z
= z(1−m(z))d).

(65)

An important equivalent identity is to rewrite for z = x+ iη(x) ∈ H,

1

π
Im(z((1−m(z))d)) =

∫ ∞

0

µK(ds)η(x)

(s− x)2 + η(x)2

=
(
Poisη(x) ∗µK

)
(x).

D.2.1 Upper-bound on µK

Again we decompose the real line into various ranges of σ’s. Using the upper-bound of the indicator
function using Poisson kernels, we similarly get:

Proposition D.8 (Upper bound for intermediary σ’s). Let α > 0, α ̸= 1
4 , α ̸=

1
2 . There exists M, C̃

depending only on α such that for any C ∈ [d−2αM, 1
M ], we have:

µK([C, 2C]) ≤ C̃ × C2− 1
2α .

Proof. Using Lemma D.2, we only need to estimate 1
π Im((x + iη)(1 − m(x + iη))d) for x ∈

[d−2αM, 1
M ] and η(x) = (log(1/ϵ)/c)max{x1+1/(2α), π

2α
x1−1/(2α)

d }. Applying [80, Prop E.5],
there exists c,M > 0 and ϵ > 0 sufficiently small such that

1

π
Im((x+ iη(x))(1−m(x+ iη(x)))d) =

x1−1/(2α)

2α
+O

(
η(x)A(x+ iη(x)) + ϵx1−1/(2α)

)
.

We use the bound on A from [80, Prop.E.4] (when setting β = 0) to conclude.
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Proposition D.9 (Upper bound for large σ’s). If α > 1
4 , α ̸=

1
2 , ∀M > 0, µK([ 1

M ,M ]) ≲ 1.
Additionally, for any ϵ > 0, there exists some d > 0 such that ∀d ≥ d, µK([1 + ϵ,+∞)) = 0.

Proof. Consider z = x+ i ∈ H for x ∈ [ 1
M ,M ]. This defines a compact U of distance at least 1 to

[0, 1]. From [80, Prop E.6], we have that

Im(z(1−m(z))d) = Im

z v∑
j=1

j−2α

j−2α − z

+O(
(

C(α)

1×min{d, d4α−1}

)

= x×
v∑

j=1

j−2α × 1

((j−2α − x)2 + 1
+ 1×

v∑
j=1

j−2α × (j−2α − x)
((j−2α − x)2 + 1

+O(
(

C(α)

1×min{d, d4α−1}

)
=

v∑
j=1

j−4α

(j−2α − a)2 + 1
+O(

(
C(α)

1×min{d, d4α−1}

)
.

The above being bounded, it implies using Lemma D.2 that µK([ 1
M ,M ]) ≲ 1. Finally, the last claim

is a direct consequence of Lemma D.1.

Proposition D.10 (Upper bound for σ’s near zero). ∃c(α) > 0 such that µK([0, c(α)d−2α]) = 0.

Proof. Using [80, Prop. E.3], we know that m(z) is analytic in B(0, c(α)d−2α). Hence, from (65) it
follows that µK is null on [0, c(α)d−2α].

We now move to the last range for σ’s:

Proposition D.11. Let α, β > 0 with 2α + 2β > 1. Then ∀c2 > c1 > 0, we have
µK([c1d

−2α, c2d
−2α]) ≲ d1−4α.

Proof. We use the estimate in [80, Prop. E.3] using points z ∈ ([c1, c2]+i)d
−2α and the upper-bound

1[c1,c2](x) ≤ C̃
∫ c2
c1

Poiss,1(x) ds. This brings that

µK([c1d
−2α, c2d

−2α]) ≲
∫ c2d

−2α

c1d−2α

(Pois1 ∗µK)(s) ds

≲
∫ c2

c1

d−4α Im ((s+ i)(1−m(s+ i))d)

= d1−4α

∫ c2

c1

Im ((s+ i)(1− f(s+ i))) +O(d−4α)

≲ d1−4α.

D.2.2 Lower bound on µK

In the next proposition, we prove a lower bound on µK.

Proposition D.12 (Lower bound for intermediary σ’s). Let α > 1
4 , α ̸=

1
2 there exists some M > 0

large enough and C̃(α,M) such that for any C ∈ [Md−2α, 1
M ],

µK([C, 2C]) ≥ C2−1/(2α)

C̃
.
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Proof. We consider as in Lemma D.2 P (u)
def
=
∫ 5C/3

x=4C/3
Poisη(x)(u − x) dx. Again for x ∈

[d−2αM, 1
M ] and η(x) = (log(1/ϵ)/c)max{x1+1/(2α), π

2α
x1−1/(2α)

d } with ϵ, c,M given by [80,
Prop.E.5]

We write with some constant C̃ from Lemma D.2 and potentially larger C̄

C̃µK([C, 2C]) ≥
∫ 5C/3

x=4C/3

1

π
Im((x+ iη)(−v + (1−m(x+ iη))d)) dx−

∫
u/∈[C,2C]

P (u)µK(du)

≥ C2−1/(2α)

C̄
−

(∫ C

u=0

P (u)µK(du) +

∫ 1

u=2C

P (u)µK(du)

)
.

We need to upper-bound both integrals on the right-hand side. For that we use Proposition D.8. For
the first one we decompose

∫ C

u=0

P (u)µKpp(du) ≤
∞∑
i=1

(
max

u∈[2−i−1C,2−iC]
P (u)

)
×
∫ 2−iC

2−i−1C

µK(du)

≲
∞∑
i=1

η(C)C

(C/3)2
×
(
2−iC

)2− 1
2α

≲
η(C)

C
C2− 1

2α

≲M−1/(2α)C2− 1
2α .

Here we used that 2− 1
2α > 0 for the sum to converge. For the second one we write

∫ 1

u=2C

P (u)µK(du) ≲
log(1/C)∑

i=1

(
max

u∈[2iC,2i+1C]
P (u)

)
×
∫ 2i+1C

2iC

µK(du)

≲
∞∑
i=1

η(C)C

(C2i)2
×
(
2iC

)2− 1
2α

≲
η(C)

C
C2− 1

2α

≲M−1/(2α)C2− 1
2α .

All this finally brings that for M large enough, µK([C, 2C]) ≥ 1
C̃
C2− 1

2α for some C̃ depending on
ϵ, c, α.

D.3 Forcing function

In this section, we decompose the measure µF based on the upper and lower bounds previously
derived. This decomposition allows us to break the forcing function into three components, F0(t),
Fpp(t), and Fac(t), that is

F(t) ≍ Fpp(t) + Fac(t) + F0(t).

We will discuss this in detail.

Proposition D.3 gives an explicit formula for the behavior of the measure µF at x = 0. Proposition D.4
gives the “gap” between the 0 eigenvalues of K̂ and the next smallest eigenvalue which occurs
at c(α) × d−2α where c(α) is some explicit constant. Moreover Proposition D.2 says the largest
eigenvalue of K̂ is approximately 1. This is all to say, the support of µF is {0}∪ [c(α)d−2α, 1+c(α)].
Lastly Propositions D.5 and D.7 can be interpreted as saying something about the density for µF.
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P(t) ≍ F̂pp(ϑ(t)) + F̂ac(ϑ(t)) + F0(t) + γK̂pp(ϑ(t))
≍ Fpp(t) + Fac(t) + F0(t) +

1
γBKpp(t)

Model Capacity: µF({0}) F0(t) ≍ d−2α+max{0,1−2β}

Population Bias: Spikes in µF F̂pp(t) ≍ t−(2α+2β−1)/(2α)

Embedding Bias: Bulk of µF F̂ac(t) ≤
{
C × F0(t), if 2β > 1, 2α < 1

0, if 2β < 1

and if 2β > 1, 2α > 1, F̂ac(t) ≍ d−1t−1+1/(2α)

Variance: Spikes of µK K̂pp(t) ≍ dmax{0,1−2α}t−2+1/(2α)

Algorithm
Learning
rate
γ

Time scale, ϑ(t)

SGD(γ2) γ2 ϑ(t) = 1 + γ2Bt

SGD-M(γ2, γ3, δ) γ2 +
γ3

δ ϑ(t) = 1 + (γ2 +
γ3

δ )Bt

DANA-constant(γ2, γ3)†, t ≤ d γ2 ϑ(t) = 1 + γ2Bt
DANA-constant(γ2, γ3)†, t ≥ d γ2 ϑ(t) = 1 + γ3Bt

2

DANA-decaying(γ2, γ3)# ,
γ3(t) ≍ (1 + t)−1/(2α) γ2 ϑ(t) = 1 +B(1 + t)2−1/(2α)

DANA(γ2, γ3),
γ3(t; d) general schedule γ2 ϑ(t) = 1 + γ2Bt+

( ∫ t

0

√
γ3(s; d)B ds

)2
† DANA-constant with γ3 ≍ γ2 × 1/d. # DANA-decaying only when 2α > 1 and γ2 ≍ 1.

Table 4: Asymptotics for the forcing and kernel functions for all algorithms. See Sec-
tion G/Section F for details/proofs of the derivations for these asymptotics of SGD-M/SGD. See
Section H for details/proofs of the asymptotics for DANA-constant. See Section I for details about the
heuristics used to derive these asymptotics for DANA-decaying. Here the constant C is independent
of dimension and B is order 1 independent of d. For the DANA class, we do not have a full proof.
We believe this is true for 2α > 1 and γ̃3d−κ3 ≤ γ2, which we believe is true for stability reasons
and would suggest that γ = γ2; this is the most uncertain part. Note that K̂pp ◦ ϑ = 1

γ2BKpp where

K̂pp is defined in Thm. 4.1 and Kpp(t)
def
= Kpp(t, 0) is defined in this section.

Therefore, informally, we have
µF ≈ µFpp + µFac + µF0 , (66)

where we define the three measures as

µF0(du)
def
= µF({0})δ0(du), µFpp(du)

def
= 10<u≤1u

(2β−1)/(2α) du,

and µFac(du)
def
= 1d−2α<u≤1

cβu
−1/(2α)

d
du.

Here cβ =
∑∞

j=1 j
−2β if β > 1

2 and 0 otherwise and δ0 is a Dirac delta function, that is,

δ0(x)
def
=

{
0, x ̸= 0

∞, x = 0,
where

∫ ∞

−∞
δ0(x) dx = 1.

With this interpretation, we decompose the forcing function based on integrating against the three
different measures µF0

, µFpp
, µFac

, that is,

F0(t)
def
=

∫ ∞

0

(Φu(t, 0))11 × µF0
(du) = µF0

({0})(Φ0(t, 0))11,

Fpp(t)
def
=

∫ ∞

0

(Φu(t, 0))11 × µFpp
(du) =

∫ 1

0

(Φu(t, 0))11 × u(2β−1)/(2α) du,

and Fac(t)
def
=

∫ ∞

0

(Φu(t, 0))11 × µFac
(du) =

cβ
d

∫ 1

d−2α

(Φu(t, 0))11 × u−1/(2α) du.

(67)
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In particular, for any “nice” function Φu(t) : R≥0 ×R≥0 → R, with some regularity parameter Λ we
know the existence of a constant C(α, β,Λ) such that ∀t ≥ 0:

1

C
× (F0(t) + Fpp(t) + Fac(t)) ≤ F(t) ≤ C × (F0(t) + Fpp(t) + Fac(t)) .

We formalize this idea in the next proposition.
Proposition D.13. Let α > 1

4 , β > 0 with 2α+2β > 1, α+1 > β, α, β ̸= 1
2 , Λ1 > 0. There exists

M,M1,M2 > 0 and C(α,Λ1) such that for any f : [0, 1]→ R+ satisfying ∀u ∈ (0, 14 )

min
[u,2u]

f(u) ≥ Λ1 max
[2u,4u]

f(u).

we have for any d ≥ 1,

1

C(α,Λ1)

∫ 1
M1

M1d−2α

f(u)
(
µFpp

+ µFac

)
(du) ≤

∫ 1
M

Md−2α

f(u)µF(du)

≤ C(α,Λ1)

∫ 1
M2

M2d−2α

f(u)
(
µFpp

+ µFac

)
(du).

Proof. The proof is entirely similar to the one of Proposition D.14

Remark D.1. An alternative (although not identical) definition for µFpp
is as a sum of point-masses

µFpp
(du) =

v∑
j=1

j−(2β+2α)δj−2α(du).

D.4 Kernel function

We can simplify the kernel function in a similar way as for the forcing function, that is

K(t, s)
def
= Ks(t) ≍ Kpp(t, s),

where Kpp that is simpler to analyze than directly the kernel function.

Two differences are that there is no mass at 0 and the absolutely-continuous part is negligible. Hence
only the pure-point contribution survives. We define accordingly

µKpp
(du)

def
= 10<u≤1u

1−1/(2α) du where µK ≈ µKpp
, (68)

and the kernel function integration against this measure µKpp
by

Kpp(t, s)
def
= B

∫ ∞

0

(
γ22(s)(Φu(t, s))11 + γ21(s)(Φu(t, s))12

)
× µKpp(du)

= B

∫ 1

0

(
γ22(s)(Φu(t, s))11 + γ21(s)(Φu(t, s))12

)
u1−1/(2α) du.

(69)

In particular, for α > 1
4 , α ̸= 1

2 and for any “nice” functions Φu(t, s)12,Φu(t, s)12 : R≥0 × R≥0 ×
R≥0 → R, with some regularity parameter Λ we know the existence of a constant C(α,Λ) such that
∀t ≥ 0:

1

C
×Kpp(t, s) ≤ K(t, s) ≤ C ×Kpp(t, s).

We formalize this idea in the next proposition.
Proposition D.14. Let α > 1

4 , Λ1 > 0. There exists M,M1,M2 > 0 and C(α,Λ1) such that for
any f : [0, 1]→ R+ satisfying ∀u ∈ (0, 14 )

min
[u,2u]

f(u) ≥ Λ1 max
[2u,4u]

f(u).

we have for any d ≥ 1,

1

C(α,Λ1)

∫ 1
M1

M1d−2α

f(u)µKpp
(du) ≤

∫ 1
M

Md−2α

f(u)µK(du) ≤ C(α,Λ1)

∫ 1
M2

M2d−2α

f(u)µKpp
(du).
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Proof. We will instead show the following claim, which directly implies the result.

Claim D.1. There exists k̄(α) ∈ N∗ and C(α,Λ1) such that for any f : [0, 1] → R+ satisfying
∀u ∈ (0, 14 ) the following holds

min
[u,2u]

f(u) ≥ Λ1 max
[2u,4u]

f(u).

then for any d ≥ 1 and any k1, k2 ∈ N+ with 2α log(d)− k̄ ≥ k1 ≥ k2 ≥ k̄ we have

1

C(α,Λ1)

∫ 2−k2+1

2−k1+1

f(u)µKpp
(du) ≤

∫ 2−k2

2−k1

f(u)µK(du) ≤ C(α,Λ1)

∫ 2−k2−1

2−k1−1

f(u)µKpp
(du).

Proof of the claim: First, using Proposition D.8 and Proposition D.12 we know the existence of
k̄(α) and C̃(α) such that for any 2α log(d) − k̄ ≥ k1 ≥ k2 ≥ k̄, and k ∈ [k2 − 1, k1 + 1],
1
C̃
µKpp

([2−k, 2−k+1]) ≤ µK([2−k, 2−k+1]) ≤ C̃µKpp
([2−k, 2−k+1]).

For the left side we write∫ 2−k2+1

2−k1+1

f(u)µKpp
(du) ≤

k1−1∑
k=k2

(
max

u∈[2−k+1,2−k]
f(u)

)
× µKpp

([2−k+1, 2−k])

≤
k1−1∑
k=k2

(
1

Λ1
min

u∈[2−k,2−k−1]
f(u)

)
× C̃(α)µK([2−k, 2−k−1])

≤ C̃(α)

Λ1

∫ 2−k2

2−k1

f(u)µK(du).

Similarly for the right side:

∫ 2−k2−1

2−k1−1

f(u)µKpp
(du) ≥

k1−1∑
k=k2

(
min

u∈[2−k−1,2−k]
f(u)

)
× µKpp

([2−k−1, 2−k])

≥
k1−1∑
k=k2

(
Λ1 max

u∈[2−k,2−k+1]
f(u)

)
× 1

C̃(α)
µK([2−k, 2−k+1])

≥ Λ1

C̃(α)

∫ 2−k2

2−k1

f(u)µK(du).

Taking C(α,Λ1)
def
= C̃(α)

Λ1
yields the result.

Remark D.2. An alternative (although not identical) definition for µKpp
is as a sum of point-masses

µKpp
(du) =

v∑
j=1

j−4αδj−2α(du).

We can finally provide the following heuristics on the different loss terms:

• "Population bias" (Fpp): This loss term corresponds to the loss dynamics when running full-
batch gradient descent on the problem (hence following the population gradient), without
the embedding matrix W .

• "Model capacity" (F0): This loss term (which is only d-dependent) represents the limit of
the loss, as the number of iterations reaches infinity. It arises from the partial expressivity of
our model class, since the learned parameters θ ∈ Rd cannot encode the whole target vector
b ∈ Rv when v > d.
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• "Embedding bias" (Fac): This loss term comes from the random embedding matrix W
which deforms the spectrum of the data covariance matrix and misaligns it with the target
vector b.

• "Variance" (Kpp): This loss term comes from the stochasticity of the algorithm which at
each step samples a new i.i.d. random datapoint to compute a stochastic gradient. This
stochastic gradient, whose average recovers the population gradient, is a non-exact estimate
of the gradient and therefore introduces this additional loss term.

E Compute-optimal curves - General

We summarize the results of this Section E in Figure 12 (Phase Diagrams) and for scaling laws and
compute-optimal tradeoffs see Figure 13 and 14 (above the high-dimensional line) and Figure 15
(below the high-dimensional line). In the Phase Diagrams, we indicate which phases acceleration
occurs.

In this section for finding the compute-optimal curves, we note that DANA-decaying refers to DANA
with κ3 = 1

2α and κ2 = κ1 = max{0, 1 − 2α}. This is the same as saying that γ2 is the largest
possible learning rate for stability. DANA-constant refers to DANA with κ1 = max{0, 1 − 2α},
κ2 = 1 + κ1, and κ3 = 0.

In light of (62) and the simplifications of the forcing function (Section D.3) and kernel function
(Section D.4), we have that

P(t) ≍ Fpp(t) + Fac(t) + F0(t) +
1

γB
Kpp(t), (70)

where γ = γ2 for SGD/DANA and γ = γ2 +
γ3

δ for SGD-M, and Kpp(t)
def
= Kpp(t, 0).

Since for each algorithm we consider (SGD, SGD-M, DANA-constant, DANA-decaying) these terms
are asymptotically equal to d−τ t−σ, we can now derive the compute-optimal curves and exponents.
See Table 4 for the asymptotics of the forcing and kernel functions for each of these algorithms. For
derivations, see Section G (SGD-M), Section H (DANA-constant), and Section I (DANA-decaying).

To simplify the computations for compute-optimal curves, we introduce the following curve

P̃(t)
def
= max

{
Fpp(t),Fac(t),F0(t),

1
γBKpp(t)

}
. (71)

The function P̃(t, d) achieves the same power law behavior as the original compute-optimal curve
P(t, d) (i.e., the slope of the compute-optimal curve is correct) and deviates from the true curve
by an absolute constant (independent of d and f). Note that some of the terms in the max function
(71) should be taken to be 0 when not defined for the different phases. Therefore, we derive the
compute-optimal curves by solving the problem

min
d

P̃
(

f
d·B , d

)
, and if d⋆(f) def

= arg mind P̃
(

f
d·B , d

)
,

then the compute-optimal curve is P̃⋆(f)
def
= P̃

(
f

d⋆(f)·B , d
⋆(f)
)
.

(72)

Using this alternative loss function, P̃(t, d), the compute-optimal line must occur at one of the corner
points, i.e., where any pair of functions equal each other. The following lemma gives a useful
characterization of these points.
Lemma E.1 (See Lemma D.1 in [80]). Suppose C0,C1 > 0 are constants and γ0, γ1, p0, p1 ∈ R
exponents and such that a function P̂(t, d) equals

P̂(t, d) = max
{
C0t

−γ0d−p0 ,C1t
−γ1d−p1

}
.

Suppose that there exists i ∈ {0, 1}, j def
= 1 − i such that pi − γi > 0 > pj − γj . Then replacing

r 7→ f
d the minimizer of P̂ in d satisfies

d⋆
def
= arg mind {P̂(f, d)} =

(
C0

C1

)1/(γ1−p1−γ0+p0) × f(−γ0+γ1)/(γ1−p1−γ0+p0)

and the associated value is
min
d

P̂(f, d) = C0 × f−γ0 × (d⋆)γ0−p0 .
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Loss P(t) Trade off Compute-optimal Curves

Phase I Fpp(t) + F0(t) Fpp = F0

Ia P̃⋆
Phase Ia(f) ≍ f

(
1

2α+1−1
)
(1+β/α−1/(2α))

d⋆Phase Ia ≍ f1/(2α+1)

Ib P̃⋆
Phase Ib(f) ≍ f

1
2−α−β

d⋆Phase Ib ≍ f
1
2

Ic P̃⋆
Phase Ic(f) ≍ f

α(2α+2β−1)
α(2β−3)−2β+1

d⋆Phase Ic ≍ f
1−2(α+β)

2(α(2β−3)−2β+1)

Phase II Fpp(t) + Fac(t)

+F0(t)
Fpp = Fac

P̃⋆
Phase II(f) ≍ f

− 2α+2β−1
2(α+β)

d⋆Phase II ≍ f(β/α)/(1+β/α)

Phase III Fac(t) + F0(t)

+ 1
γB

Kpp(t)

1
γB

Kpp = Fac
P̃⋆

Phase III(f) ≍ f(1−4α)/(4α)

d⋆Phase III ≍ f1/2

Phase IV
Fpp(t) + F0(t)

+ 1
γB

Kpp(t)

IVa 1
γB

Kpp = F0
P̃⋆

Phase IVa(f) ≍ f−α

d⋆Phase IVa ≍ f1/2

IVb 1
γB

Kpp = Fpp
P̃⋆

Phase IVb(f) ≍ f
(1−2α)(2α+2β−1)
(2(2αβ+α−2β))

d⋆Phase IVb ≍ f(α−β)/(2αβ+α−2β)

Table 5: SGD-M/SGD: Loss description P(t) for SGD-M (γ def
= γ2 +

γ3

δ ) and SGD (γ def
= γ2) and

compute-optimal curves for P̃( f
d·B , d) across the 4 phases.

Proof. The proof is a straightforward computation. The minimizer of P̂(f, d) in d must occur where
the two terms in the maximum are equal, i.e.,

C0

(
f
d

)−γ0
d−p0 = C1

(
f
d

)−γ1
d−p1 .

Solving for this d gives d⋆. Plugging in the value of d⋆ into P̂(f, d) gives the optimal value.

Remark E.1. The possible minimal values of (72), i.e., where pairs of functions in the max are equal,
can be reduced further. For instance, if Fac(r, d) exist for the phase, then for some 0 < r0 < r1 < r2

P̃(t, d) ≈


Fpp(t, d), 0 < t ≤ t0
1

γBKpp(t, d) t0 < t ≤ t1
Fac(t, d), t1 < t < t2
F0(t, d), t2 < t.

Thus, there are only a maximum of three points to check in order to find the optimal compute curve.

Remark E.2. In view of Lemma E.1, to find the optimal compute curves, we first find the potential
curves (i.e., all the possible combinations of two functions in the loss curve are equal while still lying
on the loss curve). Then the curve which has the smallest exponent on the flops, f, is the optimal
compute curve.

E.1 Stochastic momentum (SGD-M), compute-optimal curves

For constant momentum, the loss curve as well as the forcing terms F0,Fpp,Fac and kernel term
1

γ2B
Kpp are entirely similar up to constants as the one for SGD [80]. The compute-optimal curves

are hence identical, see Table 5 when replacing γ2 by γ2 + γ3

δ (see Remark G.2). See also Figure 12
for a description of the phases in the (α, β)-plane.
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E.2 DANA-constant, compute-optimal curves

In all this section, we will use the hyperparameters in Lem. H.5 and Cor. H.2 (see Section 3) with
B = 1. We discuss the effect of learning rate and batch after. The asymptotics of the forcing and
kernel terms for DANA-constant, valid only in some regions of the (γ2, γ3, B, t, δ) space, are below

Fpp(t, d) ≍ min{(γ2Bt)−1− 2β−1
2α , (

√
γ3Bt)

−2− 2β−1
α },

Fac(t, d) ≍ d−1 min{(γ2Bt)−1+ 1
2α , (

√
γ3Bt)

−2+ 1
α },

1

γ2B
Kpp(t, d) ≍ γ2 min{(γ2Bt)−2+ 1

2α , (
√
γ3Bt)

−4+ 1
α }, F0(t, d) ≍ d−2α+max{0,1−2β}.

Derivations for these forcing function and kernel function asymptotics can be found in Section H.
For a summary of the compute-optimal curves for DANA-constant, see Table 6 and Figure 12b for a
description of the phases in the (α, β)−plane.

Below the high-dimensional line, (Phases Ib, Ic, IVa, IVb). In that case, the limit level F0 is
reached for t ≤ d2α ≤ d. We have, ∀t ≤ d,

Fpp(t, d) ≍ (γ2Bt)
−1− 2β−1

2α , Fac(t, d) ≍ d−1(γ2Bt)
−1+ 1

2α ,

and
1

γ2B
Kpp(t, d) ≍ γ2(γ2Bt)−2+ 1

2α .

Hence the forcing and kernel terms are similar to SGD and the compute-optimal choices for d⋆, t⋆
are the same as in Table 5.

Above the high-dimensional line (Phases Ia, IIa, IIb, IIIa, IIIb). A first observation is that the
limit on the min in Fpp,Fac,Kpp can never be compute-optimal by itself, since decreasing d would
yield strictly better performance. Hence we only need to check the risk between the different terms of
the forcing and kernel. Additionally, from [80], the compute-optimal for SGD happens in all phases
for t ≥ d. Hence it has to be similar for DANA-constant since. We can therefore simplify in the
following for t ≥ d,

Fpp(t, d) ≍ (
√
γ3Bt)

−2− 2β−1
α , Fac(t, d) ≍ d−1(

√
γ3Bt)

−2+ 1
α ,

and
1

γ2B
Kpp(t, d) ≍ γ2(

√
γ3Bt)

−4+ 1
α .

Phase Ia. In this phase, the approximate loss curve satisfies

P( f
d , d) ≍ max{Fpp(

f
d , d),F0(

f
d , d)} ≍ max{(

√
γ3Bt)

−2− 2β−1
α , d−2α−2β+1}. (73)

Proposition E.1 (Phase I, DANA-constant). Suppose we are in Phase Ia, i.e. 2α > 1, 2β < 1.
Then the compute-optimal curve P( f

d⋆ , d
⋆) using (73) occurs with d⋆ ≍ f

1
3/2+α and P( f

d⋆ , d
⋆) ≍

f−
2α+2β−1
3/2+α .

Proof. We apply Lemma E.1 with

γ0 = 2 +
2β − 1

α
, p0 = −1− 2β − 1

2α
, γ1 = 0, and p1 = 2α+ 2β − 1.

Phases IIa and IIb. In this phase, the approximate loss curve satisfies,

P( f
d , d) ≍ max{Fpp(

f
d , d),Fac(

f
d , d),F0(

f
d , d)}

≍ max{(
√
γ3Bt)

−2− 2β−1
α , d−1(

√
γ3Bt)

−2+ 1
α , d−2α+max{0,1−2β}}.

(74)
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Loss P(t) Trade off Compute-optimal Curves

Phase I Fpp(t) + F0(t) Fpp = F0

Ia P̃⋆
Phase Ia(f) ≍ f−

2α+2β−1
3/2+α

d⋆Phase Ia(f) ≍ f
1

3/2+α

Ib P̃⋆
Phase Ib(f) ≍ f

1
2−α−β

d⋆Phase Ib(f) ≍ f
1
2

Ic P̃⋆
Phase Ic(f) ≍ f

α(2α+2β−1)
α(2β−3)−2β+1

d⋆Phase Ic(f) ≍ f
1−2(α+β)

2(α(2β−3)−2β+1)

Phase II
Fpp(t) + Fac(t)

+F0(t)

IIa Fac = F0
P̃⋆

Phase IIa(f) ≍ f
− 2α(4α−2)

4α2+4α−3

d⋆Phase IIa(f) ≍ f
4α−2

4α2+4α−3

IIb Fpp = Fac
P̃⋆

Phase IIb(f) ≍ f−
α(2+

2β−1
α

)

3β+α

d⋆Phase IIb(f) ≍ f
2β

3β+α

Phase III
Fac(t) + F0(t)

+
1

γ2B
Kpp(t)

IIIa Fac = F0
P̃⋆

Phase IIIa(f) ≍ f
− 2α(4α−2)

4α2+4α−3

d⋆Phase IIIa(f) ≍ f
4α−2

4α2+4α−3

IIIb 1
γ2B

Kpp = Fac
P̃⋆

Phase IIIb(f) ≍ f−1+ 1
4α

d⋆Phase IIIb(f) ≍ f1/2

Phase IV
Fpp(t) + F0(t)

+
1

γ2B
Kpp(t)

IVa 1
γ2B

Kpp = F0
P̃⋆

Phase IVa(f) ≍ f−α

d⋆Phase IVa(f) ≍ f1/2

IVb 1
γ2B

Kpp = Fpp
P̃⋆

Phase IVb(f) ≍ f
(1−2α)(2α+2β−1)
(2(2αβ+α−2β))

d⋆Phase IVb ≍ f(α−β)/(2αβ+α−2β)

Table 6: Loss description P(t) for DANA-constant and compute-optimal curves for P̃( f
d·B , d)

across the 4 phases (and subphases) defined in Figure 12b. We consider DANA-constant with the
hyperparameters in Lem. H.5 and Cor. H.2 (see Section 3) and batch size B = 1.

Proposition E.2 (Phase II, DANA-constant). Suppose we are in Phase II, i.e. 2α > 1, 2β > 1,
α > β. Then the compute-optimal curve P( f

d⋆ , d
⋆) using (74) occurs

• if α > 3
4 (Phase IIa), with d⋆ ≍ f

1
3/2+α and P( f

d⋆ , d
⋆) ≍ f−

2α
3/2+α ,

• if α < 3
4 (Phase IIb), with d⋆ ≍ f

2β
3β+α and P( f

d⋆ , d
⋆) ≍ f−

(2α+2β−1)
3β+α .

Proof. We have two potential cases to check, whether the compute-optimal is attained for Fpp(t) =
Fac(t) or Fac(t) = F0(t).

Fpp(t) = Fac(t): We apply Lemma E.1 with

γ0 = 2 +
2β − 1

α
, p0 = −1− 2β − 1

2α
, γ1 = 2− 1

α
, and p1 =

1

2α
.

If α < 3
4 , we have p1 − γ1 > 0 > p0 − γ0 and it yields an optimal d⋆1 = f

2β
3β+α and P( f

d⋆
1
, d⋆1) =

f−
(2α+2β−1)

3β+α . On the other hand , if α > 3
4 , we have Fpp(t) = Fac(t) for t ≍ f

1/2+α
3/2+α but the optimal

is to take t⋆ the largest. This brings us to the second case.

Fac(t) = F0(t): We apply Lemma E.1 with

63



γ0 = 2− 1

α
, p0 =

1

2α
, γ1 = 0, and p1 = 2α.

If α > 3
4 , we have p1 − γ1 > 0 > p0 − γ0. Hence the minimum is attained for d⋆2 = f

1
α+3/2 and

P( f
d⋆
2
, d2⋆) = f−

2α
α+3/2 . For α < 3

4 however the optimal is to take t∗ the smallest. We conclude that

for α > 3
4 , in Phase IIa, d⋆ = d⋆1 and for α < 3

4 in Phase IIb, d⋆ = d⋆2.

Phases IIIa and IIIb. In this phase, the approximate loss curve satisfies,

P( f
d , d) ≍ max{ 1

γ2B
Kpp(

f
d , d),Fac(

f
d , d),F0(

f
d , d)}

≍ max{γ2(
√
γ3Bt)

−4+ 1
α , d−1(

√
γ3Bt)

−2+ 1
α , d−2α}.

(75)

Proposition E.3 (Phase III, DANA-constant). Suppose we are in Phase III, i.e. 2α > 1, 2β > 1,
α < β. Then the compute-optimal curve P( f

d⋆ , d
⋆) using (75) occurs

• if α > 3
4 (Phase IIIa), with d⋆ ≍ f

4α−2

4α2+4α−3 and P( f
d⋆ , d

⋆) ≍ f
− 2α(4α−2)

4α2+4α−3 ,

• if α < 3
4 (Phase IIIb), with d⋆ ≍ f1/2 and P( f

d⋆ , d
⋆) ≍ f−1+ 1

4α .

Proof. We have two potential cases to check, whether the compute-optimal is attained for
1

γ2B
Kpp(t, d) = Fac(t, d) or for Fac(t, d) = F0(t, d).

1
γ2B

Kpp(t, d) = Fac(t, d): In that case, we directly know that d⋆1 : f1/2,P( f
d⋆ , d

⋆) = f−1+ 1
4α . We

also see that by defining

γ0 = 4− 1

α
, p0 = −2 + 1

2α
, γ1 = 2− 1

α
, and p1 =

1

2α
.

If α > 3
4 , we have p0 − γ0 > 0 > p1− γ1 and we apply Lemma E.1 to obtain d⋆1 : f1/2,P( f

d⋆
1
, d⋆1) =

f−1+ 1
4α . If α < 3

4 , the optimal is to choose t⋆ the largest which brings us to the other case.

Fac(t, d) = F0(t, d): In that case, we define

γ0 = 2− 1

α
, p0 =

1

2α
, γ1 = 0, and p1 = 2α.

For α < 3
4 , we have p1 − γ1 > 0 > p0 − γ0 and hence applying Lemma E.1, it brings an optimal

d⋆2 = f
1

α+3/2 , P( f
d⋆
2
, d⋆2) = f−

2α
α+3/2 . For α > 3

4 , the optimal is to choose t⋆ the smallest going back

to the first case. We conclude that for α > 3
4 , in Phase IIIa, d⋆ = d⋆2 and for α < 3

4 in Phase IIIb,
d⋆ = d⋆1.

E.3 DANA-decaying, compute-optimal curves

In all this section, we will use the hyperparameters in Remark B.3 with B = 1. We discuss the effect
of learning rate and batch after. We remind below the asymptotics of the forcing and kernel terms,
valid only in some regions of the (γ2, γ̄3, B, t, δ) space (τ(t) ≍ (

√
γ3(t)Bt)

2).

Fpp(t, d) ≍ min{γ2Bt, τ(t)2}−1− 2β−1
2α , Fac(t, d) ≍ d−1 min{γ2Bt, τ(t)2}−1+ 1

2α ,

1

γ2B
Kpp(t, d) ≍ γ2 min{γ2Bt, τ(t)2}−2+ 1

2α , F0(t, d) ≍ d−2α+max{0,1−2β}.

Derivations for these forcing function and kernel function asymptotics can be found in Section I. For
a summary of the compute-optimal curves for DANA-constant, see Table 7 and Figure 12d for a
description of the phases in the (α, β)−plane.
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Loss P(t) Trade off Compute-optimal Curves

Phase I Fpp(t) + F0(t) Fpp = F0

Ia P̃⋆
Phase Ia(f) ≍ f

(1−2α−2β)(4α−1)

(4α−1)+4α2

d⋆Phase Ia(f) ≍ f
4α−1

4α2+4α−1

Ib P̃⋆
Phase Ib(f) ≍ f

1
2−α−β

d⋆Phase Ib(f) ≍ f
1
2

Ic P̃⋆
Phase Ic(f) ≍ f

α(2α+2β−1)
α(2β−3)−2β+1

d⋆Phase Ic(f) ≍ f
1−2(α+β)

2(α(2β−3)−2β+1)

Phase II
Fpp(t) + Fac(t)

+F0(t)

IIa Fac = F0
P̃⋆

Phase IIa(f) ≍ f
− 2α(4α−1)

4α−1+4α2

d⋆Phase IIa(f) ≍ f
4α−1

4α−1+4α2

IIb Fpp = Fac
P̃⋆

Phase IIb(f) ≍ f
− (2α+2β−1)(4α−1)

2(2α2+4αβ−β)

d⋆Phase IIb(f) ≍ f
(4α−1)β

2α2+4αβ−β

Phase III
Fac(t) + F0(t)

+
1

γ2B
Kpp(t)

IIIa Fac = F0
P̃⋆

Phase IIIa(f) ≍ f
− 2α(4α−1)

4α−1+4α2

d⋆Phase IIIa(f) ≍ f
4α−1

4α−1+4α2

IIIb 1
γ2B

Kpp = Fac
P̃⋆

Phase IIIb(f) ≍ f−
(4α−1)2

2α(6α−1)

d⋆Phase IIIb(f) ≍ f
4α−1
6α−1

Phase IV
Fpp(t) + F0(t)

+
1

γ2B
Kpp(t)

IVa 1
γ2B

Kpp = F0
P̃⋆

Phase IVa(f) ≍ f−α

d⋆Phase IVa(f) ≍ f1/2

IVb 1
γ2B

Kpp = Fpp
P̃⋆

Phase IVb(f) ≍ f
(1−2α)(2α+2β−1)
(2(2αβ+α−2β))

d⋆Phase IVb ≍ f(α−β)/(2αβ+α−2β)

Table 7: DANA-decaying: Loss description for P(t) when solved with the DANA-decaying
algorithm and compute-optimal curves for P̃( f

d·B , d) across the 4 phases (and sub-phases)
defined in Figure 12d. We consider DANA-decaying with the hyperparameters in Remark B.3 and
batch size B = 1.

Below the high-dimensional line, (Phases Ib, Ic, IVa, IVb). In that case, γ2Bt ≲ γ̄3Bt
2−1/(2α) ≲

τ(t)2. Hence, we can write

Fpp(t, d) ≍ (γ2Bt)
−1− 2β−1

2α , Fac(t, d) ≍ d−1(γ2Bt)
−1+ 1

2α ,

and
1

γ2B
Kpp(t, d) ≍ γ2(γ2Bt)−2+ 1

2α .

Hence the forcing and kernel terms are similar to SGD and the compute-optimal choices for d⋆, t⋆
are the same as in Table 5.

Above the high-dimensional line (Phases Ia, IIa, IIb, IIIa, IIIb). In that case, we can check that
γ2Bt ≳ γ̄3Bt

2−1/(2α) ≳ τ(t)2. Therefore we simplify

Fpp(t, d) ≍ (γ̄3Bt2−1/(2α))−1− 2β−1
2α , Fac(t, d) ≍ d−1(γ̄3Bt2−1/(2α))−1+ 1

2α ,

and
1

γ2B
Kpp(t, d) ≍ γ2(γ̄3Bt2−1/(2α))−2+ 1

2α .

Phase Ia. In this phase, the approximate loss curve satisfies

P( f
d , d) ≍ max{Fpp(

f
d , d),F0(

f
d , d)} ≍ max{(γ̄3Bt2−1/(2α))−1− 2β−1

2α , d−2α−2β+1}. (76)
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Proposition E.4 (Phase Ia, DANA-decaying). Suppose we are in Phase Ia, i.e. 2α > 1, 2β < 1.

Then the compute-optimal curve P( f
d⋆ , d

⋆) using (76) occurs with d⋆ ≍ f
4α−1

4α2+4α−1 and P( f
d⋆ , d

⋆) ≍

f
(1−2α−2β)(4α−1)

(4α−1)+4α2 .

Proof. We apply Lemma E.1 with

γ0 =

(
2− 1

2α

)(
1 +

2β − 1

2α

)
, p0 = 0, γ1 = 0, and p1 = 2α+ 2β − 1.

Phases IIa and IIb. In this case, the approximate loss curve satisfies

P( f
d , d) ≍ max{Fpp(

f
d , d),Fac(

f
d , d),F0(

f
d , d)}

≍ max{(γ̄3Bt2−1/(2α))−1− 2β−1
2α , d−1(γ̄3Bt

2−1/(2α))−1+ 1
2α , d−2α}.

(77)

Proposition E.5 (Phase II, DANA-decaying). Suppose we are in Phase II, i.e. 2α > 1, 2β > 1,
α > β. Then the compute-optimal curve P( f

d⋆ , d
⋆) using (77) occurs

• if α > 3+
√
5

4 (Phase IIa), with d⋆ ≍ f
4α−1

4α−1+4α2 and P( f
d⋆ , d

⋆) ≍ f
− 2α(4α−1)

4α−1+4α2 ,

• if α < 3+
√
5

4 (Phase IIb), with d⋆ ≍ f
(4α−1)β

2α2+4αβ−β and P( f
d⋆ , d

⋆) ≍ f
− (2α+2β−1)(4α−1)

2(2α2+4αβ−β) .

Proof. The compute-optimal choice can be either attained for Fpp(
f
d , d) = Fac(

f
d , d) or Fac(

f
d , d) =

F0(
f
d , d).

Fpp(
f
d , d) = Fac(

f
d , d): In that case, we introduce

γ0 =

(
2− 1

2α

)(
1 +

2β − 1

2α

)
, p0 = 0, γ1 =

(
2− 1

2α

)(
1− 1

2α

)
, and p1 = 1.

If α < 3+
√
5

4 then p1 − γ1 > 0 > p0 − γ0 and applying Lemma E.1 we obtain an optimal

d⋆1 ≍ f
(4α−1)β

2α2+4αβ−β and P⋆( f
d⋆
1
, d⋆1) ≍ f

− (2α+2β−1)(4α−1)

2(2α2+4αβ−β) . However, if α > 3+
√
5

4 then p1− γ1 < 0 and
p0 − γ0 < 0. Hence the optimal is to choose t⋆ the largest which brings us to the second case.

Fac(
f
d , d) = F0(

f
d , d): In that case we define

γ0 =

(
2− 1

2α

)(
1− 1

2α

)
, p0 = 1, γ1 = 0, and p1 = 2α.

If α > 3+
√
5

4 , then p0 − γ0 < 0 < p1 − γ1 and we apply Lemma E.1 to obtain that d⋆2 ≍ f
4α−1

4α−1+4α2

and P( f
d⋆
2
, d⋆2) ≍ f

− 2α(4α−1)

4α−1+4α2 . On the other hand, if α < 3+
√
5

4 , then p0 − γ0 > 0, p1 − γ1 > 0 and
the compute optimal is to take t⋆ the smallest, i.e. going back to the first case. We conclude that for
α > 3+

√
5

4 , in Phase IIIa, d⋆ = d⋆1 and for 3+
√
5

4 in Phase IIIb, d⋆ = d⋆2.

Phases IIIa and IIIb. In this case, the approximate loss curve satisfies

P( f
d , d) ≍ max{ 1

γ2B
Kpp(

f
d , d),Fac(

f
d , d),F0(

f
d , d)}

≍ max{γ̄3(γ̄3Bt2−1/(2α))−2+ 1
2α , d−1(γ̄3Bt

2−1/(2α))−1+ 1
2α , d−2α}.

(78)

66



Proposition E.6 (Phase III, DANA-decaying). Suppose we are in Phase III, i.e. 2α > 1, 2β > 1,
α < β. Then the compute-optimal curve P( f

d⋆ , d
⋆) using (78) occurs

• if α > 3+
√
5

4 (Phase IIIa), with d⋆ ≍ f
4α−1

4α−1+4α2 and P( f
d⋆ , d

⋆) ≍ f
− 2α(4α−1)

4α−1+4α2 ,

• if α < 3+
√
5

4 (Phase IIIb), with d⋆ ≍ f
4α−1
6α−1 and P( f

d⋆ , d
⋆) ≍ f−

(4α−1)2

2α(6α−1) .

Proof. The compute-optimal choice can be either attained for Fpp(
f
d , d) = Fac(

f
d , d) or Fac(

f
d , d) =

F0(
f
d , d).

1
γ2B

Kpp(
f
d , d) = Fac(

f
d , d): In that case, we introduce

γ0 =

(
2− 1

2α

)(
2− 1

2α

)
, p0 = 0, γ1 =

(
2− 1

2α

)(
1− 1

2α

)
, and p1 = 1.

If α < 3+
√
5

4 , then p1 − γ1 > 0 > p0 − γ0 and we apply Lemma E.1 to obtain d1∗ = f
4α−1
6α−1 and

P( f
d⋆
1
, d⋆1) ≍ f−

(4α−1)2

2α(6α−1) . However, when α > 3+
√
5

4 , then p0− γ0 < 0, p1− γ1 < 0 and the optimal
choice is to take t⋆ the largest, leading to the second case.

Fac(
f
d , d) = F0(

f
d , d): In that case we define

γ0 =

(
2− 1

2α

)(
1− 1

2α

)
, p0 = 1, γ1 = 0, and p1 = 2α.

If α > 3+
√
5

4 , then p0 − γ0 < 0 < p1 − γ1 and we apply Lemma E.1 to obtain that d⋆2 ≍ f
4α−1

4α−1+4α2

and P( f
d⋆
2
, d⋆2) ≍ f

− 2α(4α−1)

2(2α2+2α−1/2) . On the other hand, if α < 3+
√
5

4 , then p0 − γ0 > 0, p1 − γ1 > 0

and the compute optimal is to take t⋆ the smallest, i.e. going back to the first case. We conclude that
for α > 3+

√
5

4 , in phase IIIa, d⋆ = d⋆1 and for 3+
√
5

4 in Phase IIIb, d⋆ = d⋆2.

E.4 Comparison of samples needed at compute optimality

Independently of compute, a bottleneck in the training of large models is the amount of data available.
While the size of a model can be arbitrarily increased, data comes with hard limits: the size of internet
when it comes to language models [97] or when dealing with resource constrained tasks such as
medical imaging [13]. Hence a natural question is how do the previous algorithms compare in terms
of samples used at compute-optimality? In what follows, we denote DANA-c as DANA-constant and
DANA-d as DANA-decaying.

