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Abstract

Recent 6D pose estimation methods demonstrate notable performance but still
face some practical limitations. For instance, many of them rely heavily on sen-
sor depth, which may fail with challenging surface conditions, such as transparent
or highly reflective materials. In the meantime, RGB-based solutions provide
less robust matching performance in low-light and texture-less scenes due to the
lack of geometry information. Motivated by these, we propose SingRef6D, a
lightweight pipeline requiring only a single RGB image as a reference, eliminat-
ing the need for costly depth sensors, multi-view image acquisition, or training
view synthesis models and neural fields. This enables SingRef6D to remain ro-
bust and capable even under resource-limited settings where depth or dense tem-
plates are unavailable. Our framework incorporates two key innovations. First,
we propose a token-scaler-based fine-tuning mechanism with a novel optimiza-
tion loss on top of Depth-Anything v2 to enhance its ability to predict accu-
rate depth, even for challenging surfaces. Our results show a 14.41% improve-
ment (in δ1.05) on REAL275 depth prediction compared to Depth-Anything v2
(with fine-tuned head). Second, benefiting from depth availability, we introduce
a depth-aware matching process that effectively integrates spatial relationships
within LoFTR, enabling our system to handle matching for challenging mate-
rials and lighting conditions. Evaluations of pose estimation on the REAL275,
ClearPose, and Toyota-Light datasets show that our approach surpasses state-of-
the-art methods, achieving a 6.1% improvement in average recall. Project page:
https://plusgrey.github.io/singref6d.

1 Introduction

Determining the 6D pose of an object in a three-dimensional space is an essential task for various ap-
plications in robotics, industrial automation, and augmented reality [1–3]. Recent computer vision
approaches for 6D pose estimation have achieved remarkable progress, enabling machines to under-
stand object orientation and position in space and interact with the physical world with increasing
sophistication [4–10].

Among these methods, one prevalent paradigm relies on accurate geometric information of object
CAD models and scene depth maps. By matching observed scenes with pre-obtained 3D models, it
achieves notable 6D pose estimation performance [6, 8, 9, 11, 12]. Although these solutions have
shown significant effectiveness, they come with some practical limitations. First, obtaining CAD
models for new objects is costly, requires specialized scanning equipment, and involves tedious
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manual refinement. In addition, sensor-based depth sensing struggles with challenging surface con-
ditions, particularly for black, transparent, and highly reflective materials. Our study shows that
it leads to a failure rate exceeding 85% in the ClearPose [13] dataset that focuses on scenes with
transparent objects. Alternatively, some methods use multiview image matching [7, 4, 5] for 6D
pose estimation, either from object projections [10, 4], video sequences [9, 14] or leveraging neu-
ral fields [15] for view rendering. However, multiview matching relies on an extensive template
library for high accuracy, while constructing neural fields is computationally intensive and restricted
to per-instance training.

In contrast, the human visual system excels at object pose estimation with remarkable efficiency and
adaptability across diverse environments. It operates without explicit 3D models, exhaustive view-
point sampling, or even strict binocular vision, instead relying on cognitive mechanisms for depth
perception and shape understanding [16–22]. Inspired by the human vision system, we propose
SingRef6D, a simple-yet-efficient pose estimation pipeline that requires only a Single Reference
RGB image, eliminating the need for explicit 3D models, precise depth sensing, or any form of
novel view synthesis, explicit or implicit, while maintaining robustness and versatility. Moreover,
Singref6D requires neither the training of costly generative models (e.g., VAE [23], diffusion [24])
nor the construction of scene-specific neural fields (e.g., NeRF [25]), yet achieves competitive per-
formance.

Specifically, SingRef6D tackles the pose estimation problem by independently addressing their cor-
responding challenges in both depth perception and pose solving stages. To enhance depth per-
ception, we develop a new fine-tuning approach for Depth-Anything v2 (DPAv2) [26] by using a
token scaler (a network to re-weight features from transformer layers) to scale hierarchical features
dynamically. This refinement mimics the mechanism of human spatial perception in a stratified man-
ner [20, 22], allowing our depth prediction module to reliably extract depth cues from a single RGB
image, even under adverse conditions such as high reflectivity and transparency. Although our depth
model is trained with supervision, it effectively distills spatial priors into a compact model, enabling
inference-time operation with only an RGB input. In this sense, our method implicitly expands
the reference space without incurring the cost of dense geometry or view synthesis. With LoFTR’s
strengths [27], our second stage introduces a depth-aware matching module by fusing RGB and
depth cues into a unified latent space. By encoding spatial priors during training, our depth model
expands the effective view space, allowing LoFTR [27] to match across challenging appearances
with only a single-view reference. This integrated approach significantly refines pose estimates and
ensures precise alignment even under challenging environmental conditions. The contributions of
this work can be summarized as follows:

• We introduce SingRef6D, a novel monocular 6D pose estimation pipeline requiring only a
single reference RGB image under a strictly minimal reference setup, without relying on
CAD models, multi-view collections, or novel-view synthesis .

• We developed a token-scaler-based fine-tuning approach for DPAv2 [26], which enables our
metric depth estimation to handle challenging surface conditions. Results on the ClearPose
dataset [13] show a boosted accuracy from 31.23% to 54.30% for transparent objects.

• We propose a depth-aware matching on top of LoFTR [27], and our results show an im-
provement of 6.1% in average recall across three pose estimation benchmarks.

2 Related Work

2.1 Novel Object 6D Pose Estimation

Novel object 6D pose estimation aims to identify the pose of a previously unseen object. Current
methods typically adhere to the following pipeline: identification of the object, integration of 3D
information, matching, and pose solving. These methods fall into two main splits, one is feature
matching-based methods [28–30, 8, 11, 31, 12, 32, 4, 33, 9, 10, 6] the other is template matching-
based methods [34, 14, 5, 35, 7, 4, 36–39]. For each category, we investigate several representative
models and discuss their limitations.