We know that for a given number of samples/iterations t ≥ 0, DANA-d always achieve smaller or
equal loss than DANA-c which in turn achieves smaller or equal loss than SGD. Hence for a fixed
given loss level, DANA-decay needs less samples to achieve this loss than DANA-constant which
needs less than SGD; strictly less when the scaling laws exponents are improved in the considered
regime. However, it is not clear that this ordering remains the same when considering the compute-
optimal training regime. Indeed, in some regions of the (α, β) plane, the corresponding training
regimes can be different for two algorithms. For example, for 3

4 < α and β < α the compute-optimal
regime of DANA-c happens at the frontier Fac/F0 while the compute-optimal regime for SGD is
between Kpp/Fac. The compute-optimal regime of DANA-c is shifted later in training (this is a
general effect of the acceleration, see Remark E.2). Hence, even if for a given loss level DANA-c
needs less samples than SGD, DANA-c needs more samples at compute-optimality.

In the following denote for i ∈ {SGD,DANA-c,DANA-d}, ρi > 0 such that in a given phase, the
number of samples required for algorithm i is at compute optimality t⋆ = fρi . The smallest ρi, the
more data-efficient the algorithm is for a given compute. A first observation, is that even though the
loss P⋆(f) is continuous, across all the phases, neither the optimal dimension d⋆(f) nor the number of
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samples t⋆(f) are continuous. The points of discontinuity are exactly when the trade-off condition
changes, for examples at the borders IIa/IIb or IIIa/IIIb.

Claim DANA-d will always use less samples at compute-optimality than DANA-c in all phases.
Additionally, given (α, β) and for two algorithms in {SGD, DANA-c, DANA-d}, if compute-
optimality is reached at the same trade-off between F0,Fac,Fpp,

1
γ2B

Kpp then DANA-decaying
uses less samples than DANA-constant which in turn uses less samples than SGD at compute-
optimality. The improvement is strict if one of the algorithm is accelerating with respect to the
other. Hence DANA-d, DANA-c and SGD are in that order sample efficient in phases Ia, IIb , IIIb.
However, for large α, compute-optimality for DANA-c, DANA-d is reached later in training due
to the acceleration, and DANA-c, DANA-d may as well use more than less samples than SGD at
compute-optimality, depending on α, β.

Proof of the claim. We consider each phase:

• Below the high-dimensional line, SGD, DANA-constant and DANA-decaying have the same
scaling laws.

• In Phase Ia, ρSGD = 1− 1
2α+1 > ρDANA-c = 1− 1

3/2+α > ρDANA-d = 1− 4α−1
4α2+4α−1 .

• In Phase IIb (of DANA-c), ρSGD = 1 − β/α
1+β/α > ρDANA-c = 1 − 2β

3β+α > ρDANA-d =

1− (4α−1)β
2α2+4αβ−β .

• In Phase IIIb (of DANA-c), ρSGD = 1
2 = ρDANA-c > ρDANA-d = 1− 4α−1

6α−1 .

• In Phase IIb (of DANA-d), ρSGD = 1 − β/α
1+β/α > ρDANA-d = 1 − (4α−1)β

2α2+4αβ−β . I we are

additionally in phase IIa, then ρDANA-c = 1− 4α−2
4α2+4α−3 > ρDANA-d = 1− (4α−1)β

2α2+4αβ−β .

• In Phase IIIb (of DANA-d), ρSGD = 1
2 > ρDANA-d = 1 − 4α−1

6α−1 . If we are additionally in
Phase IIIa, then ρDANA-c = 1− 4α−2

4α2+4α−3 > ρDANA-d = 1− 4α−1
6α−1 .

• In Phase IIa (of DANA-d), ρDANA-c = 1− 4α−2
4α2+4α−3 > ρDANA-d = 1− 4α−1

4α2+4α−1 .

• In Phase IIIa (of DANA-d), ρDANA-c = 1− 4α−2
4α2+4α−3 > ρDANA-d = 1− 4α−1

4α2+4α−1 .

• In the other cases, there is no general rule of whether one algorithm uses less samples than
the other at compute-optimality. The interested reader may still easily derive them using
Tables 5 to 7.

One can explain why DANA-d always use less samples than DANA-c, even when they don’t share
the same trade-off condition (i.e. for α ∈

[
3
4 ,

3+
√
5

4

]
, β > 1

2 ) by the fact that DANA-c shifts the
trade-off (later in training) for smaller α than DANA-d.

E.5 Summary on compute-optimality results

We provide some specific details about compute-optimality for each algorithm in the different phases.

Below high-dimensional line (Phases Ib, Ic, IVa, IVb): Limit level F0 is reached when t ≤ d.
DANA/SGD-M has same scaling laws as SGD at compute-optimality.

SGD-M. Since same scaling law as SGD, there is a large portion of the (α, β)-plane (Phase III,
IVa, Ib) where we have universal scaling, i.e., params exponent is f1/2 or equivalently, the compute-
optimal regime is the same as the proportional regime (t ≍ d). This was observed empirically in
[50].

DANA-constant/DANA-decaying. To improve the compute-optimal loss exponent for DANA-
constant, compute-optimality must occur after iteration d−1 (Thm. H.3). As noted in Thm. I.2,
DANA-decaying improves the loss exponents for all scaling regimes where 2α > 1, including the
compute-optimality regime.
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Phase Ia: Here, Fpp accelerates beginning at t ≥ d until it reaches the limit risk F0. While the
compute-optimal tradeoff occurs at Fpp and F0 (same as SGD), DANA-constant reaches this point
faster than SGD; thus DANA-constant outscales SGD.
Phase II: This phase involves Fpp, Fac, F0 and at compute-optimality, we always see a better loss
exponent since the tradeoff point occurs at a point where t ≳ d. Notably the acceleration changes
the tradeoff constraints (e.g., where compute-optimal tradeoff occurs). For α ≤ 0.75 (Phase IIb,
DANA-constant) or α ≤ (3 +

√
5)/4 (Phase IIb, DANA-decaying), tradeoff occurs at the same two

terms as SGD, i.e., Fpp and Fac, but its get there faster. This means that one uses fewer samples than
SGD to achieve compute-optimality. For α ≥ 0.75 (Phase IIa, DANA-constant) or α ≥ (3 +

√
5)/4

(Phase IIa, DANA-decaying), the acceleration of Fac shifts the compute-optimal frontier to Fac and
F0, making DANA model capacity constrained, that is, why the compute-optimal frontier exists
changes.
Phase III: This phase involves Kpp, Fac, and F0 and, notably, Kpp and Fac always intersect at t ≍ d.
The same as Phase II occurs with Kpp replacing Fpp. When α < 3

4 , though, for DANA-constant the
compute-optimal tradeoff occurs at Kpp and Fac, so no outscaling SGD.

We summarize the results of Section E below; for Phase Diagrams see Figure 12, for scaling laws
and compute-optimal tradeoffs see Figure 13 and 14 (above the high-dimensional line) and Figure 15
(below the high-dimensional line).
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Figure 12: Phase diagrams for the various momentum algorithms in the compute-optimal
regime. See Figure 13, Figure 14, and Figure 15 for cartoon pictures of the scaling laws and tradeoffs
across all phases and algorithms. The main phases (I,II,III,IVa) are based on the components of the
loss that dominate at each time. The phases are further broken down to account for the different
tradeoffs in the compute-optimal training regime. We always use κ1 = max{0, 1− 2α} and we use
DANA-constant with κ2 = 1 + κ1 and κ3 = 0 and DANA-decaying with κ3 = 1/(2α), κ2 = κ1,
and batch size B = 1.
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Figure 13: Cartoon plots of the scaling laws for each algorithm above the high-dimensional line
(Phase Ia, IIa, IIb). Pictures for the scaling laws for all three algorithms in each of the different
phases. When t < d, DANA-constant behaves like SGD/SGD-M. Observe that the trade off point for
compute-optimum changes across phases and algorithms; indicated by (magenta). population bias,
Fpp(t) = (purple), embedding bias, Fac(t) = (blue), and model capacity, F0(t) = (orange). Variance
due to the algorithm has no impact. Here ρ = 2α+ 2β − 1. We always use κ1 = max{0, 1− 2α}
and we use DANA-constant with κ2 = 1 + κ1 and κ3 = 0 and DANA-decaying with κ3 = 1/(2α),
κ2 = κ1, and batch size B = 1.
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Figure 14: Cartoon plots of the scaling laws for each algorithm above the high-dimensional
line (Phase IIIa, IIIb). Pictures for the scaling laws for all three algorithms in each of the different
phases. When t < d, DANA-constant behaves like SGD/SGD-M. Observe that the trade off point
for compute-optimum changes across phases and algorithms; indicated by (magenta). Variance,
Kpp(t) = (green), embedding bias, Fac(t) = (blue), and model capacity, F0(t) = (orange). Even
in the stochastic noise-dominated regime, acceleration occurs for DANA-constant and for DANA-
decaying. We always use κ1 = max{0, 1− 2α} and we use DANA-constant with κ2 = 1 + κ1 and
κ3 = 0 and DANA-decaying with κ3 = 1/(2α), κ2 = κ1, and batch size B = 1.
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Figure 15: Cartoon plots of the scaling laws for each algorithm below the high-dimensional line
(Phase Ib/c, IVa/b). Pictures for the scaling laws for all three algorithms in each of the different
phases. Observe that the scaling laws are all the same for every algorithm; Tradeoff in compute-
optimum indicated by (magenta). Variance, Kpp(t) = (green), population bias, Fpp(t) = (purple),
and model capacity, F0(t) = (orange). SGD/SGD-M and DANA-constant/DANA-decaying have the
same scaling behavior. Here ρ = 2α+ 2β − 1. We always use κ1 = max{0, 1− 2α} and we use
DANA-constant with κ2 = 1 + κ1 and κ3 = 0 and DANA-decaying with κ3 = 1/(2α), κ2 = κ1,
and batch size B = 1.
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F Stochastic gradient descent (SGD)

The ODEs in (22) precisely yield the same scaling laws and compute-optimal curves as previous
works have shown for the stochastic gradient descent (SGD) algorithm with constant learning rate.
Of particular interest is reproducing the results of [80] and extending them to include learning rate
schedules.

F.1 Volterra equation for SGD

When γ3 ≡ 0, then the updates in (Gen-Mom-SGD) are precisely SGD with learning rate schedule
γ2(t). Moreover, we see that the iterates generated by the “coin-flipping” algorithm when γ3 ≡ 0
give the exact same iterates as SGD. That is, SGD is the “coin-flipping” algorithm with γ3 ≡ 0.

When γ3 ≡ 0, the ODE in (22) becomes

dν

dt
= Ω(t;λj)× ν(t;λj) + g(t;λj)

where Ω(t;λj) =

(−2γ2(t)Bλj +B(B + 1)γ2
2(t)λ

2
j 0 0

γ2
1(t)B(B + 1)λ2

j −2∆(t) + ∆2(t) 2γ1(t)Bλj(1−∆(t))
γ1(t)Bλj 0 −∆(t)− γ2(t)Bλj

)
.

We observe that the ν(t;λj)1 = ρ2j (t) for j = 1, . . . d completely decouple from ξ2j and χj . Therefore,
the ODE reduces to solving the following linear ODEs for ρ2j , j = 1, . . . , d

d

dt
ρ2j (t) =

[
− 2γ2(t)Bλj +B(B + 1)γ22(t)λ

2
j

]
ρ2j (t) + γ22(t)λjBE [P(t) |W ].

This is the same ODE that appeared in [80] with γ2(t) a constant. Moreover when λj = 0, then
d
dtρ

2
j (t) = 0 and so ρ2j (t) = ρ2j (0) for all t.

For λj > 0, using Duhamel’s principle on these 1-dimensional non-homogeneous linear ODEs, we
can explicitly solve for the ρ2j (t):

ρ2j (t) = exp
(
A(t)

)
ρ2j (0) +

∫ t

0

exp
(
A(t, λj)−A(s, λj)

)
γ22(s)λjBE [P(s) |W ] ds,

whereA(t, λ) def
= −2BΓ2(t)λ+B(B + 1)Γ̂2(t)λ

2, Γ2(t)
def
=

∫ t

0

γ2(r) dr, Γ̂2(t)
def
=

∫ t

0

γ22(r) dr.

Alternatively, in terms of the matrix Φλ(t, s), we have for SGD

[Φλ(t, s)]11 = exp(A(t, λ)−A(s, λ)). (79)

provided that λ > 0 and when λ = 0, Φ0(t, s)11 ≡ 1.
Remark F.1. We do not need to compute [Φλ(t, s)]12 since γ1(t) ≡ 0 so it does not effect the kernel
function.

F.2 SGD with learning rate schedule

Using the results above, we have the Volterra equation for SGD.

Volterra equation for SGD with learning rate schedule γ2(t). We can now give an explicit
representation for the expected loss of SGD, that is, following the arguments in Section C,
with θ0 = Θ0 = 0,

E [P(t) |W ] =
forcing func.

F (t)︸ ︷︷ ︸
grad. descent

+

∫ t

0

Kt(s)× E [P(Θs) |W ] ds︸ ︷︷ ︸
SGD noise

, (80)
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where, for any contour Γ containing K̂, we have

F (t)
def
=
−1
2πi

∮
Γ

⟨R(z, K̂), (D1/2b)⊗2⟩ exp
(
− 2BΩ2(t)z +B(B + 1)Ω2

2(t)z
2
)
dz

Ks(t)
def
=
−1
2πi

γ22(s)B

× Tr
(∮

Γ

z2 exp
(
− 2Bz(Ω2(t)− Ω2(s)) +B(B + 1)z2(Ω2

2(t)− Ω2
2(s))

)
×R(z, K̂) dz

)
,

and Ω2(t)
def
=

∫ t

0

γ2(t
′) dt′ and Ω2

2(t)
def
=

∫ t

0

γ22(t
′) dt′.

The Volterra equation using the deterministic equivalent for K̂ immediately follows.

Volterra equation for SGD with learning rate schedule γ2(t) under the deterministic
equivalent. We can now give an explicit representation for the deterministic equivalent of
SGD, that is, following the arguments in Section C, with θ0 = Θ0 = 0,

P(t) =
forcing func.
F(t)︸︷︷︸

grad. descent

+

∫ t

0

Ks(t)× P(s) ds︸ ︷︷ ︸
SGD noise

, (81)

where, for any contour Γ containing [0, 1], we have

F(t)
def
=
−1
2πi

∮
Γ

⟨R(z), (D1/2b)⊗2⟩ exp
(
− 2BΓ2(t)z +B(B + 1)Γ̂2(t)z

2
)
dz

=

∫ ∞

0

exp
(
− 2BΓ2(t)u+B(B + 1)Γ̂2(t)u

2
)
µF(du)

Ks(t)
def
=
−1
2πi

γ22(s)B

× Tr
(∮

Γ

z2 exp
(
− 2Bz(Γ2(t)− Γ2(s)) +B(B + 1)z2(Γ̂2(t)− Γ̂2(s))

)
× R(z) dz

)
= γ22(s)B

∫ ∞

0

exp
(
− 2Bγ2u(Γ2(t)− Γ2(s)) +B(B + 1)u2(Γ̂2(t)− Γ̂2(s))

)
× µK(du),

and Γ2(t)
def
=

∫ t

0

γ2(r) dr and Γ̂2(t)
def
=

∫ t

0

γ22(r) dr.

Remark F.2. The results above also hold when γ2(t) is a constant and they exactly reproduce the
results in [80].

F.2.1 Simplifying the Volterra equation for SGD with learning rate schedule

We now aim to simplify the Volterra equation for SGD and to do so, we will assume that the SGD
learning rate schedule is decaying.

Assumption 4 (SGD Learning Rate). Suppose the learning rate schedule γ2 : R≥0 → R>0 is a

nonincreasing function. Moreover, we let γ̄2
def
= γ2(0), that is γ2(t) ≤ γ̄2 for all t.

Throughout this section, we assume that Assumption 4 holds. Prior to this section, i.e., the derivation
of the Volterra equation (81), holds regardless of Assumption 4.
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Next, we need to introduce upper and lower bounds on the SGD kernel. For this, we introduce two
kernel functions,

K
SGD

(t)
def
=

∫ 1

0

exp(−2But+B(B + 1)γ̄2u
2t)µK(du)

and KSGD(t)
def
=

∫ 1

0

exp(−2But)µK(du).

(82)

To simplify the notation, we write K(t)
def
= K

SGD
(t) and K(t)

def
= KSGD(t). Next, we know that

Γ̂2(t)− Γ̂2(s) ≤ γ̄2(Γ2(t)− Γ2(s)). Using this observation, we have, for any 0 ≤ s ≤ t

γ22(s)B ×K(Γ2(t)− Γ2(s)) ≤ Ks(t) ≤ γ22(s)B ×K(Γ2(t)− Γ2(s)). (83)

Similarly, we define an upper and lower bound on the forcing function F

F(t)
def
=

∫ 1

0

exp(−2But+B(B + 1)γ̄2u
2t)µF(du) and F(t)

def
=

∫ 1

0

exp(−2But)µF(du).

(84)
It is clear that

F(Γ2(t)) ≤ F(t) ≤ F(Γ2(t)).

In the following lemma, we show that K and F are monotonically decreasing in t.

Lemma F.1 (K and F are decreasing functions). Suppose Assumption 4 holds and the learning rate
satisfies

2

B + 1
> γ2.

Then F and K are decreasing functions in t. In particular, the function F is bounded.

Proof. First, if F is decreasing, then it is clear that F is bounded. Therefore it only remains to show
that F and K are decreasing. This amounts to showing that

u(−2Bt+B(B + 1)γ̄2u) < 0, for all u ∈ [0, 1].

This holds provided that 2
B+1 > γ2.

Lastly, we introduce Kesten constant for the kernel of SGD as the following

∥K∥ def
=

∫ ∞

0

K(t) dt. (85)

We now proceed to simplify the Volterra equation for SGD in (81) using a result similar to Lemma
D.3 in [27].
Lemma F.2. Suppose Assumption 4 holds, that is, γ2(t) is a nonincreasing learning rate schedule
and 2

B+1 > γ̄2. Let Γ2(t) =
∫ t

0
γ2(r) dr. Then for all t ≥ 0,

P(t) ≥ F(t) +

∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(s) ds.

If, in addition, there exists a ε > 0 and T (ε) > 0,∫ t

0

K(s)K(t− s) ds ≤ 2(1 + ε)∥K∥K(t) and 2γ2B∥K∥(1 + ε) < 1, (86)

then for all t,

P(t) ≤ F(t) + C

∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(s) ds

for

C =

(
K(0)

K(T )(2ε+ 1)
+ 1

)
1

1− 2γ2B∥K∥(1 + ε)
.
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Proof. We recall that

P(t) = F(t) +

∫ t

0

Ks(t)× P(s) ds.

The lower bound holds trivially after noting that Ks(t) ≥ γ22(s)B ×K(Γ2(t)− Γ2(s)) and P(s) ≥
F(s). For the upper bound, we start with the following. Let us define the convolution map

G(F)(t)
def
=

∫ t

0

Ks(t)F(s) ds,

with the composition of the convolution mapping by

G2(F)(t) =

∫ t

0

Ks(t)G(F)(s) ds =

∫ t

0

∫ s

0

Ks(t)Kr(s)F(r) dr ds.

This naturally extends to Gj(F)(t). Next, let us define two functions h def
= F ◦ Γ−1

2 and g(u) def
=

B × γ2(Γ−1
2 (u)) where Γ2(t) =

∫ t

0
γ2(s) ds. Moreover, we introduce another convolution mapping

given by

G(h)(t)
def
=

∫ t

0

K(t− u)g(u)h(u) du,

where the composition is given by

G
2
(h)(t) =

∫ t

0

K(t− s)g(s)G(h)(s) ds =
∫ t

0

∫ s

0

K(t− s)g(s)K(s− u)g(u)h(u) du.

Again we extend this to j compositions, G
j
(h)(t).

As the kernel function Ks(t) and forcing function F(t) are non-negative, we have that

P(t) = F(t) +

∞∑
j=1

Gj(F)(t). (87)

Next, we prove the following claim. Claim: Gj(F)(t) ≤ G
j
(h)(Γ2(t)) for all j ≥ 1.

Proof of Claim: To see this, we will do the case when j = 3 in detail, but the idea will extend to all
j ≥ 1. For this, we have that

G
3
(h)(Γ2(t)) =

∫ Γ2(t)

0

∫ w

0

∫ u

0

K(Γ2(t)− w)K(w − u)K(u− v)g(w)g(u)g(v)h(v) dv du dw.

We consider the change of variables v = Γ(p) where dv = γ2(p) dp. Then

G
3
(h)(Γ2(t)) =

∫ Γ2(t)

0

∫ w

0

∫ Γ−1(u)

0

K(Γ2(t)− w)K(w − u)K(u− Γ2(p))

× g(w)g(u)Bγ22(p)F(p) dp du dw.

Now consider the change of variables where u = Γ2(r). Then,

G
3
(h)(Γ2(t)) =

∫ Γ2(t)

0

∫ w

0

∫ Γ−1(u)

0

K(Γ2(t)− w)K(w − u)K(u− Γ2(p))

× g(w)g(u)Bγ22(p)F(p) dp du dw

=

∫ Γ2(t)

0

∫ Γ−1
2 (w)

0

∫ r

0

K(Γ2(t)− w)K(w − Γ2(r))K(Γ2(r)− Γ2(p))

× g(w)γ22(r)B2γ22(p)F(p) dp dr dw

=

∫ t

0

∫ s

0

∫ r

0

K(Γ2(t)− Γ2(s))K(Γ2(s)− Γ2(r))K(Γ2(r)− Γ2(p))

× γ22(s)γ22(r)B3γ22(p)F(p) dp dr ds.
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The last equality follows from the change of variables w = Γ2(s). The result immediately follows
since K(Γ2(t)− Γ2(s))γ

2
2(s)B ≥ Ks(t) and the kernels are nonnegative. This proves the claim.

Therefore, we have from (87)

P(t) ≤ F(t) +

∞∑
j=1

G
j
(h)(Γ2(t)).

Next, we show that the map G(h) is contracting and in particular,

G
2
(h)(t) =

∫ t

0

K(t− s)g(s)G(h)(s) ds =
∫ t

0

∫ s

0

K(t− s)g(s)K(s− u)g(u)h(u) du ds

=

∫ t

0

(∫ t

u

K(t− s)K(s− u)g(s) ds
)
g(u)h(u) du

≤
∫ t

0

K
∗2
(t− u)g(u)2h(u) du,

where the third equality is since u < s < t. The last transition is by change of variables and the
assumption that γ2(t) is a nonincreasing function. Consecutive application of the convolution map
will then yield by induction,

G
j
(h)(t) ≤

∫ t

0

K
∗j
(t− u)g(u)jh(u) du.

Therefore, expanding the loss and using the upper bound, and denote q = 2γ̄2B(1 + ε)∥K∥ such that
q < 1,

P(t) ≤ F(t) +

∞∑
j=1

G
j
(h)(Γ2(t))

≤ F(t) +

∞∑
j=1

∫ Γ2(t)

0

K
∗j
(Γ2(t)− u)g(u)jh(u) du

≤ F(t) +

 ∞∑
j=1

(2γ̄2B∥K∥(1 + ε))j−1

C1

∫ Γ2(t)

0

K(Γ2(t)− u)g(u)h(u) du

≤ F(t) +

(
1

1− q

)
× C1 ×

∫ t

0

Bγ22(s)×K(Γ2(t)− Γ2(s))F(s) ds.

The third transition follows from Lemma F.3 with C1 = K(0)

K(T )(2ε+1)
+1 and the last transition follows

from a change of variables u = Γ2(s).

Lemma F.3 (Lemma D.4 in [27] and Lemma IV.4.7 in [8]). Suppose γ̄2 < 2
B+1 , i.e., K is monotoni-

cally decreasing. Suppose additionally that ∥K∥ <∞ and for some ε > 0, there exists a T (ε) > 0
such that ∫ t

0

K(s)K(t− s) ≤ 2(1 + ε)∥K∥K(t), for all t ≥ T .

Then for all n ≥ 0

sup
t

{
K

∗n
(t)

K(t)

}
≤ (2∥K∥(1 + ε))n−1

(
K(0)

K(T )(2ε+ 1)
+ 1

)
.

We immediately get a corollary of Lemma F.2.
Corollary F.1. Under the assumptions of Lemma F.2, the following holds

F(t) +

∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(s) ds ≤ P(t)

≤ F(t) + C ×
∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(s) ds,

where C is the constant in Lemma F.2.
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The goal will be to show that the lower and upper bound on P(t) from Corollary F.1 have the same
asymptotics (see Section F.2.2 for forcing function and Section F.2.3). Moreover, using the results
from [80], we know that K satisfies the Kesten’s lemma condition (86).
Proposition F.1 (SGD and Kesten’s condition, Proposition G.2 [80]). Suppose α > 1

4 . For any
ε > 0, there is an M sufficiently large so that for Bt ∈ [M,d2α/M ],∫ t

0

K(s)K(t− s) ≤ (2 + ε)∥K∥K(t).

Moreover, we have estimates on the Kesten constant ∥K∥.
Lemma F.4 (Boundedness of ∥K∥, Corollary G.1 [80]). When 2α > 1 and γ2(B + 1) < 2,

∥K∥ = 1

2B

∞∑
j=1

j−2α

1− 1
2γ2(B + 1)

(1 + o(1)).

When 2α < 1,

∥K∥ = 1

2B

v1−2α

1− 2α
(1 + o(1)).

We remark that ∥K∥ is approximately 1
2B Tr(D); here Tr(D) =

∑d
j=1 j

−2α. This leads to the main
result.
Proposition F.2. Let v, d be admissible. When 2α > 1, suppose

γ2(B + 1) < 2 and γ2 <
1∑∞

j=1 j
−2α

.

Or when 2α < 1, suppose γ2 = c× d2α−1 where c > 0 is any constant and

γ2(B + 1) < 2 and
c

1− 2α
< 1.

Then the expected loss P is bounded and

F(Γ2(t)) +

∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(Γ2(s)) ds ≤ P(t)

≤ F(Γ2(t)) + C ×
∫ t

0

γ22(s)B ×K(Γ2(t)− Γ2(s))F(Γ2(s)),

where C is the constant in Lemma F.2.

Proof. The proof combines the previous results with the idea that the conditions on the learning rates
ensure that F is bounded and 2Bγ2∥K∥ < 1.

F.2.2 Forcing function for SGD with decaying learning rate schedule

In light of Corollary F.1, we can now define the different components of the forcing function.
Following the outline in Section D.1, we have three components for the upper forcing function F and
the lower forcing function F,

Fpp(t)
def
=

1

2α

∫ 1

0

exp(−2But)× u(2β−1)/(2α) du

Fpp(t)
def
=

1

2α

∫ 1

0

exp(−2But+B(B + 1)γ2u
2t)× u(2β−1)/(2α) du

Fac(t)
def
=

cβ
2αd

∫ 1

0

exp(−2But)× u−1/(2α) du

Fac(t)
def
=

cβ
2αd

∫ 1

0

exp(−2But+B(B + 1)γ2u
2t)× u(2β−1)/(2α) du,
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where cβ
def
=
∑∞

j=1 j
−2β if β > 1

2 and 0 otherwise, and lastly,

F0(t),F0(t)
def
=

v∑
j=1

j−2α−2β

1 + j−2αd2ακ(v/d)
where κ > 0 is the unique solution of

∫ v/d

0

κ dx

κ+ x2α
= 1.

For the pure point terms, we get the following proposition.
Proposition F.3 (Pure point forcing term, Proposition H.2 [80]). Suppose 2α + 2β > 1. For any
ε > 0, there is an M > 0 so that for Bt ≥M ,

|Fpp(t)− g(t)| ≤ ε× g(t) and |Fpp(t)− g(t)| ≤ ε× g(t)
where

g(t)
def
= (2α)−1(2B)1/(2α)−β/α−1 × Γ(βα −

1
2α + 1)× t−(1+β/α)+1/(2α).

Furthermore, for any M̃ > 0, there exists some constants C, C̃, c > 0 independent of d so that

c ≤ Fpp(t),Fpp(t) ≤ C if Bt < M̃

and if t > M̃d2α

Fpp(t),Fpp(t) ≤ C̃ × F0(t).

As for F0, we have the following proposition.
Proposition F.4 (Asymptotic for F0, Proposition H.3 [80]). Suppose v and d are admissible such
that the ratio v/d > 1 and suppose 2α+ 2β > 1. Let 0 < κ(v/d) <∞ be the unique solution to

1 =

∫ v/d

0

κ

κ+ u2α
du.

Then as d→∞

F0(t) F0(t) ∼

{
d−2α

κ

(∑v
j=1 j

−2β
)
, if 2β > 1

d1−2(α+β)
∫ v/d

0
u−2β

κ+u2α du, if 2β < 1.

Lastly, we have a proposition for the absolutely continuous part of Fac(t).
Proposition F.5 (Absolutely continuous forcing function, Proposition H.4 [80]). There exists a
constant C(α, β) > 0 such that

Fac(t),Fac(t) ≤
{
C × F0(t), if 2β > 1, 2α < 1

0, if 2β < 1.

Suppose now 2α > 1 and 2β > 1. For any ε > 0, there is an M > 0 so that for Bt ∈ [M,d2α/M ],

|Fac(t)− g(t)| ≤ ε× g(t) and |Fac(t)− g(t)| ≤ ε× g(t)

where g(t)
def
=
( v∑
j=1

j−2β
)
(2B)−1+1/(2α)(2α)−1Γ(1− 1

2α )t
−1+1/(2α) × d−1.

Furthermore, for any M̃ > 0, there exists some constants C, c > 0 independent of d so that

Fac(t),Fac(t) ≤
{
C × d−1, if Bt ≤ M̃
c× F0(t), if Bt ≥ M̃d2α.

Combining all these propositions, we have the following conclusion.
Proposition F.6 (Forcing function for SGD, Corollary F.1 [80]). For any α, β with α, β ̸= 1

2 and
α+ β > 1

2 there is a function C(t) bounded above for all t so that
1

C(t)

(
Fpp(Γ2(t))+Fac(Γ2(t)) + F0(Γ2(t))

)
≤ F(Γ2(t)) ≤ F(t)

≤ F(Γ2(t)) ≤ C(t)
(
Fpp(Γ2(t)) + Fac(Γ2(t)) + F0(Γ2(t))

)
.

Moreover, for any ε > 0, there is a M(ε) large enough that C(t) ≤ 1+ ε for Γ2(t)B ∈ [M,d2α/M ]
and for Γ2(t)B > Md2α. Lastly, the upper and lower bounds satisfy

Fpp(t) ∼ Fpp(t), Fac(t) ∼ Fac(t), and F0(t) ∼ F0(t).
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SGD-M SGD

F0(t) ≍ d−2α+max{0,1−2β} F0(t) ≍ d−2α+max{0,1−2β}

Fpp(t) ≍ (γeffBt)
−1− 2β−1

2α Fpp(t) ≍ (γ2Bt)
−(1+β/α)+1/(2α)

Fac(t) ≤

{
C × F0(t), if 2β > 1, 2α < 1

0, if 2β < 1
Fac(t) ≍

{
C × F0(t), if 2β > 1, 2α > 1

0, if 2β < 1.

if 2β > 1, 2α > 1, Fac ≍ d−1 (γeffBt)−1+1/(2α) if 2β > 1, 2α > 1, Fac(t) ≍ d−1(γ2Bt)−1+1/(2α)

Kpp(t) ≍ γ2effB (γeffBt)
−2+1/(2α)

Kpp(t) ≍ γ22B(γ2Bt)
−2+1/(2α)

Table 8: Asymptotics for the forcing and kernel functions for constant learning rate SGD/SGD-
M. See Section G/Section F for details/proofs of the derivations for these asymptotics of SGD-M/SGD.
Here the constant C is independent of dimension and γeff = γ2 +

γ3

δ .

F.2.3 Kernel function for SGD with decaying learning rate schedule

We perform a similar analysis for the kernel function for SGD. To do so, we introduce two (pure
point) kernel functions:

Kpp(t)
def
=

1

2α

∫ 1

0

exp(−2But+B(B + 1)γ2u
2t)× u1−1/(2α) du

and Kpp(t)
def
=

1

2α

∫ 1

0

exp(−2But)× u1−1/(2α) du.

The first result states that the upper and lower Kpp are asymptotically the same.
Proposition F.7 (Kpp asymptotic, Proposition H.5 [80]). Suppose α > 1/4. For any ε > 0, there is
an M > 0 so that for Bt ≥M ,

|Kpp(t)− g(t)| ≤ ε× g(t) and |Kpp(t)− g(t)| ≤ ε× g(t)

where
g(t)

def
= (2α)−1(2B)−2+1/(2α) × Γ

(
2− 1

2α

)
× t−2+1/(2α).

Moreover, for any M̃ > 0, there exists constants c, C, C̃ > 0, such that when 2α > 1,

c ≤ Kpp(t) ≤ C, c ≤ Kpp(t) ≤ C, if Bt ≤ M̃

and when 2α < 1,

Kpp(t) ≤ Ĉ × d2α−1 Kpp(t) ≤ Ĉ × d2α−1, if Bt ≤ M̃.

Furthermore, for any M̃ > 0, there exists a constant C̃ > 0, such that

Kpp(t) ≤ C̃ × F0(t), Kpp(t) ≤ C̃ × F0(t) if Bt ≥ M̃d2α.

This directly leads to the main result for the kernel function.
Proposition F.8 (Kernel estimation, Proposition G.1 [80]). Suppose α > 1/4. There is a positive
function C(t) so that

1

C(t)
× γ22(s)B ×Kpp(Γ2(t)− Γ2(s)) ≤ Ks(t) ≤ C(t)× γ22(s)B ×Kpp(Γ2(t)− Γ2(s)),

and C(t) is bounded independent of d by a function of M for all Γ2(t)B < d2αM . Moreover for
any ε > 0 there is an M sufficiently large so that for Γ2(t)B ∈ [M,d2α/M ], C(t) < 1 + ε. Lastly,
the upper and lower bounds satisfy

Kpp(t) ∼ Kpp(t).

Propositions F.4, F.5, F.3, and F.6 for the forcing function and their companions, Propositions F.7 and
F.8 for the kernel function, allow us to simplify the Volterra equation.
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Proposition F.9 (Simplification of Volterra equation for SGD with decreasing learning rates). Suppose
γ2(t) is a decreasing learning rate schedule (i.e., Assumption 4 holds) and suppose the assumptions
of Proposition F.2 hold. Let α > 1/4. First suppose that the forcing function with the decaying
learning rate is integrable, that is,

C
def
= C(γ2, B)

def
=

∫ ∞

0

h(Γ2(s))γ
2
2(s) ds <∞,

where h(t)
def
= (2α)−1Γ(βα −

1
2α + 1)× (2Bt)−(1+β/α)+1/(2α) + cβ × (2Bt)−1+1/(2α) × d−1.

(88)
Here cβ

def
=
(∑v

j=1 j
−2β
)
(2α)−1Γ(1− 1

2α ) if 2α > 1 and 2β > 1 and otherwise it is 0. Then there
exists absolute constants M, M̃ > 0 such that the following holds

F(Γ2(t))+C×K(Γ2(t)) ≤ P(t) ≤ C×
(
F(Γ2(t)/2)+C×K(Γ2(t)/2)

)
for all Γ2(t)B ∈ [M,d2αM̃ ].

where C(γ2, B)
def
=
∫ 1

0
F(Γ2(s))γ

2
2(s) ds and C > 0 is an absolute constants independent of γ2 and

d.

On the other hand, if the forcing function with learning rate schedule is non-integrable, that is,∫ ∞

0

h(Γ2(s))γ
2
2(s) ds =∞, (89)

then there exists absolute constant M, M̃ > 0 such that the following holds

F(Γ2(t)) ≤ P(t) ≤ C × F(Γ2(t)/2), for all Γ2(t)B ∈ [M,d2αM̃ ],

where C is an absolute constant independent of d, γ2, and B.

Proof. Let us first consider the case when (88) holds, that is,

C =

∫ ∞

0

F(Γ2(s))γ
2
2(s) ds <∞.

Now we consider the upper and lower bound separately.

Upper bound: From Proposition F.2, we have that

P(t) ≤ F(Γ2(t)) +

∫ t

0

K(Γ2(t)− Γ2(s))F(s)γ
2
2(s) ds.

By a change of variables (v = Γ2(s)) and setting u = Γ2(t), we have that the RHS of the above
inequality equals

F(Γ2(t)) +

∫ t

0

K(Γ2(t)− Γ2(s))F(s)γ
2
2(s) ds = F(u) +

∫ u

0

K(u− v)F(v)g(v) dv

where g(v) = γ2(Γ
−1
2 (v)).

Now let us decompose the convolution into two terms∫ u

0

K(u− v)F(v)g(v) dv =

∫ u/2

0

K(u− v)F(v)g(v) dv +
∫ u

u/2

K(u− v)F(v)g(v) dv

≤ K(u/2)

(∫ u/2

0

F(v)g(v) dv

)
+ g(u/2)F(u/2)

∫ u/2

0

K(v) dv

≤ K(u/2)×

(∫ u/2

0

F(v)g(v) dv

)
+ γ2∥K∥ × F(u/2).

Here we can bound γ2∥K∥ ≤ 2 since we are assuming sufficient conditions on the learning rate for
bounded solutions. Now we need to consider the first term. For this, we know by Prop. F.6, Prop. F.3,
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Prop. F.4, and Prop. F.5 that there exists M,M̃ > 0 such that for all 2Bu ∈ [M,d2αM̃ ], we have
F(u/2) ∼ h(u/2) + d−2α+max{1−2β,0} and F(u/2) ≲ 1 for all 2Bu ≤M . It follows that∫ u/2

0

F(v)g(v) dv ≲
∫ M

0

F(v)g(v) dv +

∫ u/2

M

h(v)g(v) dv +

∫ u/2

M

d−2α+max{0,1−2β} dv.

(90)
Here ≲ means an absolute constant independent of d, γ2, and B. The first and third integrals are
bounded by absolute constants and the middle integral is upper bounded by C. This proves the upper
bound.
Lower bound: From Proposition F.2, we have the following lower bound on the loss curve which
after a change of variables gives

F(u) +

∫ u

0

K(u− v)F(v)g(v) dv ≤ P(t).

We immediately have the following bound∫ u

0

K(u− v)F(v)g(v) dv ≥ K(u)

∫ u

0

F(v)g(v) dv ≥ K(u)

∫ Γ2(1)

0

F(v)g(v) dv

as K is a decreasing function and g(v)F (v) are non-negative.

Next we suppose that ∫ ∞

0

h(Γ2(s))γ
2
2(s) ds =∞. (91)

Upper bound: To prove the upper bound, we recall that∫ u

0

K(u− v)F(v)g(v) dv ≤ K(u/2)

(∫ u/2

0

g(v)F(v) dv

)
+ γ2F(u/2)∥K∥.

As before, we know by Prop. F.6, Prop. F.3, Prop. F.4, and Prop. F.5 as well as Prop. F.7 and
Prop. F.8 that there exists M,M̃ > 0 such that for all 2Bu ∈ [M,d2αM̃ ], we have F(u/2) ∼
h(u/2) + d−2α+max{1−2β,0} and F(u/2) ≲ 1 for all 2Bu ≤M . Moreover K(u/2) ∼ u−2+1/(2α)

and K(u/2) ≲ 1 for all 2Bu ≤M .

It follows from (90) that∫ u/2

0

F(v)g(v) dv ≲
∫ M

0

F(v)g(v) dv +

∫ u/2

M

h(v)g(v) dv +

∫ u/2

M

d−2α+max{0,1−2β} dv.

(92)
Here ≲ means an absolute constant independent of d, γ2, and B. We also know that the first and third
integrals are bounded by absolute constants. As (91) holds, we know there are two cases to consider.

First suppose 2α < 1 or 2β < 1 so that h(t) ∼ t−(1+β/α)+1/(2α). In order for (91) to hold, it must
be that 2β < 1. Now we see that if 2α > 1 , then

K(u/2)

∫ u/2

M

h(v)g(v) dv ∼ u−2+1/(2α)u−(1+β/α)+1/(2α)+1 ≤ u−(1+β/α)+1/(2α) ∼ F(u/2).

Here we use Proposition F.3. Moreover we always have in this regime that K(u/2) ≲ F(u/2) (here
we used Prop. F.3 and Prop. F.7). Thus, all three integrals in (92) are bounded by F(u/2), proving
the result in this setting.

Now we suppose that 2α < 1. As in the prior case K(u/2) ≲ F(u/2), showing the result for the first
and third integrals in (92). It remains to show for the 2nd integral in (92). In this case, we note that
the second integral is

K(u/2)

∫ u/2

M

h(v)g(v) dv ∼ γ̄2u−2+1/(2α)u−(1+β/α)+1/(2α)+1

∼ d2α−1u−2+1/(2α)u−(1+β/α)+1/(2α)+1.
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Here we used that when 2α < 1, we need γ̄2 ≲ d2α−1. Now we see that the following hold

d2α−1u−2+1/(2α)u−(1+β/α)+1/(2α)+1 ≲ u−(1+β/α)+1/(2α) ∼ F(u/2)

⇔ d2α−1u−1+1/(2α) ≲ 1.

Since u ∈ [M,d2αM̃ ] and −1 + 1/(2α) > 0, we see that the left hand side is maximized at
u = d2αM̃ which shows that for all u ∈ [M,d2αM̃ ]

d2α−1u−1+1/(2α) ≲ d2α−1(d2α)−1+1/(2α) ≲ 1.

Hence the result holds in this case.

Now we need to consider the case when 2α > 1 and 2β > 1. As we have already shown the Fpp(u/2)

asymptotic is not the reason that (91) holds. Therefore if (91) is true, it must be because the Fac

asymptotic is causing the problem. As before, we always have that K(u/2) ≲ F(u/2). Thus, the
first and third integral of (92) are done. For the middle integral, we see that

d−1u−2+1/(2α)u−1+1/(2α)+1 ≲ u−1+1/(2α) ≲ F(u/2).

This holds precisely because 2α > 1. Therefore the upper bound in this case is shown.

Lower bound: From Proposition F.2, we have the following lower bound on the loss curve which
after a change of variables gives

F(u) ≤ F(u) +

∫ u

0

K(u− v)F(v)g(v) dv ≤ P(t).

This proves the result.

Remark F.3. While we do not have asymptotics for the kernel function when α < 1/4, we believe
that the kernel function is not power law but rather exponentially decaying. This exponential decay
would mean that the forcing function (which is still power law when α < 1/4) dominates (above and
below) the loss function P(t).
Corollary F.2. Suppose γ2(t) is a decreasing learning rate schedule (i.e., Assumption 4 holds) and
suppose the assumptions of Proposition F.2 hold. Let α > 1/4. First suppose that the forcing function
with the decaying learning rate is integrable, that is,

C
def
= C(γ2, B)

def
=

∫ ∞

0

h(Γ2(s))γ
2
2(s) ds <∞,

where h(t)
def
= (2α)−1Γ(βα −

1
2α + 1)× (2Bt)−(1+β/α)+1/(2α) + cβ × (2Bt)−1+1/(2α) × d−1.

(93)
Here cβ

def
=
(∑v

j=1 j
−2β
)
(2α)−1Γ(1− 1

2α ) if 2α > 1 and 2β > 1 and otherwise it is 0. Then there
exists absolute constants M, M̃ > 0 such that the following holds

F(Γ2(t))+C×K(Γ2(t)) ≤ P(t) ≤ C×
(
F(Γ2(t))+C×K(Γ2(t))

)
for all Γ2(t)B ∈ [M,d2αM̃ ].

where C(γ2, B)
def
=
∫ 1

0
F(Γ2(s))γ

2
2(s) ds and C > 0 is an absolute constants independent of γ2 and

d.

On the other hand, if the forcing function with learning rate schedule is non-integrable, that is,∫ ∞

0

h(Γ2(s))γ
2
2(s) ds =∞, (94)

then there exists absolute constant M, M̃ > 0 such that the following holds

F(Γ2(t)) ≤ P(t) ≤ C × F(Γ2(t)), for all Γ2(t)B ∈ [M,d2αM̃ ],

where C is an absolute constant independent of d, γ2, and B.

Proof. The result immediately follows from F(u/2) ∼ F(u) by Propositions F.4, F.5, F.3, and F.6
and K(u/2) ∼ K(u) by Propositions F.7 and F.8 for the kernel function.
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Figure 16: Comparison between SGD and SGD-M. Numerical set-up: Run SGD with constant
γSGD
2 (14) and SGD-M with ∆ ≡ 0.1 and constant γSGD-M

3 (15) on the PLRF model with batch size 1.
SGD learning rate γSGD

2 ranges 0.1/Tr(K̂) to 1.0/Tr(K̂) (100 equally spaced points where selected)
where Tr(K̂) =

∑d
i=1 j

−2α. Learning rate γSGD-M
3 = ∆× γSGD

2 . SGD and SGD-M were run for 104
iterations and the last iterate was recorded. As you can see the solid (dot) lines, SGD, nearly match
the same value as the ‘x’ marked faded lines, SGD-M. This agrees with our theoretical finding that
show SGD and SGD-M under the equivalence γSGD

2 =
γSGD-M
3

∆ have the exact same scaling law in the
small batch regime.

G Classic Stochastic Momentum (SGD-M)

In this section, we consider the classic (constant) stochastic momentum algorithm (15) under the
simplified ODEs (43). In this case, δ, γ2, γ3 are constants independent of d and γ1 ≡ 1. In particular,
we derive the asymptotics for the forcing function, F, and kernel function K (see Table 8 for summary).
See also Fig. 17 for a summary of the different loss curve behaviors depending on phases in the
(α, β)-plane (Fig 12a for SGD/SGD-M phase diagram).

To begin with, we need to give an expression for the forcing and kernel functions; specifically, we
need to solve the ODEs in (43).