Feature-Based. MatchU [32] simultaneously extracts features from RGB, depth, and CAD models.
Then, fine-grained matching with the decoded descriptor will be conducted. However, its heavy
dependence on CAD models and substantial training overhead limit its practicality in real-world
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Table 1: Comparison of input data requirement: (1) Reference Required: the format and utilization
of input data as reference required for pose estimation; (2) Extra cost: cost to obtain sufficient spatial
information; and (3) Localization: the method for object localization.

Method Reference Required Extra Cost Localization

OVE6D [39] Precise CAD models - Mask
MegaPose [40] Precise CAD models - Bounding Box
Gen6D [41] RGB video sequence Image-level Comparison Bounding Box
OnePose [9] RGB video sequence Structure from Motion (SfM) Bounding Box

NOPE [7] Single RGB image and
poses of new viewpoints

Train a U-Net to synthesis 342
novel views with VAE (One object scene)

PoseDiffusion [42] Multiview RGB templates Train a diffusion network to generate poses Bounding Box
SAM6D [4] Multiview RGBD templates Train a 3D-based matching model Mask
FoundationPose [5] Multiview RGB templates Train neural fields to represent 3D spaces Mask
Oryon [6] RGBD image and text prompt Train a matching and a segmentation model Mask
Any-6D [43] Single RGBD image Image-to-3D model Mask

Zero123-6D [44] RGB images Synthesize 50 novel views with diffusion model,
train neural fields to represent 3D spaces (One object scene)

3DAHV,DVMNet [45, 46] Single RGB image Large-scale training for a 2D-3D latent space Mask
SingRef6D (ours) Single RGB image Fine-tune a lightweight token scaler (only for depth) Mask

applications. Oryon [6] uses a vision-language model to boost matching with text embedding. This
approach fails to deal with transparent objects due to the invalid values of sensor-based depth.

Template-Based. NOPE [7] determines the pose of the object by image-level matching that requires
extensive viewpoints to synthesize templates from the reference image to represent 3D space ade-
quately. FoundationPose [5] trains neural fields, such as BundleSDF [15], to generate a number
of pose hypotheses. However, NOPE [7] is limited to scenarios involving a single textured object,
as it predicts the object’s appearance from novel viewpoints. This approach becomes incapable
for complex scenes with multiple objects and suffers significant performance degradation when the
viewpoints are spatially sparse. Such a reliance on view synthesis limits generalization to multi-
object or low-texture sceneschallenges that SingRef6D explicitly tackles via a learned depth prior.
The hypothesis generation with refinement in FoundationPose [5] incurs computational overhead,
and the neural field may fail when facing challenging light conditions.

Table 1 summarizes the data requirements of different models for novel object 6D pose estimation.
Although some models [7, 38, 44] appear to use a single RGB image as a reference, they incorporate
techniques such as diffusion-based synthesis or 3D reconstruction. For instance, NOPE [7] trains
a network to synthesize image embeddings of novel views and requires inputting the pose of new
viewpoints. Zero123-6D [44] trains a NeRF-like [25] network to reconstruct the 3D shape with new
views generated by a diffusion model. GigaPose [38] directly uses an image-to-3D model to obtain
a mesh from an image, which might result in large shape inaccuracy.

Our SingRef6D, in contrast, does not involve any format of multi-view rendering or novel view
synthesis; all accessible reference information comes from a single RGB image. This is one of
the minimal and strictest requirements for the reference input that ensures strong adaptability even
in data-scarce and resource-scarce scenarios. This sharply contrasts with approaches that require
synthesizing dozens or hundreds of virtual views, which incur high training and inference costs.
Such an efficiency makes it well-suited for real-world applications where limited annotations or
sparse reference data are available.

2.2 Monocular Metric Depth Estimation

We investigate several monocular metric depth estimation methods [47–52, 26, 53]. MiDas [47], the
first transformer-based dense depth model, introduced top-to-bottom fusion for precise predictions.
ZoeDepth [48] requires extensive fine-tuning for accurate zero-shot depth estimation. UniDepth [49]
employs a self-promptable camera module for depth conditioning but struggles with generalization
due to full supervision. ScaleDepth [50] models metric-relative depth relationships based on the
assumption that all transformations are linear, which has achieved efficiency but relatively low accu-
racy. HybridDepth [51] performs well across various datasets but relies on an additional focal stack
for spatial priors. Depth-Anything v2 [26], structurally similar to MiDas [47], benefits from class-
agnostic self-supervised training, ensuring adaptability and fine-tuning ease. Given these insights,
we fine-tune a pre-trained DPAv2 [26] as our depth estimator. Details of our pipeline are provided
in Section 3.
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Figure 1: Visualized pipeline for inference (upper), the details of our depth model, matching pro-
cess, and highlights (lower). During inference, our fine-tuned depth model first estimates the metric
depth accurately, which can deal with challenging surfaces. Subsequently, the proposed depth-aware
matching utilizes depth value as spatial cues to establish correspondences even in low-textured re-
gions. Then, the relative pose Tq→r can be solved with a point cloud registration model and the 6D
pose for the query object can be calculated with T−1

q = T−1
r Tq→r.

3 Method

3.1 Overview

The 6D pose estimation problem addressed in this work is defined as follows. Given a pair of RGB
images, a query, and a reference, both containing the same object, the objective is to estimate the
6D relative pose between the query and reference. Unlike previous methods [4, 10, 9], our approach
does not rely on CAD shapes, multi-view images, or any extra costly training to implicitly obtain
novel-view information. This “low” reference requirement improves the applicability in real-world
scenarios, making our method highly practical and versatile.

Figure 1 outlines our pipeline, which begins by processing query and reference image pairs to gener-
ate depth predictions using our robust depth prediction module (Figure 1A). Next, query-reference
correspondence is established through the depth-aware matching module (Figure 1B). With the avail-
ability of off-the-shelf models like SAM [54], target object localization is simplified, enabling corre-
spondence by cropping the scene to a region of interest. After that, we compute the 3D relative pose
using PointDSC [55] and depth-projected point clouds.