G.1 Solution to the ODE for classic stochastic momentum

Given the Volterra equation (55), we need to understand Φλ(t, s) where Φλ(t, s) solves the ODE

d

dt
Φλ(t, s) = Ω(t;λ)Φλ(t, s) such that Φλ(s, s) = Id3 (95)

where for this constant momentum algorithm, the matrix Ω(t, λ) reduces to

Ωλ def
= Ω(t;λ) =

−2γ2Bλ 0 −2γ3
0 −2δ 2Bλ
Bλ −γ3 −δ − γ2Bλ

 . (96)

Since Ωλ is constant (independent of time), a solution to (43), Φλ(t, s) = exp(Ωλ × (t − s)), see
[25, Chapter 3, Section2] for systems of constant coefficient linear ODEs. As a result, we just need
an expression for exp(Ωx × t).
Computing the exponential of a matrix can easily be done if one knows the eigenvalues and eigen-
vectors/generalized eigenvectors of the matrix. For example, if the eigenvalues of Ωx are distinct
or the eigenvectors of Ωx form a basis of R3, then we can write exp(Ωx × t) = V D(t)V T where
D(t) = Diag(exp(ri × t) : i = 1, 2, 3 and ri eigenvalue of Ωx) and the columns of V are the
eigenvectors of Ωx. In the case that this does not occur, then we can use the Jordan form of Ωx to
find exp(Ωx × t). It would involve computing the eigenvalues and generalized eigenvalues of Ωx.

G.2 Asymptotics of the kernel and forcing functions, SGD-M

We can now give an explicit solution to the ODE (95) and use it to obtain an explicit formulation for
the loss curve P under the SDE in (40) (see also simplified ODEs (43)).
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Figure 17: SGD-M (and SGD) cartoon plots and phase diagram. The loss curve is the sum
of P(t) ≍ Fpp(t) + Fac(t) +

1
γBKpp(t) + F0(t), where γ def

= γ2 for SGD and γ def
= γ2 + γ3

δ for
SGD-M. Each of these terms are explicit and take the form t−σd−τ (See Table 8 for summary of the
asymptotics of the terms and Section G.2 for derivations). Depending on the strength of α relative to
β, some of the terms drop out (Sec. E.1). Compute-optimal derivations can be found in Sec. E.1.

Define ω def
= (δ − γ2Bσ2)2 − 4γ3Bσ

2, ρ
def
= δ + γ2Bσ

2 µ
def
= δ − γ2Bσ2.

Then the eigenvalues of Ωλ are −ρ,−ρ+
√
ω,−ρ−

√
ω and we write

Φλ
11(t, s) =

1

2ω
e−(t−s)ρ(−4γ3Bσ2 + e−(t−s)

√
ω[(ω + 2Bσ2γ3)− µ

√
ω]

+ e(t−s)
√
ω[(ω + 2Bσ2γ3) + µ

√
ω])

=
4Bσ2γ3

2ω
e−(t−s)ρ(cosh((t− s)

√
ω + V)− 1)

Φλ
12(t, s) =

2γ23
ω
e−(t−s)ρ(cosh((t− s)

√
ω)− 1)

Here V ∈ C is defined by eV =
√

(ω+2Bσ2γ3)+µ
√
ω

(ω+2Bσ2γ3)−µ
√
ω

.

We can now give precise bounds on Φλ(t, s)11,Φ
λ(t, s)12.

In the following, we will restrain the study to some values of σ, δ, γ2, γ3, B.
Assumption 5 (Hyperparameter domain). Suppose that δ > 0, γ2 > 0, γ3 > 0, σ ∈ [0, 2], B ∈ N∗

and that additionally

max{γ2Bσ2,
γ3
δ
Bσ2} ≤ δ

4
.

Proposition G.1. There exists C > 0 such that under Assumption 5 we have

δ2

C
≤ ω ≤ Cδ2,

V ∈ R+, and more precisely
ω

Cσ2Bγ3
≤ eV ≤ Cω

σ2γ3B
.
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Proof. We clearly have δ2 ≥ ω ≥ ( 34δ)
2 − δ2

4 ≥
δ2

4 . Additionally, it is clear that (ω + 2Bσ2γ3)−
µ
√
ω > 0. This implies that V ∈ R+ and more precisely

eV =

√
(ω + 2Bσ2γ3) + µ

√
ω

(ω + 2Bσ2γ3)− µ
√
ω

≍
√

δ2

(δ − γ2σ2)2 − 2γ3Bσ2 − (δ − γ2Bσ2)
√

(δ − γ2Bσ2)2 − 4γ3Bσ2

≍
√√√√ δ2

(δ − γ2σ2)2 − 2γ3Bσ2 − (δ − γ2Bσ2)2
√

1− 4γ3Bσ2

(δ−γ2Bσ2)2

≍
√√√√ δ2

(δ − γ2Bσ2)2
(

4γ3Bσ2

(δ−γ2Bσ2)2

)2
≍

√
δ4

(γ3Bσ2)2

≍ ω

γ3Bσ2
.

Proposition G.2. There exists C > 0 such that under Assumption 5 for any t ≥ s ≥ 0 we have

1

C
e(t−s)(

√
ω−ρ) ≤ Φλ(t, s)11 ≤ Ce(t−s)(

√
ω−ρ)

if additionally t− s ≥ 1

δ
,

1

C

γ23
δ2
e(t−s)(

√
ω−ρ) ≤ Φλ(t, s)12 ≤ C

γ23
δ2
e(t−s)(

√
ω−ρ)

while if t− s ≤ 1

δ
,

1

C

γ23
δ2

((t− s)δ)2 ≤ Φλ(t, s)12 ≤ C
γ23
δ2

((t− s)δ)2

In particular one can also choose C > 0 such that

1

C
e−

1
C (t−s)(γ2+

2γ3
δ )Bσ2

≤ Φλ(t, s)11 ≤ Ce−C(t−s)(γ2+
2γ3
δ )Bσ2

if additionally t− s ≥ 1

δ
,

1

C

γ23
δ2
e−

1
C (t−s)(γ2+

2γ3
δ )Bσ2

≤ Φλ(t, s)12 ≤ C
γ23
δ2
e−C(t−s)(γ2+

2γ3
δ )Bσ2

Proof. Since V ≳ ω
γ3Bσ2 ≳ 1 we know that

Φλ
11(t, s) ≍

4Bσ2γ3
2ω

e−(t−s)ρ(cosh((t− s)
√
ω + V)− 1)

≍ 4Bσ2γ3
2ω

e−(t−s)ρ exp
(
(t− s)

√
ω + V

)
≍ exp((t− s)(

√
ω − ρ)).

For the same reason, if (t− s)
√
ω ≍ (t− s)δ ≳ 1, we have that

Φλ(t, s)12 ≍
γ23
δ2
e(t−s)(

√
ω−ρ)

while if (t− s)δ ≤ 1 we use that 1
C ((t− s)δ))2 ≤ cosh((t− s)δ)− 1 ≤ C((t− s)δ)2

Using Assumption 5 we obtain that there exists C > 0 such that
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δ + C
(
− γ2Bσ

2

δ
+

1

2

(
γ2Bσ

2

δ

)2

− 2
γ3Bσ

2

δ2

)
≤
√
ω

= δ

√
1− 2

γ2Bσ2

δ
+

(
γ2Bσ2

δ

)2

− 4
γ3Bσ2

δ2

≤ δ + 1

C

(
−γ2Bσ

2

δ
+

1

2

(
γ2Bσ

2

δ

)2

+ 2
γ3Bσ

2

δ2

)

where we used that 1
2 ≤ −2

γ2Bσ2

δ +
(

γ2Bσ2

δ

)2
− 4γ3Bσ2

δ2 ≤ 0 is bounded under Assumption 5.

Additionally, since γ2Bσ2

δ ≤ 1
4 , we can further reduce to

1

C
(2γ2 +

2γ3
δ

)Bσ2 ≤
√
ω − ρ ≤ C(2γ2 +

2γ3
δ

)Bσ2.

This implies the last result.

Now that we know the behavior of Φλ
11(t, s), Φ

λ
12(t, s) we can reduce the study to simplified functions

that will be used to bound the forcing and kernel functions. This is done in the next definition.
Definition G.1. Let C > 0 be a large universal constant corresponding to Proposition G.2. Then,
under Assumption 5 we define

ψ̂(σ2, t)
def
= e−(

γ3
δ +γ2)Bσ2t

ψ
F
(σ2, t)

def
= 1

Ce
−C(

γ3
δ +γ2)Bσ2t

ψF(σ
2, t)

def
= Ce−

1
C (

γ3
δ +γ2)Bσ2t

ψ
K
(σ2, t)

def
= 1

C
γ2
3

δ2

(
e−C(

γ3
δ +γ2)Bσ2t1t≥δ−1 + ((t− s)δ)21t<δ−1

)
ψK(σ2, t)

def
= C

γ2
3

δ2

(
e−

1
C (

γ3
δ +γ2)Bσ2t1t≥δ−1 + ((t− s)δ)21t<δ−1

)
.

Then it is clear from the above that ∀t ≥ s ≥ 0,

ψ
F
(σ2, t) ≤ Φλ(t, 0)11 ≤ ψF(σ

2, t)

ψ
K
(σ2, t− s) ≤ Φλ(t, s)12 ≤ ψK(σ2, t− s).

We hence define: 

F̃(t) =
∫∞
0
ψ̂(σ2, t) µF(dσ

2)
F(t) =

∫∞
0
ψ
F
(σ2, t) µF(dσ

2)

F(t) =
∫∞
0
ψF(σ

2, t) µF(dσ
2)

K̃s(t) = B ×
∫∞
0
σ4(γ22 + (γ3

δ )2)ψ̂(σ2, t) µK(dσ2)
Ks(t) = B ×

∫∞
0
σ4(γ22ψF

(σ2, t) + ψ
K
(σ2, t)) µK(dσ2)

Ks(t) = B ×
∫∞
0
σ4(γ22ψF(σ

2, t) + ψK(σ2, t)) µK(dσ2).

From the above, we see that F̃,F,F are non-negative functions and that K̃s(t) = K̃(t − s),
Ks(t) = K(t − s), Ks(t) = K(t − s) are non-negative convolution kernels. The following
proposition shows that to understand the behavior of P, we only need to understand the solutions of
the Volterra equations using the bounds on the forcing and kernel functions.
Proposition G.3. We have the bounds for all 0 ≤ s ≤ t:

0 ≤ F(t) ≤ F(t) ≤ F(t),

0 ≤ Ks(t) ≤ Ks(t) ≤ Ks(t).
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In particular, denoting P,P,P the solutions of the Volterra equations with respectively forcing
function F,F,F and kernel function K,K,K, we have the inequality for all time t ≥ 0:

0 ≤ P(t) ≤ P(t) ≤ P(t).

Proof. This is a consequence of proposition G.2 and the fact that µF, µK are positive measures. The
last inequality is a consequence of the Volterra equation definition.

Denote now, similarly to as was done in Section D:

F̃0(t)
def
= µF({0})ψ̂(0, t) = µF({0}),

F̃pp(t)
def
=

1

2α

∫ 1

0

σ1+ 2β−1
α ψ̂(σ2, t) dσ,

F̃ac(t)
def
=

cβ
2αd

∫ 1

d−α

σ1− 1
α ψ̂(σ2, t) dσ,

K̃pp(t)
def
=

(
γ22 +

(
γ3

δ

)2)
B

2α

∫ 1

0

σ3− 1
α ψ̂(σ2, t) dσ.

(97)

We can compute the following results on F̃0, F̃ac, F̃pp, K̃pp which are summarized in Table 5.

Proposition G.4. Suppose α, β ̸= 1
2 and 2α+ 2β > 1 and Assumption 5 to hold. For any M > 0,

then, there exists a constant C(α, β) > 0 such that we have for all t ≥ 0:

1

C
d−2α+max{0,1−2β} ≤ F̃0(t) ≤ Cd−2α+max{0,1−2β},

1

C
min{1,

(
(γ2 +

γ3
δ
)Bt
)−1− 2β−1

2α } ≤ F̃pp(t) ≤ Cmin{1,
(
(γ2 +

γ3
δ
)Bt
)−1− 2β−1

2α },

(γ22 + (γ3

δ )2)B

C
min{1,

(
(γ2 +

γ3
δ
)Bt
)−2+ 1

2α } ≤ K̃pp(t)

≤ C(γ22 + (
γ3
δ
)2)Bmin{1,

(
(γ2 +

γ3
δ
)Bt
)−2+ 1

2α },

F̃ac(t) ≤
{
C × F̃0(t) if 2α > 1, 2β > 1

0 if 2β < 1.

If additionally 2α > 1, 2β > 1 and (γ2 +
γ3

δ )Bσ2t ≤Md2α we have

1

C
d−1 min{1,

(
(γ2 +

γ3
δ
)Bt
)−1+1/(2α)

} ≤ F̃ac(t) ≤ Cd−1
(
min{1, (γ2 +

γ3
δ
)Bt
)−1+1/(2α)

.}

Proof. The proofs are entirely similar to the one of [80, Proposition H.2, H.3, H.4, H.5] and just
follow from the change of variable u = (γ2 +

γ3

δ )Bσ2t in the integral definitions (97). For F̃0, we
used Proposition D.3.

Proposition G.5. Suppose α > 0, α, β ̸= 1
2 and 2α + 2β > 1, α + 1 > β and let M > 0. Then,

there exists a constant C(α, β,M) > 0 such that we have for all t ≥ s ≥ 0:

1

C

(
F̃0(t) + F̃ac(t) + F̃pp(t)

)
≤ F̃(t) ≤ C

(
F̃0(t) + F̃ac(t) + F̃pp(t)

)
.

If additionally α > 1
4 and (γ2 +

γ3

δ )B(t− s) < Md2α,

1

C
K̃pp(t− s) ≤ K̃(t− s) ≤ CK̃pp(t− s).

89



Proof. The proof is a direct consequence of Propositions D.13 and D.14 and the estimates derived in
Section D. We apply Proposition D.13 which implies the existence of L,C > 0 such that

1

C

∫ 1
L

Ld−2α

ψ̂(σ2, t)(µFpp
+ µFac

)(dσ2) ≤
∫ 1

L

Ld−2α

ψ̂(σ2, t)µF(dσ
2)

≤ C
∫ 1

L

Ld−2α

ψ̂(σ2, t)(µFpp
+ µFac

)(dσ2).

Additionally, we know using Propositions D.4 and D.6 that

max{
∫ cd−2α

0

ψ̂(σ2, t)(µFpp
+ µFac

)(dσ2)),

∫ cd−2α

0

ψ̂(σ2, t)µFpp
(dσ2))} ≲ F0(t).

Finally, using Proposition D.2, it is clear that

max{
∫ 1

1/M

ψ̂(σ2, t)(µFpp
+ µFac

)(dσ2),

∫ 1

1/M

ψ̂(σ2, t)µF(dσ
2)} ≲ Fpp(t).

For the kernel, we can similarly write for L > 0 large enough

K̃(t− s) =
(γ22 + (γ3

δ )2)B

2α

∫ 1

0

ψ̂(σ2, t− s)µK(dσ2)

=

∫ Ld−2α

0

ψ̂(σ2, t− s)µK(dσ2) +

∫ 1/L

Ld−2α

ψ̂(σ2, t− s)µK(dσ2) +

∫ 1

1/L

ψ̂(σ2, t− s)µK(dσ2)

For the second term, we use Proposition D.14 and that (γ2 + γ3

δ )B(t− s) < Md2α to compare it
to the value in Proposition G.4. For the first term, using Proposition D.6 and γ3B

δ (t− s) < Md2α,
it is absorbed by the second term. Finally, the third term is absorbed by the second term due to the
exponential decay of ψ̂.

Now, we can easily bound the forcing and kernel functions using F̃, K̃.
Proposition G.6. Suppose α, β ̸= 1

2 , 2α+ 2β > 1 α+ 1 > β and let M > 0. Then, there exists a
constant C(α, β,M) > 0 such that we have for all t ≥ 0:

1

C

(
F̃0(t) + F̃ac(t) + F̃pp(t)

)
≤ F(t) ≤ F(t) ≤ C

(
F̃0(t) + F̃ac(t) + F̃pp(t)

)
.

If additionally α > 1
4 , (γ2 + γ3

δ )Bt < Md2α and t ≥ δ−1,

1

C
K̃pp(t) ≤ K(t) ≤ K(t) ≤ CK̃pp(t).

Finally if α > 1
4 , (γ2 +

γ3

δ )Bt < Md2α and t ≤ δ−1,

1

C

(
γ22Bmin{1, ((γ2 +

γ3
δ
)Bt)−2+1/(2α)}+ γ23B

δ2
((t− s)δ)2

)
≤ K(t) ≤ K(t)

≤ C

(
γ22Bmin{1, ((γ2 +

γ3
δ
)Bt)−2+1/(2α)}+ γ23B

δ2
((t− s)δ)2

)
.

Proof. We know that for any t ≥ 0,

F(t) =
1

C
F̃(Ct), F(t) = CF̃(

1

C
t),

if additionally tδ ≥ 1, K(t) =
1

C
K̃(Ct), K(t) = CK̃(

1

C
t).

Additionally, we know that
(
F̃0(t) + F̃ac(t) + F̃pp(t)

)
and K̃pp(t) follow power laws. Hence, we

only have to prove the bounds on F̃ and K̃ which was done in Proposition G.5. Finally the case
tδ < 1 can be handled easily since Φλ

12(t, s) ≍ ((t− s)δ)2 and we obtain the result.
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Proposition G.7 (Kernel norm bound). Let α > 1
4 , α ̸=

1
2 . There exists some constants C(α) >

0, d̄(α) > 1 such that for δ > 0, B ∈ N∗, γ2 > 0, γ3 > 0, if γ3B ≤ δ2

16 , γ2B ≤
δ2

16 , and d ≥ d̄(α),
we have the bounds (note that for 2α < 1, we use v ∼ C × d)

d(1−2α)+

C
(γ2 +

γ3
δ
) ≤ ∥K∥ ≤ ∥K∥

≤ Cd(1−2α)+(γ2 +
γ3
δ
).

Proof. We will instead show

d(1−2α)+

C

γ22 + (γ3

δ )2

γ2 +
γ3

δ

≤ ∥K∥ ≤ ∥K∥

≤ Cd(1−2α)+

(
γ22 + (γ3

δ )2)B

(γ2 +
γ3

δ )B
+
γ23B

δ3

)
which directly brings the result as ∀a, b > 0 we have a2+b2

a+b ≍ a+ b and γ2
3B
δ3 ≲ γ3

δ since γ3B
δ2 ≲ 1.

It is clear that ∥K∥ ≤ ∥K∥. The bounds are then direct consequences from Definition G.1 and the
lower and upper-bounds on µK derived in Section D.

We first use Lemma D.1 to get that there exists some d̄ > 1 large enough such that ∀d ≥ d̄,
µK([2,∞)) = 0. Hence we reduce to σ ≤ 2 and under the assumption of the proposition we see that
we are under Assumption 5.

For the lower bound, we write for some M > 0 large enough to apply Proposition D.12,

∥K∥ ≳
∫ ∞

t=δ−1

∫ 1
M

σ=Md−α

(γ22 + (
γ3
δ
)2)Be−(γ2+

γ3
δ )Bσ2t dµK(σ2) dt

≳
∫ ∞

t=δ−1

∫ 1
M

σ=Md−α

(γ22 + (
γ3
δ
)2)Be−(γ2+

γ3
δ )Bσ2t dµKpp(σ

2) dt

≳
γ22 + (γ3

δ )2

γ2 +
γ3

δ

∫ 1
M

σ=Md−α

σ3− 1
α dσ

≳ d(1−2α)+
γ22 + (γ3

δ )2

γ2 +
γ3

δ

.

For the upper-bound, we proceed similarly and write form some M > 0 large enough to apply
Propositions D.5 and D.9 to D.11∫ ∞

t=δ−1

∫ 2

σ=0

(γ22 + (
γ3
δ
)2)Be−(γ2+

γ3
δ )Bσ2t dµK(σ2) dt

≲
∫ ∞

t=δ−1

∫ 2

σ= 1
M d−α

(γ22 + (
γ3
δ
)2)Be−(γ2+

γ3
δ )Bσ2t dµKpp

(σ2) dt

≲
γ22 + (γ3

δ )2

γ2 +
γ3

δ

∫ 2

σ= 1
M

σ3− 1
α dσ

≲ d(1−2α)+
γ22 + (γ3

δ )2

γ2 +
γ3

δ

.

For Φλ
11(t, s), t− s small is not a problem as we have directly∫ ∞

t=0

∫ 2

σ=0

γ22Be
−(γ2+

γ3
δ )Bσ2t dµK(σ2) dt

≲ d(1−2α)+
γ22

γ2 +
γ3

δ

.
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For Φλ
12(t, s) we need to be more careful and we write for small times

∫ δ−1

t=0

∫ 2

σ=0

(
γ3
δ
)2B((t− s)δ)2 dµK(σ2) dt

≲
∫ δ−1

t=0

∫ 2

σ= 1
M d−α

(
γ3
δ
)2B dµKpp

(σ2) dt

≲ (
γ3
δ
)2Bδ−1

∫ 2

σ= 1
M

σ3− 1
α dσ

≲ d(1−2α)+(
γ3
δ
)2Bδ−1.

Hence we see that ∥K∥ ≲ d(1−2α)+ γ2
2+(

γ3
δ )2

γ2+
γ3
δ

+ d(1−2α)+(γ3

δ )2Bδ−1 which brings the claim and the
result.

Using the bound Proposition G.7, we obtain the following sufficient condition for the algorithm to be
stable.

Corollary G.1 ((Sufficient) Stability condition for hyperparameters of SGD-M). Suppose the iterates
{yt−1, θt}∞t=0 are generated by (15). Let δ > 0, γ2 > 0, γ3 > 0, B ∈ N∗. Let α > 1

4 , α ̸=
1
2 , β ̸=

1
2 , 2α+ 2β > 1, α+ 1 > β. There exists some constant c > 0 such that if max{γ2B, γ3B

δ } ≤
δ2

16

and γ2 + γ3

δ ≤ cd−(1−2α)+ , then the solution P to the simplified Volterra equation Equation (55)
remains bounded, i.e. ∥P∥∞ <∞.

Proof. Notice from Propositions G.5 and G.6 that F(t) is bounded. Additionally, applying Proposi-
tion G.7 yields the existence of a corresponding c > 0 such that ∥K∥ < 1. We saw in Section C.3
that this implies that the loss remains bounded.

Remark G.1 (Necessary stability condition). Similarly, it is clear using the lower bound on ∥K∥
from Proposition G.7 that if γ2 + γ3

δ ≥ Cd
−(1−2α)+ for some C(α) > 0 then the risk is unbounded

i.e. ∥P∥∞ =∞.

Proposition G.8. Let δ > 0, γ2 > 0, γ3 > 0, B ∈ N∗, M > 0, ϵ > 0. Let α > 1
4 , α ̸=

1
2 . There

exists some constant c > 0 such that if max{γ2B, γ3B
δ } ≤

δ2

16 and γ2 + γ3

δ ≤ cd
−(1−2α)+ , then for

any t ≥ 0 with (γ2 +
γ3

δ )Bt ≤Md2α we have

[
K ∗K

]
(t) ≤ ϵK(t).

Proof. We apply Propositions G.4 to G.6 to obtain that

if t ≥ δ−1, K(t) ≍ (γ22 + (
γ3
δ
)2)Bmin{1, ((γ2 +

γ3
δ
)Bt)−2+1/(2α)},

if t < δ−1, K(t) ≍ γ22Bmin{1, ((γ2 +
γ3
δ
)Bt)−2+1/(2α)}+ (

γ3
δ
)2B((t− s)δ)2.

A crucial observation is that K behaves as a power law, i.e. there exists some constant C > 0 such
that ∀t ≥ 0, 1

C ≤
K(2t)

K(t)
≤ C. Indeed, if t < δ−1

2 or t ≥ δ−1 it is clear. This is still true for

t ∈ [ δ
−1

2 , δ−1] by just noticing limt↑δ−1 K(t) ≍ K(δ−1) since (γ2 +
γ3

δ )B ≲ δ.

It is additionally clear from Proposition G.7 that for any ϵ > 0, for c > 0 small enough we have
∥K∥ < ϵ.

Using these two previous facts, one just writes for any t ≥ 0
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[K ∗K](t) =

∫ t

0

K(t− s)K(s) ds

=

∫ t/2

0

K(t− s)K(s) ds+

∫ t

t/2

K(t− s)K(s) ds

≲ K(t)

∫ ∞

0

K(s) ds

≲ ϵK(t).

By decreasing ϵ as needed we obtain the result.

We finally state a result on the forcing function norm (see related result [80, Proposition H.6]).
Proposition G.9. Let α > 0, α ̸= 1

2 , β ̸=
1
2 , α+1 > β, 2α+2β > 1. There exists c > 0 such that

if max{γ2B, γ3B
δ } ≤

δ2

16 and γ2 + γ3

δ ≤ cd−(1−2α)+ , then for any t ≥ 0 with 1 ≤ (γ2 +
γ3

δ )Bt ≤
Md2α we have

If 2β > 1,
∫ t

0
F̃(s) ds ≍ 1

(γ2+
γ3
δ )B

.

If 2β < 1, 1
(γ2+

γ3
δ )B

K̃pp(t) ≲ K̃pp(t)×
∫ t

0
F̃(s) ds ≲ F̃(t) + 1

(γ2+
γ3
δ )B

K̃pp(t).

Proof. First case: 2β > 1

First the contribution of F̂0 gives
∫Md2α/(γ2+

γ3
δ )B

0
F̃0(s) ds ≲ 1

(γ2+
γ3
δ )B

because F̃O(t) ≍ d−2α.

It is clear that F̃pp ∈ L1(R+). Hence since 1 ≤ (γ2+
γ3

δ )Bt we know that
∫ t

0
F̃pp(s) ds ≍ 1

(γ2+
γ3
δ )B

.

For F̃ac, if 2α < 1, we handle it like F̃0. If on the other hand 2α > 1 then we write∫ Md2α/((γ2+
γ3
δ )B)

1

(γ2+
γ3
δ

)B

F̃ac(s) ds ≲
d−1

(γ2 +
γ3

δ )B

∫ Md2α

1

x−1+ 1
2α dx

≲
1

(γ2 +
γ3

δ )B
.

Since for (γ2 + γ3

δ )Bt ≤ 1 we know that F̃ac(t) ≲ d−1 we obtain that∫Md2α/((γ2+
γ3
δ )B)

0
F̃ac(s) ds ≲ 1

(γ2+
γ3
δ )B

. This concludes for the case 2β > 1.

2nd case: 2β < 1 In this phase, we do not need to worry about F̃ac since it is zero.

It is also clear that 1
(γ2+

γ3
δ )B

K̃pp(t) ≲ K̃pp(t) ×
∫ t

0
F̃(s) ds since

∫ t

0
F̃(s) ds ≳∫ 1

(γ2+
γ3
δ

)B

0 F̃pp(s) ds ≳ 1
(γ2+

γ3
δ )B

.

We first consider the F̃pp contribution.

K̃pp(t)×
∫ t

0

F̃pp(s) ds ≲ K̃pp(t)×
(∫ 1

γeffB

0

F̃pp(s) ds+

∫ t

1
γeffB

F̃pp(s) ds
)

≲
1

γeffB
K̃pp(t) + K̃pp(t)

∫ t

1
γeffB

F̃pp(s) ds

≲
1

γeffB
K̃pp(t) + γ2effB(γeffBt)

−2+ 1
2α

∫ t

1
γeffB

(γeffBs)
−1− 2β−1

2α ds

≲
1

γeffB
K̃pp(t) + γeff(γeffBt)

−2+ 1
2α (γeffBt)

− 2β−1
2α .
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We only need to show that

γeff(γeffBt)
−2+ 1

2α (γeffBt)
− 2β−1

2α ≲ F̃pp(t)

⇐⇒ γeff(γeffBt)
−2+ 1

2α (γeffBt)
− 2β−1

2α ≲ (γeffBt)
−1− 2β−1

2α

≲ γeff ≲ (γeffBt)
1− 1

2α .

Since by assumption γeffBt ≤Md2α we see that we only need γeff ≲ d2α−1. This is true since by
assumption γeff ≲ d−(1−2α)+ ≲ d2α−1.

We now consider the F̃0 contribution that we will bound using F̃pp(t).

K̃pp(t)×
∫ t

0

F̃0(s) ds ≲ K̃pp(t)d
−2α−2β+1t

≲ γ2effB(γeffBt)
−2+ 1

2α d−2α−2β+1t

≲ γeff(γeffBt)
−1+ 1

2α d−2α−2β+1.

We only need to show

K̃pp(t)×
∫ t

0

F̃0(s) ds ≲ F̃(t)

⇐⇒ γeff(γeffBt)
−1+ 1

2α d−2α−2β+1 ≲ (γeffBt)
−1− 2β−1

2α

⇐⇒ γeff ≲ (γeffBt)
− β

α d2α+2β−1

Since γeffBt ≥ 1 we only need to show that γeff ≲ d2α−1+2β which is true since γeff ≲ d−(1−2α)+

by assumption and (1− 2α)+ ≥ (1− 2α)− 2β.

Theorem G.1. Suppose α > 1
4 , 2α + 2β > 1, α, β ̸= 1

2 , α + 1 > β. Let M > 0, δ > 0, γ2 >

0, γ3 > 0, B ∈ N∗. There exists some constant c > 0 such that if max{γ2B, γ3B
δ } ≤

δ2

16 and
γ2 +

γ3

δ ≤ cd
−(1−2α)+ , then for any t ≥ 0 with 1 ≤ (γ2 +

γ3

δ )Bt ≤Md2α and t ≥ δ−1, we have

c(F̃0(t)+F̃ac(t)+F̃pp(t)+
1

(γ2 +
γ3

δ )B
K̃pp(t)) ≤ P(t) ≤ 1

c
(F̃0(t)+F̃ac(t)+F̃pp(t)+

1

(γ2 +
γ3

δ )B
K̃pp(t)).

Proof. Using Proposition G.3, it suffices to prove the result on P(t) and P(t). We already know that
∀t ≥ 0,

F(t) + [F ∗K] (t) ≤ P(t) ≤ P(t) ≤ F(t) +

∞∑
k=1

[
F ∗K∗k]

(t).

Let ϵ = 1
2 . Using Proposition G.8 we know that for c > 0 small enough, ∀t ≥ 0 if (γ2 + γ3

δ )Bt ≤
Md2α, [

K ∗K
]
(t) ≤ ϵK and ∥K∥ < 1.

Hence, applying Lemma C.3 we can bound for some C > 0

∞∑
k=1

[
F ∗K∗k]

(t) ≤ C ×
[
F ∗K

]
(t).

We only have left to respectively lower and upper bound [F ∗K] (t) and
[
F ∗K

]
(t).
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We write using Proposition G.6, and for t ≥ δ−1 and (γ2 +
γ3

δ )B ≥ 1,

[
F ∗K

]
(t) =

∫ t/2

0

F(s)K(t, s) ds+

∫ t

t/2

F(s)K(t, s) ds

≲ K̃pp(t)×
∫ t/2

0

F(s) ds+ (F̃0(t) + F̃ac(t) + F̃pp(t))× ∥K∥

≲ F̃0(t) + F̃ac(t) + F̃pp(t) +
1

(γ2 +
γ3

δ )B
× K̃pp(t).

Similarly for the lower-bound we write

[F ∗K] (t) ≳
∫ t/2

0

F(s)K(t, s) ds

≳ K̃pp(t)×
∫ t/2

0

F(s) ds

≳
1

(γ2 +
γ3

δ )B
K̃pp(t).

Here we used from Proposition G.9 that if 1 ≤ (γ2+
γ3

δ )Bt ≤Md2α, then F̃(t)+ K̃pp(t)
∫ t

0
F̃(s) ≍

F̃(t) + 1
(γ2+

γ3
δ )B

K̃pp(t).

Finally, using again Proposition G.5, we obtain the result.

Remark G.2. Theorem G.1 together with the asymptotics in Proposition G.4 shows that SGD-M
with learning rates γ1 = 1, γ2, γ3 and momentum parameter δ has the exact same scaling laws than
SGD where γ2 ← (γ2 +

γ3

δ ).

H DANA-constant

In this section, we analyze the DANA-constant algorithm introduced in Section B.3. We are interested
in deriving the forcing and kernel function as well as their asymptotics (See Table 12 for summary).
As in SGD-M/SGD, depending on (α, β)-plane, the loss simplifies. We summarize the results in
Figure 18 which shows the different phases and a qualitative description of the loss curves.

We begin with a description of change of variables in the hyperparameters and then go into details
about solving the simplied ODEs in (43) with hyperparameters associated with DANA-constant. This
ultimately leads to the asymptotic description of the forcing and kernel functions.

First, since γ1(t), γ3(t) are constants, DANA-constant with hyperparameters (γ1, γ2, γ3, δ
1+t ) yields

the same algorithm as DANA-constant with parameters (γ̃1, γ2, γ̃3,
δ

1+t ) where we chose γ̃1
def
=

1, γ̃3
def
= γ3 × γ1. Indeed, one can check that the updates of the two algorithms on the θ variable are

identical, and also that the forcing and kernel functions are identical. Hence across this section, we
will freely use γ1 = 1 without loss of generality. Additionally, throughout this section, we use σ2 to
denote the eigenvalue λ of K̂, that is λ def

= σ2.

Below we introduce the main parametrization for DANA-constant that will often be used throughout
this section. It essentially amounts to consider (DANA) with κ3 = 0.

Parametrization H.1. Let a vector of hyperparameters H
def
= (γ̃2, γ̃3, cb, κ1, κ2, κb, δ) with

γ̃2, γ̃3, cb > 0, κ1, κ2, κb ≥ 0. We add the restriction κb ≤ min{κ1, κ2}, −2α ≤ −κ2+2κ1−κb ≤
0. We parametrize

γ1 = 1, γ2 = γ̃2d
−κ1 , γ3 = γ̃3d

−κ2 , B = cbd
κb . (98)

Remark H.1. The reason to require κb ≤ min{κ1, κ2} and κ1, κ2 ≥ 0 is to ensure that γ2B, γ3B
remain bounded as d→∞. Otherwise, eigenvalues of (23) do generally no longer have negative real

95



part and the algorithm would trivially diverge Additionnally we require −2α ≤ −κ2 +2κ1−κb ≤ 0
to ensure d−2α ≲ γ3

γ2
2B

≲ 1. This condition is in fact not very restrictive on most scalings of interests.
We mostly make it to ensure that no edge case for particularly small schedules or very large batch
creates problems in the scaling laws. In particular it is satisfied for any B ≲ d, γ3 ≍ γ2B

d , d
−1 ≲

γ2 ≲ d−(1−2α)+ which includes DANA-constant with batch B = 1 in Section 3. In particular note
that Parametrization H.1 allows for B ≍ d which the reader can check will allow for outscaling
when 2α < 1 when reported in Theorem 4.1.

H.1 Simplification of the ODE

In theory, the Frobenius method to get asymptotic solutions of an ODE can be applied to Equation (22)

(see [25, Chapters 4, 5] (with some care near zero for the
(

1
1+t

)2
term). However, the computations

are cumbersome. Instead we will work with the simplified ODE

dΦσ2(t)

dt
=



0 0 0
0 −2δ 0
0 0 −δ


1 + t

+

−2γ2Bσ2 0 −2γ3(t)
0 0 2γ1Bσ

2

γ1Bσ
2 −γ3(t) −γ2Bσ2


Φσ2(t). (99)

To simplify the computations, we will additionally do the change of variable Φ̃(t) def
=

 Φ1(t)
γ3

γ1Bσ2Φ2(t)√
γ3√

γ1Bσ
Φ3(t)


on Equation (99) and get the new ODE

dΦ̃(t)

dt
=



0 0 0
0 −2δ 0
0 0 −δ


1 + t

+

−2γ2Bσ2 0 −2
√
γ3γ1Bσ

0 0 2
√
γ1γ3Bσ√

γ1γ3Bσ −
√
γ3γ1Bσ −γ2Bσ2


 Φ̃(t). (100)

The following technical lemma shows the decreasing behavior of the norm of the solutions of ODE
(100).

Lemma H.1. Consider the ODE (100) on Φ
def
= (X,Y, Z) : (−1,∞) → R3. Then we have the

identity for any t > −1
d(X2(t) + Y 2(t) + 2Z2(t))

dt
= −4γ2Bσ2X2(t)− 4

δ

1 + t
Y 2(t)− 4

(
δ

1 + t
+ γ2Bσ

2

)
Z(t)2.

Proof. This comes from the fact that


dX2(t)

dt = −4γ2Bσ2X2(t)− 4
√
γ3γ1BσX(t)Z(t),

dY 2(t)
dt = −4 δ

1+tY
2(t) + 4

√
γ3γ1BσY (t)Z(t),

d2Z2(t)
dt = −4 δ

1+tZ
2(t) + 4

√
γ3γ1BσX(t)Z(t)− 4

√
γ3γ1BσY (t)Z(t)− 4γ2Bσ

2Z2(t).

H.2 Getting asymptotic solutions of the ODE through Frobenius method

In the following, we state two strenghtened results from [25, Chap. 4, Thm 4.1; Chap. 5, Thms 2.1,
4.1] to get uniform estimates in parameter space of asymptotic solutions of (100) for small and large
t.
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Theorem H.1 (Singularity of the 1st kind around 0). Let Z ⊂ Rn for some n ≥ 1 and define for any
ζ ∈ Z the ODE: dΦζ

dt (t) =
(

Rζ

t +Aζ
)
Φζ(t) where Φζ : R∗

+ 7→ M3,3(R) and Rζ , Aζ ∈M3,3(R).

Suppose the existence of δ > 0, C > 0 such that ∀ζ ∈ Z, Rζ = Diag(rζ1 , r
ζ
2 , r

ζ
3) is diagonal with

min1≤i̸=j≤3 d(|rζi − r
ζ
j |,N) ≥ δ and that ∥Rζ∥∞, ∥Aζ∥∞ ≤ C. Then we have the following:

1. ∀ζ ∈ Z, Φ̂ζ(t) =
(
I3 +

∑
k≥1 P

ζ
k t

k
)
tR

ζ

is a fundamental solution where noting
P0 = I3, the matrices Pk are uniquely defined by the recurrence relation ∀k ≥
0, P ζ

k+1

[
Rζ + (k + 1)I3

]
= RζP ζ

k+1 +AζP ζ
k . Especially, ∀k ≥ 0, ∃Ck, ∀ζ ∈ Z, ∥P ζ

k ∥ ≤
Ck.

2. As a consequence, ∀K ≥ 0, ∃T (δ, C,K) > 0,∃D(δ, C,K) > 0 such that ∀ζ ∈ Z, the
fundamental solution Φ̂ζ verifies ∀t ≤ T,∀i ∈ [3], ∥Φ̂ζ

:,i− Φ̂ζ,K
:,i ∥ ≤ DtRe(Rζ

ii+K+1) where

Φ̂ζ,K def
=
(
I3 +

∑
k≤K P ζ

k t
k
)
tR

ζ

.

Theorem H.2 (Singularity of the 2nd kind around infinity). Let Z ⊂ Rn for some n ≥ 1 and define
for any ζ ∈ Z the ODE: dΦζ

dt (t) =
(

Rζ

t +Aζ
)
Φζ(t) where Φζ : R∗

+ 7→ M3,3(R) and Rζ , Aζ ∈

M3,3(R). Suppose the existence of δ > 0, C > 0 such that ∀ζ ∈ Z, Aζ = Diag(µζ
1, µ

ζ
2, µ

ζ
3) is

diagonal, min1≤i̸=j≤3 |µζ
i − µ

ζ
j | ≥ δ and that ∥Rζ∥∞, ∥Aζ∥∞ ≤ C. Then we have the following:

1. ∀ζ ∈ Z, Φ̂ζ(t) =
(
I3 +

∑
k≥1

P ζ
k

tk

)
tR̃

ζ

etA
ζ

is a formal fundamental solution where R̃ζ
ij =

δijR
ζ
ij and noting P0 = I3, the matrices Pk are uniquely defined by the recurrence relation

∀k ≥ 0, P ζ
k+1A

ζ − AζP ζ
k+1 = RζP ζ

k − P
ζ
k R̃

ζ + kP ζ
k . Especially, ∀k ≥ 0, ∃Ck, ∀ζ ∈

Z, ∥P ζ
k ∥ ≤ Ck.

2. ∀K ≥ 0, ∃T (δ, C,K) > 0, ∃D > 0 such that ∀ζ ∈ Z, there exists a fundamental solution

Φζ such that ∀t ≥ T, ∀i ∈ [3], ∥Φζ
:,i − Φ̂ζ,K

:,i ∥ ≤ DtRe(Rζ
ii−K−1)eRe(µζ

i ) where Φ̂ζ,K def
=(

I3 +
∑

k≤K
P ζ

k

tk

)
tR̃

ζ

etA
ζ

.

H.3 Fundamental solutions around zero and infinity

In this section, we show asymptotic solutions Φ̃ of the ODE Equation (100) for small and large
times. We remind γ1 = 1. To get bounded coefficients in the ODE, we will differentiate the two
cases γ2Bσ ≤

√
4γ3B and γ2Bσ ≥

√
4γ3B. The first case corresponds to σ small and hence t

large with respect to the dimension, where there is acceleration. The second case corresponds to σ
large, hence t small and dynamics similar to SGD. Additionally, getting asymptotic estimates using
Frobenius method around∞ requires the eigenvalues of the leading order matrix to be distinct, since
the singularity is of the second kind. Hence we will introduce ϵ ∈ (0, 1) and first restrict ourselves to
the case where γ2Bσ /∈ (1± ϵ)

√
4γ3B.

1st case: γ2Bσ ≤
√
4γ3B. We apply the time change τ(t) def

= σ
√
γ3B(1 + t) and defining Φ̂(τ)

def
=

Φ̃(t) we obtain the new ODE

dΦ̂(τ)

dτ

def
=

(
R

σ
√
γ3B + τ

+A

)
Φ̂(τ) =



0 0 0
0 −2δ 0
0 0 −δ


σ
√
γ3B + τ

+

−2
γ2Bσ√
γ3B

0 −2
0 0 2

1 −1 − γ2Bσ√
γ3B


 Φ̂(τ).

(101)

Denoting again R,A respectively the left and right matrices, we rewrite A = TDT−1 with D def
=

Diag(µ1, µ2, µ3) with µ1 = − γ2Bσ√
γ3B
−
√
−4 + γ2

2Bσ2

γ3
, µ2 = − γ2Bσ√

γ3B
+
√
−4 + γ2

2Bσ2

γ3
, µ3 =
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− γ2Bσ√
γ3B

. In the limit γ2Bσ√
γ3B
→ 0, the eigenvalues are distinct. Hence the matrices T, T−1 can be

chosen analytic in γ2Bσ√
γ3B

. This implies

T =

−i i 1
i −i 1
1 1 0

+O
(
γ2Bσ√
γ3B

)
, T−1 =

 i
4 − i

4
1
2

− 1
4 i

i
4

1
2

1
2

1
2 0

+O
(
γ2Bσ√
γ3B

)
. (102)

Notice that the matrixA has bounded coefficients and distinct eigenvalues bounded away of each other.

Additionally define δ1
def
= −δ

(
1− γ2Bσ√

γ2
2B

2σ2−4Bγ3

)
, δ2

def
= −δ

(
1 + γ2Bσ√

γ2
2B

2σ2−4Bγ3

)
, δ3

def
= −δ.

In the next proposition, we apply Theorem H.2 on a solution Φ̂ of Equation (101) to obtain an
asymptotic solution for large time (uniformly in parameter space).
Proposition H.1 (Asymptotic solutions around infinity). Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈
(0, C). There exists a constantM(ϵ, ϵ̃, C) > 0 such that ∀B, γ2, γ3, σ > 0 if γ2Bσ < (1−ϵ)

√
4γ3B,

there exists a fundamental solution Φ̃∞ of Equation (100) such that for any t > −1 satisfying
σ
√
γ3B(1 + t) > M∥∥∥∥∥T−1Φ̃∞(t)−

(
I3 +

P1

σ
√
γ3B(1 + t)

+
P2(

σ
√
γ3B(1 + t)

)2 )D(σ, γ3, B)

∥∥∥∥∥
≤ ϵ̃(

σ
√
γ3B(1 + t)

)2 (σ√γ3B(1 + t)
)−δ

e−γ2Bσ2t,

where D(σ, γ3, B)
def
= Diag((σ

√
γ3B(1+t))δieσ

√
γ3Bµit, i = 1, 2, 3). Moreover the matrices P1, P2

are uniquely determined from Theorem H.2.

Note that above we could directly bound the matrix norm of the difference since the module of the
decay is the same on all eigen-vectors (Re(δ1) = Re(δ2) = Re(δ3) and Re(µ1) = Re(µ2) = Re(µ3).
Additionally, if δ is not an integer, we can similarly apply Theorem H.1 to obtain an asymptotic
solution for small time (uniformly in parameter space).
Proposition H.2 (Asymptotic solutions around zero). Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈ (0, C).
There exists a constant M(ϵ, ϵ̃, C) such that ∀γ2, γ3, σ, B > 0 if γ2Bσ ≤

√
4γ3B and d(δ,N) > ϵ,

there exists a fundamental solution Φ̃0 of Equation (100) such that for all t > −1, if σ
√
γ3B(1+t) <

M ∣∣∣∣Φ̃0(t)− (I3 + σ
√
γ3B(1 + t)P1 +

(
σ
√
γ3B(1 + t)

)2
P2)

×

1 0 0
0 ((σ

√
γ3B(1 + t))−2δ 0

0 0 ((σ
√
γ3B(1 + t))−δ

∣∣∣∣
≤ ϵ̃

(
σ
√
γ3B(1 + t)

)2
13×3

1 0 0
0 ((σ

√
γ3B(1 + t))−2δ 0

0 0 ((σ
√
γ3B(1 + t))−δ

 .

P1, P2 are uniquely determined from Theorem H.1 as

P1 =

−2
γ2Bσ√
γ3B

0 − 2
1−δ

0 0 2
1+δ

1
δ+1 − 1

1−δ − γ2Bσ√
γ3B



and P2 =


1
2

(
4
x2 − 2γ1

δ+1

)
2

(2−2δ)(1−δ)

4
(1−δ)x

+ 2
x

2−δ
2

(δ+1)(2δ+2) − 1
1−δ − 2

(δ+2)x
− 1

(δ+1)x
− 2

x

δ+2
1

(1−δ)(2−δ)x
1
2

(
− 2

1−δ −
2

δ+1 + 1
x2

)


where x =
√
γ3B

γ2Bσ .
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2nd Case γ2Bσ ≥
√
4γ3B. Then we apply the time change τ(t) def

= γ2Bσ
2t and define Φ̂(τ)

def
=

Φ̃(t). We obtain the new ODE

dΦ̂(τ)

dτ
=



0 0 0
0 −2δ 0
0 0 −δ


γ2Bσ2 + τ

+

 −2 0 −2
√
γ3B

γ2Bσ

0 0 2
√
γ3B

γ2Bσ√
γ3B

γ2Bσ −
√
γ3B

γ2Bσ −1


 Φ̂(τ).

Again the matrix A has bounded coefficients and distinct eigenvalues bounded away from each
other. We rewrite A = TDT−1 with some different matrix T and eigenvalues µ1 = −1 −√
−4 γ3B

γ2
2B

2σ2 + 1, µ2 = −1 +
√
−4 γ3B

γ2
2B

2σ2 + 1, µ3 = −1. Denoting x =
√
γ3B

γ2Bσ , we have

T =

1− x2 +O
(
x3
)

x2 +O
(
x3
)

−2x+O
(
x3
)

x2 +O
(
x3
)

1− x2 +O
(
x3
)
−2x+O

(
x3
)

−x+O
(
x3
)

−x+O
(
x3
)

1

 ,

T−1 =

1 + 3x2 +O
(
x3
)

x2 +O
(
x3
)

2x+O
(
x3
)

x2 +O
(
x3
)

1 + 3x2 +O
(
x3
)

2x+O
(
x3
)

x+O
(
x3
)

x+O
(
x3
)

1 + 4x2 +O
(
x3
)
 .

Remind δ1
def
= −δ

(
1− γ2Bσ√

γ2
2B

2σ2−4γ3B

)
, δ2

def
= −δ

(
1 + γ2Bσ√

γ2
2B

2σ2−4γ3B

)
, δ3

def
= −δ. We can

again apply Theorem H.1 to obtain that (uniformly in parameter space):
Proposition H.3 (Asymptotic solutions around infinity). Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ,∈
(0, C). There exists a constant M(ϵ, ϵ̃, C) such that ∀γ2, γ3, σ, t, B > 0 if σ

√
γ3B(1 + t) > M and

γ2Bσ > (1 + ϵ)
√
4γ3B, there exists a fundamental solution Φ̃∞ of Equation (100) such that∣∣∣∣∣T−1Φ̃∞(t)− (I3 +

P1

γ2Bσ2(1 + t)
+

P2

(γ2Bσ2(1 + t))
2 )D̂

∣∣∣∣∣ ≤ ϵ̃

(γ2Bσ2(1 + t))
2 13×3 × D̃,

where

D̂
def
=

(γ2Bσ
2(1 + t))δ1eγ2Bσ2µ1t 0 0

0 (γ2Bσ
2(1 + t))δ2eγ2Bσ2µ2t 0

0 0
(
γ2Bσ

2(1 + t)
)−δ3

eγ2Bσ2µ3t


D̃

def
=

(γ2Bσ
2(1 + t))δ1eγ2Bσ2µ3t 0 0

0 (γ2Bσ
2(1 + t))δ2eγ2Bσ2µ2t 0

0 0
(
γ2Bσ

2(1 + t)
)−δ3

eγ2Bσ2µ1t

.
Moreover the matrices P1, P2 are uniquely determined from Theorem H.2 as

P1 =

−2 0 2x
δ−1

0 0 2x
δ+1

x
δ+1

x
δ−1 −1

 , P2 =


2δ−x2+2

δ+1
x2

(δ−1)2 − 2(δ−3)x
δ2−3δ+2

x2

(δ+1)2
x2

δ−1 − 2x
δ+2

− (2δ+3)x
(δ+1)(δ+2)

x
δ2−3δ+2

δ2+4x2−1
2(δ2−1)

 .

Additionally, if 2δ is not an integer, we can again apply Theorem H.2 to obtain that (uniformly in
parameter space):
Proposition H.4 (Asymptotic solutions around zero). Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈ (0, C).
There exists a constant M(ϵ, ϵ̃, C) such that ∀γ2, γ3, σ, t, B > 0 if σ

√
γ3B(1 + t) < M , γ2Bσ ≥√

4γ3B, and d(δ,N) > ϵ, there exists a fundamental solution Φ̃0 of Equation (100) such that∣∣∣Φ̃0(t)− (I3 + γ2Bσ
2(1 + t)P1 +

(
γ2Bσ

2(1 + t)
)2
P2)D̂,

∣∣∣ ≤ ϵ̃ (γ2Bσ2(1 + t)
)2

13×3D̂
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where

D̂
def
=

1 0 0
0 ((γ2Bσ

2(1 + t))−2δ 0
0 0 ((γ2Bσ

2(1 + t))−δ

 .

Moreover the matrices P1, P2 are uniquely determined from Theorem H.1.

H.4 Behavior of Φ11(t, s) and Φ12(t, s)

The goal of this section is to derive bouds on Φ11(t, s) and Φ12(t, s) where Φ : {(t, s) ∈
(−1,∞)2, t ≥ s} →M3×3(R) denotes the solution of the IVP (99) with initialization Φ(s, s) = I3.
This implies the initialization condition on Equation (100) that is Φ̃(s, s) = Diag(1, γ3

Bσ2 ,
√
γ3√
Bσ

). We
consider several cases.

1st Case: γ2Bσ < (1− ϵ)
√
4γ3B. Depending on the time and σ, we get different estimates for the

values of Φ11(t, s) and Φ12(t, s).

For σ
√
γ3B(1 + t) ≤ 1, we have the following estimate:

Proposition H.5. Let ϵ, ϵ̃ ∈ (0, 1), C > 0. Let δ ∈ (1, C) with d(δ,N) > ϵ and let γ2, γ3, B, σ > 0,
let 0 ≤ s ≤ t. Then, there exists a constant M(ϵ, ϵ̃, C) such that if σ

√
γ3B(1 + t) < M , and

γ2Bσ ≤ M
√
4γ3B, the function Φ11(t, s) = 1 ± ϵ̃ and, if additionally s

t < M , the function
Φ12(t, s) ≍ γ3

Bσ2 (σ
√
γ3B(1 + s))2 (1± ϵ̃). If M ≤ σ

√
γ3B(1 + t) ≤ 1 or M

√
4γ3B ≤ γ2Bσ ≤√

4γ3B or M ≤ s
t ≤ 1, then Φ11(t, s) = O(1) and Φ12(t, s) = O( γ3

Bσ2 (σ
√
γ3B(1 + s))2.

Proof. We apply Proposition H.2 to write that a solution Φ of Equation (99) is:

Φ(t, s) = Φ̃0(t)Φ̃0(s)−1 Diag(1,
γ3
Bσ2

,

√
γ3√
Bσ

)

= (I3 + σ
√
γ3B(1 + t)P1 + (σ

√
γ3B(1 + t))2(P2 ± ϵ))

×Diag(1, (σ
√
γ3B(1 + t))−2δ, (σ

√
γ3B(1 + t))−δ)

×Diag

(
1, (σ

√
γ3B(1 + s))2δ,

(σ
√
γ3B(1 + s))δ)(I3 + σ

√
γ3B(1 + s)P1 + (σ

√
γ3B(1 + s))2(P2 ± ϵ)

)−1

×Diag
(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)
=

1± ϵ
(

1+t
1+s

)−2δ

(σ
√
γ3B(1 + t))2((P2)12 ± ϵ)

(
1+t
1+s

)−δ

(σ
√
γ3B(1 + t))1((P1)13 ± ϵ)

∗ ∗ ∗
∗ ∗ ∗


×
 1± ϵ γ3

Bσ2 (σ
√
γ3B(1 + s))2

(
((P 2

1 − P2)12 ± ϵ
)
∗

(σ
√
γ3B(1 + s))2

(
((P 2

1 − P2)21 ± ϵ
)

γ3

Bσ2 (1± ϵ) ∗
−(σ
√
γ3B(1 + s))1 ((P1)31 ± ϵ) − γ3

Bσ2 (σ
√
γ3B(1 + s))1 (((P1)32 ± ϵ) ∗

.

Notice that P 2
1 − P2

γ2Bσ√
γ3B

→0

→


1

δ−1
1

(δ−1)2 0
1

(δ+1)2 − 1
δ+1 0

0 0 2
δ2−1

. Additionally, as δ > 1, we have that(
1+s
1+t

)δ−1

≪ 1 for M small. Thus there exists some M small enough such that if σ
√
γ3B(1 + t) <

M and γ2Bσ < M
√
4γ3B, then Φ11(t, s) = 1 ± ϵ. If, additionally, s

t ≤ M , then Φ12(t, s) ≍
γ3

Bσ2 (σ
√
γ3B(1 + s))2 (1± ϵ).

If one of the conditions is fails, we still have that the coefficients of the ODE are bounded for
σ
√
γ3B(1 + t) ≤ 1, γ2Bσ ≤

√
4γ3B, and s

t ≤ 1. Hence we get under this condition that

Φ11(t, s) = O+(1) and Φ12(t, s) = O+

(
γ3

Bσ2 (σ
√
γ3B(1 + s))2

)
.

For the case σ
√
γ3B(1 + t) ≥ 1 and σ

√
γ3B(1 + s) ≤ 1, we have the following estimate:
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Proposition H.6. Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈ (1, C). Let γ2, γ3, B, σ > 0 and suppose
0 ≤ s ≤ t. Moreover suppose that d(δ,N) > ϵ and γ2Bσ < (1 − ϵ)

√
4γ3B. Then there exists

a constant M(ϵ, ϵ̃, C) such that if σ
√
γ3B(1 + t) > M and σ

√
γ3B(1 + t) < 1

M , there exists
Ci, C̃i ∈ R for i ∈ [3] with C1, C̃1 > 0,

Φ11(t, s) = e−γ2Bσ2t
(
σ
√
γ3B(1 + t)

)−δ

×
[
C1 + C2 cos

(
log(σ

√
γ3B(1 + t))

δγ2Bσ√
4γ3B − γ22B2σ2

+ γ2Bσ
√
4γ3B − γ22B2σ2t

)
+ C3 sin

(
log(σ

√
γ3B(1 + t))

δγ2Bσ√
4γ3B − γ22B2σ2

+ γ2Bσ
√
4γ3B − γ22B2σ2t

)
+O(ϵ) +O( γ2Bσ√

γ3B

)]
and

Φ12(t, s) =
γ3
Bσ2

(σ
√
γ3B(1 + s))2e−γ2Bσ2t

(
σ
√
γ3B(1 + t)

)−δ

×
[
C̃1 + C̃2 cos

(
log(σ

√
γ3B(1 + t))

δγ2Bσ√
4γ3B − γ22B2σ2

+ γ2Bσ
√
4γ3B − γ22B2σ2t

)
+ C̃3 sin

(
log(σ

√
γ3B(1 + t))

δγ2Bσ√
4γ3B − γ22B2σ2

+ γ2Bσ
√
4γ3B − γ22B2σ2t

)
+O(ϵ) +O( γ2Bσ√

γ3B
)
]
.

If σ
√
γ3B(1 + s) ≥ 1

M or σ
√
γ3B(1 + t) ≤M holds, the following is true

Φ(t, s)11 = O+

(
(σ
√
γ3B(1 + t))−δe−γ2Bσ2t

)
and

Φ(t, s)12 = O+

(
(σ
√
γ3B(1 + t))−δe−γ2Bσ2t γ3

Bσ2
(σ
√
γ3B(1 + s))2

)
.

Proof. We apply Proposition H.2 and Proposition H.1 to decompose

Φ(t, s) = Φ̃∞(t)
[
Φ̃∞(1)−1Φ̃0(1)

]
Φ̃0(s)−1 Diag(1,

γ3
Bσ2

,

√
γ3√
Bσ

)

=

(−i i 1
i −i 1
1 1 0

+O
(
γ2Bσ√
γ3B

)
+O(ϵ̃)

)
(σ
√
γ3B(1 + t))−δe−γ2Bσ2t

×Diag
(
e−iσ
√

4γ3B−γ2
2B

2σ2t(σ
√
γ3B(1 + t))

iδ
γ2Bσ√

4γ3B−γ2
2B2σ2

,

eiσ
√

4γ3B−γ2
2B

2σ2t(σ
√
γ3B(1 + t))

−iδ
γ2Bσ√

4γ3B−γ2
2B2σ2

, 1
)

×
(
S + o γ2Bσ√

γ3B
+ϵ̃
(1)

)
×Diag(1, (σ

√
γ3B(1 + s))2δ, (σ

√
γ3B(1 + s))δ)

× (I3 + σ
√
γ3B(1 + s)P1 + σ

√
γ3B(1 + s)(P2 ± ϵ̃))−1 Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)
.

Here, we used that

Φ̂∞(1)−1Φ̂0(1) = S + o γ2Bσ√
γ3B

+ϵ̃
(1)
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where S is a constant matrix. To see that, we need to compare the ODE Equation (101) to the limit
ODE with γ2Bσ√

γ3B
→ 0, σ

√
γ3B → 0:

dΦ̃(τ)

dτ
=



0 0 0
0 −2δ 0
0 0 −δ


τ

+

0 0 −2
0 0 2
1 −1 0


Φ(τ).

Around zero a fundamental solution j(τ) is asymptotic to Diag(1, τ−2δ, τ−δ) while around infinity
a fundamental solution j(τ) is asymptotic to−i i 1

i −i 1
1 1 0

Diag(e−γ2στ , e−γ2στ+
√
4γ3τ , e−γ2στ−

√
4γ3τ ).

The matrix S is then defined by S def
= j(1)−1j(1). We, in particular, know that det(S) ̸= 0.

Lemma H.2. ∀t > 0, j(t) ∈ R3×3. Additionally, we have the bounds on the coefficientsRe(S11) > 0
and Re(S12) > 0 and we can in fact write for some Ci

1, C
i
2, C

i
3 with Ci

1 > 0, i ∈ [2]:

ji1(τ) = τ−δ
(
Ci

1 + Ci
2 cos

(√
4τ
)
+ Ci

3 sin
(√

4τ
))

+O(τ−δ−1).

Proof. Denote ji(τ) = j:i(τ), j
i def
= j:i(τ) the columns of the fundamental matrices around 0 and∞,

j, j. By definition of S, we have for all τ > 0

j11(τ) = j11(τ)S11 + j21(τ)S21 + j31(τ)S31.

By using the asymptotic of j, and the fact that j11 must be positive by Corollary C.1 (to better justify
because assumption not completely valid, only at the limit), we get that Re(S11) > 0. The same
argument shows that Re(S12) > 0. The last inequality comes by expressing the solution in a cos, sin
basis.

For an estimate of Φ12 we need the 12 coefficient of

U
def
=
(
I3 + σ

√
γ3B(1 + s)P1 + (σ

√
γ3B(1 + s))2(P2 ± ϵ̃)

)−1

.

We already did this in the previous proposition. We write

U−1 = I3 − σ
√
γ3B(1 + s)P1 + (σ

√
γ3B(1 + s))2(P 2

1 − P2) +O((σ
√
γ3B(1 + s))3)

and hence (
U−1

)
12

= −(σ
√
γ3B(1 + s))2

(
1

(δ − 1)2
± ϵ̃
)
.

Finally, if δ > 1 we obtain the result.

Next, for σ
√
γ3B(1 + t) > 1 and σ

√
γ3B(1 + s) > 1, we have the following.

Proposition H.7. Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈ (1, C). Let γ2, γ3, B, σ > 0 and suppose
0 ≤ s ≤ t. Moreover suppose that γ2Bσ < (1− ϵ)

√
4γ3B. Then there exists a constant M(ϵ, ϵ̃, C)

such that if σ
√
γ3B(1 + s) > M ,

Φ11(t, s) =
1
2e

−γ2Bσ2(t−s)
(

1+t
1+s

)−δ
(
1 + cos(σ

√
4γ3B(t− s) + log

(
1+t
1+s

)
δγ2Bσ√

4γ3B−γ2
2B

2σ2
) +

(
O
(

γ2Bσ√
γ3B

)
+O(ϵ)

))
and

Φ12(t, s) =
γ3

2Bσ2 e
−γ2Bσ2(t−s)

(
1+t
1+s

)−δ
(
1− cos(σ

√
4γ3B(t− s) + log

(
1+t
1+s

)
δγ2Bσ√

4γ3B−γ2
2B

2σ2
) +

(
O
(

γ2Bσ√
γ3B

)
+O(ϵ)

))
.

If, on the other hand, σ
√
γ3B(1 + s) ∈ [1,M ], we have

Φ11(t, s) = O+

(
e−γ2Bσ2t(σ

√
γ3B(1 + t))−δ

)
and Φ12(t, s) =

γ3

Bσ2O+

(
e−γ2Bσ2t(σ

√
γ3B(1 + t))−δ

)
.
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Proof. We use Proposition H.1 to write

Φ(t, s) = Φ̃∞(t)Φ̃∞(s)−1 Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)
= (T ± ϵ)

(
1 + t

1 + s

)−δ

e−γ2Bσ2t

×Diag

(
e−iσ
√

4γ3B−γ2
2B

2σ2(t−s)
(

1+t
1+s

)iδ γ2Bσ√
4γ3B−γ2

2B2σ2
, eiσ
√

4γ3B−γ2
2B

2σ2(t−s)
(

1+t
1+s

)−iδ
γ2Bσ√

4γ3B−γ2
2B2σ2

, 1

)
× (T−1 ± ϵ)×Diag

(
1, γ3

Bσ2 ,
√
γ3√
Bσ

)
.

The same estimate (102) on T we used previously, implies the result.

2nd Case: γ2Bσ > (1 + ϵ)
√
4γ3B. As in Case 1, we get different estimates for the values of

Φ11(t, s) and Φ12(t, s).

For γ2Bσ2(1 + t) < 1, we have the following.
Proposition H.8. Let ϵ, ϵ̃ ∈ (0, 1), C > 0 such that δ ∈ (1, C). Let γ2, γ3, B, σ > 0, let 0 ≤ s ≤ t.
Suppose that d(δ,N) > ϵ, γ2Bσ >

√
4γ3B. Then, there exists a constant M(ϵ, ϵ̃, C) such that

if γ2Bσ2(1 + t) < M , Φ11(t, s) = 1 ± ϵ and if additionally s
t < M , Φ12(t, s) = O+

(
γ22
)
.

If on the other hand M ≤ γ2Bσ
2(1 + t) ≤ 1 or M ≤ s

t ≤ 1, then Φ11(t, s) = O+(1) and
Φ12(t, s) = O+

(
γ22
)
.

Proof. We use Proposition H.4 to write

Φ(t, s) = Φ̃0(t)Φ̃0(s)−1 Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)

= (I3 + (γ2Bσ
2(1 + t))P1 + (γ2Bσ

2(1 + t))2(P2 ± ϵ))


1 0 0

0
(

1+t
1+s

)−2δ

0

0 0
(

1+t
1+s

)−δ


× (I3 + (γ2Bσ

2(1 + s))P1 + (γ2Bσ
2(1 + s))2(P2 ± ϵ))−1 Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)

=

1± ϵ (γ2Bσ
2(1 + t))2((P2)12 ± ϵ) (γ2Bσ

2(1 + t))((P1)13 ± ϵ)
∗ ∗ ∗
∗ ∗ ∗



1 0 0

0
(

1+t
1+s

)−2δ

0

0 0
(

1+t
1+s

)−δ


×
 1± ϵ (γ2Bσ

2(1 + s))2((P 2
1 − P2)12 ± ϵ) ∗

(γ2Bσ
2(1 + s))2((P 2

1 − P2)21 ± ϵ) 1± ϵ ∗
(γ2Bσ

2(1 + s))(−(P1)31 ± ϵ̃) (γ2Bσ
2(1 + s))(−(P1)32 ± ϵ̃) ∗

Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)
.

Note that (P2)12, (P1)
2
12 = O

(√
γ3B

γ2Bσ

)2
and (P1)13, (P1)32 = O

(√
γ3B

γ2Bσ

)
. Hence we obtain

Φ11(t, s) = 1± ϵ and Φ12(t, s) = O+

(
γ3

Bσ2 (γ2Bσ
2(1 + s))2(

(√
γ3B

γ2Bσ

)2
± ϵ)

)
= O+(γ

2
2).

Additionally if γ2Bσ2(1+ t) ∈ [M, 1] we still have the bounds: Φ11(t, s) = O+(1) and Φ12(t, s) =
O+

(
γ22
)
.

For γ2Bσ2(1 + t) > 1 and γ2Bσ2(1 + s) < 1, we have the following.
Proposition H.9. Let ϵ ∈ (0, 1), C > 0 such that δ ∈ (1, C). Let γ2, γ3, B, σ > 0 and suppose
0 ≤ s ≤ t. Moreover, suppose that γ2Bσ > (1 + ϵ)

√
4γ3B, d(δ,N) > ϵ), γ2Bσ2(1 + s) ≤ 1, and

γ2Bσ
2(1 + t) ≥ 1, then

Φ11(t, s) = O+

(
e−γ2Bσ2(1+t) +

(
γ2Bσ

2(1 + t)
)−δ
)
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and

Φ12(t, s) = O+

(
γ3

Bσ2

(
γ2Bσ

2(1 + s)
)2 (

e−γ2Bσ2(1+t) +
(
γ2Bσ

2(1 + t)
)−δ
))

.

Proof. We use Proposition H.3 and Proposition H.4 to decompose

Φ(t, s) = Φ̃∞(t)
[
Φ̃∞(1)−1Φ̃0(1)

]−1

Φ̃0(s)−1 Diag(1,
γ3
Bσ2

,

√
γ3√
Bσ

)

= T (I3 + (γ2Bσ
2(1 + t))−1P1 + (γ2Bσ

2(1 + t))−2(P2 ± ϵ))
·Diag(eµ1t(γ2Bσ

2(1 + t))δ1 , eµ2t(γ2Bσ
2(1 + t))δ2 , eµ3t(γ2Bσ

2(1 + t))δ3)

·
(
D + o√

γ3B

γ2Bσ

(1))

)
·Diag(1, (γ2Bσ

2(1 + s))2δ, (γ2Bσ
2(1 + s))δ)

· (I3 + (γ2Bσ
2(1 + s))P1 + (γ2Bσ

2(1 + s))2(P2 ± ϵ))−1

·Diag(1,
γ3
Bσ2

,

√
γ3√
Bσ

).

Here we have written
[
Φ̂∞(1)−1Φ̂0(1)

]−1

= D+o√
γ3B

γ2Bσ

(1)) where D = Diag(d1, d2, d3) for di >

0, i ∈ [3]. To see that compare with the limit of ODE Equation (100) as
√
γ3B

γ2Bσ → 0, γ2Bσ
2 → 0:

dΦ̂(τ)

dτ
=



0 0 0
0 −2δ 0
0 0 −δ


τ

+

−2 0 0
0 0 0
0 0 −1


 Φ̂(τ).

We know that around ∞ there is a fundamental solution j asymptotic to Diag(e−2τ , 1, e−τ ) and
around 0 there is a fundamental solution j asymptotic to Diag(1, τ−2δ, τ−δ). It is clear that in
fact both solutions are diagonal, positive and hence we can define the positive diagonal matrix
D = j(1)−1j(1). This implies directly the bound on Φ11 as

Φ11(t, s) = γ22BO
(
eµ1t(1 + t)δ1 + eµ2t(1 + t)δ2 + eµ3t(1 + t)δ3

)
= γ22O+(e

−γ2Bσ2t + (γ2Bσ
2t)−δ)

where we used that µ1 ≤ µ2 = −γ2Bσ2 ≤ µ3 ≤ 0 and δ2 ≤ δ3 = −δ ≤ 0 with δ1 bounded
above by some constant of ϵ, δ. For the bound on Φ12, notice additionally that since δ > 1, the term(
γ2Bσ

2(1 + s)
)2 ≥ (γ2Bσ2(1 + s)

)δ+1 ≥
(
γ2Bσ

2(1 + s)
)2δ

.

For γ2Bσ2(1 + t) > 1 and γ2Bσ2(1 + s) > 1, we have the following

Proposition H.10. Let ϵ ∈ (0, 1), C > 0 such that δ ∈ (1, C). Let γ2, γ3, B, σ > 0, let 0 ≤ s ≤ t.
Suppose that γ2Bσ2(1 + s) > 1, γ2Bσ > (1 + ϵ)

√
4γ3B, then

Φ11(t, s) = (1 +O((γ2Bσ2(1 + s))−1 + x)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x4 + x2(γ2Bσ
2(1 + s))−2 + (γ2Bσ

2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1 + (γ2Bσ

2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3

,
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and

Φ12(t, s) =
γ3
Bσ2

(
O(x2 + (γ2Bσ

2(1 + s))−2)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x2 + (γ2Bσ
2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1 + (γ2Bσ

2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3 )
,

where x =
√
γ3B

γ2Bσ .

Proof. We use Proposition H.3 to decompose

Φ(t, s) = Φ̃∞(t)Φ̃∞(s)−1 Diag

(
1,

γ3
Bσ2

,

√
γ3√
Bσ

)
= T (I3 + (γ2Bσ

2(1 + t))−1P1 + (γ2Bσ
2(1 + t))−2(P2 ± ϵ))

·


eµ1(t−s)

(
1+t
1+s

)δ1
0 0

0 eµ2(t−s)
(

1+t
1+s

)δ2
0

0 0 eµ3(t−s)
(

1+t
1+s

)δ3


· (I3 + (γ2Bσ
2(1 + s))−1P1 + (γ2Bσ

2(1 + s))−2(P2 ± ϵ))−1T−1 Diag(1,
γ3
Bσ2

,

√
γ3√
Bσ

)

=

1 +O(x+ 1
γ2Bσ2t ) O(x2 +

(
1

γ2Bσ2t

)2
) O(x+

(
1

γ2Bσ2t

)2
)

∗ ∗ ∗
∗ ∗ ∗



·


eµ1(t−s)

(
1+t
1+s

)δ1
0 0

0 eµ2(t−s)
(

1+t
1+s

)δ2
0

0 0 eµ3(t−s)
(

1+t
1+s

)δ3


·


1 +O(x+ 1

γ2Bσ2s ) O(x2 +
(

1
γ2Bσ2s

)2
) ∗

O(x2 +
(

1
γ2Bσ2s

)2
) 1 +O(x+ 1

γ2Bσ2s ) ∗

O(x+
(

1
γ2Bσ2s )

)2
O(x+

(
1

γ2Bσ2s

)2
) ∗

Diag(1,
γ3
Bσ2

,

√
γ3√
Bσ

)

where we used the estimate (102) for T and (H.4) for P1, P2. We additionally remind µ1 =

−γ2Bσ2 − σ
√
γ22B

2σ2 − 4γ3B,µ2 = −γ2Bσ2 + σ
√
γ22B

2σ2 − 4γ3B ≍ −2γ3

γ2
, µ3 = −γ2Bσ2

and δ1 = −δ
(
1− γ2Bσ√

γ2
2B

2σ2−4γ3B

)
, δ2 = −δ

(
1 + γ2Bσ√

γ2
2B

2σ2−4γ3B

)
, δ3 = −δ. Especially we

have for γ2Bσ > (1+ϵ)
√
4γ3B that µ1 ≍ −2γ2Bσ2, µ2 ≍ − 2γ3

γ2
, and δ1 ≍ −δ 2γ3B

γ2
2B

2σ2 , δ2 ≍ −2δ.

Since µ1, µ2, µ3 ≲ − 1
d , this directly implies that Φ11,Φ12(t, s) = O+

(
e−

t−s
d

)
. Ultimately, this

leads to

Φ11(t, s) = (1 +O((γ2Bσ2(1 + s))−1 + x)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x4 + x2(γ2Bσ
2(1 + s))−2 + (γ2Bσ

2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1 + (γ2Bσ

2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3

,
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and

Φ12(t, s) =
γ3
Bσ2

(
O(x2 + (γ2Bσ

2(1 + s))−2)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x2 + (γ2Bσ
2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1

+ (γ2Bσ
2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3 )
.

(104)

H.5 Summary

We informally summarize all the bounds on Φ11(t, s),Φ12(t, s) that we previously developed. In red,
we outline the important contributions for the first and second terms of the kernel.

• Φσ2(t, s)11, s ≤ t ≤ γ2

γ3
.

0

√
γ3B
γ2B

1√
γ2Bt

1√
γ2Bs 1

1 1 e−γ2Bσ2t e−γ2Bσ2(t−s)

σ

• Φσ2(t, s)11, s ≤ γ2

γ3
≤ t .

0
1√
γ3Bt

√
γ3B
γ2B

1√
γ2Bs 1

1 (σ
√
γ3Bt)

−δ
e−γ2Bσ2t e−γ2Bσ2(t−s)

σ

• Φσ2(t, s)11,
γ2

γ3
≤ s ≤ t .

0
1√
γ3Bt

1√
γ3Bs

√
γ3B
γ2B 1

1 (σ
√
γ3Bt)−δ

e−γ2Bσ2(t−s)
(

t
s

)−δ

e−γ2Bσ2(t−s)

σ

• Φσ2(t, s)12, s ≤ t ≤ γ2

γ3
.

0

√
γ3B
γ2B

1√
γ2Bt

1√
γ2Bs 1

γ3

Bσ2 (σ
√
γ3Bs)

2 γ22
γ3

Bσ2

(
γ2Bσ

2(1 + s)
)2
e−γ2Bσ2(1+t) γ3

Bσ2x
2e−γ2Bσ2(t−s)

σ

• Φσ2(t, s)12, s ≤ γ2

γ3
≤ t .

0
1√
γ3Bt

√
γ3B
γ2B

1√
γ2Bs 1

γ3

Bσ2 (σ
√
γ3Bs)

2 γ3

Bσ2 (σ
√
γ3Bs)

2e−γ2Bσ2tγ3

Bσ2

(
γ2Bσ

2(1 + s)
)2
e−γ2Bσ2(1+t) γ3

Bσ2x
2e−γ2Bσ2(t−s)

σ

• Φσ2(t, s)12,
γ2

γ3
≤ s ≤ t .

0
1√
γ3Bt

1√
γ3Bs

√
γ3B
γ2B 1

γ3
Bσ2 (σ

√
γ3Bs)2 γ3

Bσ2 (σ
√

γ3Bs)2e−γ2Bσ2t e−γ2Bσ2(t−s)
(

t
s

)−δ γ3

Bσ2x
2e−γ2Bσ2(t−s)

σ
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H.6 Bounds at the singular point γ2Bσ ∈ [(1− ϵ)
√
4γ3B, (1 + ϵ)

√
4γ3B]

Denote ω def
= γ2Bσ√

4γ3B
− 1. For ω bounded away from zero, we derived in propositions H.1 and H.3

asymptotics solutions for large time of Equation (99). We still need to do the same for ω ≈ 0. To
that end, we will show that the solutions constructed near zero in Propositions H.2 and H.4 have
exponential decay for large time. We will follow similar steps as in [78, Lemma D.3].

The goal is to bound Φ11(t, s),Φ12(t, s) where Φ(t, s) satisfies the IVP Equation (99) with Φ(s, s) =
I3. Denote

S =

−1 1
2 − 1

4
−1 − 1

2 − 1
4

1 0 0

 , (105)

then we have the identities

S−1

−2γ2Bσ 0 −2
√
γ3B

0 0 2
√
γ3B√

γ3B −
√
γ3B −γ2Bσ

+ γ2BσI3

S =

0
√
γ3B 0

0 0
√
γ3B

0 0 0


+ ω

 0 0 0
4
√
γ3B 0

√
γ3B

0 4
√
γ3B 0

 ,

and

S−1

0 0 0
0 −2δ 0
0 0 −δ

S =

 −δ 0 0
−2δ −δ − δ

2
0 −2δ −δ

 .

Then (99) can be rewritten as

dΦ̂(t)

dt
=



 −δ 0 0
−2δ −δ − δ

2
0 −2δ −δ


σ
√
γ3B + t

+

0 1 0
0 0 1
0 0 0

+ ω

0 0 0
4 0 1
0 4 0


 Φ̂(t) (106)

where: Φ̂(t) def
= S

 Φ1(
t

σ
√
γ3B

)
γ3

Bσ2Φ2(
t

σ
√
γ3B

)
√
γ3√
Bσ

Φ3(
t

σ
√
γ3B

)

 eγ2Bσ2t. Now define ξ2(t) def
= max{ω, 1

σ
√
γ3B+t

}

We then have:

 Φ̂′
1(t)

ξ−1Φ̂′
2(t)

ξ−2Φ̂′
3(t)

 =
(
 −δ 0 0
−2ξ−1δ −δ − δ

2ξ
0 −2δξ−1 −δ


σ
√
γ3B + t

+

0 ξ 0
0 0 ξ
0 0 0


+ ω

 0 0 0
4ξ−1 0 ξ
0 4ξ−1 0

) Φ̂1(t)

ξ−1Φ̂2(t)

ξ−2Φ̂3(t)

 .
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DenoteN(t) =

∥∥∥∥∥∥
 Φ̂1(t)

ξ−1Φ̂2(t)

ξ−2Φ̂3(t)

∥∥∥∥∥∥
∞

andA(t) the operator norm for the infinity norm of the right-hand

matrix

A(t)
def
=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

 −δ 0 0
−2ξ−1δ −δ − δ

2ξ
0 −2δξ−1 −δ


σ
√
γ3B + t

+

0 ξ 0
0 0 ξ
0 0 0

+ ω

 0 0 0
4ξ−1 0 ξ
0 4ξ−1 0


∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

.

Then we have the identity:

N ′(t) ≤ A(t)N(t) + 1ξ2= 1

σ
√

γ3B+t

N(t)

σ
√
γ3B + t

.

From the above, if |ω| < 1, we know the existence of a continuous constant M(δ) > 0 such that
∀t ≥ 0 with σ

√
γ3B + t ≥ 1, A(t) ≤Mξ(t).

By Gronwall’s lemma, it implies that for all t ≥ s with σ
√
γ3B + s ≥ 1,

N(t) ≤ N(s)e(M+1)
∫ t
s
ξ(s) ds. (107)

Proposition H.11. Denote ω
def
= γ2Bσ√

4γ3B
− 1. There exists some c < 1 and some continuous function

M(δ) such that if |ω| < c and t ≥ s ≥ 0,

Φ(t, s)11 ≤Me−
γ2Bσ2

2 (t−s), Φ(t, s)12 ≤
γ3
Bσ2

Me−
γ2Bσ2

2 (t−s).

Proof. The proof is similar to the one of [78, Lemma D.3].

If σ
√
γ3B(1+ t) ≥ σ

√
γ3B(1+ s) ≥ 1 we can apply Equation (107) to each column of Φ(t, s). For

the first column, we know thatN(s) ≲ ξ(s)−2 and
∫ t

s
ξ(s) ds ≲ ξ(t)(t−s) since ξ(t) follows a power

law. This brings that ∀t ≥ s, |Φ̂3(t)| ≲ ξ(t)2/ξ(s)2e(t−s)ξ(t) ≤ e(t−s)ξ(t). We now repeat the same

procedure on the vector
(

Φ̂1(t)

ξ−1Φ̂2(t)

)
to obtain similarly |Φ̂2(t)| ≲ ξ(t)/ξ(s)e(t−s)ξ(t) ≤ e(t−s)ξ(t)

and finally on the single vector
(
Φ̂1(t)

)
to obtain |Φ̂2(t)| ≲ e(t−s)ξ(t). Notice that (t − s)ξ(t) ≲

max{
√
|ω|,

√
σ
√
γ3Bt}. This all bring Φ(t, s)11 ≤ Me−γ2Bσ2(1−M

√
|ω|)(t−s), Φ(t, s)12 ≤

γ3

Bσ2Me−γ2Bσ2(1−M
√

|ω|)(t−s). For the second column notice the additional factor γ3

Bσ2 . Finally, to
extend to σ

√
γ3B(1 + s) ≤ 1, notice that we still have ∥Φ(1, s)∥ ≲ 1 and we can apply the same

argument for σ
√
γ3B(1 + t) ≥ 1. For σ

√
γ3B(1 + t) ≤ 1 this is also clear since ∥Φ(t, s)∥ ≲ 1

H.7 Estimation of the forcing function

In the following section, we will estimate the three forcing terms F0,Fpp,Fac.

H.7.1 Asymptotics of F0(t)

Remind the definition

F0(t)
def
= µF0({0})(Φσ=0(t, 0))11.

Then we have the result from [80]:
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σ ≤
√
γ3B
γ2B

σ ≥
√
γ3B
γ2B

σ < 1√
γ3Bt

1√
γ3Bt

< σ

( =⇒ t > γ2

γ3
)

σ < 1√
γ2Bt

( =⇒ t < γ2

γ3
)

1√
γ2Bt

< σ

Table 9: Cuts of σ domains for forcing function. This is a simplification of Table 11 using s = 0.

Proposition H.12. Suppose v
d > 1, α > 0 and 2α + 2β > 1. then the constant function F0(t)

satisfies:

F0(t) ≍ d−2α+max{0,1−2β}.

Proof. From [80] or proposition D.3, we can rewrite

F0(t) =

v∑
j=1

j−2α−2β

1 + j−2αd2ακ(v/d)

(
1 +O(d−1)

)
where κ(v/d) solves

∫ v/d

0

κ

κ+ u2α
du = 1.

For large d, the result was proven in [80, Lemma H.3]. For small d just notice that F0(t) > 0.

H.7.2 Asymptotics of Fac and Fpp

We remind the definitions of the pure-point term and absolutely continuous term of the forcing
function

Fpp(t)
def
=

∫ 1

0

(σ2)
2β−1
2α Φσ

11(t, 0) d(σ
2) = 2

∫ 1

0

σ1+ 2β−1
α Φσ

11(t, 0) dσ,

Fac(t)
def
=

∫ 1

0

(σ2)−
1
2αΦσ

11(t, 0) d(σ
2) = 2cβ

∫ 1

d−α

σ1− 1
αΦσ

11(t, 0) dσ.

To compute the forcing function, we only need Φσ
11(t, 0) above and to cut the integral in 4 different

parts, of which only three can exist together. Informally, the integral on σ is decomposed using
Table 9.

Two regions correspond to the first case γ2Bσ ≤
√
4γ3B and the two other regions correspond to

the second case γ2Bσ ≥
√
4γ3B. The two sub-regions in each group correspond respectively to the

sub-conditions σ
√
γ3B(1+ t) ≷ 1, γ2Bσ2t ≷ 1. Note that, as noted in Table 9, for t ≥ γ2

γ3
, the third

regions disappears (and the lower-bound of the fourth integral becomes
√
4γ3B
γ2B

). On the other hand,

for t ≤ γ2

γ3
, the second integral disappears (and upper-bound of first integral becomes

√
4γ3B
γ2B

).

The case t ≥ γ2

γ3

Proposition H.13. Let α > 0, 2α+ 2β > 1 and consider the general Parametrization H.1. Suppose
that t ≥ γ2

γ3
. Then, if δ > max{2 + 2β−1

α , 2− 1
α , 1}, 2δ /∈ N, for any M > 0, there exists a constant

C > 0 such that {
Fpp(t) ≍

(√
γ3B(1 + t)

)−2− 2β−1
α if

√
γ3B(1 + t) ≥ C

Fpp(t) ≍ 1 if
√
γ3B(1 + t) ≤ C

If additionally α > 1
2 , β > 1

2 ,{
Fac(t) ≍ d−1

(√
γ3B(1 + t)

)−2+ 1
α if Mdα ≥

√
γ3B(1 + t) ≥ C

Fac(t) ≍ d−1 if
√
γ3B(1 + t) ≤ C

Proof. We first consider the case
√
γ3B
γ2B

≲ 1. For t ≥ γ2

γ3
, the third region disappears. Let ϵ = 1

2

and ϵ1 small enough, then we know the existence of some cϵ > 0 small enough such that if
cϵ√

γ3B(1+t)
≤ (1− ϵ1)

√
4γ3B
γ2B

≤ (1 + ϵ1)
√
4γ3B
γ2B

≤ 1 we can decompose
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Fpp(t) ≍
∫ 1

σ=0

σ1+ 2β−1
α Φσ

11(t, 0) dσ

≍
∫ cϵ√

γ3B(1+t)

σ=0

σ1+ 2β−1
α Φσ

11(t, 0) dσ +

∫ (1−ϵ1)

√
4γ3B

γ2B

σ= cϵ√
γ3B(1+t)

σ1+ 2β−1
α Φσ

11(t, 0) dσ

+

∫ (1+ϵ1)
√

4γ3B

γ2B

σ=
(1−ϵ1)

√
4γ3B

γ2B

σ1+ 2β−1
α Φσ

11(t, 0) dσ +

∫ 1

σ=
(1+ϵ1)

√
4γ3B

γ2B

σ1+ 2β−1
α Φσ

11(t, 0) dσ

≍
∫ cϵ√

γ3B(1+t)

σ=0

σ1+ 2β−1
α (1± ϵ) dσ

+

∫ (1−ϵ1)

√
4γ3B

γ2B

σ= cϵ√
γ3B(1+t)

σ1+ 2β−1
α O+(e−γ2Bσ2t

(
σ
√
γ3B(1 + t)

)−δ

) dσ

+

∫ (1+ϵ1)

√
4γ3B

γ2B

σ=(1−ϵ1)

√
4γ3B

γ2B

σ1+ 2β−1
α O+(e−

γ2Bσ2t
2 ) dσ +

∫ 1

σ=(1+ϵ1)

√
4γ3B

γ2B

σ1+ 2β−1
α

(
γ2Bσ

2(1 + t)
)−δ

dσ

≍
(√

γ3B(1 + t)
)−2− 2β−1

α

+O+(
(√

γ3B(1 + t)
)−2− 2β−1

α

∫ 2γ3(1+t)
γ2

u=cϵ

u1+
2β−1

α −δ du)

+O+(

(√
γ3B

γ2B

)2+ 2β−1
α

e−
γ3
γ2

t)

+O+(
(√

γ2B(1 + t)
)−2− 2β−1

α

e−
γ3
γ2

t
∫ √γ2B(1+t)

u=
√

4γ3(1+t)
γ2

u−2δ+1+ 2β−1
α du)

≍
(√

γ3B(1 + t)
)−2− 2β−1

α

In the first integral we have used that 1+ 2β−1
α > −1 ⇐⇒ 2α+2β > 1 and that Φσ

11(t, 0) = 1±ϵ if
σ
√
γ3B(1+ t) < cϵ. In the second integral we have made the change of variable u = σ

√
γ3B(1+ t)

and used that δ > 2 + 2β−1
α for the integral on u to converge when γ3

γ2
t→∞. In the last integral, we

have made the change of variable u2 = γ2Bσ
2t. We use again that δ > 2 + 2β−1

α to get that it is
negligible with respect to the other integrals

(√
γ2B(1 + t)

)−2− 2β−1
α

∫ √γ2B(1+t)

u=
√

4γ3(1+t)
γ2

u−2δ+1+ 2β−1
α du

≲
(√

γ2B(1 + t)
)−2− 2β−1

α

√
γ3(1 + t)

γ2

−2− 2β−1
α

≲
(√

γ3B(1 + t)
)−2− 2β−1

α

Additionally, note that for σ
√
γ3B(1+t) ≤ cϵ, we clearly have Fpp(t) ≍

∫ 1

0
σ1+ 2β−1

α (1±ϵ) dσ ≍ 1.

Finally, in the case
√
γ3B
γ2B

≳ 1, it is still clear that if
√
γ3B(1 + t) ≲ 1, only the first integral

contributes and we obtain similarly Fpp(t) ≍ 1 while if
√
γ3B(1 + t) ≳ 1, the second integral is

capped and we still obtain Fpp(t) ≍ (
√
γ3B(1 + t))−2− 2β−1

α .

A similar calculation shows that Fac(t) ≍ cβd−1
(√
γ3B(1 + t)

)−2+ 1
α . The only difference is that

we require 2− 1
α > 0 for the first integral to exist and hence to have α > 1

2 . It’s not a problem since
below we have bounds from [80] (see Proposition H.15). Additionally, for the second integral to
converge (and the third integral to be negligible) we require δ > 2− 1

α .
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The case t ≤ γ2

γ3

Proposition H.14. Suppose that t ≤ γ2

γ3
. Then, if δ > max{1 + 2β−1

2α , 1 − 1
2α , 1}, 2δ /∈ N and

2α+ 2β > 1, for any M > 0 we have Fpp(t) ≍
(√

γ2B(1 + t)
)−2− 2β−1

α

if
√
γ2B(1 + t) ≥ 1

Fpp(t) ≍ 1 if
√
γ2B(1 + t) ≤ 1

If additionally α > 1
2 and β > 1

2 , Fac(t) ≍ d−1
(√

γ2B(1 + t)
)−2+ 1

α

if Mdα ≥
√
γ2B(1 + t) ≥ 1

Fac(t) ≍ d−1 if
√
γ2B(1 + t) ≤ 1

Proof. For t ≤ γ2

γ3
, the second region disappears. Let ϵ = 1

2 , ϵ1 > 0 small enough and some cϵ > 0.

We first consider the case where
√
γ3B
γ2B

≲ 1. For (1 + ϵ1)
√
4γ3B
γ2B

≤ cϵ√
γ2B(1+t)

≤ 1, we write:

Fpp(t) ≍
∫ (1−ϵ1)

√
4γ3B

γ2B

σ=0

σ1+ 2β−1
α (1± ϵ) dσ +

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ1+ 2β−1
α O+(e−

γ2Bσ2t
2 ) dσ

+

∫ cϵ√
γ2B(1+t)

σ=

√
(1+ϵ1)4γ3B

γ2B

σ1+ 2β−1
α (1± ϵ) dσ +O+(

∫ 1

σ= cϵ√
γ2B(1+t)

σ1+ 2β−1
α

(
γ2Bσ

2(1 + t)
)−δ

dσ)

≍
(√

γ2B(1 + t)
)−2− 2β−1

α

+O+(

(√
γ3B

γ2B

)2+ 2β−1
α

e−
γ3
γ2

t)

+O+(
(√

γ2B(1 + t)
)−2− 2β−1

α

∫ √γ2B(1+t)

u=cϵ

u−2δ+1+ 2β−1
α du)

≍
(√

γ2B(1 + t)
)−2− 2β−1

α

Here we have used for both first and third integral that 1+ 2β−1
α > −1 ⇐⇒ 2α+2β > 1. In the last

integral, we have made the change of variable u2 = γ2Bσ
2(1+ t) and used that δ > 1+ 2β−1

2α ⇐⇒
−2δ + 1+ 2β−1

α < −1 for the integral on u to converge. Also note that we bounded the contribution
near the singular point by noticing that

√
γ3B

γ2B
≤ 1√

γ2Bt
⇐⇒ t ≤ γ2

γ3
.