3.2 Robust Metric Depth Prediction

Accurate geometry perception relies on precise metric depth estimation. While depth foundation
models, such as DPAv2 [26], provide an effective solution for depth prediction, we observed that
direct metric depth estimation from DPAv2 [26] is hindered by scaling inconsistencies. To address
this limitation, fine-tuning can be employed to mitigate the scaling issue. However, direct fine-
tuning is either computationally demanding or often degrades clarity, leading to distorted boundaries
that diminish overall performance, as illustrated in Figure 2. To overcome these challenges, we
introduce a novel fine-tuning approach based on a token-scaler mechanism, designed to enhance the
accuracy and robustness of metric depth prediction based on DPAv2 [26]. Our approach integrates
a ControlNet-like structure [56] to dynamically scale and modulate features at different levels (low-
level, mid-level, high-level, and global-level) of DPAv2 [26]. As shown in Figure 3, the depth
prediction pipeline incorporates the token-scaler mechanism for hierarchical feature modulation,
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Figure 2: Visualized comparison of projected point clouds with depth maps. The depth sensors
were unable to detect transparent objects and are limited to the device’s inherent field of view. The
predicted depth ensures a valid value in all pixels. Compared to vanilla DPAv2 [26](with a fine-tuned
head), point clouds using depths from our method are geometrically consistent and scale-correct.

which adaptively adjusts feature representations at each level without compromising computational
efficiency and pre-training knowledge.
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Figure 3: Visualized structure of the depth prediction pipeline
(Left) and fusion layer with our token scaler (Right).

Our method performs well in pre-
serving geometric characteristics
and overall depth map quality, as
demonstrated in Figure 2. Math-
ematically, consider a backbone
network (e.g., DINOv2 [57] in
DPAv2 [26]) for feature extrac-
tion, let Fl denote the features at
stage l, where l ∈ {1, 2, 3, 4} cor-
responds to low-level, mid-level,
high-level, and global-level fea-
tures, respectively. We introduce
a novel token scaler that adap-
tively re-weights the feature in
each level and then fuses with the
upper level as:

F′
l = Fl

(
Fl, Scaler(F′

l+1)
)
, l ∈ {1, 2, 3} (1)

where Scaler(·) is a scale function, Fl is the fusion conv layer and F′
4 = Upsample(Scaler(F4)).

Specifically, for low- and middle-level features (F1 and F2), which retain fine-grained details and
local features with high-frequency information, we apply an efficient attention layer [58] to boost
global awareness while minimizing the impact of potential noise. Conversely, for high- and global-
level features (F3 and F4), which primarily capture low-frequency global scene and context-level
information, we employ an InceptConv-based network [59] as the scaler function, emphasizing local
features to enhance the high-level feature map. More details are illustrated in Sections C.1 and C.2
of the Appendix.

In addition to the token-scaler mechanism, our fine-tuning approach also employs a novel loss
scheme that combines two key components: a global loss term to regulate the scale and shift of
the depth map and a local loss term to improve object geometry and surface reconstruction, i.e.,
Ldepth = Llocal + Lglobal.

Global Loss. We build on the Scale-Shift Invariant (SSI) Loss with regularization, denoted as Lssi+
Lreg . It has proven effective in models like MiDaS [47] and DPAv2 [26] for overall supervision. To
further enhance performance, we incorporate a BerHu [60] loss as it complements SSI by better
penalizing large residuals, especially in high-error regions (default loss in many depth estimation
models), and the final global loss is,

Lglobal = Lssi + Lreg + αBerHu(D, D̂), (2)
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where α is a hyper-parameter, D is the ground truth depth and D̂ is the prediction. The detailed
mathematical expression of our global loss is illustrated in the supplementary material Section C.3.

The local loss consists of three parts, Llocal = Lscale +Ledge +Lnorm., where each is described in
the following.

Scale Alignment Loss. The SSI loss [47] effectively handles global scale and shift parameters but
does not directly enforce object-level scale alignment, potentially reducing the accuracy of relative
scale representations. To address this, we introduce a scale alignment loss

Lscale =
1

M

∑
i

(d̂i − di)
2

1 + η|d̂i − di|
, (3)

where di and d̂i denotes the ground truth and predicted depth value of the i-th pixel, respectively.
This loss quantifies the discrepancy between the ground truth and the prediction within an object.
To enhance robustness against outliers, we introduce an extra term with η into the loss. For large
errors, it reduces the gradient, mitigating noise sensitivity, while for small errors, it approximates
MSE, enabling flexible supervision.

Edge-emphasize Loss. Our analysis indicates that the geometry of the shape is predominantly
determined by its edges, whereby inaccurate edge reconstruction in depth maps results in substantial
3D distortions, as illustrated in Figure 2. Utilizing predictions from DPAv2 [52], the textures are
generally acceptable; however, the boundaries exhibit pronounced discontinuities. To this end, we
propose an edge-emphasized loss:

Ledge =
1

M

∑
i

e−σ∥∇Ii∥ ·
∥∥∥∇d̂i −∇di

∥∥∥2
2
, (4)

where ∇Ii is the gradient of the corresponding position in the RGB image, and σ is the weight.
This loss allows for depth variations in regions with sharp texture changes, which typically indicate
boundaries while constraining depth variations in areas with locally similar textures.

Normal Consistency Loss. While existing loss functions effectively address object scale and edge
detection, they fail to account for surface deformation. Although precise edge detection aids object
localization, errors in 3D surface projection can still compromise relative pose accuracy. To address
this, we introduce a normal consistency loss that preserves geometric structure,

Lnorm =
1

M

∑
i∈M

e−λ∥∇di∥ · (1−

〈
n⃗i
D̂
, n⃗i

D

〉
∥∥∥n⃗i

D̂

∥∥∥ · ∥∥n⃗i
D

∥∥ ). (5)

where n⃗ represent the norm vector. Optimizing this loss enforces directional consistency of surface
normals in the predicted depth map, ensuring alignment with ground truth and maintaining surface
coherence for more accurate geometric reconstruction. The calculation details of the norm vector are
discussed in the supplementary material Section C.4. In our approach, the enhanced depth prediction
not only contributes to the geometry perception but also enhances matching performance for shape
understanding, as detailed in Section 3.3