On the other hand, if
√
γ2B(1 + t) ≤ cϵ, the last integral disappears, while the third one is cut at 1

and we obtain: Fpp(t) ≍
∫ 1

0
σ1+ 2β−1

α dσ ≍ 1.

Finally, in the case
√
γ3B
γ2B

≳ 1, we can check that necessarily t ≲ γ2

γ3
=⇒

√
γ2Bt ≍ γ2B√

γ3B
≲ 1

while only the first integral remains and we obtain Fpp(t) ≍ 1.

A similar calculation shows when α > 1
2 , β > 1

2 that Fac(t) ≍ d−1
(√

γ2B(1 + t)
)−2+ 1

α

if√
γ2B(1 + t) > cϵ and Fac(t) ≍ d−1 if

√
γ2B(1 + t) ≤ cϵ. In that case we need as previously that

α > 1
2 in the first and third integral and δ > 1− 1

2α ⇐⇒ −2δ + 1− 1
α < −1 for the last integral

on u to converge.

We can state two simple bounds on Fac.
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Proposition H.15. Let α > 0, 2α+ 2β > 1, α ̸= 1
2 , β ̸=

1
2 . There exists a constant C(α, β) such

that ∀t ≥ 0: {
Fac(t) ≤ C × F0(t) if 2α < 1, 2β > 1
Fac(t) = 0 if 2β < 1

Proof. The proof is very similar to the one of [80, Proposition H.4]. First, if 2β > 1, cβ = 0 and
hence ∀t ≥ 0, Fac(t) = 0.

Now, suppose that 2α < 1, 2β > 1. From Lemma H.1, we know that ∀σ > 0, ∀t ≥ 0, Φσ
11(t, 0) ≤ 1.

Hence this brings:

Fac(t) ≲ cβ

∫ 1

d−α

σ1− 1
α d−1 dσ

≲ cβ

(
d−2α − 1

d
1
α − 2

)
≲ d−2α

Since we know that F0(t) ≍ d−2α+max{0,1−2β}, we get the result.

Corollary H.1. ∀M > 0, ∃C > 0, ∀t > 0, if max{γ2B(1 + t), (
√
γ3B(1 + t)2} > Md2α we

have:

Fpp(t) + Fac(t) ≤ CF0(t)

Proof. This is a consequence of Propositions H.12 to H.15.

Finally, we relate the forcing function F(t) to the terms F0(t),Fpp(t),Fac(t) that we just estimated.

Proposition H.16. Let α, β > 0, 2α + 2β > 1, α + 1 > β, α, β ̸= 1
2 . Use Parametrization H.1

with δ > max{1, 2 + 2β−1
α , 2− 1

α} and 2δ /∈ N. Then there exists a constant C(α, β,H) such that
∀t ≥ 0,

1

C
(F0(t) + Fac(t) + Fpp(t)) ≤ F(t) ≤ C (F0(t) + Fac(t) + Fpp(t)) .

Proof. It is clear that for any t ≥ 0 and on the range of σ’s where we can apply Proposition H.5
and Proposition H.8 that Φσ

11(t, 0) ≍ 1. More precisely it corresponds to the range σ ≲ 1√
γ3Bt

and γ2Bσ ≲
√
4γ3B or the range σ ≲ 1√

γ2Bt
and γ2Bσ ≳

√
4γ3B. Hence the function

(
σ 7→

Φσ
11(t, 0)

)
satisfies, up to a constant, the hypothesis of Proposition D.13 on this range of σ’s. The

reader can check that the contribution from eigenvalues of this range lower-bounds Fpp(t),Fac(t).

Similarly, by upper-bounding the oscillatory part in cosine/sine appearing in Proposition H.9 and
Proposition H.6 by constants, one can upper-bound Φσ

11(t, s) by some function which satisfies the
hypothesis in Proposition D.13.

This implies the bound for some M,M1,M2 > 0 and some C > 0

1

C

∫ 1
M1

M1d−2α

Φσ
11(t, 0)(µFpp + µFac)(dσ

2) ≤
∫ 1

M

Md−2α

Φσ
11(t, 0)µF(dσ

2)

≤ C
∫ 1

M2

M2d−2α

Φσ
11(t, 0)(µFpp

+ µFac
)(dσ2).

There remains to bound the integrals on segments [0,Md2α] ∪ [ 1
M ,∞] for some con-

stants M > 0. We know from Lemma H.1 that for any t ≥ 0 and any
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DANA-constant with t ≤ 2γ2

γ3
DANA-constant with t ≥ 2γ2

γ3

F0(t) ≍ d−2α+max{0,1−2β} F0(t) ≍ d−2α+max{0,1−2β}

Fpp(t) ≍ (γ2Bt)
−1− 2β−1

2α Fpp(t) ≍
(√
γ3B · t

)−2− 2β−1
α

Fac(t) ≤

{
C × F0(t), if 2β > 1, 2α < 1

0, if 2β < 1
Fac(t) ≍

{
C × F0(t), if 2β > 1, 2α > 1

0, if 2β < 1.

if 2β > 1, 2α > 1, Fac(t) ≍ (Bγ2t)
−1+ 1

2α d−1 if 2β > 1, 2α > 1, Fac(t) ≍
(√

γ3B · t
)−2+ 1

α d−1

Kpp(t, 0) ≍ Bγ22(γ2Bt)−2+1/(2α) Kpp(t, 0) ≍ Bγ22
(√
γ3B · t

)−4+1/α

Table 10: Large d behavior of the forcing function and kernel function for DANA-constant for
small and large t. Here the constant C is independent of dimension.

σ > 0, Φσ
11(t, 0) ≤ 1. Hence using Propositions D.4, D.6 and H.12 we

can bound for any M > 0, max{
∫Md−2α

0+
Φσ

11(t, 0)µF(dσ
2),
∫Md−2α

0+
Φσ

11(t, 0)(µFpp
+

µFac)(dσ
2)} ≲ d−2α+(1−2β)+ ≲ F0(t). Additionally, using Propositions D.2

and H.9, we bound max{
∫∞

1
M

Φσ
11(t, 0)µF(dσ

2),
∫∞

1
M

Φσ
11(t, 0)(µFpp + µFac)(dσ

2)} ≲

min{e−γ2Bt/(2M), (
√
γ3B/Mt)−δ} ≪ F0(t) + Fac(t) + Fpp(t). This concludes the proof.

H.8 Necessary conditions for stability

In this section, we look for necessary conditions on learning rates and batch exponents κ1, κ2, κb > 0
in Parametrization H.1 for the risk to remain bounded. We first state a technical lemma that shows
divergence of the solution to a Volterra equation when the forcing function is lower-bounded and the
kernel noise is too large.
Lemma H.3. Let F : R+ → R+, K : {(t, s) ∈ R2

+, t ≥ s} → R+. Let P : R+ → R+ solution to
the Volterra equation P(t) = F(t) +

∫ t

0
P(s)K(t, s) ds. Suppose that:

• ∀t ≥ 0, F(t) ≥ F0 > 0,

• lim inft≥0

∫ t

t/2
K(t, s) ds > 1.

Then,
lim
t→∞

P(t) =∞

Proof. By assumption, we know the existence of T > 0 such that ∀t ≥ T ,
∫ t

t/2
K(t, s) ds > 1 + ϵ

for some ϵ > 0. It is then clear, by recursion, that

∀k ∈ N ∪ {−1}, ∀t ≥ T × 2k, P(t) ≥ (1 + ϵ)k+1F0.

This proves that P(t) t→∞→ ∞.

Lemma H.4. Let α > 1
4 . Let δ > max{1, 4 − 1

α}, 2δ /∈ N. Under Parametrization H.1, if
κ1 < (1− 2α)+ or κ2 < κ1 + 1− κb, then for d large enough,

lim inf
t≥0

∫ t

t/2

K(t, s) ds > 1.

Proof. We first consider the case where κ2 < 2κ1 + 2α− κb. This ensures that
√
γ3B
γ2B

≳ d−α.

Since ∀t ≥ s ≥ 0, ∀σ ≥ 0, Φσ
11(t, s),Φ

σ
12(t, s) ≥ 0, we use Fubini theorem to write for t large

enough so that 1√
γ3B(1+t/2)

≤
√
γ3B
γ2B
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∫ t

t/2

K(t, s) ds ≥ γ22B
∫ √

γ3B

γ2B

σ= 1√
γ3Bs

(∫ t

t/2

Φσ
11(t, s) ds

)
µK(dσ2)

+B

∫ √
γ3B

γ2B

σ= 1√
γ3Bs

(∫ t

t/2

Φσ
12(t, s) ds

)
µK(dσ2).

Note that we integrate only up to
√
γ3B
γ2B

<
√
4γ3B
γ2B

as we only look for a lower-bound on the kernel
and this ensures we remain bounded away from the singular point. For the first term, we write for
σ ∈

[
1√

γ3B(1+s)
,
√
γ3B
γ2B

]
,

∫ t

t/2

Φσ
11(t, s) ds =

∫ t

t/2

1

2
e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−δ
(
1 + cos(σ

√
4γ3B(t− s)

+ log

(
1 + t

1 + s

)
δγ2Bσ√

4γ3B − γ22B2σ2
) +

(
O
(
γ2Bσ√
γ3B

)
+O(ϵ)

))
ds

≳

(
O
(
γ2Bσ√
γ3B

)
+O(ϵ)

)
× 1

γ2Bσ2
+

1

γ2Bσ2

≳
1

γ2Bσ2
.

Here we used that σ
√
γ3B ≥ γ2Bσ2 and t large enough.

For the second term, a similar argument brings that again for σ ∈
[

1√
γ3B(1+s)

,
√
γ3B
γ2B

]
,

∫ t

t/2

Φσ
12(t, s) ds =

∫ t

t/2

γ3
2Bσ2

e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−δ
(
1− cos(σ

√
4γ3B(t− s)

+ log

(
1 + t

1 + s

)
δγ2Bσ√

4γ3B − γ22B2σ2
) +

(
O
(
γ2Bσ√
γ3B

)
+O(ϵ)

))
ds

≳
γ3
Bσ2

((
O
(
γ2Bσ√
γ3B

)
+O(ϵ)

)
× 1

γ2Bσ2
+

1

γ2Bσ2

)
≳

γ3
Bσ2

(
1

γ2Bσ2

)
.

Here we used that γ2Bσ2 < σ
√
4γ3B to obtain that the oscillations from cos average in the integral.

It is hence clear using that
√
γ3B
γ2B

≳ d−α and t large enough that

∫ t

t/2

K(t, s) ds ≳ γ22B

∫ √
γ3B

γ2B

σ= 1√
γ3B(1+s)

1

γ2Bσ2
µK(dσ2) +B

∫ √
γ3B

γ2B

σ= 1√
γ3B(1+s)

γ3
Bσ2

× 1

γ2Bσ2
µK(dσ2)

≳
∫ min{1,

√
γ3B

γ2B }

d−α

(
γ22Bσ

3−1/α 1

γ2Bσ2
+Bσ3−1/α γ3

γ2B2σ4

)
dσ

≳ γ2d
(1−2α)+ +

γ3
γ2B

× d.

The above shows that supposing κ2 < 2κ1 + 2α− κb, then if κ1 < (1− 2α)+ or κ2 < κ1 + 1− κb,
then

lim inf
t→∞

∫ t

t/2

K(t, s) ds = +∞.
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We know consider the second case where κ2 ≥ 2κ1 + 2α− κb. It is clear that we only need to con-
sider the case where κ1 < (1− 2α)+ since{

κ1 ≥ (1− 2α)+
and κ2 ≥ 2κ1 + 2α− κb

=⇒ κ2 ≥ κ1 + 1− κb.

We use Proposition H.10 and obtain for givenM > 0, σ > max{
√
γ3B
γ2B

,Md−α} and γ2σ2(1+s) > 1

that

Φ11(t, s) = (1 +O((γ2Bσ2(1 + s))−1 + x)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x4 + x2(γ2Bσ
2(1 + s))−2 + (γ2Bσ

2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1 + (γ2Bσ

2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3

.

Especially, the most important term is eµ1(t−s) which gives rise to 1
2γ2Bσ2t in the kernel norm. To see

that, notice that we can take s large enough so that (γ2Bσ2(1+ s))−1 is negligible and x2 = γ3B
γ2
2σ

2B2

as small as we want by increasing d (or M in the particular case where κ2 = 2κ1 + 2α). This brings

∫ t

t/2

(1 +O((γ2Bσ2(1 + s))−1 + x2)eµ1(t−s)

(
1 + t

1 + s

)δ1

ds ≳
1

µ1
≳

1

γ2Bσ2
.

It is additionally clear that the last term brings a negligible contribution since

∫ t

t/2

O(x2 + (γ2Bσ
2(1 + s))−1)eµ3(t−s)

(
1 + t

1 + s

)δ3

= O(x2 + (γ2Bσ
2(1 + s))−1)× 1

µ3

= O(x2 + (γ2Bσ
2(1 + s))−1)× 1

µ1
.

We mostly need to bound the second term which is done as follows

∫ t

t/2

O(x4 + (γ2Bσ
2(1 + s))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

ds = O((x4 + (γ2Bσ
2(1 + t))−2)

1

µ2
)

= O(
(√

γ3B

γ2Bσ

)4

× γ2
γ3

)

= O(
(√

γ3B

γ2Bσ

)2

× 1

γ2Bσ2
).

We noticed that µ2 ≍ γ3

γ2
and x =

√
γ3B

γ2Bσ . Additionally, we noticed that we can take t as large as we

want. Additionally,
(√

γ3B
γ2Bσ

)2
× γ2

γ3
= 1

γ2Bσ2 .

Finally, we obtain that ∫ t

t/2

K(t, s) ds ≳
∫ 1

σ=d−α

γ22B
1

γ2Bσ2
µK(dσ2)

≳
∫ 1

σ=d−α

γ2σ
1−1/α) dσ

≳ γ2d
(1−2α)+.
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The above hence implies that supposing κ2 ≥ 2κ1 + 2α− κb, then if κ1 < (2α− 1)+ we have

lim inf

∫ t

t/2

K(t, s) ds = +∞.

Corollary H.2 (Necessary condition for stability of DANA-constant). Let α > 1
4 . Let δ >

max{1, 4− 1
α}, 2δ /∈ N. Under Parametrization H.1, suppose κ1 < (1−2α)+ or κ2 < κ1+1−κb.

Then for d large enough, P(t) t→∞→ ∞.

Proof. This is a direct consequence of Lemma H.3 and Lemma H.4

H.9 Sufficient condition for stability: upper-bound on the kernel norm

Lemma H.5 (Sufficient condition for stability of DANA-constant). Under Parametrization H.1, for
given α > 1

4 , α ̸=
1
2 , δ > max{1, 4− 1

α}, 2δ /∈ N, M > 0, we know the existence of C > 0 such
that,

∀t ≥ 0,

∫ t

0

K(t, s) ds ≤ C
(
γ2d

min{0,2α−1} + d
γ3
γ2B

)
.

As a consequence, there exists some c > 0 such that for any κ1 ≥ (1 − 2α)+, κ2 ≥ κ1 − κb + 1,
γ̃2 ≤ c, γ̃3

γ̃2×cb
≤ c and any d ≥ 1 we know that

sup
t≥0

P(t) <∞.

Remark H.2. We believe the following stronger bounds to be true and could be shown in the
same way, although a little bit more technical. We discuss this in more detail in Section J. For
given α > 1

4 , 2α + 2β > 1, α, β ̸= 1
2 , using Parametrization H.1 with parametrization vector H ,

δ > max{1, 4− 1
α}, 2δ /∈ N and for any M > 0 there exists C(α, β,H,M) > 0 such that for any

t ≥ 0 with 1
M ≤ γ2Bt ≤Md2α,

1

C

(
γ2(γ2Bt)

(1−2α)+
2α +

γ3
γ2B

(γ2Bt)
1/(2α)

)
≤
∫ t

0

K(t, s) ds

≤ C
(
γ2(γ2Bt)

(1−2α)+
2α +

γ3
γ2B

(γ2Bt)
1/(2α)

)
.

Additionally the kernel norm converges in the sense that ∃C(α, β,H,M) > 0 such that for any t ≥ 0
with 1

M ≤ γ2Bt ≥Md2α

1

C

(
γ2d

(1−2α)+ + d
γ3
γ2B

)
≤
∫ t

0

K(t, s) ds ≤ C
(
γ2d

(1−2α)+ + d
γ3
γ2B

)
.

Proof. We can bound Φ11(t, s),Φ12(t, s) as follows

• from Propositions H.5 to H.7 if γ2σB ≤ (1 − ϵ)
√
γ3B, then Φ11(t, s) =

O(e−γ2σ
2B(t−s)), Φ12(t, s) =

γ3

Bσ2O(e−γ2σ
2B(t−s)) with a corresponding lower-bound,

• for γ2Bσ ∈ [(1 − ϵ)
√
γ3B, (1 + ϵ)

√
γ3B], Proposition H.11 brings that for t, s ≥ 0,

Φ11(t, s) = O(e−cϵγ2σ
2B(t−s)), Φ12(t, s) =

√
γ3

γ2Bσ2O(e−cϵγ2σ
2B(t−s)).

• Propositions H.8 and H.9 bring that for γ2σB ≥ (1 + ϵ)
√
γ3B if γ2Bσ

2s ≤
1, then Φ11(t, s) = O(e−cϵγ2σ

2B(t−s) + (γ2σ
2B(t − s))−Cϵ), Φ12(t, s) =

γ3

Bσ2O(e−cϵγ2σ
2B(t−s) + (γ2σ

2B(t − s))−Cϵ) with cϵ > 0, Cϵ > 2δ > 2. Fi-
nally, Proposition H.10 shows that Φ11(t, s) = O(e−cϵγ2σ

2B(t−s) + ((γ2σ
2Bt)−2 +
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x2)e−
(t−s)γ3

γ2 ), Φ12(t, s) =
γ3

Bσ2O(e−cϵγ2σ
2B(t−s) + ((γ2σ

2Bt)−2 + x2)e−
(t−s)γ3

γ2 ) with
x =

√
γ3B

γ2Bσ .

We just need to integrate these estimates on s and σ. It is clear that for σ ≤ (1 + ϵ)
√
γ3B
γ2B

we have

∫ t

s=0

Φ11(t, s) ds ≲
∫ t

s=0

e−cϵγ2Bσ2(t−s) ds ≲
1

γ2Bσ2

and similarly
∫ t

s=0

Φ12(t, s) ds ≲
∫ t

s=0

γ3
Bσ2

e−cϵγ2Bσ2(t−s) ds ≲
γ3
Bσ2

× 1

γ2Bσ2

On the other hand, for σ ≥ (1 + ϵ)
√
γ3B
γ2B

, we still obtain

∫ t

s=0

Φ11(t, s) ds ≲
∫ t

s=0

(
e−cϵγ2Bσ2(t−s) + (

(√
γ3B

γ2Bσ

)2

+
1

(γ2Bσ2t)2
)e−(t−s)

γ3
γ2

)
ds

≲
1

γ2Bσ2
.

Here we used that
∫ t

0
e−(t−s)

γ3
γ2 ds ≲ min{t, γ2

γ3
. We combined that with

(√
γ3B

γ2Bσ

)2
γ2
γ3

≲
1

γ2Bσ2

1

(γ2Bσ2t)2
t ≲

1

γ2Bσ2

1

γ2Bσ2t
≲

1

γ2Bσ2

where we used that in that range, 1
γ2Bσ2t ≲ 1. Similarly, we have

∫ t

s=0

Φ12(t, s) ds ≲
γ3
Bσ2

× 1

γ2Bσ2
.

Now integrating against µK and using Proposition D.14 brings the desired upper-bound for some
constants c, C > 0,

∫ t

s=0

K(t, s) ds =

∫ t

0

(γ22BΦ11(t, s) +BΦ12(t, s)) ds

≲
∫ 1

cd−2α

σ3−1/α

(
γ22B

1

γ2Bσ2
+B

γ3
Bσ2

× 1

γ2Bσ2

)
dσ

≤ C
(
γ2 × d(1−2α)+ +

γ3
γ2B

× d
)
.

The last claim is a straightforward consequence using the fact that F(t) is bounded from Proposi-
tion H.16 and K(t, s) is continuous.

H.10 Upper-bound on the kernel function

In all this section, we assume κ1 = (1 − 2α)+, 0 ≤ κb ≤ κ1, κ2 = κ1 − κb + 1. The previous
sections show that these are the largest stable learning rates. In this section we will estimate an
upper-bound on the pure-point term of the kernel function by:

• upper-bounding | cos(t)|, | sin(t)| ≤ 1 in Propositions H.7 and H.10, hence defining
Φ̄11, Φ̄12,

• using the upper bound on µK by µKpp
from in Section D.
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σ ≤
√
4γ3B
γ2B

σ < 1√
γ3B(1+t)

1√
γ3B(1+t)

< σ < 1√
γ3B(1+s)

( =⇒ 1 + t > γ2

2γ3
)

1√
γ3B(1+s)

< σ

( =⇒ 1 + s > γ2

2γ3
)

σ ≥
√
4γ3B
γ2B

σ < 1√
γ2Bt

( =⇒ t < γ2

4γ3
)

1√
γ2Bt

< σ < 1√
γ2Bs

( =⇒ s < γ2

4γ3
)

1√
γ2Bs

< σ

Table 11: Cuts of σ domains for kernel function

We hence define

K̄(t, s)
def
= K̄1(t, s) + K̄2(t, s)

def
= γ22B

∫ ∞

σ=0

Φ̄σ
11(t, s) dµ(σ

2) + γ21B

∫ 1

σ=0

Φ̄σ
12(t, s) dµ(σ

2).

We additionally define the corresponding pure-point contribution of the upper-bound on the kernel.

K̄pp(t, s)
def
= K̄1

pp(t, s) + K̄2
pp(t, s)

def
= γ22B

∫ ∞

σ=0

Φ̄σ
11(t, s) dµpp(σ

2) + γ21B

∫ ∞

σ=0

Φ̄σ
12(t, s) dµpp(σ

2)

= γ22B

∫ 1

σ=0

σ3− 1
α Φ̄σ

11(t, s) dσ +B

∫ 1

σ=0

σ3− 1
α Φ̄σ

12(t, s) dσ.

In the rest of this section we will provide upper-bounds on K̄pp. We will divide the integral on σ
in different parts, as explained in Table 11. We will show in the following that K̄pp provides an
upper-bound on the kernel function using our estimates on µK. We think this upper-bound is in
fact tight but we cannot (and don’t need to) entirely prove it with our current estimates on µK from
Proposition D.14 due to the oscillatory nature of Φ11,Φ12 in Proposition H.7. Instead we will rely on
a slightly different argument for the lower-bound.

H.10.1 First term: SGD noise

We will use the asymptotic of Φσ
11(t, s) developed above to show the following bounds on K̄1

pp(t, s):

Proposition H.17. Suppose α > 1
4 , α ̸=

1
2 , δ > max{4− 1

α , 1}, 2δ /∈ N. Consider Parametriza-
tion H.1 with κ1 = (1− 2α)+, 0 ≤ κb ≤ κ1, κ2 = κ1 − κb + 1 and let any M > 0. There exists a
constant C(α,H,M) such that for any (s, t) ∈ R2

+ with s ≤ t, we have the bound :

K̄1
pp(t, s) ≤ C

(
min{γ22B

(√
γ3B(t− s)

)−4+ 1
α

, γ22B(γ2B(t− s))−2+ 1
2α }

+ γ22B

(
1 + t

1 + s

)−δ (
γ2B(t− s)

)−2+ 1
2α

)
.

Proof. The proof is divided in three sub-cases depending on the relative size of s, t, γ2

γ3
. Introduce

some ϵ1 > 0 small enough.

1st case: γ2

γ3
≲ 1 + s ≤ 1 + t

We will suppose in the following
√
γ3B(1+t) ≳

√
γ3B(1+s) ≳ 1 and γ2B(1+t) ≳ γ2B(1+s) ≳ 1.

We additionally first assume that
√
γ3B
γ2B

≲ 1. The other cases can be handled similarly by capping the
bounds of the integrals. We hence decompose

118



γ22B

∫ 1

σ=0

σ3− 1
αΦ11(t, s) dσ = γ22B

∫ 1√
γ3Bt

σ=0

σ3− 1
αΦ11(t, s) dσ

+ γ22B

∫ 1√
γ3Bs

1√
γ3Bt

σ3− 1
αΦ11(t, s) dσ + γ22B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bs

σ3− 1
αΦ11(t, s) dσ

+ γ22B

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
αΦ11(t, s) dσ + γ22B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
αΦ11(t, s) dσ.

Continuing, we have

γ22B

∫ 1

σ=0

σ3− 1
αΦ11(t, s) dσ ≲ γ22B

∫ 1√
γ3Bt

σ=0

σ3− 1
α × 1 dσ

+ γ22B

∫ 1√
γ3Bs

1√
γ3Bt

σ3− 1
α e−γ2Bσ2t

(
σ
√
γ3B(1 + t)

)−δ

dσ

+ γ22B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bs

σ3− 1
α e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−δ

dσ

+ γ22B

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
αO(e−

cϵ1
(t−s)γ3
γ2 ) dσ

+ γ22B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α

(
e−cϵ1γ2Bσ2(t−s) + (x4 +

x2

(γ2σ2s)2

+
1

(γ2σ2t)2
)e−cϵ1

t−s
d

(
1 + t

1 + s

)δ2
)
dσ

≲ γ22B
(√

γ3Bt
)−4+ 1

α

∫ 1

u=0

u3−
1
α du

+ γ22B
(√

γ3Bt
)−4+ 1

α

∫ t
s

u=1

u3−
1
α−δe−u2 γ2

γ3t du

+ γ22B

(
1 + t

1 + s

)−δ

(γ2B(t− s))−2+ 1
2α

∫ γ3
γ2

(t−s)(1−ϵ1)
2

u=
γ2(t−s)

γ3s2

u3−1/αe−u2

du

+O(
(
ϵ1

√
γ3B

γ2B

)4− 1
α

γ22Be
− cϵ1

(t−s)γ3
γ2 )

+ γ22B(γ2B(t− s))−2+1/(2α)

(∫ √γ2B(t−s)

u=
√

γ3(t−s)(1+ϵ1)
γ2

u3−
1
α e−u2

du

)

≲ γ22B
(√

γ3Bt
)−4+ 1

α

+ γ22B

(
1 + t

1 + s

)−δ

(γ2B(t− s))−2+ 1
2α


(

(t−s)γ3

γ2

)4−1/α

if t− s < γ2

γ3

C if γ2

γ3
< t− s < s2γ3

γ2

e
− (t−s)γ2

γ3s2 if s2γ3

γ2
< t− s

+ γ22B(γ2B(t− s))−2+1/(2α)


(γ2B(t− s))2−1/(2α) if γ2B(t− s) < 1
C if 1

γ2B
< t− s < γ2

γ3

e−
(t−s)γ3

γ2 if γ2

γ3
< t− s.
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We have made the change of variable u = σ
√
γ3B(1 + t) in the first and second integrals. We have

used α > 1
4 for the first integral to converge. In the last integral we used u2 = γ2Bσ

2(t − s) and

noticed that the integral on u vanishes as γ2(t−s)
γ3s2

→∞, ie as s <
√
tγ2

γ3
. We check that this result is

equivalent up to a constant to the result in Proposition H.17.

We additionally bounded at the singular point for t− s ≥ γ2

γ3
and hence 1+t

1+s ≲ (t−s)γ3

γ2
,

γ22B

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
αO(e−

cϵ1
(t−s)γ3
γ2 ) dσ

≲ γ22B

(
cϵ1(t− s)γ3

γ2

)−δ−2+1/(2α)

×
(√

γ3B

γ2B

)4−1/α

≲

(
1 + t

1 + s

)−δ

(γ2B(t− s))−2+1/(2α).

For t− s ≤ γ2

γ3
we have 1+t

1+s ≲ 1 because 1 + s ≥ γ2

γ3
which brings the upper-bound directly. In both

cases, this term is absorbed by the other integrals.

We additionally observed that the following term is also absorbed by the others

γ22B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α

(
x4 +

x2

(γ2Bσ2s)2
+

1

(γ2Bσ2t)2

)
e−cϵ1

(t−s)γ3
γ2

(
1 + t

1 + s

)δ2

dσ.

Indeed, we know that 1 + t ≥ 1 + s ≥ γ2

γ3
≳ γ3

γ2B
. This implies that

γ2Bσ
2t ≳ γ2Bσ

2s ≳

(
γ2Bσ√
γ3B

)−2

= x−2,

hence we only need to bound

γ22B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
αx4e−cϵ1

(t−s)γ3
γ2

(
1 + t

1 + s

)δ2

dσ

≲ γ22B

(
γ2B√
γ3B

)−4 ∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ−1− 1
α dσ × e−cϵ1

(t−s)γ3
γ2

(
1 + t

1 + s

)−2δ

≲ γ22B

(
γ2B√
γ3B

)−4+1/α

× e−cϵ1
(t−s)γ3

γ2

(
1 + t

1 + s

)−2δ

≲ γ22B(γ2B(t− s))−2+1/(2α)

(
1 + t

1 + s

)−δ

.

We used when t− s ≳ γ2

γ3
that for ∀η > 0,∀y ≥ 1, e−y ≲ y−η with η = −2 + 1

2α . For t− s ≲ γ2

γ3

we still have γ22B
(

γ2B√
γ3B

)−4+1/α

≲ γ22B(γ2B(t− s))−2+ 1
2α .
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2nd case: 1 + s ≤ 1 + t ≤ γ2

γ3
We adopt the same strategy although we will go faster as some

computations are very similar

γ22B

∫ 1

0

σ3− 1
αΦ11(t, s) dσ ≲ γ22B

∫ (1+ϵ1)

√
4γ3B

γ2B

0

σ3− 1
α × 1× dσ

+ γ22B

∫ 1√
γ2Bt

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α × 1× dσ

+ γ22B

∫ 1√
γ2Bs

1√
γ2Bt

σ3− 1
α e−γ2Bσ2t dσ + γ22B

∫ 1

1√
γ2Bs

σ3− 1
α

(
e−γ2Bσ2(t−s)

+

(
x4 +

x2

(γ2Bσ2s)2
+

1

(γ2Bσ2t)2

)
e−cϵ1

(t−s)γ3
γ2

(
1 + t

1 + s

)δ2
)
dσ

≲ γ22B(γ2Bt)
−2+1/(2α)

∫ t
s

u=0

u3−
1
α e−u2

du

+ γ22B(γ2B(t− s))−2+1/(2α)

∫ √γ2B(t−s)

u= t−s
s

u3−
1
α e−u2

du

≲ γ22B(γ2Bt)
−2+1/(2α)

+ γ22B(γ2B(t− s))−2+1/(2α)


(γ2B(t− s))2−1/(2α) if γ2B(t− s) < 1
C if 1

γ2B
< t− s < s

e−
t−s
s if s < t− s.

where in the first 3 integrals we used the change of variable u =
√
γ2Bσ2t, that e−u2 ≍ 1 for

σ < 1√
γ2Bt

and that α > 1
4 for convergence of the integral for small u. In the last integral, we made

the change of variable u =
√
γ2Bσ2(t− s).

We additionally noticed that

∫ 1

1√
γ2Bs

σ3− 1
α

(√γ3B
γ2Bσ

)4( 1 + t

1 + s

)δ2
dσ

≲
(√γ3B
γ2B

)4 ∫ 2

1√
γ2Bs

σ−1−1/α dσ
( 1 + t

1 + s

)δ2
≲
( γ3
γ2(γ2B)

)2
(γ2Bs)

1
2α

( 1 + t

1 + s

)δ2
≲ (γ2Bt)

−2+ 1
2α

for δ large enough. 3rd case: 1 + s ≤ γ2

γ3
≤ 1 + t
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γ22B

∫ 1

0

σ3− 1
αΦ11(t, s) dσ ≲ γ22B

∫ 1√
γ3Bt

0

σ3− 1
α 1 dσ

+ γ22B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bt

σ3− 1
α e−γ2Bσ2t

(
σ
√
γ3B(1 + t)

)−δ

dσ

+O+

γ22B ∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
α e−

γ2Bσ2

2 (t−s) dσ


+ γ22B

∫ 1√
γ2Bs

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α e−γ2Bσ2t dσ + γ22B

∫ 1

1√
γ2Bs

σ3− 1
α e−γ2Bσ2(t−s) dσ

≲ γ22B
(√

γ3Bt
)−4+1/α

∫ 1

u=0

u3−1/α du

+ γ22B(
√
γ3Bt)

−4+1/α

∫ (1−ϵ1)
γ3t
γ2

u=1

u3−1/α−δe−u du

+O+

((
ϵ1

√
γ3B

γ2B

)4− 1
α

e−
(t−s)γ3

2γ2

)

+ γ22B(γ2Bt)
−2+1/(2α)

∫ √ t
s

u=(1+ϵ1)
√

tγ3
γ2

u3−1/αe−u2

du

+ γ22B(γ2B(t− s))−2+1/(2α)

∫ √γ2B(t−s)

u=
√

t−s
s

u3−1/αe−u2

du

≲ γ22B
(√

γ3Bt
)−4+1/α

+ γ22B(γ2B(t− s))−2+1/(2α)


(γ2B(t− s))2−1/(2α) if γ2B(t− s) < 1
C if 1

γ2B
< t− s < s

e−
t−s
s if s < t− s.

where we used in the first 2 integrals the change u = σ
√
γ3Bt and that e−u ≍ 1 for u ≤ 1.

H.10.2 Second term: momentum noise

We will use the asymptotics on Φ12(t, s) to show the following:

Proposition H.18. Suppose α > 1
4 , α ̸=

1
2 , δ > max{4− 1

α , 1}, 2δ /∈ N. Consider Parametriza-
tion H.1 with κ1 = (1− 2α)+, 0 ≤ κb ≤ κ1, κ2 = κ1 − κb + 1 and let any M > 0. There exists a
constant C(α,H,M) such that for any (s, t) ∈ R2

+ with s ≤ t, we have the bounds


K̄2

pp(t, s) ≲
¯̄K1
pp(t, s) if t− s ≤ γ2

γ3
or s ≤ γ2

γ3

K̄2
pp(t, s) ≤ C

(
γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1+s)γ3

γ2

)2
+ γ3

(
1+t
1+s

)−δ

(γ2Bt)
−1+1/(2α)

)
if 1 + s ≥ γ2

γ3
, t− s ≥ γ2

γ3
.

Proof. The proof is again divided in 3 sub-cases. Let ϵ1 > 0 small enough, α > 1
4 and δ > 4− 1

α .

1st case: γ2

γ3
≤ 1 + s ≤ 1 + t
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B

∫ 1

σ=0

σ3− 1
αΦ12(t, s) dσ = B

∫ 1√
γ3Bt

σ=0

σ3− 1
αΦ12(t, s) dσ +B

∫ 1√
γ3Bs

1√
γ3Bt

σ3− 1
αΦ12(t, s) dσ

+B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bs

σ3− 1
αΦ12(t, s) dσ +B

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
αΦ12(t, s) dσ

+B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
αΦ12(t, s) dσ

≲ B

∫ 1√
γ3Bt

σ=0

σ3− 1
α
γ3
Bσ2

(σ
√
γ3B(1 + t))2

(
1 + t

1 + s

)−2

dσ

+B

∫ 1√
γ3Bs

1√
γ3Bt

σ3− 1
α
γ3
Bσ2

(σ
√
γ3B(1 + t))−δe−γ2Bσ2t(σ

√
γ3B(1 + s))2 dσ

+B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bs

σ3− 1
α
γ3
Bσ2

e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−δ

dσ

+

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
α
γ3
Bσ2
O+

(
e−γ2Bσ2(t−s)

)
dσ

+B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α
γ3
Bσ2

(
O(x2 + (γ2Bσ

2(1 + s))−2)eµ1(t−s)

(
1 + t

1 + s

)δ1

+O(x2 + (γ2Bσ
2(1 + t))−2)eµ2(t−s)

(
1 + t

1 + s

)δ2

+O(x2 + x(γ2Bσ
2(1 + s))−1 + (γ2Bσ

2(1 + t))−2)eµ3(t−s)

(
1 + t

1 + s

)δ3 )
dσ

≲ γ3

(
1 + t

1 + s

)−2

(
√
γ3B(1 + t))−2+ 1

α

∫ 1

u=0

u3−
1
α du

+ γ3

(
1 + t

1 + s

)−2

(
√
γ3B(1 + t))−2+ 1

α

∫ t
s

u=1

u3−
1
α−δe−

u2γ2
γ3t du

+ γ3

(
1 + t

1 + s

)−δ (√
γ2B(t− s)

)−2+ 1
α

∫ √ t−s
d

u=

√
γ2(t−s)

γ3s2

u1−
1
α e−u2

du

+ γ3(γ2B(t− s))−1+1/(2α)

∫ √γ2B(t−s)

√
t−s
d

u−1− 1
α e−2u2

du

≲ γ3

(
1 + t

1 + s

)−2

(
√
γ3B(1 + t))−2+ 1

α + γ3

(
1 + t

1 + s

)−δ (√
γ2B(t− s)

)−2+ 1
α

.

where we have made the change of variable u = σ
√
γ3B(1 + t) in the first and second integral,

used that α > 1
4 for the first integral on u to converge, that δ > 4 − 1

α for the second integral on
u to converge, and note that γ2

γ3t
≪ 1. Finally, in the last integral we used the change of variable

u
def
=
√
γ2Bσ2(t− s).

Also note that we bounded the non-exponential term similarly as for K1(t, s), ie since know that
1 + t ≥ 1 + s ≥ γ2

γ3
≳ γ3

γ2B
, this implies that

γ2Bσ
2t ≳ γ2Bσ

2s ≳

(
γ2Bσ√
γ3B

)−2

= x−2,

hence we only need to bound
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B

∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α
γ3
Bσ2

x2e−cϵ1
(t−s)γ3

γ2

(
1 + t

1 + s

)δ2

dσ

≲ γ3

(
γ2B√
γ3B

)−2 ∫ 1

(1+ϵ1)

√
4γ3B

γ2B

σ−1− 1
α dσ × e−cϵ1

(t−s)γ3
γ2

(
1 + t

1 + s

)−2δ

≲ γ3

(
γ2B√
γ3B

)−2+1/α

× e−cϵ1
(t−s)γ3

γ2

(
1 + t

1 + s

)−2δ

≲ γ3(γ2B(t− s))−2+1/(2α)

(
1 + t

1 + s

)−δ

.

2nd case: 1 + s ≤ γ2

γ3
≤ 1 + t

In that case,

K̄2
pp(t, s) = B

∫ 1

0

σ3− 1
αΦ12(t, s) dσ ≲ B

∫ 1√
γ3Bt

0

σ3− 1
α γ23(1 + s)2 dσ

+B

∫ (1−ϵ1)

√
4γ3B

γ2B

1√
γ3Bt

σ3− 1
α e−γ2Bσ2t(σ

√
γ3B(1 + t))−δγ23(1 + s)2 dσ

+B

∫ (1+ϵ1)

√
4γ3B

γ2B

(1−ϵ1)

√
4γ3B

γ2B

σ3− 1
αO+

(
e−

γ2Bσ2(t−s)
2 dσ

)

+Bγ22

∫ 1√
γ2Bs

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α (
√
γ3Bσ(1 + s))2e−2γ2Bσ2t dσ

+O+

B ∫ 1

1√
γ2Bs

σ3− 1
α
γ3
Bσ2

(√
γ3B

γ2Bσ

)2

(e−2γ2Bσ2(t−s) + e−
t−s
s ) dσ


≲ Bγ22

(
(1 + s)γ3

γ2

)2

(
√
γ3B(1 + t))−4+ 1

α

≲ ¯̄K1(t, s).

3rd case: s ≤ t ≤ γ2

γ3
In that case we have:

K̄2
pp(t, s) = B

∫ 1

0

σ3− 1
αΦ12(t, s) dσ ≲ B

∫ (1+ϵ1)

√
4γ3B

γ2B

0

σ3− 1
α γ23(1 + s)2 dσ

+B

∫ 1√
γ2Bt

(1+ϵ1)

√
4γ3B

γ2B

σ3− 1
α γ23(1 + s)2 dσ

+B

∫ 1√
γ2Bs

1√
γ2Bt

σ3− 1
α
γ3
Bσ2

(γ2Bσ
2s)2e−2γ2Bσ2t dσ

+O+

B ∫ 1

1√
γ2Bs

σ3− 1
α
γ3
Bσ2

(√
γ3B

γ2Bσ

)2

(e−2γ2Bσ2(t−s) + e−
t−s
s ) dσ


≲ Bγ22

(
(1 + s)γ3

γ2

)2

(γ2Bt)
−2+ 1

2α +

(
1 + s

1 + t

)2

γ3B
√
γ2Bt

−2+ 1
α

+Bγ22(γ2B(t− s))−2+ 1
2α

(
(t− s)γ3

γ2

)2(
s

t− s

) 1
2α

≲ ¯̄K1(t, s).
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H.10.3 Summary

What we have shown can be summarized as:

K̄1
pp(t, s) ≲

¯̄K1
pp(t, s)

def
=


γ22Bmin{1, (γ2B(t− s))−2+ 1

2α } if s ≤ γ2

γ3
, t ≤ 2γ2

γ3

γ22B(
√
γ3B(1 + t))−4+ 1

α if s ≤ γ2

γ3
, 2γ2

γ3
≤ t

γ22B
(

1+t
1+s

)−δ

min{1, (γ2B(t− s))−2+ 1
2α }

∨γ22B(
√
γ3B(1 + t))−4+ 1

α if γ2

γ3
≤ s ≤ t.

K̄2
pp(t, s) ≲


≲ ¯̄K1

pp(t, s) if s ≤ γ2

γ3
or t− s ≤ γ2

γ3

γ3

(
1+t
1+s

)−δ

(γ2B(t− s))−1+ 1
2α ∨ γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1+s)γ3

γ2

)2
if s ≥ γ2

γ3
, t− s ≥ γ2

γ3
.

Hence Proposition H.17, Proposition H.18 together lead to the following proposition:

Proposition H.19. Let α ̸= 1
2 with α > 1

4 and δ > max{1, 4 − 1
α}. Denote ¯̄Kpp(t, s) the kernel

defined for any t ≥ s ≥ 0,

¯̄Kpp
def
=



γ22Bmin{1, (γ2B(t− s))−2+ 1
2α } if s ≤ γ2

γ3
, t ≤ 2γ2

γ3
or t− s ≤ γ2

γ3
,

γ22B(
√
γ3B(1 + t))−4+ 1

α if s ≤ γ2

γ3
, 2γ2

γ3
< t,

γ3

(
1+t
1+s

)−δ

(γ2B(t− s))−1+ 1
2α ∨ γ22B(

√
γ3B(1 + t))−4+ 1

α

(
1+s
γ2
γ3

)2

if s > γ2

γ3
, t− s > γ2

γ3
.

Then we know that ∀M > 0,∃C(α, β,M, δ), ∀0 ≤ s ≤ t with max{γ2B(1+t), (
√
γ3B(1+t))2} ≤

Md2α,

K(t, s) ≤ K̄(t, s)
def
= K̄1(t, s) + K̄2(t, s) ≤ C ¯̄Kpp(t, s).

Proof. By non-negativity of µK, it is clear that ∀t, s ≥ 0, K(t, s) ≤ K̄(t, s). Additionally, the
estimate we previously derived show that K̄pp(t, s) ≲

¯̄Kpp(t, s). Hence we only need to show that
K̄(t, s) ≲ K̄pp(t, s).

We constructed Φ̄σ
11(t, s), Φ̄

σ
12(t, s) exactly to ensure that we can apply Proposition D.14 by bounding

their oscillatory part. Hence, Proposition D.14 brings the existence of M̃,M2 > 0 and C > 0 such
that ∫ 1

M̃

M̃d−2α

(γ22BΦ̄
√
u

11 (t, s) + γ21BΦ̄
√
u

12 (t, s))µK(du)

≤ C
∫ 1

M2

M2d−2α

(γ22BΦ̄
√
u

11 (t, s) + γ21BΦ̄
√
u

12 (t, s))µKpp
(du).

To conclude, we only need to show that the small and large eigenvalues σ do not contribute too much
to the kernel, i.e.

max


∫ M̃d−2α

0
(γ22BΦ̄

√
u

11 (t, s) + γ21BΦ̄
√
u

12 (t, s))µK(du)∫∞
1
M̃

(γ22BΦ̄
√
u

11 (t, s) + γ21BΦ̄
√
u

12 (t, s))µK(du)
≲ K̄pp(t, s).

The above follows immediately from Propositions D.8 to D.11 for d large enough to apply Proposi-
tion D.9.
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H.11 Verifying the hypothesis of Kesten’s Lemma

The goal of this section is to show that the upper-bound on the kernel ¯̄K in Proposition H.19 satisfies
the hypothesis of Kesten’s Lemma.

Proposition H.20. Let α > 1
4 , α ̸=

1
2 , δ > max{1, 4 − 1

α}, 2δ /∈ N. For any M > 0, ϵ > 0,
there exists some C(α, δ,M, ϵ) independent of d such that considering Parametrization H.1 with
κ1 ≥ (1− 2α)+, κ2 ≥ κ1 − κb +1, κb ≤ min{κ1, κ2}, if max{γ̃2, γ̃3

γ̃2
} ≤ C then ∀0 ≤ s ≤ t with

max{γ2B(1 + t), (
√
γ3B(1 + t))2} ≤Md2α we have

∫ t

r=s

¯̄Kpp(t, r)
¯̄Kpp(r, s) dr ≤ ϵ ¯̄Kpp(t, s).

Proof. This is a consequence of the form of ¯̄Kpp computed above. We differentiate different cases.

1st case: s ≤ t ≲ γ2

γ3
or t− s ≲ γ2

γ3
Then the proof sketch can be found in [80, Prop.G.2]. More

precisely, we have

∫ t

r=s

¯̄Kpp(t, r)
¯̄Kpp(r, s) dr ≲

∫ t

r=s

γ22Bγ2B(t− r)
−2+ 1

2α γ22Bγ2B(r − s)
−2+ 1

2α dr

≲ γ22Bγ2B(t− s)
−2+ 1

2α

∫ t

r=s

¯̄Kpp(t, r) dr

≤ ϵ ¯̄Kpp(t, s).

Here we used Lemma H.5 in the bound on the kernel integral.

2nd case: s ≤ γ2

γ3
and 3γ2

γ3
≤ t Then we write:

∫ t

r=s

¯̄Kpp(t, r)
¯̄Kpp(r, s) dr ≲

∫ 2
γ2
γ3

r=s

γ22B(γ2B(r − s))−2+ 1
2α × γ22B(

√
γ3B(1 + t))−4+ 1

α ) dr

+

∫ t− γ2
γ3

r=2
γ2
γ3

(
γ3

(
1 + t

1 + r

)−δ

(γ2B(t− r))−1+ 1
2α + γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

×
(
γ22B(

√
γ3B(1 + r))−4+ 1

α

)
dr

+

∫ t

r=t− γ2
γ3

γ22Bσ((γ2B(t− r))−2+ 1
2α )× γ22B(

√
γ3B(1 + r))−4+ 1

α ) dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α .

Indeed it is clear for the first and last term. For the middle term we distribute and bound for γ̃2, γ̃3
small enough for a fixed ϵ,

∫ t− γ2
γ3

r=2
γ2
γ3

γ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1+r)γ3

γ2

)2
× γ22B(

√
γ3B(1 + r))−4+ 1

α dr

≲ γ22B(
√
γ3B(1 + t))−4+ 1

α ×
∫ t− γ2

γ3

r=2
γ2
γ3

(
(1 + r)γ3

γ2

)2

γ22B(
√
γ3B(1 + r))−4+ 1

α dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

because
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∫ t− γ2
γ3

r=2
γ2
γ3

(
(1 + r)γ3

γ2

)2

γ22B(
√
γ3B(1 + r))−4+ 1

α dr

≲
∫ t− γ2

γ3

r=2
γ2
γ3

γ3
γ2B

γ2B(
√
γ3B(1 + r))−2+ 1

α dr

≲ d−1γ2Bd
α(−1+1/α)+

≲ ϵ.

And the other term,

∫ t− γ2
γ3

r=2
γ2
γ3

γ3

(
1+t
1+r

)−δ

(γ2B(t− r))−1+ 1
2α × γ22B(

√
γ3B(1 + r))−4+ 1

α dr

≲
∫ t− γ2

γ3

r=2
γ2
γ3

γ3

(
1+t
1+r

)−4+ 1
α

(γ2B(t− r))−1+ 1
2α × γ22B(

√
γ3B(1 + r))−4+ 1

α dr

≲ γ22B(
√
γ3B(1 + t))−4+ 1

α ×
∫ t− γ2

γ3

γ2
γ3

γ3(γ2B(t− r))−1+1/(2α) dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

where we used the stability condition γ3

γ2B
≲ 1

d .

3rd case: s ≥ γ2

γ3
and t− s ≥ γ2

γ3

∫ t

r=s

¯̄Kpp(t, r)
¯̄Kpp(r, s) dr

≲
∫ s+

γ2
γ3

r=s

(
γ3

(
1 + t

1 + r

)−δ

(γ2B(t− r))−1+ 1
2α + γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

× γ22Bγ2B(r − s)
−2+ 1

2α dr

+

∫ t− γ2
γ3

r=s+
γ2
γ3

(
γ3

(
1 + t

1 + r

)−δ

(γ2B(t− r))−1+ 1
2α + γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

×

(
γ3

(
1 + r

1 + s

)−δ

(γ2B(r − s))−1+ 1
2α + γ22B(

√
γ3B(1 + r))−4+ 1

α

(
(1 + s)γ3

γ2

)2
)
dr

+

∫ t

r=t− γ2
γ3

γ22Bγ2B(t− r)
−2+ 1

2α

×

(
γ3

(
1 + r

1 + s

)−δ

(γ2B(r − s))−1+ 1
2α + γ22B(

√
γ3B(1 + r))−4+ 1

α

(
(1 + s)γ3

γ2

)2
)
dr

≲ ϵ

(
γ3

(
1 + t

1 + s

)−δ

(γ2B(t− s))−1+ 1
2α + γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2
)
.

The last term is straightforward because of the stability condition on γ2 (which implies that we can de-

crease γ̃2 so that
∫ t

r=t− γ2
γ3

γ22Bγ2B(t− r)
−2+ 1

2α dr ≲
∫ d2α/(γ2B)

r=0
γ22Bγ2B(d2α − r)

−2+ 1
2α dr ≲ ϵ

and the fact that t ≍ r in that integral. The first term is also straightforward for the same reason,
ie stability condition on γ2 which and the fact that r ≍ s in the first integral. For the first term we
develop and write
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∫ t− γ2
γ3

r=s

γ3

(
1 + t

1 + r

)−δ

(γ2B(t− r))−1+ 1
2α × γ3

(
1 + r

1 + s

)−δ

(γ2(r − s))−1+ 1
2α dr

≲ γ3

(
1 + t

1 + s

)−δ

(γ2B(t− s))−1+1/(2α)

∫ t− γ2
γ3

r=s

γ3(γ2B(r − s))−1+1/(2α) dr

≲ ϵγ3

(
1 + t

1 + s

)−δ

(γ2B(t− s))−1+ 1
2α .

Here we used the stability condition on γ3 which implies that
∫ t− γ2

γ3
r=s

γ3(γ2B(r− s))−1+1/(2α) dr ≲∫ d2α/(γ2B)

r=s
γ3γ2Br

−1+1/(2α)
dr ≲ ϵ.

We additionnally bound∫ t− γ2
γ3

r=s+
γ2
γ3

(
γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

×

(
γ3

(
1 + r

1 + s

)−δ

(γ2B(r − s))−1+ 1
2α

)
dr

≲
∫ t− γ2

γ3

r=s+
γ2
γ3

(
γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

×

(
γ3

(
1 + r

1 + s

)−δ

(γ2B(r − s))−1+ 1
2α

)
dr

≲ γ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

∫ t− γ2
γ3

r=s+
γ2
γ3

(
γ3

(
1 + r

1 + s

)−δ+2

(γ2B(r − s))−1+ 1
2α

)
dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

.

Here we used that δ > 2 and the stability condition on γ3 to get that γ3
∫ t− γ2

γ3

r=s+
γ2
γ3

(γ2B(r −

s))−1+ 1
2α dr ≲ γ3

∫ d2α/(γ2B)

r=0
γ2Br

−1+ 1
2α dr ≲ ϵ.

We also write∫ t− γ2
γ3

r=s+
γ2
γ3

(
γ22B(

√
γ3B(1 + t))−4+ 1

α

(
(1 + r)γ3

γ2

)2
)

×

(
γ22B(

√
γ3B(1 + r))−4+ 1

α

(
(1 + s)γ3

γ2

)2
)
dr

≲ γ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2 ∫ t− γ2
γ3

r=s+
γ2
γ3

γ3
γ2B

γ2B(
√
γ3B(1 + r))−2+ 1

α dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

d−1 ×

γ2B × d
α(−1+ 1

α ) if α < 1

γ2B
(

γ2B√
γ3B

)−2+ 1
α

if α > 1

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

.

Here we used the stability condition γ3

γ2B
≲ d−1 and that d−α ≲

√
γ3B
γ2B

≲ 1.
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Finally we only have to bound the following term.∫ t− γ2
γ3

r=s
γ3

(
1+t
1+r

)−δ

(γ2B(t− r))−1+ 1
2α × γ22B(

√
γ3B(1 + r))−4+ 1

α

(
(1+s)γ3

γ2

)2
dr

≲
∫ t− γ2

γ3

r=s

γ3

(
1 + t

1 + r

)−4+ 1
α

(γ2B(t− r))−1+ 1
2α

× γ22B(
√
γ3B(1 + r))−4+ 1

α

(
(1 + s)γ3

γ2

)2

dr

≲ γ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

×
∫ t− γ2

γ3

r=s

γ3(γ2B(t− r))−1+ 1
2α dr

≲ ϵγ22B(
√
γ3B(1 + t))−4+ 1

α

(
(1 + s)γ3

γ2

)2

.

where we used that δ > 4− 1
α , and the stability condition on γ3 for the second integral to be small.

Below we show an intermediary result that gives a lower-bound on the term F ∗K of the Volterra
equation solution.
Proposition H.21. Let α, β with α > 1

4 α, β ̸=
1
2 , 2α+ 2β > 1, α+ 1 > β. Then for any M > 0,

there exists some C > 0 such that for any t ≥ 0, if max{γ2Bt, (
√
γ3Bt)

2} ≤Md2α and γ2Bt ≥ 1,

[F ∗K](t) ≥ 1

C × γ2B
¯̄Kpp(t, 0).

Proof. We remind that under Parametrization H.1
√
γ3B
γ2B

≲ 1. This ensures that 1
γ2B

≲ γ2

γ3
.

Using Propositions H.13, H.14 and H.16 we have precise asymptotics on the forcing function F(t)

for all times. Using these it is clear that for any T ≥ 0 with γ2BT ≥ 1 we have
∫ T

0
F(s) ds ≳ 1

γ2B
.

We now differentiate the two cases t ≲ γ2

γ3
and t ≳ γ2

γ3
for which ¯̄Kpp(t, 0) shows two distinct

behaviors.

For t ≳ γ2

γ3
we know that for any s ≥ 0 with s ≤ t,

K(t, s) ≳
∫ 1√

γ3Bt

M−1/2d−α

γ21BΦσ
12(t, s) dµK(dσ2)

≳
∫ 1√

γ3Bt

M−1/2d−α

γ21B ×
γ3
Bσ2

× dµKpp
(dσ2)

≳ γ3(
√
γ3Bt)

−4+ 1
α

≳ ¯̄Kpp(t, 0).

Similarly if t ≲ γ2

γ3
we write for any s ≥ 0 with s ≤ t

K(t, s) ≳
∫ 1√

γ2Bt

max{M−1/2d−α,

√
γ3B

γ2B }
γ22BΦσ

11(t, s) dµK(dσ2)

≳
∫ 1√

γ2Bt

max{M−1/2d−α,

√
γ3B

γ2B }
γ22B × 1× dµKpp

(dσ2)

≳ γ22B(
√
γ2Bt)

−2+ 1
2α

≳ ¯̄Kpp(t, 0).
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The above directly brings that [F ∗K](t) ≳
(∫ t

0
F(s) ds

)
¯̄Kpp(t, 0) which concludes.

Similarly, we now state an upper-bound result on the convolution between the forcing function and
the kernel function.
Proposition H.22. Let α, β with α > 1

4 α, β ̸=
1
2 , 2α+ 2β > 1, α+ 1 > β. Then for any M > 0,

there exists some C > 0 such that for any t ≥ 0, if max{γ2Bt, (
√
γ3Bt)

2} ≤Md2α and γ2Bt ≥ 1,

[F ∗ ¯̄Kpp](t) ≤ C
(

1

γ2B
¯̄Kpp(t, 0) + F(t)

)
.

Proof. Indeed, we distinguish two cases.

1st case t ≲ γ2

γ3
, then we write

[
¯̄Kpp ∗ F

]
(t) ≲

∫ t

0

γ22Bγ2B(t− s)
−2+1/(2α)

F(s) ds

≲
∫ t/2

0

γ22B(γ2B(t− s)
−2+1/(2α)

F(s) ds+

∫ t

t/2

γ22B(γ2B(t− s)
−2+1/(2α)

F(s) ds

≲ ¯̄Kpp(t, 0)

∫ t

0

F(s) ds+ F(t)

∫ γ2
γ3

0

¯̄Kpp(t, s) ds

≲
1

γ2B
¯̄Kpp(t, 0) + F(t).

Here to bound the forcing function norm, we used that either 2β > 1 and γ2

γ3
≲ d2α

γ2B
⇐⇒(√

γ3B
γ2B

)2
≳ d−2α

∫ γ2
γ3

0

F(s) ds ≲
∫ γ2

γ3

0

F0(s) ds+

∫ γ2
γ3

0

Fpp(s) ds+

∫ γ2
γ3

0

Fac(s) ds

≲ d−2α × d2α

γ2B
+

1

γ2B
+ 12α>1d

−1 1

γ2B
(1 +

(
γ2
γ3

)1/2α

)

≲
1

γ2B
.

When 2β < 1 we do not need to worry about Fac and we write for the F0 term

¯̄Kpp(t, 0)

∫ t

0

F0(s) ds ≲ γ22Bγ2Bt
−2+ 1

2α td−2α−2β+1

≲ γ2γ2Bt
−1+ 1

2α d−2α−2β+1

≲ γ2Bt
−1− 2β−1

2α

≲ F(t)

where we used γ2 ≲ d−(1−2α)+ and γ2Bt ≲ d2α.

Finally, for the pure-point term we write

¯̄Kpp(t, 0)

∫ t

0

Fpp(s) ds ≲ γ22Bγ2Bt
−2+ 1

2α (
1

γ2B
+

1

γ2B
(γ2Bt)

− 2β−1
2α )

≲
1

γ2B
¯̄Kpp(t, 0) + γ2γ2Bt

−2− β−1
α

≲
1

γ2B
¯̄Kpp(t, 0) + F(t)
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where we used that γ2 ≲ d−(1−2α)+ ≲ γ2Bt
1− 1

2α .

2nd case: t ≥ 2γ2

γ3
, we write

[
¯̄Kpp ∗ F

]
(t) ≲

∫ γ2
γ3

s=0

γ22B
√
γ3B(1 + t)

−4+1/α

F(s) ds

+

∫ t− γ2
γ3

s=
γ2
γ3

(
γ3

(
1 + t

1 + s

)−δ

(γ2B(t− s))−1+1/(2α)

+ γ22B(
√
γ3B(1 + t))−4+1/α

(
1 + s
γ2

γ3

)2)
F(s) ds

+

∫ t

s=t− γ2
γ3

γ22Bγ2B(t− s)
−2+1/(2α)

F(s) ds

≲ F(t) +
1

γ2B
¯̄Kpp(t, 0).

Indeed, we used for the first term the same arguments than in the first case to directly obtain∫ γ2
γ3

s=0

γ22B(
√
γ3B(1 + t))−4+1/αF(s) ds ≲

1

γ2B
¯̄Kpp(t, 0) + F(t).

For the last term note that∫ t

s=t− γ2
γ3

γ22B(γ2B(t− s)
−2+1/(2α)

F(s) ds ≲ (

∫ t

t− γ2
γ3

¯̄Kpp(t, s) ds)F(t) ≲ F(t).

The middle term needs more care. For the first part, we used that δ > max{1, 4 − 1
α , 2 +

2β−1
α }.

This ensures that F(s)(1 + s)δ diverges as a power law. Hence we can write∫ t− γ2
γ3

s=
γ2
γ3

γ3

(
1 + t

1 + s

)−δ

(γ2B(t− s))−1+1/(2α)F(s) ds

≲ γ3(1 + t)−δ
[
F(t)(1 + t)δ × t

]
(γ2Bt)

−1+1/(2α)

≲ F(t)× γ3
γ2B

× (γ2Bt)
1/(2α) +

1

γ2B
¯̄Kpp(t, 0)

≲ F(t) +
1

γ2B
¯̄Kpp(t, 0)

where we used ∫ t− γ2
γ3

s=
γ2
γ3

F(s)(1 + s)δ ds ≲ F(t)(1 + t)δ × t.

We additionally used the stability condition γ3

γ2B
≲ d−1 ≲ (γ2Bt)

1
2α .

For the other part we write∫ t− γ2
γ3

s=
γ2
γ3

γ22B(
√
γ3B(1 + t))−4+1/α

(
1 + s
γ2

γ3

)2

F(s) ds

≲ (F(t)× t3(
γ2

γ3

)2 + F(
γ2
γ3

))× γ22B(
√
γ3B(1 + t))−4+1/α

≲ F(t)×
√
γ3B × 1/B(

√
γ3(1 + t))−1+1/α + F(

γ2
γ3

)× ¯̄Kpp(t, 0)

≲ F(t) +
1

γ2B
¯̄Kpp(t, 0).
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Here we wrote that (using γ2B√
γ3B

≳ 1 for the pure-point and absolutely continuous-part terms)

∫ t− γ2
γ3

s=
γ2
γ3

F(s)(1 + s)2 ds ≲ F(t)(1 + t)3 + F(
γ2
γ3

)×
(
γ2
γ3

)2

.

We additionally used in the last step for the first term that either α ≤ 1 and
√
γ3B(1 + t) ≤ dα and√

γ3 = d−1/2−(1−2α)+/2, or α > 1 and
√
γ3Bt ≥ γ2B√

γ3B
≥ 1 and γ3 ≤ 1 to obtain that

F(t)
t3γ23
γ22
× γ22B(

√
γ3B(1 + t))−4+ 1

α ≲ F(t)

√
γ3
B

(
√
γ3B(1 + t))−1+1/α ≲ F(t).

For the second term, we used F(γ2

γ3
) ≲ 1 ≲ 1

γ2B
.

We can now state the main theorem for bounding the loss of DANA-constant.
Theorem H.3 (Bounds for stable algorithm). Let α, β ̸= 1

2 , α > 1
4 , 2α + 2β > 1, α + 1 > β.

Suppose 2δ /∈ N, δ > max{1, 4 − 1
α , 2 +

2β−1
α , 2 − 1

α}. Under Parametrization H.1, there exists
some c > 0 such that if κ1 ≥ (1− 2α)+, κ2 ≥ κ1 − κb + 1, κb ≤ min{κ1, κ2}, γ̃2 ≤ c, γ̃3

γ̃2
≤ c,

then P(t) is bounded and there exists an M > 0 large enough and a constant C̃(α, β,M) such that
if Md2α > γ2Bt, (

√
γ3B(1 + t))2 > 1 then:

1

C̃
×

(
F0(t) + Fac(t) + Fpp(t) +

1

γ2B
¯̄Kpp(t, 0)

)
≤ P(t)

≤ C̃ ×
(
F0(t) + Fac(t) + Fpp(t) +

1

γ2B
¯̄Kpp(t, 0)

)
.

Proof. Upper-bound

We first apply Lemma C.2. Using the bounds on the kernel norm and forcing function convergence
guarantees for c small enough that if κ1 ≥ (1− 2α)+, κ2 ≥ κ1− κb +1, κb ≤ min{κ1, κ2}, γ̃2 ≤
c, γ̃3

γ̃2
≤ c then,

P(t) ≤ C̃ ×
(
F(t) + [ ¯̄Kpp ∗ F](t)

)
.

We only need to estimate [ ¯̄Kpp∗F](t) which was done in Proposition H.22, and obtain for a potentially
different c̃, C̃,

[ ¯̄Kpp ∗ F](t) ≤ C̃ ×
(
F(t) +

1

γ2B
¯̄Kpp(t, 0)

)
.

Lower bound

We know that ∀t ≥ 0, P(t) ≥ F(t)+ [F ∗K](t) and hence only need to lower bound [F ∗K](t). This
was done in Proposition H.21.

I DANA-decaying

Below we introduce the main parametrization for DANA-decaying that will be used throughout this
Section I.
Parametrization I.1. For γ2, c κ constants

γ1 = 1, γ2(t) ≡ γ2, γ3(t)
def
= γ3(1 + t)−κ def

= γ2c(1 + t)−κ. (108)
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Figure 18: Cartoon Plots DANA-constant. Pictures for the scaling laws for DANA-constant in each
of the different phases. When t < d, DANA-constant behaves like SGD/SGD-M. Observe that the
trade off point for compute-optimum changes across phases (see Sec. E for derivations and Table 6).
See Table 10 for summary of asymptotics of Fpp,Fac,F0, and Kpp. This uses DANA-constant with
κ2 = 1 and batch size B = 1.

Assumption 6. In all this section, we suppose 1 > κ > 1
2α with d-independent constant learning

rates γ2 ≍ γ3 ≍ 1, and B = 1. Moreover, we only work above the high-dimensional line 2α > 1
and under the technical assumption β < α+ 1. Finally we suppose 2α+ 2β > 1 and β ̸= 1

2 . We
also suppose δ large enough (independent of d).

We will later heuristically extend the results in this section under this assumption to the general
(DANA) algorithm in Section I.5.

Remark I.1. We supposed α > 1
2 as it will become clear that for α < 1

2 , this algorithm is equivalent
to SGD. Indeed in that case ϑ(t) ≍ 1 + γ2Bt. The scaling γ2 ≍ γ3 ≍ 1 and 1 ≥ κ > 1

2α will imply
the relation between momentum and SGD times for eigenvalue σ2,

√
γ3(t)Bσ(1 + t) ≳

√
γ2Bσ2(1 + t).

We also remind the definition 1 + 2γ2Bt +
(∫ t

0

√
γ3(s)B ds

)2
that will be used throughout this

section.
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I.1 Solutions to the simplified ODE

As before, we work with the simplified ODEs (43) and the resulting forcing function, kernel function
and simplified Volterra equation solution (55).

We now provide explicit estimates for the DANA-decaying solution, Φσ2(t, s), to the simplified
ODEs (43).
Theorem I.1 (Fundamental solutions). We summarize the results of this section below. Suppose that
δ + κ > 1 and suppose that m1−κ ≤ c ≤ 1. Set for convenience

s(t) = c(1 + t)−κ, and m = γ2Bσ
2. (109)

where κ ∈ (0, 1) is constant.

There is a c > 0 so that for all ϵ > 0 there is an m0 sufficiently small so that for all m < m0, the
following hold.

We use the time scale τ = m(1 + t) and

ξ(τ ; τ0) =

∫ τ

τ0

√
s

m
du =

√
c
τ1−κ/2 − τ1−κ/2

0

1− κ/2
m−1/2+κ/2.

We let ξ(τ) = ξ(τ ;m) for short.

There are ω1(ξ) and ω2(ξ) continuously differentiable functions with ω2
1 + ω2

2 bounded away from 0
and above by a constant, and they satisfy(
ω1(ξ)
ω2(ξ)

)
→
(
1
0

)
as ξ → 0 and

(
ω1(ξ)
ω2(ξ)

)
=

√
2

π

(
cos(ξ + ων(0))
sin(ξ + ων(0))

)
+O(ξ−1) as ξ →∞,

for some constant ων(0).

For any s ≥ 0, we use τ0 = m(1 + s) and ξ0 the corresponding value of ξ. Then with ρ = δ/2+κ/4
1−κ/2 ,

we have the following uniform estimate for ξ0 < ϵ(
Φ11(t; s)

(δ+κ−1)2

((1−κ/2)ξ(τ0;0))2
m

γ2
2s(s)

Φ12(t; s)

)
= e−τ (1 + ξ)−2ρ

(
ω1(ξ)

2 +O(ϵ)
ω1(ξ)

2(1− s/t)2 +O(ϵ)

)
+O

(
ϵmδ+κ/2Ω2(τ)e−

∫ τ
0

Ω(u) du
)

where Ω(u) = min{1, (ξ′(u))2}.
(110)

The error term O(ϵ) also vanishes quadratically in the second entry as ξ → 0.

For all τ0 < 1
ϵ with s large enough that ξ0 > ϵ there are other bounded oscillatory ω1, ω2(

Φ11(t; s)
m

γ2
2s(s)

Φ12(t; s)

)
= e−(τ−τ0)

(
1 + ξ

1 + ξ0

)−2ρ(
ω1(ξ; ξ0)

2 +O(ϵ)
ω2(ξ; ξ0)

2 +O(ϵ)

)
+O

(
ϵmδ+κ/2Ω2(τ)e

−
∫ τ
τ0

Ω(u) du
)
.

If τ0 > 1
ϵ (

Φ11(t; s)
m

γ2
2s(s)

Φ12(t; s)

)
=

(
e−(τ−τ0

0

)
+O

(
Ω2(τ)e

−
∫ τ
τ0

Ω(u) du
)
.

We summarize the regimes for this fundamental solution below. In the first training regime, when t is
small (ξ ≪ 1), which is to say

ξ ≍ m1/2(1 + t)1−κ/2 ≪ 1,

we have that the ODEs have not begun moving. On the time scale from ξ ≫ 1 but τ ≪ 1 we are not
yet using the curvature, but we have decay like

ξ−2ρ ≍ m−ρ(1 + t)−δ−κ/2.

Finally once t≫ m−1, there is exponential decay with speed m.

In the remainder of this section, we prove this result.
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Changing variables. We recall (99)

dΦσ2(t)

dt
=



0 0 0
0 −2δ 0
0 0 −δ


1 + t

+

−2γ2Bσ2 0 −2γ3(t)
0 0 2γ1Bσ

2

γ1Bσ
2 −γ3(t) −γ2Bσ2


Φσ2(t).

To simplify the computations, we will additionally do the change of variable Φ̃(t) def
=

 Φ1(t)
1

B2σ4Φ2(t)
1

Bσ2Φ3(t)


on Equation (99) and get the new ODE

dΦ̃(t)

dt
=

 1

1 + t

0 0 0
0 −2δ 0
0 0 −δ

+

−2γ2Bσ2 0 −2γ3Bσ2

0 0 2
1 −γ3Bσ2 −γ2Bσ2

 Φ̃(t). (111)

In terms of the variables m and s we can rewrite the simplified ODE (111) as

dΦ̃(t)

dt
=

 1

1 + t

0 0 0
0 −2δ 0
0 0 −δ

+

−2m 0 −2ms
0 0 2
1 −ms −m

 Φ̃(t). (112)

We now introduce a time change τ(t) def
= m(1 + t) and defining Φ̂(τ)

def
= Φ̃(t), in terms of which we

obtain the new ODE:

dΦ̂(τ)

dτ

def
=

(
R

τ
+A

)
Φ̂(τ) =

1

τ

0 0 0
0 −2δ 0
0 0 −δ

+

−2 0 −2s
0 0 2

m
1
m −s −1

 Φ̂(τ). (113)

Lemma I.1. Suppose that X and Y solve the ODE

d

dτ

(
X
Y

)
=

(
−1 −s
1
m − δ

τ

)(
X
Y

)
. (114)

Then the vector
(
X2, Y 2, XY

)
solves (113). Hence, a fundamental matrix for (113) can be given in

terms of solutions to (114) with initial data at time τ0 given by

(X2, Y 2, XY ) where (X(τ0), Y (τ0)) = (1, 0),

(X2, Y 2, XY ) where (X(τ0), Y (τ0)) = (0, 1/(Bσ2)),

Im(X2, Y 2, XY ) where (X(τ0), Y (τ0)) = (1, i/(Bσ2)).

Proof. We just need to verify that the equation is satisfied by the vector
(
X2, Y 2, XY

)
.

d

dτ

Φ1

Φ2

Φ3

 =
d

dτ

X2

Y 2

XY

 =

 2X dX
dτ

2Y dY
dτ

X dY
dτ + Y dX

dτ

 =

 2X(−1X − sY )
2Y ( 1

mX −
δ
τ Y )

X( 1
mX −

δ
τ Y ) + Y (−1X − sY )


=

 −2Φ1 − 2sΦ3
2
mΦ3 − 2 δ

τΦ2
1
mΦ1 − sΦ2 − (1 + δ

τ )Φ3

 .

This is precisely the equation (113).

To formalize the estimates, we divide the range of τ into three regimes. Set

p =
1/2− κ/2
1− κ/2

< 1. (115)
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• (Entrance) τ < ϵmp : (ξ ≪ 1) Here we will approximate X and Y by simple power
expressions.

• (Transition) ϵmp < τ < 1
ϵm

p : (ξ ≍ 1) Here the fundamental matrix solves a non-
degenerate rescaled ODE, which after changing variables is an approximate solution of the
Bessel equation.

• (Bulk) 1
ϵm

p < τ < 1
ϵ : (ξ ≫ 1 and τ ≪ 1) Here the system develops a very strong

oscillatory behavior which we can describe explicitly.

• (Exponential decay) 1
ϵ ≤ τ ≤ ϵm

1− 1
κ : (τ ≫ 1 and ξ′(τ)≫ 1) Here we will give estimates

showing uniform exponential decay of the fundamental matrix.

• (Slow decay) ϵm1− 1
κ < τ : (ξ′(τ)≪ 1) Here the fundamental matrix continues to decay,

but at a slower stretched-exponential rate.

First change of variables: Isotropic coordinates We start by making a change of variables.
Introduce Y =

√
smY . Then, changing variables from (114) to Y , we get

dY
dτ

=
d

dτ

(√
smY

)
=

d

dτ

(√
sm
)
Y +

√
sm

dY

dτ

=
1

2

ds

dτ

1

s

√
smY +

√
sm

(
1

m
X − δ

τ
Y

)

Since s(t) = c(1 + t)−κ and τ = m(1 + t), we have ds
dτ = −κ s

τ . Thus:

dY
dτ

= − κ

2τ
Y +
√
sm

1

m
X − δ

τ
Y

=
√
sm

1

m
X −

(
δ + κ/2

τ

)
Y.

Therefore, our system becomes:

d

dτ

(
X
Y

)
=

(
−1 −

√
s
m√

s
m − δ+κ/2

τ

)(
X
Y

)
. (116)

We define fundamental matrices of this matrix equation

d

dτ
P(τ ; τ0) =

(
−1 −

√
s
m√

s
m − δ+κ/2

τ

)
P(τ ; τ0), P(τ0; τ0) = Id. (117)

Second change of variables: Rotating frame Define the orthogonal matrixR(τ) by

R(τ ; τ0) =
(
cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

)
, ξ(τ ; τ0) =

∫ τ

τ0

√
s(u)

m
du. (118)

We observe that the matrixR satisfies the following ODE:

d

dτ
R =

(
− sin(ξ) − cos(ξ)
cos(ξ) − sin(ξ)

)
ξ′ = ξ′

(
0 −1
1 0

)
R. (119)

Thus if we set (
U
V

)
= R−1

(
X
Y

)
,
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then differentiating with respect to τ , we get

d

dτ

(
U
V

)
=

d

dτ

(
R−1

(
X
Y

))
=

dR−1

dτ

(
X
Y

)
+R−1 d

dτ

(
X
Y

)
= −R−1 dR

dτ
R−1

(
X
Y

)
+R−1 d

dτ

(
X
Y

)
.

Using equation (119) for dR
dτ and equation (116) for d

dτ

(
X
Y

)
, we obtain:

d

dτ

(
U
V

)
= −R−1

(
ξ′
(
0 −1
1 0

)
R
)
R−1

(
X
Y

)
+R−1

(
−1 −

√
s
m√

s
m − δ+κ/2

τ

)(
X
Y

)
= −ξ′R−1

(
0 −1
1 0

)
R
(
U
V

)
+R−1

(
−1 −

√
s
m√

s
m − δ+κ/2

τ

)
R
(
U
V

)
.

As we have chosen ξ such that ξ′ =
√

s
m , then the off-diagonal terms cancel, and we get

d

dτ

(
U
V

)
= R−1

(
−1 0

0 − δ+κ/2
τ

)
R
(
U
V

)
. (120)

We also introduce the fundamental matrix of this system

d

dτ
U(τ ; τ0) = R−1

(
−1 0

0 − δ+κ/2
τ

)
RU(τ ; τ0), U(τ0; τ0) = Id. (121)

We also record for convenience the relation between the fundamental matrices that we will need,
(with τ = m(1 + t) and τ0 = m(1 + s)):

P(τ ; τ0) = R(τ ; τ0)U(τ ; τ0) and
(
Φ11(t, s)
Φ12(t, s)

)
=

(
P11(τ ; τ0)

P12(τ ; τ0)(γ2s(s))

)
. (122)

To verify the second matrix entry, we use Lemma I.1 to show that

Φ12(t, s) = X2(t) where X(s) = 0 and 1/(Bσ2) = Y (s) = Y(s)/
√
s(s)m.

Thus

Φ12(t, s) = P2
12(τ ; τ0)

s(s)m

(Bσ2)2
= P2

12(τ ; τ0)
γ22s(s)

m
.

Lemma I.2 (Entrance). Suppose δ > 2. In what follows we use ξ(τ) = ξ(τ ;m). There is a c > 0 so
that for all ϵ > 0 sufficiently small, there is an m0, so that if m < m0 and m < τ0 < τ < ϵmp (hence
ξ(τ) ≲ ϵ1−κ/2)

|P(τ ; τ0)11 − e−(τ−τ0)| ≤ ce−(τ−τ0)ξ2(τ) and |P(τ ; τ0)21 − I1(τ ; τ0)| ≤ cI1(τ ; τ0)ξ
2(τ),

where I1(τ ; τ0) =

∫ τ

τ0

(u
τ

)δ+κ/2

ξ′(u)e−(u−τ0) du,

and we note I1(τ ; τ0) ≤ cξ(τ ; τ0). We also have that

|P(τ ; τ0)12 − I2(τ ; τ0)| ≤ cI2(τ ; τ0)ξ
2(τ) and |P(τ ; τ0)22 − (τ/τ0)

−δ−κ/2| ≤ cI2(τ ; τ0)ξ(τ),

where I2(τ ; τ0) =

∫ τ

τ0

(
u

τ0

)−δ−κ/2

ξ′(u)e−(τ−u) du.
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We have that I2(τ ; τ0) ≤ cξ(τ0; 0), and that

I2(τ ; τ0) =
1− κ/2
δ + κ− 1

ξ(τ0; 0)(1 + o(1)),

with the error o(1) tending to 0 as τ/τ0 →∞ but τ → 0.

Consequently, for Φ, we have the following bounds in this regime:

Φ11(t, s) ≲ 1 and Φ12(t, s) ≲ cγ22(1 + s)2(1−κ).

Proof. Under the assumptions of the lemma, we have that for all τ0 < τ < ϵmp

0 ≤ ξ(τ) ≤ 1

1− κ/2
√
cϵ1−κ/2 and ξ′(τ)τ ≤

√
cϵ1−κ/2.

First column. We start with the first column of P(τ ; τ0). The natural candidate for the solution to
the 11 entry is

P(τ ; τ0)11 = e−(τ−τ0).

So we introduce
P(τ ; τ0)11 = e−(τ−τ0)(1 + V(τ)),

where V(τ0) = 0. From (116), we have

V ′(τ) = −ξ′(τ)P21(τ ; τ0).

Integrating by parts, we have

V(τ) = −
∫ τ

τ0

ξ′(u)P21(u; τ0) du

= −ξ(τ)P21(τ ; τ0) +

∫ τ

τ0

ξ(u)

(
ξ′(u)e−(τ−τ0)(1 + V(u))− δ + κ/2

u
P21(u; τ0)

)
du.

As for P21, we have

P21(τ ; τ0) =

∫ τ

τ0

(u
τ

)δ+κ/2

ξ′(u)e−(u−τ0)(1 + V(u)) du.

Let v(τ) = maxτ0≤u≤τ |V(u)|. Then we have a bound

|P21(τ ; τ0)| ≤ (1 + v(τ))

∫ τ

τ0

(u
τ

)δ+κ/2

ξ′(u) du

≤ (1 + v(τ))

1 + δ

(√
cm−1/2+κ/2 uδ+1

τ δ+κ/2

) ∣∣∣∣τ
τ0

≤ (1 + v(τ))

1 + δ

(√
cm−1/2+κ/2τ1−κ/2

)
=

(1 + v(τ))

1 + δ
ξ′(τ)τ.

So we have, substituting these bounds,

|V(τ)| ≤ (1 + v(τ))

1 + δ
ξ(τ)ξ′(τ)τ +

ξ2(τ)

2
(1 + v(τ)) +

ξ2(τ)(δ + κ/2)

2(1 + δ)
(1 + v(τ)),

and hence
|V(τ)| ≤ C(δ, κ)cϵ2−κ(1 + v(τ)),

and so by monotonicity of v, we have

v(τ) ≤ C(δ, κ)cϵ2−κ

1− C(δ, κ)cϵ2−κ
.

This proves the first part of the lemma.
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Second column. We now turn to the second column of P(τ ; τ0). We again introduce a function
V(τ) now defined by

P(τ ; τ0)22 =

(
τ

τ0

)−δ−κ/2

× (1 + V(τ)),

with V(τ0) = 0. Then changing variables, from (117), we have

V ′(τ) = ξ′(τ)

(
τ

τ0

)δ+κ/2

× P12(τ ; τ0). (123)

As for P12, we have from (117)

P12(τ ; τ0) = −
∫ τ

τ0

(
u

τ0

)−δ−κ/2

ξ′(u)e−(τ−u)(1 + V(u)) du.

Let v(τ) = maxτ0≤u≤τ

((
u
τ0

)−δ−κ/2

× |V(u)|
)

. Define

I2(τ ; τ0) =

∫ τ

τ0

(
u

τ0

)−δ−κ/2

ξ′(u)e−(τ−u) du.

Then we have a bound
|P12(τ ; τ0)− I2(τ ; τ0)| ≤ v(τ)ξ(τ).

So we have, integrating (123) and using the above bound,∣∣∣∣∣V(τ)−
∫ τ

τ0

(
u

τ0

)δ+κ/2

ξ′(u)I(u; τ0) du

∣∣∣∣∣ ≤ ξ(τ)2

1 + δ − κ

(
τ

τ0

)δ+κ/2

v(τ).

Using that I is increasing, we have that

|V(τ)| ≤ ξ(τ)

1 + δ − κ

(
τ

τ0

)δ+κ/2

I(τ ; τ0) +
ξ(τ)2

1 + δ − κ

(
τ

τ0

)δ+κ/2

v(τ).

This proves the second part of the lemma. This leads to the inequality

v(τ) ≤ ξ(τ)I(τ ; τ0)

1 + δ − κ− ξ(τ)2
≤ C(δ, κ)ξ(τ)I(τ ; τ0),

(using boundedness of ξ) which in turn gives

|V(τ)| ≤ C(δ, κ)ξ(τ)
(
τ

τ0

)δ+κ/2

I(τ ; τ0),

and which concludes the proof.

Completing the proof. We start with

I2(τ ; τ0) =

∫ τ

τ0

(
u

τ0

)−δ−κ/2

ξ′(u)e−(τ−u) du =

∫ τ

τ0

(
u

τ0

)−δ−κ/2√
cu−κ/2m−1/2+κ/2e−(τ−u) du.

Dropping the exponential, we therefore have

I2(τ ; τ0) ≤
τ−δ−κ+1
0

(δ + κ− 1)τ
−δ−κ/2
0

√
cm−1/2+κ/2

= (δ + κ− 1)−1
√
cm−1/2+κ/2τ

−κ/2+1
0 =

1− κ/2
δ + κ− 1

ξ(τ0; 0).

Moreover, this inequality becomes an asymptotic when τ/τ0 →∞ but τ → 0.

Turning to the claims on Φ, in terms of P (122), we have (with τ = m(1 + t) and τ0 = m(1 + s))

Φ11(t, s) = P2
11(τ ; τ0) ≲ 1.
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Using ξ(τ0) ≲
√
cm(1 + s)1−κ/2 and s(s) = c(1 + s)−κ

P2
12(τ ; τ0)

γ22s(s)

m
≲ ξ(τ0)

2 γ
2
2s(s)

m
≲ cγ22(1 + s)2(1−κ)

which concludes the proof.

Lemma I.3 (Transition). For any ϵ > 0, there is an m0, an M1 > 0 and M2 > 0 so that if m < m0

so that

1. Uniformly for ϵmp < τ0 < τ < 1
ϵm

p, the fundamental matrices

∥P(τ ; τ0)∥+ ∥P−1(τ ; τ0)∥ ≤M1.

Moreover, the fundamental matrix is uniformly close to an explicit expression involving
Bessel functions.

2. For τ0 < ϵ2mp,(
P11(τ ;m)

δ+κ−1
(1−κ/2)ξ(τ0;0)

P12(τ ;m)

)
=

(
2

π

) 1
2

ξ−ρ

((
cos(ξ + ων(0))
cos(ξ + ων(0))

)
+O(ϵ) +O(ξ−1)

)
.

In this regime, |ξ| is bounded above by a constant depending only on ϵ and not on m.

Proof. Starting from (116), we have

d

dτ

(
X
Y

)
=

(
−1 −ξ′(τ)
ξ′(τ) − δ+κ/2

τ

)(
X
Y

)
.

We change time to ξ, which leads to

d

dξ

(
X
Y

)
=

(
−1/ξ′(τ) −1

1 − δ+κ/2
τξ′(τ)

)(
X
Y

)
.

We have by definition that

ξ = ξ(τ ; τ0) =
√
c

(
τ1−κ/2 − τ1−κ/2

0

)
1− κ/2

m−1/2+κ/2.

Hence solving for this, we have

τ1−κ/2 =
ξ√
c
m1/2−κ/2(1− κ/2) + τ

1−κ/2
0 .

We also have that

τξ′(τ) =
√
cτ1−κ/2m−1/2+κ/2 = ξ(1− κ/2) + τ

1−κ/2
0 m−1/2+κ/2 def

= (ξ + ξ0)(1− κ/2).
We note that 1/ξ′(τ) = O(mp) and hence, in conclusion,

d

dξ

(
X
Y

)
=

(
O(mp) −1

1 − a
ξ+ξ0

)(
X
Y

)
where a =

δ + κ/2

1− κ/2
> 1.

We will use continuity of the fundamental solution in the limit as m→ 0 to solve the equation (note
that |ξ| remains bounded independent of m). Therefore, it suffices to solve the equation where we
have taken this error term to 0. As a second order differential equation in ξ, this is

X ′′(ξ) +
a

ξ + ξ0
X ′(ξ) +X(ξ) = 0.

From [37, (10.13.4)], with ν = (a− 1)/2 > 0 we have the solutions

X(ξ) = c1(ξ + ξ0)
−νJν(ξ + ξ0) + c2(ξ + ξ0)

−νYν(ξ + ξ0)

where Jν and Yν are Bessel functions of the first and second kind, respectively. This leads to the
claimed estimates on the fundamental matrix P(τ ; τ0) and an explicit expression in terms of Bessel
functions.
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Matching solutions from the entrance regime. From the initial conditions which come from
Lemma I.2, in the case that we start with (X(0),Y(0)) = (1, 0) we have with s corresponding to ϵmp

that X(s) = 1 +O(ϵ) and Y(s) = O(ϵ). Now on sending ξ0 → 0 we conclude that c1 = 1 +O(ϵ)
and c2 = O(ξ2ν0 ) (using [37, (10.7.3)]).

If we instead start with (X(0),Y(0)) = (0, 1) we now get at s (provided τ0/(ϵmp) < ϵ)

X(s) =
1− κ/2
δ + κ− 1

ξ(τ0; 0)(1 +O(ϵ))

(taking the asymptotic of I2) whereas

Y(s) = O(ξ2(τ0; 0)),

which therefore leads to the same c1 and c2 as in the first case, up to rescaling the solution by
1−κ/2
δ+κ−1ξ(τ0; 0).

For Y , we have
dY
dξ

+
a

ξ + ξ0
Y = X.

Using the integrating factor µ(ξ) = (ξ + ξ0)
a, we multiply both sides:

(ξ + ξ0)
a dY
dξ

+ a(ξ + ξ0)
a−1Y = (ξ + ξ0)

aX.

The left side is the derivative of (ξ + ξ0)
aY , so

d

dξ
((ξ + ξ0)

aY) = (ξ + ξ0)
aX.

Therefore

Y(ξ) = (ξ + ξ0)
−a

(
ξa0Y(0) +

∫ ξ

0

(s+ ξ0)
aX(s) ds

)
.

Using [37, (10.22.1)], we have∫ ξ

0

(s+ ξ0)
aX(s) ds = c1(ξ + ξ0)

ν+1Jν+1(ξ + ξ0) + c2(ξ + ξ0)
ν+1Yν+1(ξ + ξ0) +O(1),

and hence

Y(ξ) = c1(ξ + ξ0)
−νJν+1(ξ + ξ0) + c2(ξ + ξ0)

−νYν+1(ξ + ξ0) +O((ξ + ξ0)
−a).

We recall the following large ξ asymptotic of the Bessel function:

From [37, (10.17.2)], we have

ω(z) = z − 1

2
νπ − 1

4
π,

and from [37, (10.17.3)], as z →∞ with ν fixed,

Jν(z) ∼
(

2

πz

) 1
2

cosων +O(z−3/2),

Yν(z) ∼
(

2

πz

) 1
2

sinων +O(z−3/2).

Hence we have (for large ξ) and with ων = ω(ξ + ξ0)

X(ξ) =

(
2

π

) 1
2

(ξ + ξ0)
−ν−1/2

(
(1 +O(ϵ)) cosων +O(ϵ) sinων +O(ξ−1)

)
,

Y(ξ) =
(
2

π

) 1
2

(ξ + ξ0)
−ν−1/2

(
(1 +O(ϵ)) cosων+1 +O(ϵ) sinων+1 +O(ξ−1)

)
.

Note that sin(ων+1) = − cos(ων) and cos(ων+1) = sin(ων).
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Finally, we note that

ν +
1

2
=
a

2
=
δ/2 + κ/4

(1− κ/2)
.

We also note that ξ0 = m1/2 which tends to 0.

Lemma I.4 (Bulk). For any ϵ, c > 0, there is an m0, if m < m0 so that

∥P(τ ; τ0)− e−(τ−τ0)/2(τ/τ0)
−δ/2−κ/4R(τ ; τ0)∥ ≤ ce−(τ−τ0)/2(τ/τ0)

−δ/2−κ/4.

Proof. We recall that the range of τ is given by
1

ϵ
mp ≤ τ < 1

ϵ
.

We first estimate U(τ ; τ0), recalling that

d

dτ
U(τ ; τ0) = R−1

(
−1 0

0 − δ+κ/2
τ

)
RU(τ ; τ0).

Using trig identities, there are matrices with non-constant trig polynomialsWi(ξ) (having no constant
terms) so that

R−1

(
−1 0

0 − δ+κ/2
τ

)
R =

((
−1
2
− δ/2 + κ/4

τ

)
Id +W1(ξ) +

1

τ
W2(ξ)

)
. (124)

We need an integration-by-parts estimate for oscillatory integrals.