3.3 Depth-Aware Matching and Pose-Solving

As Figure 1B illustrates, RGB-only matching relies heavily on texture and local brightness, result-
ing in two potential limitations: frequent mismatches between similarly textured foreground and
background regions and poor performance in low-light areas such as shadows. These issues can de-
grade the accuracy of pose solving by introducing unsatisfactory matches. To address this challenge,
we propose a fine-tuning-free depth-aware matching module that effectively combines metric depth
with RGB input to enhance spatial context understanding. We extend LoFTR [27] by incorporat-
ing corresponding depth maps as additional inputs, which enables the fusion of features between
depth and RGB representations in the latent space (as shown in Figure 1E). To preserve the well-
trained feature extraction capability of LoFTR [27], we keep its parameters frozen while leveraging
its coarse-to-fine matching strategy on the combined features. Section C.5 of the supplementary ma-
terial provides a detailed mathematical formulation of this process. Finally, we use PointDSC [55]
to refine the matched correspondences and estimate the relative pose Tq→r, thus solving the desired
6D pose through T−1

q = T−1
r Tq→r.

6



Table 2: Quantitative result of metric depth estimation on various benchmark datasets. The base-
lines are fine-tuned with the corresponding training data for fair comparison. Our main results are
highlighted with colored fonts , and the best result of each column is shown in bold fonts.

Dataset Method δ1.05 ↑ δ1.10 ↑ δ1.25 ↑ RMSE↓ log10 ↓ Abs.Rel.↓ Sq.Rel.↓ MAE↓

Toyota-Light [62]

Unidepth (FT) 11.80 31.24 60.85 0.422 1.022 1.640 0.557 0.371
Depth-Anything v2 (FT) 14.64 33.65 64.23 0.264 0.249 0.252 0.085 0.211

Ours(25% data) 54.06 79.64 91.16 0.143 0.552 0.049 0.025 0.061
Ours(50% data) 62.57 86.96 95.39 0.137 0.521 0.044 0.025 0.055
Ours(75% data) 70.55 90.84 96.21 0.136 0.518 0.043 0.025 0.051

Ours 80.09 96.75 98.64 0.112 0.326 0.039 0.018 0.046

REAL275 [61]

Unidepth (FT) 33.81 61.97 88.08 0.152 0.118 0.134 0.036 0.138
Depth-Anything v2 (FT) 29.87 44.82 66.09 0.288 0.187 0.201 0.092 0.216

Ours(25% data) 28.64 53.12 86.23 0.184 0.127 0.142 0.036 0.138
Ours(50% data) 32.75 56.96 87.83 0.175 0.109 0.108 0.029 0.122
Ours(75% data) 36.50 64.83 88.77 0.138 0.097 0.103 0.025 0.103

Ours 44.28 79.18 90.62 0.107 0.085 0.082 0.022 0.091

ClearPose [13]

Unidepth (FT) 12.73 27.36 40.18 0.175 0.249 0.118 0.167 0.247
Depth-Anything v2 (FT) 31.23 56.95 82.21 0.133 0.076 0.092 0.155 0.101

Ours(25% data) 29.59 53.12 82.02 0.132 0.075 0.087 0.159 0.071
Ours(50% data) 42.69 63.75 86.55 0.118 0.071 0.080 0.151 0.066
Ours(75% data) 49.92 70.61 92.76 0.106 0.062 0.073 0.138 0.060

Ours 54.30 79.65 96.87 0.103 0.064 0.066 0.129 0.059

RGB Scene Ours GT SPIDepth UniDepth ScaleDepth Metric3D

Figure 4: Visualized depth prediction of ours and other metric depth estimation models: SPID-
peth [53], UniDepth [49], ScaleDepth [50], and Metric3D [63]. Ours performs more clearly than
other baselines, preserving all valid pixels compared to the ground truth, which misses key values.

4 Experiment

4.1 Data Preparation and Experimental Setup

We evaluate our approach on multiple 6D pose estimation datasets, each selected for its unique chal-
lenges. REAL275 [61] is chosen for its complex scenes with various objects. Toyota-Light [62],
which is included in the BOP [62] challenge suite, provides a standardized testbed for evaluating
robustness under challenging lighting conditions.To validate our method on transparent objects, we
include ClearPose [13] and downsample the whole training set with a step size of 100. During fine-
tuning, we freeze parameters in DPAv2 [26] and LoFTR [27] modules, training only our token scaler.
Additional details on preprocessing and experimental setup can be found in the supplementary ma-
terial (Sections D.1 and D.2).

4.2 Baselines and Metrics

For monocular metric depth prediction, two state-of-the-art baselines, UniDepthv1 [49] and
DPAv2 [26], are selected for their strong performance and widespread use. To evaluate metric
depth quality, we choose various key metrics: absolute relative error (Abs.Rel.) and square relative
error (Sq.Rel.) to measure prediction errors. The threshold accuracy (δx) gauges the proportion of
predictions within max(D/D̂, D̂/D) < x. The root mean squared error (RMSE) and mean absolute
error (MAE) are selected to judge overall quality. We also include MAE in log space (log10) to
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Table 3: 6D pose estimation results on Real275 and Tyo-L dataset. We highlight our method with
the colored font . The best and the second best values of each column are reported with bold and
underlined fonts, respectively.

Matcher Depth
REAL275 Dataset Tyo-L Dataset

AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑ AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

SIFT [64]
Oracle 34.1 16.5 37.9 48.0 16.4 30.3 7.3 39.6 44.1 14.1
DPAV2 2.1 1.2 1.5 3.5 1.3 5.2 1.3 3.6 10.6 3.2

Ours 12.2 4.9 12.2 19.7 5.1 20.5 5.6 22.1 33.9 11.0

Oryon [6]
Oracle 46.5 32.1 50.9 56.7 34.9 34.1 13.9 42.9 45.5 22.9
DPAV2 3.7 1.6 4.0 5.5 1.5 6.0 2.5 4.1 11.3 3.5

Ours 20.4 6.9 22.3 32.1 10.1 24.1 7.8 24.7 39.9 11.7

RoMA [65]
Oracle 41.7 28.6 44.9 53.8 30.0 36.8 19.6 44.7 46.1 24.5
DPAV2 3.7 1.6 4.1 5.4 1.2 5.9 3.2 3.3 11.2 3.8