Lemma I.5 (Integration-by-parts estimate). Let p be a positive integer. There is a constant C(κ) so
that for any absolutely continuous g,∣∣∣∣∫ τ

τ0

eipξ(u)g(u) du

∣∣∣∣ ≤ C(κ)

ξ′(τ0)

(∫ τ

τ0

|g′(u)| du+ sup
u∈[τ0,τ ]

|g(u)|

)
.

Proof. We recall that ξ′(τ) = τ−κ/2m−1/2+κ/2. Applying integration by parts, we have∫ τ

τ0

eipξ(u)g(u) du =

∫ τ

τ0

eipξ(u)
ipξ′(u)g(u)

ipξ′(u)
du

=
eipξ(u)g(u)

ipξ′(u)

∣∣∣∣τ
τ0

−
∫ τ

τ0

eipξ(u)
d

du

(
g(u)

ipξ′(u)

)
du.

Expanding the derivatives and bounding, brings us to the claim.

We now divide the range of time into two parts.

Large τ : τ > τ0 > ϵ. Suppose that τ > τ0 > ϵ as well. By standard approximation arguments, it
follows that for any bounded continuous function f on [−1/ϵ, 1/ϵ],∣∣∣∣∣

∫ 1/ϵ

−1/ϵ

eipξ(u)f(u) du

∣∣∣∣∣→ 0 and

∣∣∣∣∣
∫ 1/ϵ

−1/ϵ

eipξ(u)u−1f(u) du

∣∣∣∣∣→ 0

as m→ 0. It follows from (124) that the matrix converges weak-∗ as m→ 0.

R−1(τ ; 0)

(
−1 0

0 − δ+κ/2
τ

)
R(τ ; 0) m→0−−−→

(
−1
2
− δ/2 + κ/4

τ

)
Id.

Solving differential equations is continuous with respect to weak-∗ convergence, so it follows that

U(τ ; 0) m→0−−−→ e−τ/2τ−δ/2−κ/4Id.

And therefore for any c > 0 (including those which depend on ϵ) there is m sufficiently large so that

∥U(τ ; 0)eτ/2τ δ/2+κ/4 − Id∥ ≤ c and ∥U(τ ; 0)− e−τ/2τ−δ/2−κ/4Id∥ ≤ c.
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Small τ : 1
ϵm

p < τ < ϵ. We choose 1
ϵm

p ≤ τ0 < τ < ϵ. Using (124), we change variables to let

V(τ ; τ0) = U(τ ; τ0)e(τ−τ0)/2(τ/τ0)
δ/2+κ/4.

Then we have
d

dτ
V =

(
W1(ξ) +

1

τ
W2(ξ)

)
(V).

Hence if we let ∥ · ∥max be the maximum entry norm, and we apply Lemma I.5 entrywise, we get∫ τ

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

≤ C(κ)

ξ′(τ0)

(∫ τ

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

du+ sup
u∈[τ0,τ ]

∥V(u; τ0)∥max

)

+
C(κ)

ξ′(τ0)

(∫ τ

τ0

∥∥∥∥ d

du

V(u; τ0)
u

∥∥∥∥
max

du+ sup
u∈[τ0,τ ]

∥∥∥∥V(u; τ0)u

∥∥∥∥
max

)
.

(125)

Now we use that
d

du

(
V(u; τ0)

u

)
=

1

u

d

du
(V(u; τ0))−

1

u2
V(u; τ0).

And hence∥∥∥∥ d

du

(
V(u; τ0)

u

)∥∥∥∥
max

≤ 1

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

+
1

u2
sup

u∈[τ0,τ ]

∥V(u; τ0)∥max .

We also use that

sup
u∈[τ0,τ ]

∥V(u; τ0)∥max ≤ 1 +

∫ τ

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

du.

Combining all of these estimates, and rearranging (125), we have(∫ τ

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

du

)(
1− 2C(κ)

ξ′(τ0)
− 2C(κ)

ξ′(τ0)τ0

)
≤ C(κ)

ξ′(τ0)
.

Recall that
ξ′(τ0) = τ

−κ/2
0 m−1/2+κ/2,

and hence using that 1
ϵm

p ≤ τ0

ξ′(τ0)τ0 = τ
1−κ/2
0 m−1/2+κ/2 ≥ ϵ−1+κ/2m(1−κ)/2pm−1/2+κ/2 ≥ ϵ−1+κ/2.

We conclude that for ϵ sufficiently small,(∫ τ

τ0

∥∥∥∥ d

du
V(u; τ0)

∥∥∥∥
max

du

)
≤ 2C(κ)τ

κ/2
0 m1/2−κ/2.

This leads to the estimate

∥V(τ ; τ0)− Id∥max ≤ 2C(κ)τ
κ/2
0 m1/2−κ/2,

and hence for U we have

∥U(τ ; τ0)− e−(τ−τ0)/2(τ/τ0)
−δ/2−κ/4Id∥ ≤ 2C(κ)τ

κ/2
0 m1/2−κ/2e−(τ−τ0)/2(τ/τ0)

−δ/2−κ/4.

Combining the estimates. Using that P and U only differ by a rotation, we conclude that for any c,
for any τ0 < τ in the regime.

∥P(τ ; τ0)− e−(τ−τ0)/2(τ/τ0)
−δ/2−κ/4R(τ ; τ0)∥ ≤ ce−(τ−τ0)/2(τ/τ0)

−δ/2−κ/4.

Finally, for larger τ, while sharp asymptotics are possible, it suffices to bound the decay of the
solutions. We do this with two separate estimates.
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Lemma I.6 (Exponential Decay). Suppose δ > 2. There is a constant c > 0 and ϵ0 so that for all
ϵ < ϵ0 and τ > τ0 >

1
ϵ , and ξ′(τ) =

√
cτ−κ/2m−1/2+κ/2 ≥ 1/ϵ

∥P(τ ; τ0)∥ ≤ (1 + cϵ)e−(1/2−cϵ)(τ−τ0)(τ/τ0)
−δ/2−κ/4.

Proof. We compute the eigenvalues of the matrix that appears in (117). We have

λ± =
−1− δ+κ/2

τ ±
√

(1 + δ+κ/2
τ )2 − 4(ξ′)2

2
.

In particular in the regime in which we operate, we have the eigenvalues are complex conjugate pairs
(as ξ′ is large), and in fact we have |λ±−±iξ′| ≤ 1. We introduce a change of basis matrix H so that

d

dτ
P = H−1

(
λ+ 0
0 λ−

)
HP.

We note that this eigenvector matrix is within ϵ of
(
1 i
i 1

)
, owing to the magnitude of ξ′. In

particular we have H∗H = Id +O(ϵ) and furthermore ∥H ′∥ = O(ϵ). Hence differentiating

d

dτ
(P∗H∗HP) = (P∗H∗(Λ + Λ∗)HP) +

(
P∗
(

d

dτ
(H∗H)

)
P
)
.

Thus for any fixed vector v ∈ C2 if w(τ) = ∥HPv∥2

d

dτ
w ≤

(
−1− δ+κ/2

τ +O(ϵ)
)
w,

and hence
∥Pv∥2 ≤ (1 +O(ϵ))e−(1−ϵ)(τ−τ0)(τ/τ0)

−δ−κ/2.

Lemma I.7 (Slow Decay). Suppose δ > 2. There is a constant c > 0 and ϵ0 so that for all ϵ < ϵ0
and τ > τ0 >

1
ϵ ,

∥P(τ ; τ0)∥ ≤ (τ/τ0)
−δ/2−κ/4.

We further have an improved estimate when ξ′(τ0) ≤ 1
4 is small

max {|P1,1(τ ; τ0)| , |P1,2(τ ; τ0)|} ≤ e−(τ−τ0) + C(κ, δ) (ξ′(τ))
2
exp

(∫ τ

τ0

−(ξ′(u))2 du
)
.

Proof. From the equation (120) we have

d

dτ

(
U2(τ ; τ0) + V 2(τ ; τ0)

)
=
(
U V

)
R⊤

(
−1 0

0 − δ+κ/2
τ

)
R
(
U
V

)
.

By assumption we have τ > 1
ϵ , and hence the matrix in the middle is dominated by − δ+κ/2

τ I .
Therefore

d

dτ

(
U2(τ ; τ0) + V 2(τ ; τ0)

)
≤ −δ + κ/2

τ

(
U2(τ ; τ0) + V 2(τ ; τ0)

)
.

Integrating this from τ0 to τ we get for any unit vector v ∈ R2

∥U(τ ; τ0)v∥2 ≤ (τ/τ0)
−δ−κ/2,

and hence the operator norm of U decays the same way. Since P is a rotation of U , it decays at the
same rate.
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Improved estimate. We start with (117)

d

dτ

(
X
Y

)
=

(
−1 −ξ′

−ξ′ − δ+κ/2
τ

)(
X
Y

)
.

We set

λ± =
−1±

√
1− 4(ξ′)2

2
,

where we note the radical is real for the regime chosen and it approaches 1 as ξ′ → 0. Define W± by

W± = X +
√
λ∓/λ±Y.

From a direct computation
d

dτ
log(λ−/λ+) =

κ

τ

1√
1− 4(ξ′)2

.

Hence we get
d

dτ
W± = λ±W± + (W+ −W−)O(1/τ),

where O(1/τ) is bounded by C(κ, δ)/τ . Uniformly over the range of τ considered, we can bound
1
u ≤ ϵξ

′(u), and so

d

dτ

(
W 2

+ +W 2
−
)
≤ 2

(
λ+ +

C(κ, δ)

τ

)(
W 2

+ +W 2
−
)
≤ 2

(
−(ξ′(τ))2

) (
W 2

+ +W 2
−
)

Integrating from a τ0 with ξ′ at τ0 at most 1
4 ,

(
W 2

+ +W 2
−
)
(τ) ≤

(
W 2

+ +W 2
−
)
(τ0) exp

(
2

∫ τ

τ0

−(ξ′(u))2 du
)
.

We have

Y(τ) =
√
λ+λ−

W+ −W−

λ+ − λ−
,

so that for an absolute constant C > 0

|Y(τ)| ≤ Cξ′(τ)
√(

W 2
+ +W 2

−
)
(τ)

≤ Cξ′(τ)
√(

W 2
+ +W 2

−
)
(τ0) exp

(∫ τ

τ0

−(ξ′(u))2 du
)
.

Returning to the differential equation,

d

dτ
(eτX(τ)) = −ξ′(τ)eτY(τ).

Integrating both sides and bounding, we arrive at

|X(τ)| ≤ |X(τ0)|e−(τ−τ0)

+ C (ξ′(τ))
2
√(

W 2
+ +W 2

−
)
(τ0) exp

(∫ τ

τ0

−(ξ′(u))2 du
)
.

I.2 Computing the forcing function

In this section, we prove the scaling law for DANA-decaying as parametrized in Parametrization I.1
using the estimates in Theorem I.1.

We begin by estimating the forcing function.
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Proposition I.1 (Forcing function). Let α > 1
2 , 2α + 2β > 1, α, β ̸= 1

2 , α + 1 > β. Suppose

that 2ρ
def
=

δ+ 1
4α

1− 1
4α

> 2α+2β−1
α . Moreover, denote ϑ(t)

def
= 1 + 2γ2Bt +

(∫ t

0

√
γ3(s)B ds

)2
≍

1+
(∫ t

0

√
γ3(s)B ds

)2
and suppose Parametrization I.1 holds. Then there exists some C(α, β) > 0

such that for any t ≥ 0 and d large enough

1

C

(
F0(t) + Fpp(t) + Fac(t)

)
≤ F(t) ≤ C

(
F0(t) + Fpp(t) + Fac(t)

)

where

F0 ≍ d−2α+(1−2β)+ , Fpp(t) ≍ ϑ(t)−1− 2β−1
2α ,

and Fac(t)


≍ ϑ(t)−1+ 1

2α , if 2α > 1, 2β > 1

≲ F0, if 2α < 1, 2β > 1

= 0, else.

Proof. We define F0,Fpp,Fac as in Section D and use the estimate on Φσ2

11 (t, 0) from Theorem I.1
and more precisely Equation (110). F0 is unchanged, however for example for Fpp(t) we compute

Fpp(t)
def
=

∫ 1

0

σ1+ 2β−1
α

(
e−γ2Bσ2(1+t)(1 +

√
γ2cBσ2

1− κ
2

((1 + t)1−
κ
2 − 1))−2ρ

+O(ϵ(γ2Bσ2)δ+
κ
2 ((γ2Bσ

2(1 + t)) ∧ 1)−δ−κ3
2

)

≍
∫ min{ 1√

γ2Bt
, 1√

γ2Bc(1+t)
1−κ

2
,1}

σ=0

σ1+ 2β−1
α dσ

≍ ϑ(t)−1− 2β−1
2α ,

where we used that −2ρ + 1 − 2β−1
α < −1 ⇐⇒ 2ρ > 2α+2β−1

α . A similar computation on Fac

gives the result, with the additional condition 2ρ > 2 − 1
α which is automatically satisfied since

2α+2β−1
α > 2− 1

α .

Finally, to bound F using F0(t)+Fpp(t)+Fac(t) we proceed with a similar proof as Proposition H.16
by noting that in the range of interest (integral on second line), Φσ2

11 (t, 0) satisfies the hypothesis in
Proposition D.13 (it is constant).

I.3 Stability condition for DANA-decaying.

We can now prove a stability condition for DANA-decaying.
Proposition I.2 (Stability of DANA-decaying using Parametrization I.1 under Assumption 6). Con-
sider Parametrization I.1 under Assumption 6. Suppose that

2ρ
def
=
δ + 1

4α

1− 1
4α

> max

{
2α+ 2β − 1

α
, 4− 1

α

}
and δ +

κ

2
> 1. (126)

Then we have for any ϵ > 0 that there exists g(κ, ϵ) > 0 and d0 large enough, such that for any
d ≥ d0 if γ2 = g and c ≤ g, then supt≥0

∫ t

0
K(t, s) ds < ϵ. In particular, since F(t) is bounded

(indep of d), we have supd≥d0
∥P∥∞ <∞.

Proof. We again consider the estimates in Theorem I.1. The goal is to have sufficient conditions so
that

∫ t

0
K(t, s) ds < ϵ for any t ≥ 0.
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We compute the first term by bounding the oscillatory ω1(ξ, ξ0) by constants and 1+ξ
1+ξ0

≤ 1 to get
that Φ11(t, s) ≲ e−(τ(t)−τ(s)). For M > 0 large,∫ t

0

K1(t, s) ds ≲ γ22B

∫ t

0

∫ 1

σ= 1
M d−α

σ3− 1
α e−γ2Bσ2(t−s) dσ ds

+ γ22B

∫ t

s=0

∫ 1

σ=

√
γ3(t)B

γ2B

σ3− 1
α

(√γ3(t)B
γ2Bσ

)4
e−γ3(t)/γ2(t−s) dσ ds

≲ γ2

∫ 1

σ= 1
M d−α

σ1− 1
α [1− e−γ2Bσ2t] dσ + γ2

∫ 1

σ=

√
γ3(t)B

γ2B

γ2σ
1−1/α dσ

≲ γ2.

Here we used that
∫ t

s=0
e−γ3(t)/γ2(t−s) ds ≲ γ2

γ3(t)
and that

(√
γ3(t)B

γ2Bσ

)4
≲
(√

γ3(t)B

γ2Bσ

)2
=

γ3(t)
γ2

1
γ2Bσ2 .

For the second term we do the same to obtain that Φ12(t, s) ≲ e−(τ(t)−τ(s)) γ3(s)
Bσ2 .

We write for γ2B(1 + t) ≲ d2α∫ t

0

K2(t, s) ds ≲ B

∫ t

0

∫ 1

σ= 1
M d−α

σ3− 1
α
γ3
Bσ2

(1 + s)−κe−γ2Bσ2(t−s) dσ ds

+B

∫ t

0

∫ 1

σ=

√
γ3(t)B

γ2B

σ3− 1
α

(√γ3(t)B
γ2Bσ

)4 γ3
Bσ2

(1 + s)−κe−γ3(t)(t−s)/γ2 dσ ds

≲ γ3

∫ 1

σ= 1
M d−α

σ1− 1
α min{(1 + t)−κ 1

γ2Bσ2
, (1 + t)−κ+1} dσ

≲ γ3

∫ 1√
γ2B(1+t)

σ= 1
M d−α

σ1− 1
α (1 + t)−κ+1 dσ + γ3

∫ 1

1√
γ2B(1+t)

(1 + t)−κσ
−1− 1

α

γ2B
dσ

≲ γ3(1 + t)−κ+1(γ2B(1 + t))−1+ 1
2α +

γ3
γ2B

(1 + t)−κ(γ2B(1 + t))
1
2α .

Here we bounded for σ ≥
√

γ3(t)B

γ2B
,∫ t

0

σ3− 1
α

(√γ3(t)B
γ2Bσ

)4 γ3
Bσ2

(1 + s)−κe−γ3(t)(t−s)/γ2 ds

≲ min{ γ2
γ3(t)

(√γ3(t)B
γ2Bσ

)4
, γ3(t)t}

≲ min{(1 + t)−κ 1

γ2Bσ2
, (1 + t)−κ+1}.

When γ2B(1 + t) ≳ d2α the first term vanishes and we obtain∫ t

0

K2(t, s) ds ≲
γ3
γ2B

(1 + t)−κ

∫ 1

1
M d−α

σ−1− 1
α dσ

≲
γ3
γ2B

(1 + t)−κ × d.

Evaluating at the worst case t ≍ d2α

γ2B
yields the stability condition

γ3
γ2B

(
d2α

γ2B

)−κ

× d ≲ 1. (127)
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I.4 Kernel function

Now that we have shown stability of Parametrization I.1 under Assumption 6, we can proceed with
computing the kernel function. For that we define upper on the solutions of the ODE:

Φ̄σ
11(t, s)

def
= e−(τ(t)−τ(s))

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

and Φ̄σ
12(t, s)

def
=


e−(τ(t)−τ(s))

(
1+ξ(t)
1+ξ(s)

)−2ρ
γ3(s)
Bσ2 +Ω(t)2e

−
∫ τ
τ0

Ω(u) du
(

1+ξ(t)
1+ξ(s)

)−2ρ

if ξ(s) > 1

e−(τ(t)−τ(s))
(

1+ξ(t)
1+ξ(s)

)−2ρ
γ3(s)
Bσ2 (σ

√
γ3(s)B(1 + s))2 +Ω(t)2e

−
∫ τ
τ0

Ω(u) du
(

1+ξ(t)
1+ξ(s)

)−2ρ

if ξ(s) ≤ 1.

We define accordingly for all t ≥ s ≥ 0

K̄1(t, s)
def
=

∫ 1

0

γ22BΦ̄σ
11(t, s) dµK(σ2)

K̄2(t, s)
def
=

∫ 1

0

γ21BΦ̄σ
12(t, s) dµK(σ2)

K̄(t, s)
def
= K̄1(t, s) + K̄2(t, s),

K̄1
pp(t, s)

def
=

∫ 1

0

γ22BΦ̄σ
11(t, s) dµKpp

(σ2)

K̄2
pp(t, s)

def
=

∫ 1

0

γ21BΦ̄σ
12(t, s) dµKpp

(σ2)

and K̄pp(t, s)
def
= K̄1

pp(t, s) + K̄2
pp(t, s).

Proposition I.3 (Upper-bound on Kernel). Consider Parametrization I.1 under Assumption 6. Then
an upper-bound on the kernel function is

K(t, s) ≲ ¯̄K1
pp(t, s) +

¯̄K2
pp(t, s)

where for some δ̃ with δ̃ δ→∞→ ∞

¯̄K1
pp(t, s) = γ22B

(
(1 + γ2B(t− s))−2+ 1

2α

(
1 + t

1 + s

)−δ̃

+ (
√
γ2cB(1 + t)1−

κ
2 )−4+ 1

α

)
,

¯̄K2
pp(t, s) = γ2c(1 + s)−κ

(
(1 + (γ2B(t− s)))−1+ 1

2α

(
1 + t

1 + s

)−δ̃

+

(
√
γ2cB(1 + t)1−

κ
2 )−4+ 1

α (
√
γ3(s)B(1 + s))2

)
.

Proof. We know since µK is a positive measure and Φσ
11(t, s) ≲ Φ̄σ

11(t, s), Φ
σ
12(t, s) ≲ Φ̄σ

12(t, s)
that

K(t, s) ≲ K̄(t, s). There remains to upper-bound K̄1(t, s), K̄2(t, s). For that, notice that since
Φ̄σ2

11 (t, s), Φ̄
σ2

12 (t, s) are well-behaved in the σ variable, then using Proposition D.14 and by a similar
proof as in Proposition H.19, we have ∀t ≥ s ≥ 0

K̄1(t, s) ≲ K̄1
pp(t, s)

K̄2(t, s) ≲ K̄2
pp(t, s).
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We only need to upper-bound K̄1
pp(t, s), K̄

2
pp(t, s). For the first term we have in the case

√
γ3(t)B

γ2B
≳

1√
γ3(s)B(1+s)

(the other cases can be handled similarly)

K̄1
pp(t, s) ≲ γ22B

∫ 1√
γ2cB(1+t)

1−κ
2

d−α

σ3− 1
α e−γ2Bσ2(t−s) dσ

+ γ22B

∫ 1√
γ2cB(1+s)

1−κ
2

1√
γ2cB(1+t)

1−κ
2

σ3− 1
α e−γ2Bσ2(t−s)(σ

√
γ3(t)Bt)

−(δ+κ
2 ) dσ

+ γ22B

∫ √
γ3(t)B

γ2B

1√
γ2cB(1+s)

1−κ
2

σ3− 1
α e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−(δ+κ
2 )

dσ

+ γ22B

∫ 1

√
γ3(t)B

γ2B

σ3− 1
αΩ(t)2e

−
∫ τ
τ0

Ω(u) du

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

dσ

≲ γ22B

(
(1 + γ2B(t− s))−2+ 1

2α

(
1 + t

1 + s

)−δ̃

+ (
√
γ2cB(1 + t)1−

κ
2 )−4+ 1

α

)
.

Here we made the change of variable u = σ
√
γ3(t)Bt. Notice that the integral behaves as

u3−
1
αu−(δ+κ/2). It is integrable for δ large enough, ie δ + κ/2 > 4− 1

α . We also computed

∫ τ

τ0

(ξ′(u))2 du =

∫ γ2Bσ2(1+t)

γ2Bσ2(1+s)

γ3(t(u))

γ22Bσ
2

du

≍ γ2Bσ2
[γ3(t)(1 + t)

γ22Bσ
2

]t
s

where we used dt(u)
du = 1

γ2Bσ2 since u = γ2Bσ
2t.

This allowed to bound the non-exponential term as

∫ 1

√
γ3(t)B

γ2B

σ3− 1
αΩ(t)2e

−
∫ τ
τ0

Ω(u) du

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

dσ

≲
∫ 1

√
γ3(t)B

γ2B

σ3− 1
α

(√γ3(t)B
γ2Bσ

)4
e−(γ3(t)(t−s))/γ2

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

dσ

≲ e−(γ3(t)t−γ3(s)s)/γ2

(√γ3(t)B
γ2B

)4( 1 + t

1 + s

)−δ̃ ∫ 1

√
γ3(t)B

γ2B

σ−1− 1
α dσ

≲
(√γ3(t)B

γ2B

)4− 1
α

(
1 + t

1 + s

)−δ̃

e−(γ3(t)(t−s))/γ2

≲ (γ2B(t− s))−2+ 1
2α

(
1 + t

1 + s

)−δ̃

.

Indeed, when γ3(t)(t−s)
γ2

≳ 1 we know that e−
γ3(t)(t−s)

γ2 ≲
(

γ3(t)(t−s)
γ2

)−2+ 1
2α

and when γ3(t)(t−s)
γ2

≲

1 we have
(√

γ3(t)B

γ2B

)4− 1
α

≲ (γ2B(t− s))−2+ 1
2α . Hence the error term is absorbed into the other

terms. We additionally used that
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(
1 + ξ(t)

1 + ξ(s)

)−2ρ

≲

(
1 + ξ(t)

ξ(s)

)−2ρ

+

(
1 + ξ(t)

1

)−2ρ

≲

(
1 + t

1 + s

)−(δ+κ
2 )

+ ξ(t)−2ρ

≲

(
1 + t

1 + s

)−(δ+κ
2 )

+ t−(1−κ3)2ρ

≲

(
1 + t

1 + s

)−δ̃

.

where δ̃ can be chosen arbitrarily large by choosing δ arbitrarily large.

We proceed similarly for the second term

K̄2
pp(t, s) ≲ B

∫ 1√
γ2cB(1+t)

1−κ
2

d−α

σ3− 1
α
γ2c

Bσ2
e−γ2Bσ2(t−s)(1 + s)−κ(σ

√
γ3(s)Bs)

2 dσ

+B

∫ 1√
γ2cB(1+s)

1−κ
2

1√
γ2cB(1+t)

1−κ
2

σ3− 1
α e−γ2Bσ2(t−s)(σ

√
γ3(t)Bt)

−(δ+κ
2 )
γ2c

Bσ2
(1 + s)−κ(σ

√
γ3(s)Bs)

2 dσ

+B

∫ 1

1√
γ2cB(1+s)

1−κ
2

σ3− 1
α e−γ2Bσ2(t−s)

(
1 + t

1 + s

)−(δ+κ
2 ) γ2c

Bσ2
(1 + s)−κ dσ

+B

∫ 1

√
γ3(t)B

γ2B

σ3− 1
αΩ(t)2e

−
∫ τ
τ0

Ω(u) du

(
1 + ξ(t)

1 + ξ(s)

)−2ρ
γ3(s)

Bσ2
dσ

≲ γ2c(1 + s)−κ

(
(1 + γ2B(t− s))−1+ 1

2α

(
1 + t

1 + s

)−δ̃

+ (
√
γ3(s)B(1 + s))2(

√
γ3B(1 + t)1−

κ
2 )−4+ 1

α

)
.

Here in the second integral we made the change of variable u =
√
γ3(t)Bt. We used that δ + κ/2 >

4− 1
α for the integral to converge.

Proposition I.4 (Lower bound on Kernel). Consider Parametrization I.1 under Assumption 6. Then
a lower bound on the kernel function is ∀t ≥ s ≥ 0

K(t, s) ≳ γ22B(
√
γ2cB(1 + t)1−

κ
2 )−4+ 1

α .

Proof. Note that ω1(ξ) ≍ 1 around 0. This gives a lower-bound for σ ≲ 1√
γ3(t)Bt

Φσ
11(t, s) ≳ e−(τ(t)−τ(s))

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

≳ e−τ(t)(1 + ξ(t))−2ρ.

Since Φσ
12(t, s) is positive, that gives a lower bound on the kernel by integrating

K(t, s) ≳ γ22B

∫ 1√
γ2cB(1+t)

1−κ
2

d−α

σ3− 1
α × 1 dσ

≳ γ22B((
√
γ2c(1 + t))1−

κ3
2 )−4+ 1

α .
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Now just integrate as we did for the forcing function and apply Proposition D.14 since σ 7→
e−τ(t)(1 + ξ(t))−2ρ is approximately constant in the region σ ≲ 1√

γ3(t)Bt
.

Corollary I.1. Let ϑ(t)
def
= 1 + 2γ2Bt +

(∫ t

0

√
γ3(s)B ds

)2
≍ 1 +

(∫ t

0

√
γ3(s)B ds

)2
. For

Parametrization I.1 under Assumption 6, if γ2Bt ≥ 1 and ϑ(t) ≲ d2α, we have

[F ∗K](t) ≳ γ22B(ϑ(t))−4+ 1
α . (128)

Proof. Just apply Proposition I.4 and note that
∫ t

0
F(s) ds ≳

∫ t

0
Fpp(s) ds ≳ 1.

Proposition I.5 (Kesten Lemma). For Parametrization I.1 under Assumption 6, and for δ̃ large
enough, define

¯̄Kpp(t, s)
def
=

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

+ (γ2B(t− s)−1+1/(2α)

(
1 + t

1 + s

)−δ̃
(
γ22B

1

γ2B(t− s)
+ γ3(s)

)
.

Then under the assumptions in Proposition I.2 (stability conditions), we have ∀t ≥ s ≥ 0 with
ϑ(t) ≍ max{γ2Bt, (

√
γ3(t)Bt)

2} ≲ d2α,∫ t

r=s

¯̄Kpp(t, r)
¯̄Kpp(r, s) dr ≤ ϵ ¯̄Kpp(t, s).

Proof. To prove this upper-bound, the idea is to use that ¯̄Kpp(t, s) behaves as a power law and that the
stability condition Proposition I.2 ensures that its integral sums at most to one

∫ t

s=0
¯̄Kpp(t, s) ds ≲ 1.

For-example we compute for any t ≥ s ≥ 0∫ t

r=s

(
γ3(r)r

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α ×

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Br)

−4+ 1
α dr

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α ×

∫ t

r=s

(
γ3(r)r

γ2

)2

γ22B(
√
γ3(r)Br)

−4+ 1
α dr

≲

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α .

Here we used that
(

γ3(r)r
γ2

)2
γ22B(

√
γ3(r)Br)

−4+ 1
α ≲ r2−2κ−4+ 1

α+2κ− κ
α is integrable for κ =

1
2α < 1.

In the same way we have

∫ t

r=s

((γ2B(t− r)−1+1/(2α)

(
1 + t

1 + r

)−δ̃
(
γ22B

1

γ2B(t− r)
+ γ3(r)

)

× (γ2B(r − s)−1+1/(2α)

(
1 + r

1 + s

)−δ̃
(
γ22B

1

γ2B(r − s)
+ γ3(s)

)
dr

≲

(
1 + t

1 + s

)−δ̃

×
∫ t

r=s

(γ2B(t− r)−1+1/(2α)(γ2B(r − s)−1+1/(2α)

×

(
γ22B

1

γ2B(t− r)
+ γ3(r)

)(
γ22B

1

γ2B(r − s)
+ γ3(s)

)
dr.
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There are four possibilities.

We write ∫ t

r=s

(γ2B(t− r))−1+1/(2α)(γ2B(r − s))−1+1/(2α) × γ3(r)γ3(s) dr

≲
∫ s+t

2

r=s

(γ2B(t− r))−1+1/(2α)(γ2B(r − s))−1+1/(2α) × γ3(r)γ3(s) dr

+

∫ t

r= s+t
2

(γ2B(t− r))−1+1/(2α)(γ2B(r − s))−1+1/(2α) × γ3(r)γ3(s) dr

≲ γ3(s)(γ2B(t− s))−1+1/(2α).

Here we used for the first integral that γ3(r)(γ2B(r − s))−1+1/(2α) is integrable when κ > 1
2α and

for the second integral that γ3(r)(γ2B(t− r))−1+1/(2α) is integrable.

Additionally, ∫ t

r=s

γ22B(γ2B(t− r))−2+1/(2α)(γ2B(r − s))−1+1/(2α)γ3(s) dr

≲
∫ s+t

2

r=s

γ22B(γ2B(t− r))−2+1/(2α)(γ2B(r − s))−1+1/(2α)γ3(s) dr

+

∫ t

r= s+t
2

γ22B(γ2B(t− r))−2+1/(2α)(γ2B(r − s))−1+1/(2α)γ3(s) dr

≲ γ3(s)(γ2B(t− s))−1+1/(2α).

Here we used for the first integral that
∫ s+t

2

r=s
γ22B(γ2B(t − r))−2+1/(2α) dr ≲ γ2(γ2B(t −

s))−1+1/(2α) and for the second integral that
∫ t

r= s+t
2
γ22B(γ2B(t− r))−2+1/(2α) dr ≲ γ2(γ2B(t−

s))−1+1/(2α) ≲ 1.

Similarly, ∫ t

r=s

(γ2B(t− r))−1+1/(2α)γ3(r)(γ2B(r − s))−2+1/(2α)γ22B dr

≲
∫ s+t

2

r=s

(γ2B(t− r))−1+1/(2α)γ3(r)(γ2B(r − s))−2+1/(2α)γ22B dr

+

∫ t

r= s+t
2

(γ2B(t− r))−1+1/(2α)γ3(r)(γ2B(r − s))−2+1/(2α)γ22B dr

≲ γ3(s)(γ2B(t− s))−1+1/(2α) + γ22B(γ2B(t− s))−2+ 1
2α .

We used in the first integral that γ3(r) ≲ γ3(s) and that (γ2B(r − s))−2+ 1
2α integrable. We used in

the second integral that (γ2B(t− r))−1+1/(2α)γ3(r) is integrable.

Finally it is clear since (γ2B(t− r))−2+ 1
2α is integrable that∫ t

r=s

γ22B(γ2B(t− r))−2+1/(2α)γ22B(γ2B(r − s))−2+1/(2α) dr

=

∫ s+t
2

r=s

γ22B(γ2B(t− r))−2+1/(2α)γ22B(γ2B(r − s))−2+1/(2α) dr

+

∫ t

r= s+t
2

γ22B(γ2B(t− r))−2+1/(2α)γ22B(γ2B(r − s))−2+1/(2α) dr

≲ γ22B(γ2B(t− s))−2+1/(2α).
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There remains to bound∫ t

r=s

(
γ3(r)r

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

× (γ2B(r − s))−1+1/(2α)

(
1 + r

1 + s

)−δ̃
(
γ22B

1

γ2B(r − s)
+ γ3(s)

)
dr

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

×
∫ t

r=s

(γ2B(r − s))−1+1/(2α)

(
1 + r

1 + s

)−δ̃+2(1+κ)
(
γ22B

1

γ2B(r − s)
+ γ3(s)

)
dr

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

(∫ t

r=s

γ22B(γ2B(r − s))−2+1/(2α) dr

+

∫ t

r=s

γ3(s)(γ2B(r − s))−1+1/(2α)

(
1 + r

1 + s

)−δ̃+2(1+κ)

dr

)

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α .

Here we used for the first term that (γ2B(r − s))−2+ 1
2α is integrable and for the second term that

−δ̃ + 2(1 + κ) < −κ so that (γ2B(r − s)−1+ 1
2α × (1 + r)−κ is integrable since κ > 1

2α and that
γ3(s)(1 + s)κ ≲ 1.

Finally, we need to bound the symmetric term i.e.∫ t

r=s

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(r)Br)

−4+ 1
α

× (γ2B(t− r))−1+1/(2α)

(
1 + t

1 + r

)−δ̃
(
γ22B

1

γ2B(t− r)
+ γ3(r)

)
dr

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

×
∫ t

r=s

(γ2B(t− r))−1+1/(2α)

(
1 + t

1 + r

)−δ̃+4− 1
α

(
γ22B

1

γ2B(t− r)
+ γ3(r)

)
dr

≲

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α .

Here we used that −(δ + κ
2 ) + 4− 1

α < 0 and that

∫ t

r=s

(γ2B(t− r))−1+1/(2α)

(
γ22B

1

γ2B(t− r)
+ γ3(r)

)
dr ≲ 1.

Proposition I.6 (Upper-bound on kernel contribution). Denote for δ̃ large enough

¯̄Kpp(t, s)
def
=

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)Bt)

−4+ 1
α

+ (γ2B(t− s)−1+1/(2α)

(
1 + t

1 + s

)−δ̃
(
γ22B

1

γ2B(t− s)
+ γ3(s)

)
.
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Then if γ2 ≍ 1 and γ3 ≍ 1 and under stability in Proposition I.2 we have ∀t ≥ s ≥ 0 with ϑ(t) ≲ d2α

[F ∗ ¯̄Kpp](t) ≲ F(t) + ¯̄Kpp(t).

Proof. ¯̄Kpp(t, s) has two main terms we treat separately. For the first contribution of the first term,

there are two cases, whether F(t)×
(

γ3(t)t
γ2

)2
is integrable or not.

Not integrable Then we check that

∫ t

0

F(s)

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)B(1 + t))−4+ 1

α ds

≲ F(t)×
(
γ3(t)t

γ2

)2

(1 + t)γ22B(
√
γ3(t)B(1 + t))−4+ 1

α

≲ F(t).

Here we used that since α > 1
2(

γ3(t)t

γ2

)2

(1 + t)γ22B(
√
γ3(t)B(1 + t))−4+ 1

α

≍ (1 + t)−1+ 1
α− 1

4α2

≲ 1.

Integrable Then we write

∫ t

0

F(s)

(
γ3(s)s

γ2

)2

γ22B(
√
γ3(t)B(1 + t))−4+ 1

α ds

≲
∫ t

0

F(s)×
(
γ3(s)s

γ2

)2

dsγ22B(
√
γ3(t)B(1 + t))−4+ 1

α

≲ ¯̄Kpp(t, 0).

For the contribution of the second term, just notice that since δ̃ is large enough, F(s)(1 + s)δ is not
integrable. By cutting the integral in two pieces and noticing that

∫ t

0
¯̄Kpp(t, s) ds < 1, we obtain that

the contribution is smaller than F(t). This concludes the proof.

Theorem I.2 (Scaling Law for DANA-decaying). Let α > 1
2 and B ≍ 1. Consider Parametriza-

tion I.1 under Assumption 6. Suppose that δ is large enough, ie δ > δ̄(κ, α, β), 13 Then for any ϵ > 0
there exists g(κ, ϵ) > 0, C > 0 and d0 large enough, such that for any d ≥ d0 if γ2 = g and c ≤ g
we have

1

C
(F0 + Fac(t) + Fpp(t) +Kpp(t)) ≲ P(t)

≤ C(F0 + Fac(t) + Fpp(t) +Kpp(t))

where F0,Fpp,Fac have the asymptotics given in Proposition I.1

Kpp(t) = γ22B(1 +
√
γ3(t)Bt)

−4+ 1
α .

13We believe δ̄ to behave at least such that δ̄+κ
2

1−κ
2
> max{ 2α+2β−1

α
, 4− 1

α
}, and (δ̄ + κ/2) > 2 + 3κ
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General learning rate schedule, γ3(t)
Specific learning rate schedule,
γ3(t) ∼ (1 + t)−1/(2α)

F0(t) ≍ d−2α+max{0,1−2β} F0(t) ≍ d−2α+max{0,1−2β}

Fpp(t) ≍ F̂pp(ϑ(t)) Fpp(t) ≍

{
(γ2Bt)−1− 2β−1

2α , if 2α < 1

(τ(t)2)−1− 2β−1
2α , if 2α > 1

Fac(t) ≲

{
F0(t), if 2β > 1, 2α < 1

0, if 2β < 1
Fac(t) ≲

{
F0(t), if 2β > 1, 2α > 1

0, if 2β < 1

if 2β > 1, 2α > 1,
Fac(t) ≍ F̂ac(ϑ(t))

if 2β > 1, 2α > 1, Fac ≍ (τ(t))−2+1/(α) d−1

Kpp(t, 0) ≍ γ2
2BK̂pp(ϑ(t)) Kpp(t, 0) ≍

{
Bγ2

2(γ2Bt)−2+1/(2α), if 2α < 1

Bγ2
2(τ(t)

2)−2+1/(2α), if 2α > 1

Table 12: DANA-decaying: Large d behavior of the forcing function and kernel function for
general and specific γ3 schedules. See Section B.4 for details about the algorithm. The constant C
is independent of dimension and the function τ(t, s) def

=
∫ t

s

√
γ3(u)B du with τ(t) def

= τ(t, 0) and we
remind from Theorem 4.1 that ϑ(t) ≍ 1 + γ2Bt+ τ(t)2. In the case where γ3(t) ∼ (1 + t)−1/(2α),
τ(t, 0) ∼ B(1 + t)1−1/(4α). The definitions of F̂i and K̂pp can be found in the introduction.

Proof. We know that the solution of the Volterra equation can be written by repeated convolution of
the forcing with kernel function, i.e. ∀t ≥ 0

P(t) = F(t) +

∞∑
k=1

[F ∗K∗k](t).

For the lower-bound, we apply Proposition I.1 and Corollary I.1. For the upper-bound we apply
Lemma C.3 with Kesten’s Lemma Proposition I.5 on the upper-bound ¯̄Kpp on the kernel (Proposi-
tion I.3) with the upper-bound on F ∗K from Proposition I.6.

I.5 Extended heuristics for general algorithm

In the following we discuss heuristics to justify the scaling laws of the general (DANA) algorithm
that are formulated in Theorem 4.1 and more precisely (10).

Claim I.1. Denote γ1(t) ≡ 1, γ2(t) = γ̃2d
−κ1 , γ3(t) = γ̃3d

−κ2(1 + t)−κ3 , ∆(t) = δ(1 +

t)−1 and B = cbd
κb . Denote ρ

def
=

δ
2+

κ3
4

1−κ3
2

.

For α > 1
2 take 2ρ > max{ 2α+2β−1

α , 4− 1
α} and 2ρ(1− κ3/2) > 1.

• κ3 ≥ 1, η2 = η3 = 0. Same scaling laws as SGD.

• 1 ≥ κ3 ≥ 1
2α , η2 = η3 = 0. Scaling laws in-between DANA-decaying and SGD.

• 0 ≤ κ3 <
1
2α , η2 = 0, η3 = 2α( 1

2α − κ3). Scaling laws in-between DANA-constant and
DANA-decaying.

The scaling laws are given by (10).

If 2ρ < max{2α+2β−1
α , 4 − 1

α} then the exponent in Fpp,Fac,Kpp is replaced by the minimum
between its exponent and ρ plus SGD exponent after it started accelerating.
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I.5.1 Forcing function

Claim I.2 (Forcing function). Let α > 0, 2α + 2β > 1, α, β ̸= 1
2 , α + 1 > β. Suppose that

2ρ
def
=

δ+ 1
4α

1− 1
4α

> 2α+2β−1
α . There exists some C(α, β > 0 such that under Parametrization I.1, denote

ϑ(t)
def
= 1 + 2γ2Bt+

(∫ t

0

√
γ3(s)B ds

)2
we have for any t ≥ 0 and d large enough

1

C

(
F0(t) + Fpp(t) + Fac(t)

)
≤ F(t) ≤ C

(
F0(t) + Fpp(t) + Fac(t)

)

where

F0 ≍ d−2α+(1−2β)+ ,

Fpp(t) ≍ ϑ(t)−1− 2β−1
2α ,

Fac(t)


≍ ϑ(t)−1+ 1

2α if 2α > 1, 2β > 1

≲ F0 if 2α < 1, 2β > 1

0 else.

Idea: We define F0,Fpp,Fac as in Section D and use the estimate on Φσ2

11 (t, 0) from Theorem I.1.
F0 is unchanged, however for example for Fpp(t) we compute

Fpp(t)
def
=

∫ 1

0

σ1+ 2β−1
α

(
e−γ2Bσ2(1+t)(1 +

√
γ2Bσ2

1− κ
2

((1 + t)1−
κ
2 − 1))−2ρ

+O(ϵ(γ2Bσ2)δ+
κ
2 e−cγ2Bσ2

)

)

≍
∫ min{ 1√

γ2Bt
, 1√

γ2Bc(1+t)
1−κ

2
,1}

σ=0

σ1+ 2β−1
α dσ

≍ ϑ(t)−1− 2β−1
2α .

Where we used that −2ρ + 1 − 2β−1
α < −1 ⇐⇒ 2ρ > 2α+2β−1

α . Similar computation on Fac

brings the result, with the additional condition 2ρ > 2 − 1
α which is automatically satisfied since

2α+2β−1
α > 2− 1

α .

Finally, to bound F using F0(t) + Fpp(t) + Fac(t) we proceed with a similar proof as Proposi-
tion H.16 by noting that in the range of interest (last integral), Φσ2

11 (t, 0) satisfies the hypothesis in
Proposition D.13 (it is constant).

I.6 Stability conditions

Claim I.3 (Necessary and sufficient conditions for stability above the high-dimensional line α > 1
2

and with batch B = 1). Let α > 1
2 . Consider Parametrization I.1 with B = 1, κ ≥ 0, γ2 > 0.

Suppose that 2ρ > max{2α+2β−1
α , 4− 1

α}. We have

• (Sufficient condition) For any ϵ > 0 there exists g(κ, ϵ) > 0 and d0 large enough, such that
for any d ≥ d0 if (κ > 1

2α , γ2 = g and c ≤ g) or (κ < 1
2α , γ2 = g and c ≤ gd2α(κ−

1
2α ))

then supt≥0

∫ t

0
K(t, s) ds < ϵ. In particular, since F(t) (is bounded indep of d), we have

supd≥d0
∥P∥∞ <∞.

• (Necessary condition) For any ϵ > 0, any g > 0 and any d0 ∈ N large enough, for any
d ≥ d0 and if (κ < 1

2α , γ2 = g and c = gdκ̃ with 0 > κ̃ > 2α(κ− 1
2α )), then there exists

σ1 > 0, σ2 > 0 such that for any d2α > t ≥ d2α−σ1 we have
∫ t

t/2
K(t, s) ds > dσ2 . In

particular under this scaling supd≥d0
∥P∥∞ =∞
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• For any ϵ > 0 and κ > 0, there exists some g > 0 such that if γ2 ≤ g then for d0 large
enough and any d ≥ d0, lim supt→∞

∫ t

0
K(t, s) ds ≤ ϵ and as a consequence, ∥P∥∞ <∞.

Idea: Sufficient condition We again consider the estimates in Theorem I.1. The goal is to have
sufficient conditions so that

∫ t

0
K(t, s) ds < ϵ for any t ≥ 0.

We compute the first term by bounding the oscillatory ω1(ξ, ξ0), ω
2(ξ, ξ0) by constants and 1+ξ

1+ξ0
≤ 1.

For M > 0 large,∫ t

0

K1(t, s) ds ≲ γ22B

∫ t

0

∫ 1

σ= 1
M d−α

σ3− 1
α e−γ2Bσ2(t−s) dσ ds

≲ γ2

∫ 1

σ= 1
M d−α

σ1− 1
α [1− e−γ2Bσ2t] dσ

≲ γ2d
(1−2α)+ .