Ours 19.8 6.5 21.6 31.4 9.3 30.9 13.7 32.8 46.2 13.0

Ours
Oracle 56.8 41.2 63.0 66.2 56.9 42.0 34.2 44.1 47.6 35.0
DPAV2 4.1 2.1 3.5 6.1 1.4 5.8 2.8 3.5 11.1 2.9

Ours 28.7 7.8 29.9 45.4 11.6 31.7 13.9 33.8 47.3 13.1
vs. Oryon [6] ∆ +8.3 +0.9 +10.6 +13.3 +1.5 +7.6 +6.1 +9.1 +7.4 +1.4

better capture depth variations in distant objects. For 6D pose estimation, we adopt SIFT [64] and
Oryon [6] as reference-based baselines. We report Average Recall (AR) across VSD, MSSD, and
MSPD [62] and compute ADD(S)-0.1d to assess 3D position error. Section D.3 provides detailed
mathematical definitions of each metric.

4.3 Quantitative Results

Table 4: 6D pose estimation results on ClearPose. We high-
light our method with the colored font . The best and the
second best values of each column are reported with bold
and underlined fonts, respectively.

Matcher Depth AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

SIFT [64]

Manual 19.9 4.8 18.9 37.1 16.1
Raw 0.8 0.1 0.9 1.5 0.1

DPAV2 3.1 0.5 3.8 5.0 0.8
Ours 9.2 1.4 10.0 16.1 2.2

Oryon [6]

Manual 31.1 10.0 37.9 45.3 32.2
Raw 1.2 0.2 1.2 2.2 1.9

DPAV2 8.8 1.5 10.5 14.3 3.3
Ours 17.1 3.8 18.9 29.6 7.1

RoMA [65]

Manual 32.3 9.3 39.0 48.5 33.1
Raw 1.5 0.3 1.2 3.0 2.2

DPAV2 8.9 1.4 10.9 14.2 4.0
Ours 17.7 4.0 19.1 29.7 8.6

Ours

Manual 32.4 10.1 38.8 48.2 33.4
Raw 1.4 0.2 1.2 2.8 2.0

DPAV2 9.1 1.6 11.1 14.4 3.9
Ours 19.4 5.1 19.7 33.5 10.0

vs. Oryon [6] ∆ +2.3 +1.3 +0.8 +3.9 +2.9

Table 2 presents the comprehen-
sive results of depth prediction,
and the visual comparison with
more models is illustrated in Fig-
ure 4. Our method demonstrates
strong performance. Using only half
of the fine-tuning data, we match
Unidepth’s [49] performance. Nat-
urally, performance improves with
better comprehension of the scene
scale when more training data is
available. With all fine-tuning
data, we achieve a 65% improve-
ment in δ1.05 over DPAv2 [26] in
Tyo-L [62]. In REAL275 [61]
and ClearPose [13], we outperform
DPAv2 [26] by 14.41% and 23.07%,
respectively. Table 3 and 4 show
the performance of pose estimation
across the three benchmarks. Our
method surpasses both SIFT [64] and
Oryon [6], achieving average AR im-
provements of +15.3% and +6.5% with ground truth depth and +12.6% and +6.1% with predicted
depth, respectively. This results from our depth-aware matching, which better utilizes spatial infor-
mation. Compared to DPAv2 [26] (with fine-tuned head), our depth prediction produces substantial
improvements: +14. 4% in accuracy with Oryon [6] matching and +20.3% with our LoFTR-based
matching approach. This improvement benefits from the proposed losses, which enhance the recon-
struction of geometric characteristics.

On the Toyota-Light [62] dataset, our performance is lower than Oryon [6] with DPAv2 [26] depth,
as depth prediction errors affect pose estimation. Oryon [6] benefits from textual prompts and VLM,
achieving slightly better results. This highlights the importance of precise depth prediction for
accurate pose estimation. Figure 5 compares the 6D pose predictions of Oryon [6] and our method.
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Figure 5: A visual comparison of the predicted 6D pose across three datasets: the red point cloud
with a 3D bounding box shows the prediction, and the green represents the ground truth. Our
estimated pose exhibits less rotation error and translation shift than the baselines.

From the figure, we can tell that SIFT [64] is unable to conduct precise 6D pose, while Oryon’s
depth-agnostic matching [6] increases rotation errors and translation drift.

Table 5: Comparison of the computational require-
ments of different matching methods.

ID Method #Params. GFLOPs Memory(GB)

I Oryon [6] 264.3M 120.1 5.90
II RoMA [65] 111.3M 111.8 5.10
III Ours [27] 11.6M 13.9 0.74

Table 5 illustrates the efficiency compar-
ison between our methods and the base-
lines. Our approach reduces computa-
tional costs remarkably. This is because
Oryon [6] needs a CLIP [66] to extract
features, while RoMA [65] is based on
high-resolution feature maps processed by
ViT [67] and VGG [68].

Table 6: Ablation study on the effectiveness of
individual loss function on REAL275 dataset.
Lscale Ledge Lnorm δ1.05↑ Abs.Rel.↓ RMSE↓ ∆ (δ1.05)

- - - 31.16 0.279 0.281 -13.12
- - ✓ 34.90 0.196 0.223 -7.38
- ✓ - 35.18 0.188 0.215 -9.10
- ✓ ✓ 40.23 0.139 0.162 -4.05
✓ - - 35.14 0.191 0.220 -9.14
✓ - ✓ 40.25 0.131 0.155 -4.03
✓ ✓ - 40.41 0.124 0.140 -3.87
✓ ✓ ✓ 44.28 0.082 0.107 -

Table 7: Ablation study on the different fine-tuning
paradigms on REAL275 dataset. Full represents all pa-
rameters in the depth head that will be updated.

FT Part FT Type δ1.05 ↑ Abs.Rel.↓ RMSE↓
head LoRA [69] 24.91 0.318 0.371
head Full 29.87 0.201 0.288

head+scaler LoRA [69] 43.97 0.091 0.117
head+scaler Full 44.37 0.080 0.102

scaler N.A. 44.28 0.082 0.107

4.4 Ablation Study

Table 6 shows the effectiveness of our loss components through ablation studies. Removing all three
losses (Lscale, Ledge, and Lnorm) leads to a substantial drop of -13.12% in δ1.05 performance,
demonstrating the importance of our composite loss function for accurate geometric estimation.
Table 7 presents the performance across various fine-tuning setups. Fine-tuning only the depth head
of DPAv2 [26], whether updating all parameters or using LoRA [69], yields poor results. Integrating
our token scaler into DPAv2 [26] markedly increases performance, proving the feasibility of our
method. Considering the trade-off between the extra training burden and the marginal improvement,
we chose to keep the depth head frozen.

Table 8 compares our depth-aware matching against standard approaches with Oryon [6],
RoMA [65], and our LoFTR [27]-based matcher. The second column determines how depth in-
formation is integrated with RGB information. In the absence of latent fusion, RGB-based and
depth-based (if any) matching are performed independently, with the final correspondence obtained
through the intersection of their respective results. Our method improves AR by +4.5% through
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Table 8: Ablation study on the effectiveness of individ-
ual matching strategies on the Tyo-L dataset.

Use depth Latent fusion Matcher AR↑ ADD↑ ∆(mean)

- - RoMA [65] 19.4 6.7 -9.35
✓ - RoMA [65] 20.8 7.2 -8.40
✓ ✓ RoMA [65] 30.6 13.0 -0.60

- - Oryon [6] 24.1 11.7 -4.50
✓ - Oryon [6] 23.6 10.9 -5.15
✓ ✓ Oryon [6] 29.7 12.6 -1.25

- - LoFTR [27] 27.2 11.4 -3.10
✓ - LoFTR [27] 26.6 11.4 -3.40
✓ ✓ LoFTR [27] 31.7 13.1 -

Table 9: Ablation study of different depth fu-
sion mechanisms for matching (Up), effective-
ness of token scaler and depth-aware matching
(Down) on the Tyo-L dataset.

Coarse Feature Fine Feature AR↑ ADD↑ ∆(mean)

PE [70] PE [70] 30.8 12.1 -0.85
PE [70] Additive 31.3 12.8 -0.35
Additive PE [70] 31.1 12.5 -0.60
Additive Additive 31.7 13.1 -

Token Scaler Depth-Aware Matching AR↑ ADD↑ ∆(mean)

- - 4.6 2.0 -19.1
- ✓ 5.4 2.6 -18.4
✓ - 27.2 11.4 -3.1
✓ ✓ 31.7 13.1 -

latent fusion, which effectively incorporates depth as spatial cues to improve matching precision.
Table 9 compares different feature fusion methods for depth-aware matching. We evaluated depth
features as positional encoding (PE) signals [70] for LoFTR [27] transformer layers and through
direct latent space addition. Our experiments reveal that simple additive fusion outperforms the PE
approach while being computationally more efficient. Table 9 reports the effectiveness of each mod-
ule. Without the robust depth prediction, the projected 3D point clouds are unsatisfactory, leading
to a decline in performance. We also investigate the influence of other factors, such as the view-
point gap between query and reference, and the weights of each loss term. The detailed results are
illustrated in the appendix.

5 Conclusion

We present a novel approach for 6D pose estimation that requires only a single RGB reference
image. We innovatively adapt DPAv2 [26] by fine-tuning it with a token scaler to predict met-
ric depth, eschewing unreliable LiDAR-based depth data. We neither render multiple novel views
nor build object-specific 3D templates, perform sparse reconstruction with SfM, or NeRF [25]. In-
stead, we directly predict a dense depth map from a single image using a frozen depth model (with
lightweight tunable components), and fuse features in the 2D space. Integrating depth information
into our matching pipeline substantially reduces mismatches and improves correspondence density
in low-texture regions, leading to more accurate pose estimation. As our method does not rely on
synthesized views or neural fields, it has a notable generalization ability in different environments.
Extensive experimental results demonstrate the effectiveness and versatility of our method in various
scenarios.

Limitations. Our approach uses object masks to localize targets and constrain correspondence
matching, limiting its applicability to scenarios with available segmentation masks. Additionally, its
generalization is bounded by DPAv2 [26] and pre-trained matching networks such as LoFTR [26].
Failures may occur in extremely dark conditions, where the RGB camera captures little meaningful
information.

Future Work. Our token scaler can be utilized to fine-tune other ViT-based models. Furthermore,
our depth-aware matching potentially enhances applications like scene reconstruction by providing
geometric priors for multi-view images. Additionally, integrating VLMs for object localization can
enhance accessibility and efficiency, ensuring a smoother user experience for a wider audience.
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mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
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be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experiment section and appendix, we provide detailed settings for fine-
tuning and data processing.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We illustrate all hardware resources we use for this work in the experimental
section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is about novel object 6D pose estimation. After reviewing the
NeurIPS Code of Ethics, our work conforms to it in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is about novel object 6D pose estimation. As it is a standard task
and does not involve any social-related issues, there is no essential societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All data and pre-trained models used by this work are publicly available and
tested in many applications. There are no such risks for this paper.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available code resources

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work focuses on 6D pose estimation with a single RGB reference, which
does not involve language models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Appendices of SingRef6D: Monocular Novel Object Pose Estimation with a
Single RGB Reference

A Overview

The supplementary material starts here. Section B illustrates the hyperparameters we used for train-
ing and inference. In Section C, some clarifications are illustrated in detail for definitions and cal-
culations in Section 3. In Section D, we added more experimental details and clearly defined each
metric mathematically. At last, we visualize the influence of each layer’s weight.

B Hyper-parameter Setting

In this section, we illustrate the detailed hyper-parameter settings for our fine-tuning process in
Table 10.

Table 10: Hyperparameter Settings based on the Tyo-L dataset.