For the second term we do the same and use that (γ2ξ′(τ(s)))2 ≍ γ3

Bσ2 (1 + s)−κ to write for
γ2B(1 + t) ≲ d2α∫ t

0

K2(t, s) ds ≲ B

∫ t

0

∫ 1

σ= 1
M d−α

σ3− 1
α
γ3
Bσ2

(1 + s)−κe−γ2Bσ2(t−s) dσ ds

≲ γ3

∫ 1

σ= 1
M d−α

σ1− 1
α min{(1 + t)−κ 1

γ2Bσ2
, (1 + t)−κ+1} dσ

≲ γ3

∫ 1√
γ2B(1+t)

σ= 1
M d−α

σ1− 1
α (1 + t)−κ+1 dσ + γ3

∫ 1

1√
γ2B(1+t)

(1 + t)−κσ
−1− 1

α

γ2B
dσ

≲ γ3(1 + t)−κ+1(γ2B(1 + t))−1+ 1
2α +

γ3
γ2B

(1 + t)−κ(γ2B(1 + t))
1
2α .

When γ2B(1 + t) ≳ d2α the first term vanishes and we obtain∫ t

0

K2(t, s) ds ≲
γ3
γ2B

(1 + t)−κ

∫ 1

1
M d−α

σ−1− 1
α dσ

≲
γ3
γ2B

(1 + t)−κ × d.

Evaluating at the worst case t ≍ d2α

γ2B
yields the stability condition

γ3
γ2B

(
d2α

γ2B
)−κ × d ≲ 1. (129)

Necessary condition To obtain the necessary condition, just observe that the previous upper-bounds

are in fact tights. Indeed, for ξ0 ≍ ξ, the term

(
1+ξ
1+ξ0

)−δ

can be treated as constant. Since we

additionally know lower-bounds on ω1(ξ), ω2(ξ) we deduce the corresponding lower bound on
K1(t, s),K2(t, s). This brings that for t ≲ d2α∫ t

t/2

K(t, s) ds ≳ γ3(t)(γ2Bt)
1/(2α) ≳ dκ̃(1 + t)−κ+ 1

2α .

Since by assumption, κ̃+ 2α(−κ+ 1
2α ) > 0 we obtain the existence of σ1 > 0, σ2 > 0 such that

∀t ≥ d2α−σ1 we have
∫ t

t/2
K(t, s) ds ≥ dσ2 . Now we know that ∀t ≥ 0, ∀α > 0, F(t) ≳ d−2α.
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After t ≳ d2α−σ1 we hence obtain by recursion that the loss grows as dσ2)log2(d). This brings that
P(d2α) ≳ d−2αdσ2σ1 log2(d). We see that this diverges as d→∞ which concludes.

Third point The last point in the proposition states that even when the conditions for stability are
broken, the loss remains bounded (even though it can increase arbitrarily with dimension for times
t ≲ d2α. To see it just observe as before that

∫ t

0
K1(t, s) ds ≲ γ2 and that for γ2Bt ≳ d2α, we have∫ t

0
K2(t, s) ds ≲ (1 + t)−κ γ3

γ2B
× d→ 0.

I.7 Kernel function

Now that we have the stability conditions we can compute the kernel function. We will focus on the
contribution from Φσ

11(t, s) which we remind the behavior from Theorem I.1

Φ11(t, s) ≍ e−(τ(t)−τ(s))

(
1 + ξ(t)

1 + ξ(s)

)−2ρ

.

Then we can give the behavior of K1(t, 0).
Claim I.4. If ϑ(t) ≲ d2α we have

K1(t, 0) ≍ γ22B

(
(γ2Bt)

−2+ 1
2α + (

√
γ3(t)B(1 + t))−4+ 1

α

)
.

Idea: As for the forcing function, there are two cases depending on which contribution from γ2Bt or
(
√
γ3(t)Bt)

2 is dominant in ϑ(t). Hence we decompose

K1(t, s) ≍ γ22B
∫ min{ 1

γ2Bt ,
1√

γ3(t)Bt
}

d−α

e−(τ(t)−τ(s))(1 + ξ(t))−2ρ dσ

≍ γ22Bϑ(t)−2+ 1
2α .

J Compute-optimality beyond stability and motivation for DANA-decaying
schedule

In the previous sections, we restricted the learning rates domain to describe a stable algorithm,
i.e. requiring that the risk P(t) stays bounded for all time t ∈ (0,∞). In this section, we ask and
heuristically answer the following question:

Does there exist for classical momentum (equiv. SGD) or DANA-constant a scaling in d of the
learning rates γ2, γ3 which yields a better compute-optimal frontier without requiring the algorithm

to be stable for any time t ∈ R+?

J.1 Strategy

In the previous study, we imposed stability of the algorithm by controlling the kernel norm ∀t ≥
0,
∫ t

0
K(t, s) ds < 1. This, combined with a corresponding Kesten’s lemma (see [80, Lem. C.1] for

SGD, Lemma F.3 for classical momentum, Lemma C.2 for DANA-constant) ensures that the resolvent
r(t, s)

def
=
∑∞

k=1 K
∗k(t, s) of the Volterra equation (55) is bounded for all time and leveraging [45]

implies that the solution P(t) = F(t) + [F ∗ r](t) is bounded.

Instead it is clear by following the same steps, that if for some T > 0, ∀t ≤ T,
∫ t

0
K(t, s) ds < 1, we

can recover that P(t) stays bounded for t ≤ T . More precisely, retracing the same steps in the proofs
that give rise to Eq. (62) (see Theorem G.1 for SGD-M, see Theorem H.3 for DANA-constant), we
would obtain ∀t ≤ T , P(t) ≍ F(t)+ 1

γ2B
K(t, 0). On the other hand, if for t > T,

∫ t

0
K(t, s) ds > 1

then, starting t ≥ T , P(t) will start diverging exponentially. Taking T = +∞ (or equivalently
d2α/(γ2B) for SGD and min

{
d2α/(γ2B), dα/

√
γ3B

}
for DANA-constant) recovers the previous

study.
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κ
Largest γ2 stable at
compute-optimality Compute-optimal γ2

Phases
Ia, II, III Any γ2 ≍ 1 γ2 ≍ 1

Phase Ib κ = 2α γ2 ≍ d2α−1 γ2 ≍ d2α−1

Phase Ic κ = 4α2

2α+2β−1 γ2 ≍ d
2α(2α−1)
2α+2β−1 γ2 ≍ d

2α(2α−1)
2α+2β−1

Phase IVa 2α γ2 ≍ d2α−1 γ2 ≍ d−
4α2−4αβ
2α+2β−1 (cf [80])

Phase IVb κ = α(2α−1)
α−β γ2 ≍ d

(2α−1)2

2(α−β) ≫ d2α−1 γ2 ≍ d−
4α2−4αβ
2α+2β−1 (cf [80])

Table 13: κ and optimal γ2 across the 4 phases for SGD.

J.2 Stochastic Gradient Descent

We will focus on SGD, although classical momentum can be handled entirely similarly. From [80,
Sections I.1, I.2] batch has no effect on the compute-optimal frontier. We choose WLOG B = 1.
We additionally know from [80, Prop. G.1, H.5] and Proposition G.5 that for γ2Bt ≲ d2α we have
K(t, s) ≍ γ22Bmin{1, (γ2B(t− s))−2+1/(2α)}. It is hence clear that

∀T ≤ d2α, sup
t≤T

∫ t

0

K(t, s) ds ≍ γ2 min{1, (γ2BT )−1+1/(2α)}.

Taking γ2BT ≍ d2α we recover the stability for all time condition γ2 ≲ dmax{0,2α−1}. Additionally,
if α > 1

2 , we still get the stability condition γ2 ≲ 1 independent of T . However, for α < 1
2 , we now

obtain for 1 ≲ γ2BT ≲ d2α the condition γ2 ≲ (γ2BT )
−1/(2α)+1 ≳ d2α−1.

The question is now: for α < 1
2 , can such a larger γ2 improve the compute-optimal frontier? To

that end, denote T the time at which compute optimality is reached. Further introduce κ such that
γ2BT = dκ. For α < 1

2 , we hence obtain the condition γ2 ≲ d−κ(−1+ 1
2α ).

We can now proceed to the same compute-optimal study as in Section E with the new κ variable
which gives results summarized in Table 13. Above the high-dimensional line, we obtain the same
results as in Table 5. In phase I.b, since compute optimality is reached for γ2BT , we do not see
improvement over Table 5. In phase I.c, we obtain γ2 ≍ d

2α(2α−1)
2α+2β−1 ≫ d2α−1 which yields faster

compute-optimal curve. However in this phase, we do not have proofs about the kernel asymptotics
which stops being power law. In fact it may be possible that a much larger learning rate can in fact
be used. finally in phase IV, although the learning rate could be chosen larger, [80] showed that
compute-optimality was reached by a smaller learning rate.

J.3 DANA constant

The kernel is slightly more complicated in DANA constant and for simplicity we will use here a
simplified form which becomes valid for s ≳ γ2

γ3
and 1+t

1+s ≳ 1
2 This will not affect the main results

as this is the dominant term in the kernel norm. To see that, the reader can either notice that the
upper-bound K̄ derived in Section H.10 is in fact tight, or directly integrate the estimates Φ11,Φ12

first on time and then on σ for a complete proof.

K(t, s) ≍ K1(t, s) +K2(t, s) ≍ γ22B(γ2B(t− s))−2+ 1
2α + γ3((γ2B(t− s))−1+ 1

2α .

Again, denote for T ≥ 0, γ2BT = dκ the compute-optimal time for some κ > 0.

As for SGD, we obtain the stability conditions{
γ2 +

γ3

γ2B
(γ2BT )

1/(2α) ≲ 1 if 2α > 1,

γ2(γ2BT )
−1+1/(2α) + γ3

γ2B
(γ2BT )

1/(2α) ≲ 1 if 2α < 1.
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Optimal γ2 Optimal γ3

Phase Ia γ2 ≍ 1 γ3 ≍ d−
2α

4α−1

Phase IIa γ2 ≍ 1 γ3 ≍ d−
2α

4α−1

Phase IIb γ2 ≍ 1 γ3 ≍ d−
α

β(4α−1)

Phase IIIa γ2 ≍ 1 γ3 ≍ d−
2α

4α−1

Phase IIIb γ2 ≍ 1 γ3 ≍ d
− 4α

(4α−1)2

Table 14: Optimal γ2, γ3 for DANA constant for α > 1
2 . The results are valid up to a constant

independent of the dimension

Again, if we use the upper-bound γ2BT = d2α, we find the stability conditions γ2 ≲ dmin{0,2α−1}

and γ3

γ2B
≲ d. However, these bounds are overly conservative, and we can use our study of DANA-

constant to improve them by computing κ. For that, we use the write P(t) ≍ F0(t)+Fpp(t)+Fac(t)+
1

γ2B
Kpp(t, 0) with F(t) = FSGD(γ2Bt∨ (

√
γ3Bt)

2), Kpp(t, 0) = KSGD
pp (γ2Bt∨ (

√
γ3Bt)

2). We
believe this can be made formal with an entirely similar proof as we did in Section B.3 by using our
estimates of Φ11(t, s),Φ12(t, s) although this is technical and not very enlightening. Again we will
focus on B = 1 and more precisely on α > 1

2 which has slightly easier stability conditions. For
α > 1

2 , we necessarily have the bound γ2 ≲ 1. Therefore, we can easily compute T as a function of
d, γ3, B at compute optimality, and hence deduce γ3

γ2
. Using this bound, we can also check that it is

feasible which means T ≥ γ2

γ3
, which we used for the derivations, and hence find the results for phase

Ia, II, III in Table 14.

Finally, one will note that (
√
γ3BT )

2 ≍ τ(t)2 the corresponding time of DANA-decaying around
compute-optimality time T . This implies the following:

The previously computed γ3 for DANA-constant induces the same dynamics as
DANA-decaying around the compute-optimal time T after which DANA-constant starts

diverging exponentially.

J.4 DANA-decaying

Exactly as we did originally for DANA-decaying, we can try to construct a better learning rate
than DANA-constant, by making sure that the value γ3 wanted is attained at compute-optimality
γ2r = dκ. In other words, suppose that in some phase, DANA constant asks for γ3 = γ2Bd

−κ3 and
that compute optimality is attained at γ2BT = dκ. Then DANA-decaying would use a schedule as
γ3(t) = γ2B(γ2Bt)

−κ3/κ.

Computing these values from Table 14 recovers exactly in all cases (at least above the high-dim)
(1 + t)1/(2α). This is because this step-size is already optimal by ensuring that

∫ T

s=0
K2(t, s) ds ≍

γ3(t)
γ2B

(γ2BT )
1/(2α) < 1 is on the verge of diverging as t→∞. Note that this was also the criterion

chosen for DANA-constant in the previous section at the point of compute optimality which explains
the correspondence.

Above the high-dimensional line, we can write the three equivalent characterizations of the
DANA-decaying learning rate γ3(t)

def
= γ2B(γ2B(1 + t))−1/(2α):

• the largest power law decay that satisfies the DANA-constant condition γ3(t)
γ2B

≲ 1
d

for t = d2α the time where the problem starts being strongly convex and the
solutions stop behaving as power law and decay-exponentially,
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• the largest power law such that the stochastic noise induced by momentum∫ t

0
K2(t, s) ds ≍ γ3(t)

γ2B
(γ2Bt)

1/(2α) remains bounded for all time t ≥ 0,

• the power law which recovers γ3(T ) = γ3 the constant DANA-constant learning
rate computed in section Section J.3 for which the kernel norm remains bounded up
to the compute-optimal time T .

161



K Power-Law Random Features Experiments & Numerical Simulations

In this section, we describe the PLRF experiments, measurements of the empirical scaling law
exponents, and the numerical simulations of the ODEs shown in Figure 8, Figures 25-33 and
Figures 34-42.

K.1 Power-Law Random Features Experiment Details

For each (α, β) pair, we run the stochastic algorithms for SGD, DANA-constant, and DANA-decaying
on PLRF with parameters

d ∈ [200, 300, 400, 600, 800, 1200, 1600, 2400, 3200, 4800, 6400, 9600, 12800].

and set v = 4 × d. We selected 84 pairs of (α, β)’s that provide a good representation of all the
different phases spanning α ∈ [0.2, 2] and β ∈ [−0.15, 1.4]. We use batch size = 1 for all PLRF
experiments and compute the mean population risk across a set of random seeds. We use 10 random
seeds for most experiments but use 100 random seeds when β ≤ 0.3 due to the increased gradient
noise when β is small.

We calculate flops14 as the number of training steps × d. We train all models for 1e12 flops or
convergence, whichever occurs sooner.

The loss curves in Figures 25-33 and Figures 34-42 show nearly perfect agreement with the numerical
simulations of the simplified ODEs (23) across all three algorithms and all values of (α, β) and d. In
particular, this numerical agreement validates that the simplification in the ODEs between (6) and (7)
has a trivial numerical effect.

We define Tr(D)
def
=
∑d

i=1 j
−2α.

K.2 Measuring the Empirical Scaling Law Exponents: Chinchilla Approach 1

To measure the empirical scaling law exponents for the loss and parameter count, we follow Chinchilla
Approach 1 [50]. We note that for SGD on PLRF, similar experiments in [80] found close agreement
for exponent measurements between Chinchilla Approach 1 and Approach 2. We do not expect
perfect agreement between theoretical predictions for the scaling exponents due to noise in the loss
curves, discretization in the parameter counts, and finite-size effects noted in Approach 0 in [80] that
showed the ‘instantaneous’ power-law exponents vary as a function of flops well beyond practical
scales for experimentation.

We follow Chinchilla Approach 1 as described in Section 3.1 of [50]. First, we choose a flops window
[fmin, fmax] and construct fj’s using a geometric spacing between f1 = fmin and fn = fmax. For each
flops slice fj , we find the minimum loss across all d. We denote this minimum value of the loss,
P⋆(fj), and its associated parameter count, d⋆(fj). This creates an ‘envelope’ of optimal losses vs
flops as shown in Figures 25-33 or a ‘staircase’ of optimal parameter count vs flops as shown in
Figures 34-42.

The compute-optimal loss exponent is found by plotting

{(fj ,P⋆(fj))}1≤j≤n, (130)

and fitting a power law curve of the form P⋆(f) = c × f−η̂. For the 84 different pairs of (α, β),
we plot the fitted power law exponents and list the predicted theoretical loss exponents (see Ta-
ble 5 (SGD/SGD-M), Table 6 (DANA-constant), and Table 7 (DANA-decaying)) in the legends
in Figures 25, 26, 27 for SGD, Figures 28, 29, 30 for DANA-constant, and Figures 31, 32, 33 for
DANA-decaying. The (absolute) maximum difference between theory vs. empirical is 0.09. Figure 8
(middle) used the loss exponents from Figures 25-33.

The compute-optimal parameter exponent is found by plotting,

{(fj , d⋆(fj))}1≤j≤n. (131)

14Note that for consistency with the theoretical setup, for the PLRF experiments we omit the 6 in the
6× num parameters × tokens heuristic [50, 54] often used for calculating flops. We include this 6 in the LSTM
experiments for accuracy and consistency with the empirical scaling laws literature.

162



and fitting the function d⋆ = c × fb where c, b are constants. The empirical parameter exponent
measurement is given by the exponent b. For the 84 different pairs of (α, β), we plot the fitted power
law exponents and list the predicted theoretical parameter exponents in the legends in Figures 34, 35,
36 for SGD, Figures 37, 38, 39 for DANA-constant, and Figures 40, 41, 42. The predicted theoretical
parameter exponents can be found in Table 5 (SGD/SGD-M), Table 6 (DANA-constant), and Table 7
(DANA-decaying). The absolute maximum difference between theory and Approach 1 is 0.132.
Figure 8 (right) used the parameter exponents from Figures 34-42.

It is important to note that the fit of the exponents is sensitive to the choice of the flops window;
changing the window can have a dramatic effect on the predictions. For Approach 1, we have a
discrete set of parameter counts d that approximate the ‘true’ compute-optimal frontier that would
result from an arbitrarily dense sweep over parameter counts. We therefore want to fit the power
laws for Approach 1 within the range of flops where the parameter counts in our experiments act as a
good approximation of the compute-optimal frontier. More specifically, as a heuristic, we want to fit
Approach 1 within the flops window whose minimum is the flops where the two smallest models
crossover, and whose maximum is the flops where the two largest models crossover. In particular,
for larger values of alpha, the loss curves from the larger values of d do not intersect because the
experiment could not run long enough, so we want the flops window maximum to be the crossover
between the two largest models that did reach a crossover.

As a first pass, we used this heuristic to determine the flops window for each algorithm and (α, β)
pair using smoothed loss curves to locate the crossover points between model sizes. However, due to
noise in the loss curves, it is nontrivial to systematically distinguish which crossovers in the noisy
curves are due to noise and which represent the location of the ‘true’ crossover that would result if
averaging over an arbitrarily large number of random seeds. We therefore manually adjusted the flops
windows using visual inspection to adhere to the intent of this heuristic.

K.3 Computing the deterministic equivalent for K̂

In order to derive a fully deterministic curve for the loss, we need get a precise estimate for the
deterministic equivalent of K̂ = D1/2WWTD1/2 where D = Diag(j−2α : 1 ≤ j ≤ v}. In
particular, we need to solve the fixed point equation in (33),

m(z) =
1

1 + 1
d

∑v
j=1

j−2α

j−2αm(z)−z

where R(z) = Diag
(

1

j−2αm(z)− z
: 1 ≤ j ≤ v

)
.

(132)
In order to implement and solve such a fixed point equation, given that ∥K̂∥op ≈ 1, we uniformly
discretize the z’s from ϵ× j−2d to 1 + ϵ for some small ϵ and add a small imaginary component. For
each of these z’s values, we solve the fixed point equation in (33) with Newton’s method constrained
so that the Newton update always remains in the upper half plane.

K.4 Implementation of the ODE

To implement the ODEs in (23), we use implicit Euler with step h and use the deterministic equivalent
as the initialization. While other ODEs can be used, implicit Euler is known to work well on problems
whose solution is exponentially decreasing, but ill-conditioned – exactly our setting. To improve
the speed of implicit Euler, we perform a time change mapping t 7→ et. This allows for log-spaced
time and an exponential speed up in solving the ODEs. We note that one does need to solve d ODEs
simultaneously, but the ODEs form a nearly decoupled system of 3 ODEs as the coupling only occurs
through the forcing function (P(t)). Numerical experiments in this section (Sec. K) and Fig. 8 use a
step length of h = 10−3 (after changing into log spacing). All other numerical experiments in the
paper use a step length of h = 10−2.
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L LSTM Language Model Experiments

In this section we present experiments for SGD and DANA-decaying on LSTMs trained on text data.
We constructed a language model setup using a cross-entropy loss on next-token prediction on the C4
text dataset [84]. We use the LSTM [49] architecture from [53] with standard parameterization.

To sweep model sizes, we co-scale the embedding and hidden dimensions while keeping the depth
(number of layers), sequence length, batch size and vocabulary size fixed. The embedding sizes
used are [16, 24, 32, 48, 64, 96, 128, 192, 256, 512, 1024, 2048, 4096] and the hidden dim is set to
2× emb dim. All models use depth = 2 layers, sequence length = 20 and batch size = 32.

L.1 LSTM Results: DANA-decaying across κ3

In this section, we train models with SGD with learning rate = 0.5 and DANA-decaying with
γ2 = 0.5 andγ3(t) = γ2 × (1 + t)−κ3 where we sweep κ3 ∈ [0.0, . . . , 1.4].

We first consider a single model size for the LSTMs (embedding dim = 128). In Figure 19, we
repeat Figure 3a on the left and Figure 2a on the right to show side-by-side that the behavior of
DANA-decaying across κ3 is qualitatively similar on PLRF (left) and LSTM (right). On PLRF,
we see that DANA-decaying diverges when κ3 < 1/2α. On LSTMs, we see that DANA-decaying
similarly diverges for κ3 < 0.6. Moreover, we see that for moderate values of κ3 DANA-decaying
outperforms SGD in both model settings, and that as κ3 approaches 1.0, DANA-decaying smoothly
deteriorates back to SGD.
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Figure 19: DANA-decaying shows similar stability and divergence behavior across κ3 on PLRF
and LSTMs. (left) We repeat Figure 3a on PLRF where γ3(t) ≍ (1 + t)−κ3 . This shows DANA-
decaying diverges when κ3 < 1/2α and degrades to SGD as κ3 goes towards 1.0. (right) We repeat
Figure 2a on LSTMs with embedding size = 128 showing DANA-decaying diverging when κ3 < 0.6
and degrading to SGD when κ3 exceeds 1.0.

We next repeat this experiment across model sizes, with embedding sizes ranging from 16 to 4,096.
In Figure 20 we see that the behavior of DANA-decaying is qualitatively similar across model sizes:
we continue to see divergence on small κ3 values, outperforming SGD on moderate κ3 values, and
degrading back to SGD on κ3 values above 1.0.

One interesting question is whether the optimal value of κ3 is consistent across model sizes. To
investigate this, we plot the final loss versus κ3 in Figure 21. We see that the optimal κ3 is fairly
consistent across model sizes, with the optimal value of κ3 falling within 0.55 to 0.75 on all model
sizes with a trend towards 0.75 for the large models. We note that the largest models may slightly
overestimate the optimal κ3 if they did not run far enough to reach divergence. Using the PLRF as an
analogue where κ3 = 1

2α , this optimal κ3 near 0.75 would correspond to α = 0.67, but we note that
the precise meaning of α is not clear for LSTMs. We leave this question about how to measure and
interpret α on real-world problems for future work.
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Figure 20: Sweeps of κ3 for DANA decaying show qualitatively similar behavior across model
sizes. Small values of κ3 diverge, moderate values of κ3 outperform SGD, and large values of κ3
trend back towards SGD. Each panel shows one model size with SGD in black and DANA-decaying
in bright colors indicating the value of κ3.
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Figure 21: Final loss versus DANA-decaying κ3 showing the κ3 which optimizes final loss is
fairly consistent across model sizes. The optimal value of κ3 for the final loss is between 0.55
to 0.75 on all models with a trend towards 0.75 for the largest model sizes. Color indicates model
size. Black dotted lines indicate the final SGD loss for the model size indicated by the color of the
highlight.

L.2 LSTM Results: Loss Exponents

We next measure the LSTM loss exponents for SGD and for each individual value of κ3 for DANA-
decaying, by plotting the loss curves across model sizes and considering the compute-optimal frontier
defined by the lower envelope of these curves. We observe that the compute-optimal frontier appears
to follow a power-law trend for an intermediate set of models, but the power law breaks on the largest
model sizes similar to what was observed in Figure 7 of [54] on a similar LSTM scaling setup.

We perform a version of Chinchilla Approach 1 [50] using an intermediate set of model sizes ranging
from embedding size 16 to 192. We use an abbreviated version of this method where we fit power
laws through the crossover points in the loss curves between adjacent model sizes. Due to the
smoothness in the loss curves, the locations of the crossover points between model sizes can be
precisely determined. The power law fits have very high R2 values, exceeding 0.99 on all settings
except the most unstable κ3 = 0.0 which has R2 = 0.984.

In Figure 22, we show the loss curves and compute-optimal power law fits for each algorithm and
value of κ3, and report the loss exponents and R2 values in the legends. Finally, in Figure 23a we
plot the loss exponents as a function of κ3 and show the SGD loss exponent as a baseline. The
magnitude of the DANA-decaying loss exponent is maximized when κ3 = 0.7 and exceeds the
SGD loss exponent magnitude. We note that the measurement of κ3 = 0.7 that maximizes the loss
exponent magnitude is very close to the κ3 near 0.75 that optimizes the final loss, which is interesting
because the loss exponent measurement is determined using earlier phases of training whereas the
final loss values naturally describe the behavior from late in training. While the numerical differences
between the SGD and DANA exponents are small, the high R2 values and the smoothness of the
DANA-decaying loss exponents as a function of κ3 indicates that these measurements might be
robust and imply a true improvement in the loss exponent over SGD.

More notably, the DANA-decaying loss exponents traverse exactly the regimes seen in PLRF:
diverging for small values of κ3, outscaling SGD for intermediate values of κ3, and reverting back
to SGD-like scaling for κ3 ≥ 1.0. We note that κ3 = 1.0 corresponds to Schedule-Free SGD and
shows almost exactly the same loss exponent as SGD for LSTMs.
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Figure 22: Loss exponents for SGD and DANA-decaying across κ3. Loss curves across model
sizes (black or light blue) and power law fits (orange) through the compute-optimal frontiers showing
the loss exponent measurements (with R2 values) for SGD and DANA-decaying. The first panel
shows SGD and remaining panels each represent one value of κ3 for DANA-decaying.
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Figure 23: DANA-decaying loss exponents show improvement over SGD, and traverse the
regimes seen in PLRF. (left) Loss exponent versus κ3 for DANA-decaying. The loss exponent
for SGD is shown with a black dotted line. The loss exponents for DANA-decaying have higher
magnitude indicating an improvement in the loss exponent for 0.6 ≤ κ3 ≤ 0.9. (right) We repeat
Figure 6 showing the regimes for PLRF as a function of κ3. We note that the LSTM loss exponents
(left) traverse the same regimes as the x-axis of the right figure: divergence for small values of κ3,
outscaling SGD for intermediate values of κ3, and reverting back to SGD-like scaling for κ3 ≥ 1.0.
Note κ3 = 1.0 corresponds to Schedule-Free SGD, and shows almost exactly the same loss exponent
as SGD for LSTMs.
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Figure 24: The equivalence in risk dynamics between SGD and SGD-M holds approximately
in LSTMs. We sweep different values of momentum (different line styles) and different effective
learning rates where effective learning rate = learning rate / (1 - momentum). Color corresponds to
the effective SGD learning rate. Loss curves of the same color have similar dynamics showing that
the equivalence in PLRF dynamics extends fairly closely to the LSTM setting.

L.3 Equivalent risk dynamics for SGD-M and SGD

As noted in Section 5 and Remark G.2, there is an equivalence in risk dynamics on PLRF when
γSGD
2 = γSGD-M

2 + γSGD-M
3 /δ.

In Figure 24, we show this equivalence holds closely in the LSTM setting especially after the
early phase in training. We perform a two-dimensional sweep across learning rates and momentum
values. We train SGD (corresponding to m = 1.0) and SGD-M with three different momentum
values of m ∈ [0.9, 0.95, 0.99]. Following the equivalence, we sweep the SGD “effective learning
rate" denoted by η and set the learning rate to η/(1 − m) for each value of m. We sweep η ∈
[0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0].

In Figure 24, we see that all values of momentum have similar risk dynamics for the same effective
learning rate (same color), particularly after the early phase of training. While we do not measure
the loss exponent for SGD-M directly, this equivalence suggests that SGD-M should have nearly
identical scaling behavior to SGD and result in the same loss exponent.

L.4 Experiment Details

Initialization. We use standard parameterization to initialize the LSTM parameters. All matrix
parameters use Gaussian initialization with zero mean. The embedding parameters are initialized with
standard deviation = 0.1 and the hidden (LSTM cell kernel and recurrent) parameters and readout
parameters are initialized with standard deviation 1/

√
fan-in. Bias parameters are initialized to zero.

Dataset. All models are trained on the C4 language dataset [84] encoded with the T5 Senten-
cePiece [57] tokenizer, with an additional beginning-of-sequence (BOS) token, resulting in the
vocabulary size of V = 32, 001 (32, 000 original vocabulary + 1 BOS). The effective vocabulary
dimension in experiments is 32, 101 due to 100 unused tokens. Both training inputs and evaluation
inputs are padded rather than sequence-packed. We use the ‘train’ split for training and the ‘validation’
split for evaluation from the TFDS [1] version of the dataset.

We train in the single epoch regime: the C4 dataset contains 156 billion tokens, but our models never
train past the first few billion tokens and we never repeat training examples.

Implementation details. Our LSTM implementation started from a fork of the code released with
[53], with changes made for performance, initialization, and switching the dataset. The LSTM
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implementation uses JAX [32] with Optax optimizers [32]. We use a modified version of the data
pipeline from NanoDO [65].

Hyperparameters. We first swept the SGD learning rate and selected a stable learning rate of 0.5
which we use for all SGD experiments except the learning rate sweeps in Fig. 24.

For DANA-decaying, we set γ2 = 0.5 to correspond to the SGD learning rate, and γ3(t) = γ2 × (1 +
t)−κ3 . We then sweep over κ3; the minimum κ3 where DANA-decaying converges appears optimal
(Fig. 2c & 20). Since δ just needs to be large, we set δ = 8.

Flops calculation. We compute flops as 6 × non-embedding parameters × training tokens using
the ‘6ND’ heuristic [50, 54]. We follow the common practice of counting only the non-embedding
parameters as this has been shown in [50, 54] to induce better power law fits.
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M Additional Information on the Experimental Set-Ups for Figures

In this section, we provide additional information regarding the experimental set-ups used to generate
some of the figures. For most figures, we have included these in the captions. Due to space limitations,
some figure experimental set-ups are included here.

Figure 1a. Experimental setup: d = 500, v = 2500, batch size = 1, 107 iterations, with learning
rates γ2 = 0.5/Tr(D) for all methods, γ3 = 0.1/(Tr(D) × d) for DANA-constant, and γ3(t) =
0.1(1 + t)−1/(2α) for DANA-decay.

Figure 1b. Numerical setup: SGD (blue curves) learning rate γ2 = 0.5/Tr(D), DANA-constant
(green) has γ1(t) = 1, γ2(t) = 0.5/Tr(D), γ3(t) = 0.1/d, ∆(t) = δ/(1 + t) where δ = max{2−
1/α, (2α+2β−1)/α}+1; DANA-decaying (orange) same γ1, γ2, and ∆ as DANA-constant,γ3(t) =
0.1/(1 + t)1/(2α); Schedule-free SGD (red) β̃ = 0.9 and γ̃ = 0.5/Tr(D) in [33]. Algorithms run
using the ODEs (43) with hyperparameters given in Table 3 for Schedule-Free SGD; 109 iterations
of algorithm, d = {100× 2i}, i = 1, . . . , 10 and v = 10× d. Schedule-free SGD (red) scales very
closely with SGD (blue) for this (α, β). We see both DANA-decay and DANA-constant accelerate.

Figure 1c. PLRF setup: number of iterations for all algorithms is 107, α = 1.2, β = 0.7, batch
size 1 with d = {250, 500, 1000, 2000} and v = d× 2. Adam [56] algorithm was run from Optax
[32] where the default parameters (i.e., β1 = 0.9, β2 = 0.999, ε = 10−8) were applied. For
the Adam learning rate, a cosine-decay schedule, also from Optax, was used. Initial value for the
cosine learning rate is 0.001. For each d-value, multiple runs of adam with the decay steps in the
cosine-decay learning rate given by 2 × 1000 ×m, m = 0, 1, . . . until decay steps is greater than
total iterations, 107. For each d, (solid green) lower envelope of the Adam runs; (faded green) one
single run of Adam with a fixed decay step. SGD (solid orange) and DANA-decaying (sold blue)
plotted using ODEs. DANA-decaying hyperparameters: δ = max{2 + (2β − 1)/α), 2− 1/α}+ 1
with ∆(t) = δ/(1 + t); γ3(t) = 0.1/Tr(D)× (1 + t)−1/(2α); γ2(t) = 0.3/Tr(D); γ1(t) = 1. SGD
hyperparameters: γ2(t) = 0.3/Tr(D).

Figure 3a and Figure 3b. Optimal learning rate schedule, varying κ3 and κ2 in learning rate
γ3(t). Numerical set-up: d = 800 and v = 5× d; batch size is 1, number of iterations is 109. SGD:
learning rate is γ2 ≡ 0.5/Tr(D) where Tr(D) =

∑v
j=1 j

−2α; DANA-constant: γ2 same as SGD,
γ3(t) = 0.1/(Tr(D))× d−κ3 where κ3, if not specified is 1, ∆(t) = δ/(1 + t) where δ = max{2 +
(2β − 1)/α, 2− 1/α}+ 1; DANA-decaying: γ2 same as SGD, γ3(t) = 0.1(1 + t)−κ3 × 1/Tr(D)
where κ3, if not specified, is 1/(2α), ∆(t) same as DANA-constant. Curves generated by using
the ODEs in (7) with the deterministic equivalent for K̂; In Fig. 3a, if κ3 < 1/(2α) in γ3, DANA-
decaying will eventually diverge, but until it does it exactly follows the curve for DANA-decaying
with κ3 = 1/(2α). Moreover when κ3 = 1/(2α) in Fig. 3a, DANA-decaying does not diverge
and it appears optimal. When κ3 = 1, i.e., momentum is a pure average, the loss curve is similar
to SGD and does not accelerate. Similarly, in Fig. 3b, for DANA-constant with γ3(t) ≍ d−κ2 ,
κ2 = 1 is the only power in d for which the algorithm does not diverge, however the algorithm is
slower. For κ2 < 1, initially the curves decrease before diverging and, up until divergence, follow the
trajectory of DANA-decaying with γ3(t) ≍ (1 + t)−1/(2α). This justifies the learning rate schedule
γ3(t) ≍ t−1/(2α) in DANA-decaying.

Figure 3c. Numerical set-up: 100 randomly generated K̂ = DWWTD and the ρj’s computed; for
empirical density µF, 500 bins equal spaced on log scale from 10−8 to 1 and counted the number
of λj that fall into each bin weighted by ρj’s and then averaged over the 500; For deterministic
equivalent µF, solved fixed pointed equation (33) using Newton Method on a grid of x-values.

Figure 6. Suppose κ1 = 0 and we are above the high-dimensional line, 2α > 1. Using Theorem 4.1,
you can find the number of iterations needed to reach the optimum, F0, when 2α > 1; it is independent
of which phase (Phase Ia, II, III). In particular, we have that

ϑ(t) ≍ max{t, d−κ2t−κ3+2}.

171



For 2α > 1 and B = 1, a quick calculation shows that

time to reach irreducible loss, t ≍ dη where η =

{
min

{
2α+κ2

2−κ3
, 2α}, if 2α+κ2

2−κ3
> 0

2α, else.

When t ≍ d2α, this is the same amount of time that SGD requires to reach the irreducible loss level.
Equality holds in the minimum exactly at the (magenta) line, κ2 = 2α(1− κ3).
In terms of divergence, we can look at the stability condition (stability) in Theorem 4.1. From this,
we have divergence if κ2 ≤ −2α × κ3 + 1. This is precisely below the (red) line. We plotted the
values of η for α = 1.1.

Figure 7. Numerical set-up: d = 100× 2i, i = 1, . . . , 10 for Phase I, IIa, IIIa, d = 100× 2i, i =
10, . . . , 15 included for Phase IIb, IIIb; δ ≥ max{2+(2+β−1)/α, 2−1/α} with v = 5×d; SGD:
learning rate is γ2 ≡ 0.5/Tr(D); DANA-constant: γ2 same as SGD, γ3(t) = 0.15/(Tr(D))× d−1,
∆(t) = δ/(1+ t) where δ = max{2+(2β−1)/α, 2−1/α}+1; DANA-decaying: γ2 same as SGD,
γ3(t) = 0.25(1 + t)−1, ∆(t) same as DANA-constant; colored lines computed using deterministic
ODEs (7) over different d and black lines the predicted compute-optimal curves from Table 5,6,7. Our
predictions match the scaling laws of the deterministic ODEs and show that DANA-decaying yields
better scaling laws. Phase diagram, (bottom, right). Green region: both DANA-constant and DANA-
decaying accelerate; red dashed region: DANA-constant doesn’t accelerate but DANA-decaying
does; red region: neither DANA-constant nor DANA-decaying accelerate.

Figure 8. (left) Simplified ODEs (43) and exact ODEs (22) match the stochastic algorithms across
multiple d-values. Prediction for the loss exponents match empirical (Approach 1 used from [50]).
(middle) Plotted is the loss exponent η, P(f/d⋆; d⋆) = fη against the our predicted η’s given in
theory (see Table 6, 5, 7) by fixing β = 0.7 and going through different α values; as α ↑ go
through Phase Ic → IVa → IVb → III → II. Solid dots computed from multiple runs of the
stochastic algorithm using Approach 1 from [50] (see Section K for details). Predictions match well
estimated values and show that as SGD, DANA-constant, and DANA-decaying all coincide when in
IV. Exponent of DANA-constant and DANA-decay are significantly larger than SGD in III and II. In
Ic, there is a small discrepancy with theory versus estimated due to dimensonality, d, effects (see [80]
for more details). (right) Same plot for params exponents (top), ξ on d⋆ = fξ and data exponents
(bottom), ζ , i.e., exponent at compute-optimum for number of samples; Fixed α = 1.0 and varying β.
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Figure 25: SGD loss curves and compute-optimal loss vs. theory on PLRF. For various (α, β), we plot the
mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures) for SGD (solid
lines) with γ2 = 0.375/Tr(D). Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic
runs of SGD match the solutions of the simplified ODEs in (43) (dotted lines) nearly perfectly. The empirical
compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where the solid
red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly match theory
for all (α, β) tested, with absolute maximum difference of 0.08.
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Figure 26: SGD loss curves and compute-optimal loss vs. theory on PLRF. See Figure 25 for details.
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Figure 27: SGD loss curves and compute-optimal loss vs. theory on PLRF. See Figure 25 for details.
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Figure 28: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. For various (α, β),
we plot the mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures)
for DANA-constant (solid lines) with γ1 = 1, γ2 = 0.375

Tr(D)
, γ3 = 0.1

d
× 1

Tr(D)
,∆(t) = δ(1 + t)−1, δ =

max{ 2α+2β−1
α

, 2 − 1
α
} + 1. Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic

runs of DANA-constant match the solutions of the simplified ODEs in (43) (dotted lines) nearly perfectly. The
empirical compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where
the solid red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly
match theory for all (α, β) tested, with absolute maximum difference of 0.09.
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Figure 29: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. See Figure 28 for
details.
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Figure 30: DANA-constant loss curves and compute-optimal loss vs. theory on PLRF. See Figure 28 for
details.
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Figure 31: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. For various (α, β),
we plot the mean population risk for stochastic algorithm runs over 10-100 seeds (see individual figures)
for DANA-decaying (solid lines) with γ1 = 1, γ2 = 0.375

Tr(D)
, γ3(t) = 0.1

(1+t)1/(2α) ,∆(t) = δ(1 + t)−1, δ =

max{ 2α+2β−1
α

, 2 − 1
α
} + 1. Colors indicate dimensionality d ranging from 200 to 12,800. The stochastic

runs of DANA-decaying match the solutions of the simplified ODEs in (43) (dotted lines) nearly perfectly. The
empirical compute-optimal power-law (dashed black line) is generated using Chinchilla Approach 1 [50] where
the solid red highlighted section shows the region fit. The empirical compute-optimal loss exponents nearly
match theory for all (α, β) tested, with absolute maximum difference of 0.085.
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Figure 32: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. See Figure 31 for
details.
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Figure 33: DANA-decaying loss curves and compute-optimal loss vs. theory on PLRF. See Figure 31 for
details.
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Figure 34: SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal
for each value of flops using the loss curves from Figure 25. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.
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Figure 35: SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal
for each value of flops using the loss curves from Figure 26. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.
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Figure 36: SGD Chinchilla Approach 1. Gray stars plot the parameter count of the model size that is optimal
for each value of flops using the loss curves from Figure 27. Power laws (red line) fit through these points give
the empirical parameter exponent, which matches theoretical predictions within 0.09.
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Figure 37: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 28. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.
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Figure 38: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 29. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.
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Figure 39: DANA-constant Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 30. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.103.
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Figure 40: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 31. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.
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Figure 41: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 32. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.
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Figure 42: DANA-decaying Chinchilla Approach 1. Gray stars plot the parameter count of the model size
that is optimal for each value of flops using the loss curves from Figure 33. Power laws (red line) fit through
these points give the empirical parameter exponent, which matches theoretical predictions within 0.132.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The statements in the abstract and introduction accurately reflect the paper’s
contributions. The introduction/abstract make clear which of the algorithms we have proven
(e.g., we only provide a heuristic for DANA-decaying). We also make it explicit in the
statements of the theorems, propositions, etc, the assumptions that we are making. We also
verify these assumptions in figures.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: At the end of the main paper, we provide a ‘Limitations’ section. In our
statements of propositions, theorems, etc, we make very clear our assumptions. For example,
we are explicit that we do create the deterministic system of ODEs directly from the
stochastic algorithms but rather SDE (see Section 3). Another example is in Section H,
we are clear that we can not solve the system of ODEs in (22) directly instead we solve a
simplified system of ODEs and show empirically that the solution to this simplified system
of ODEs matches DANA-constant.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems, lemmas, etc are proven in the Supplementary Materials. We
provide a short outline of the arguments in the main document. In some cases, e.g., DANA-
decaying, we only prove for 2α > 1, but we make this explicitly clear in the main document
as well as in Section I. All assumptions are clearly stated in the statements of the theorems.
For example, we make it clear that one of our main theorems only holds for α > 1/4 and
α+ 1 > β. We do provide numerical experiments which show that our results hold beyond
this setting.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In each of the figures, we provide an explicit description of how the image
was generated including the numerical set-up. In some cases, due to space limitations, the
experimental set-ups are discussed in detail in Section M. We provide a description of the
power law random features model (PLRF) in Section 2 and experimental details in Section K
which allows for reproducibility of our model on the synthetic data. We also provide explicit
description of the set-up for the LSTM experiments in Section L; we include a citation to
the datasets that we are using as well.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments that require significant code. The
model we analyze is a simple power law random features model (PLRF) applied to synthetic
data. As such, the code can be readily produced by following the set-up seen in the captions
and/or our numerical simulations section, Section K. The model has been used before in
other papers. Additionally for the LSTM experiments, we are using a set-up similar to other
papers [54] and reproducing Fig. 2 with DANA-decaying and the C4 text dataset [84].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so ’No’ is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The experimental design, including the power law exponents, hyperparameters,
fixed stepsizes, choices of d and v, and the numerical simulations for solving the ODEs are
all written in the captions of the figures and/or Section K, Section L or Section M. We also
intend to release the code for numerically computing the ODEs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We record how we generate the empirical compute-optimal exponents using
statistical tools that were first deployed in other papers such as [50]. We report the number
of random seeds used for each PLRF experiment in Section K. We report R2 values for all
LSTM loss exponents. We are careful to explain when and why the theory deviates from the
numerical simulations. Often this is due to finite d and v effects and the slow behavior of
the theory to the asymptotics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As this paper is about compute-optimal curves, we provide details on the
exact number of flops required to perform the experiments in Section K and Section L.
The compute resources are also well known in the community using the standard 6ND
heuristic [50, 54] for flops.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics. We have made our utmost attempt to
adhere to the guidelines provided by NeurIPS. We do not use any human subjects nor any
datasets. We did our best to cite all the relevent related work. Given that our work is in the
foundational research, it is difficult to mitigate all the risks as the downstream effects of
theory are long, but we have done our best. The model is completely synthetic using the
standard stochastic momentum-type algorithms; thus we don’t, to the best of our knowledge,
anticipate any risks. We have included a "Broader Impact" statement at the beginning of the
"Supplemental Materials."

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work presented is purely foundational research and is not directly tied to
any particular application. We study a simple random features model with power law data
and target and we solve the model using a common algorithm SGD. Given the theoretical
nature of this work, we do not anticipate any direct ethical and societal issues. See our
Broader Impact Statement in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks. The majority of the work is theoretical and
focuses on the power-law random features using only synthetic data generated from a
normal distribution. This model is a standard statistical model (e.g., least squares) which is
a textbook learning problem. The LSTM experiments serve only to illustrate the theoretical
results act as a proxy in a more realistic setting, and are trained on a public language dataset
(C4,[84]). We do not release any data or pretrained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We acknowledge via citations that the model we study was introduced before
by others (e.g., Maloney, Roberts, and Sully paper). We cite the datasets we are using,
e.g., C4 language dataset [84] and software use [18]. We include an extensive relate work
section in Section A where we provide tables comparing sample complexity across multiple
algorithms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not intend to release any new assets. The work is a theoretical analysis
of random features model along with limited language model experiments that illustrate the
theoretical behavior. We will release some code for solving the ODEs.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
The work is purely theoretical on a simple model.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects.
The data used in this work is generated synthetically.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core development of the research in this paper does not involve LLM as
any important, original, or non-standard components. LLMs were used to clean up some of
the grammar aspects as well as make our code more efficient, but the ideas and proofs (core
of this work) did not involve any LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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