Hyperparameter Value

General
Epochs 80
RGB Resolution 640 × 480
Learning Rate 0.0005
Warmup Epochs 3
Weight Decay 0.001
Optimizer Adamw
LR Scheduler Cosine Annealing

Data
Dmin,Dmax 0.3,8.0

Depth Estimator
Depth-Anything Depth Scale 19.0
Efficient Attention Head 4
Efficient Attention Hidden Dim 128
Inception Conv Branch Ratio 0.125
Token Dimension 256
Batch Size 16

LoFTR Matcher
Backbone ResNet
Hidden Dims 256
θc 0.2
Attention Head Number 8
τ 0.1

Loss Functions
Lscale Weight 1.0
# η in Lscale 0.2
Ledge Weight 0.7
# σ in Ledge 1.0
Lnorm Weight 0.6
Lreg Weight 0.5
# α for BerHu loss 0.9

C Supplementation of Method

C.1 Details of Depth Estimation

Depth maps are crucial for extracting 3D information, especially for 6D pose estimation with a
single RGB reference. However, sensor-based depth maps often contain invalid pixels, particularly
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when capturing transparent or black objects. Although human refinement of these maps can address
such issues, it requires significant investment in time and labor. To overcome these challenges, we
propose a novel pipeline that leverages a pre-trained DPAv2 [26], harnessing its superior general-
ization capabilities and scene understanding to generate high-quality depth maps without manual
intervention. To enhance metric depth prediction accuracy, we augment the pre-trained model with
learnable token scalers, which are fine-tuned using a curated set of labeled data, resulting in signifi-
cant performance improvements.

In DPAv2 [26], for an RGB image I ∈ RH×W×3. It uses pre-trained DINOv2 [57] to extract multi-
scale features denoted as {Fi ∈ RHi×Wi×C}ki=1. Fi is the feature output from the i-th stage. To
obtain the feature map containing high-level semantic and low-level details, DPAv2 [26] uses top-
to-bottom fusion to integrate the features. Specifically, a trainable fusion network Fi, i ∈ [1, k] is
adopted. Mathematically:

F′
i = Fi(Fi,F′

i+1), (6)

where F′
i is the fused feature. Inside the fusion network, it interpolates the higher-level feature to

the size of the lower-level feature and then uses a convolution network to fuse two feature maps. For
F′
k, since there is no F′

k+1, the network will interpolate it to the size of Fk−1 which can be treated
as an upsampling. After fusing the features all the way down to F1, the final logits D̂ ∈ RH×W is
obtained with a conv-based depth-head:

D̂ = head(F′
1), (7)

For our proposed method, the fusion process can be expressed as:

F′
i = Fi

(
Fi, Scaler(F′

i+1)
)
. (8)

Moreover, we introduce a dynamic scale layer that predicts a scalar using F′
1 to F4′ and a trainable

linear layer.

sa = Linear(

4∑
i=1

γi
H ·W

H−1∑
h=0

W−1∑
w=0

F′
i,h,w), (9)

where Linear(·) is a single linear layer, γi is a learnable parameter. Therefore, the estimated depth
D̂ is the prediction from the depth head multiplied by sa.

Table 11: Performance on whether using the dynamic scale layer
on the Tyo-L dataset.

ID sa input δ1.05 ↑ Abs.Rel.↓ RMSE↓
I - - 72.77 0.051 0.148
II ✓ F′

1 75.43 0.042 0.142
III ✓ Mean([F′

1,F′
4]) 80.09 0.039 0.112

Table 11 presents the impact of
incorporating the dynamic scale
prediction layer on model perfor-
mance. Notably, this layer pro-
vides an additional boost to our
models accuracy. Specifically,
while the token scaler elevates
δ1.05 from 14.64% to 72.77%
compared to DPAv2 [26], the
inclusion of the dynamic scale
layer further enhances performance by an additional 7.32%. To isolate its effect, we also evalu-
ate a framework that employs only the dynamic scale layer, omitting our token scaler. In this case,
the improvement over DPAv2 [26] is limited to just 10.3%.

Alternatively, the raw depth map Draw can serve as an optional input to our model. This approach
stems from the idea that, despite potentially losing fine details, the raw depth map retains an accept-
able overall sense of scale. By incorporating it, we can refine the global scale of our prediction more
effectively. This process is discussed in Section C.2.

C.2 Optional Depth Prior

In practice, the raw depth is usually available, although it might be inconsistent and inaccurate. Our
pipeline can seamlessly take the raw depth as an additional input. We assume that the overall scale
captured by the depth sensor is acceptable. Therefore, if the depth prior is given, we can obtain the
true minimum and maximum depth values from it. Thus, refining our prediction with this “pseudo
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ground truth” to obtain Ds:

Ds =

[(
norm(D̂)

min(Draw)
− norm(D̂)

max(Draw)

)
+

1

max(Draw)

]−1

, (10)

where norm(D̂) is the normalized depth map to [0, 1]. Note that in many raw depth maps, the
minimal value is 0 due to depth deficiency. Therefore, we only consider the valid depth pixels
whose raw depth is larger than 0.

C.3 Details of Global Loss

In this section, we conduct a comprehensive analysis of existing loss functions to inform our global
loss design, examining their relative strengths and limitations. The SSI loss in MiDas [47] is defined
as:

Lssi =
1

2H ·W

H·W∑
i=1

MSE
(
s× d̂i + t− di

)
, (11)

where MSE(·) is the mean square error, s, t are predicted global scale and shift. Since our final goal
is to minimize the difference between D̂ and D we can optimize the s, t in a closed-form:

(s, t) = argmin
s,t

H·W∑
i=1

(
sd̂i + t− di

)2
. (12)

By defining D = [D, 1],D̂ = [D̂, 1], and g = [s, t], the optimal g can be obtain through solving the
least-square problem in Eq. 12. The optimized vector gopt is:

gopt = (

H·W∑
i=1

D̂iD̂⊤
i )

−1(

H·W∑
i=1

D̂iDi). (13)

Alternatively, we can use Mean Absolute Error (MAE) to replace the MSE for more robust per-
formance on outliers. Besides, the prediction and the ground truth depth map are then normalized
through:

D =
D−median(D)

1
M

∑M
i=1 |D−median(D)|

, (14)

where M is the pixel number in the valid mask. Although this is more tolerant when facing more
outlines, the normalization operation destroys the natural metric depth output; therefore, the MSE
version of the SSI Loss is preferred for metric depth estimation. The SiLogLoss, unlike SSI Loss,
supervises the overall scale in log space.

Lsilog = min
s

1

2M

M∑
i=1

(
log
(
esd̂−1

i

)
− log

(
d−1
i

))2
. (15)

However, the SiLogLoss ignores the potential unknown global shift where SSI Loss is not absent.
Therefore, it is not selected in our pipeline.

We additionally use a gradient matching term [47] to match the depth change between prediction
and ground truth.

Lreg =
1

M

K∑
k=1

M∑
i=1

(∣∣∣∇x(d̂i − di)
k
∣∣∣+ ∣∣∣∇y(d̂i − di)

k
∣∣∣) , (16)

where (d̂i − di)
k denotes the difference of disparity maps at scale k. We use K = 4 scale levels,

halving the image resolution at each level.

For the BerHu term [60], it is calculated with:

BerHu(D, D̂) =

{
|D− D̂|, if |D− D̂| ≤ c
(D−D̂)2+c2

2c , if |D− D̂| > c
(17)

where c is a threshold and set to 0.1 multiplied by the max value of |D− D̂| in our experiments.
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C.4 Details of Normal Consistency Loss

As mentioned in Section 3, the normal consistency loss focuses on optimizing the surface repre-
sentation in the predicted depth map. Since the camera intrinsic is available, the projected point
cloud P can be obtained from the corresponding depth D. Then, we can calculate the difference
vector of adjacent points, i.e., calculate the three-dimensional position difference corresponding to
the adjacent horizontal and vertical pixels of each point:

P⃗u = P⃗u+1,v − P⃗u,v,

P⃗v = P⃗u,v+1 − P⃗u,v,

where P⃗u,v = [X,Y, Z]T is the three-dimensional point corresponding to pixel (u, v). The normal
vector can then be computed with the cross product:

n⃗ = P⃗u × P⃗v.

The weight wi aims to reduce potential outliers due to edge, occlusion, or distortion and to ensure
a smooth, consistent surface representation. Therefore, it is calculated as: exp (−λ ∥∇Di∥) . This
exponential-based format ensures lower values in regions with large local depth gradients (typically
representing object boundaries) and higher values in areas with small local depth gradients (usually
corresponding to continuous object surfaces). Figure 6 illustrates the visualized weight map. It is
obvious that the weight for Lnorm on the objects’ edges is small, while the surfaces maintain large
weights. Note that we didn’t filter the map with the objects’ mask. In the real implementation, only
foreground objects are considered.

Figure 6: The RGB and the predicted depth map (Left) and visualized weight map for Lnorm

(Right). The green color represents a large-weight area, while the white and pink colors represent
small-weight areas.

C.5 Details of Depth-Aware Matching

Specifically, two RGB images Iq, Ir, and corresponding depth map Dq,Dr are provided. They are
first extracted by an image encoder simultaneously for feature representation with two output scales
(one is 1

8 of the input resolution as a coarse feature, the other is 1
2 of the input resolution as a fine

feature):
φcoarse
t , φfine

t = enc(It) + norm(enc(Dt)); t ∈ {q, r}, (18)
where enc(·) represents the pre-trained encoder. Note that the input depth maps are normalized to
maintain a consistent scale. To ensure that depth information complements rather than dominates the
matching process, we empirically normalize the depth features so they serve as an auxiliary signal.
Experimental results demonstrate that without proper normalization, depth information overwhelms
the matching process, leading to suboptimal performance.
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w/o depth with depth

Figure 7: A comparison of matching results between RGB-only (left) and our proposed depth-aware
(right) matching pipeline. The colored boxes with connected lines represent obvious mismatches.

The coarse feature is first processed by a transformer decoder to calculate the similarity:

S(i, j) = 1

τ
· ⟨dec(φcoarse

q )i, dec(φ
coarse
r )j⟩, (19)

where dec(·) is a transformer decoder. The matching probability is then obtained with dual-
softmax [27]:

P(i, j) = softmax(S(i, ·))j · softmax(S(·, j))i. (20)

The coarse matching correspondence is then calculated with a defined threshold θc:

Mc =
{
(̃i, j̃) | ∀(̃i, j̃) ∈ MNN(P) ,P (̃i, j̃) ≥ θc

}
, (21)

where MNN(·) stands for the mutual nearest neighbor. Following the approach outlined by
LoFTR [27], we extract two sets of local windows from the fine feature maps based on the coarse
matches Mc. We then compute the correlation between the center vector of dec(φfine

q )i and all vec-
tors in dec(φfine

r )j , generating a heatmap that represents matching probabilities between pixel i and
each pixel in the neighborhood of j. By calculating the expectation over this probability distribution,
we determine the pixel position on Ir. The aggregation of all these correspondences yields our final
set of fine-level matches Mf .

Figure 7 presents a detailed comparison between our depth-aware matching and the RGB-only
matching. As shown in the figure, RGB-only matching struggles to differentiate between foreground
and background pixels (indicated by yellow and red lines). This is because it primarily relies on tex-
ture and color similarity, neglecting the spatial relationship. Additionally, the density of matched
points is sparse in regions with low RGB values, such as the black screen of the computer, due to the
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lack of valid information in those areas. In contrast, our depth-aware matching effectively mitigates
these issues, resulting in improved performance.

With such a correspondence, we can obtain the relative pose Tq→r through deterministic point
cloud registration methods [55, 71] or rigid transformation-solving algorithms [72–74]. Specifically,
within the given coordinate system, the ground-truth 3-D point cloud Pg (under the world coordi-
nates) can be transformed to the 3-D query point cloud Pq and reference point cloud Pr with

Pg = T−1
q Pq = T−1

r Pr, (22)

where the T−1
q and T−1

r are the pose matrix (from camera coordinate to world coordinate) for query
and reference, respectively. As the relative pose can be used to transform the query point cloud to
the reference point cloud as: Pr = Tq→rPq , we can compute the 6D pose of the query object with:

T−1
q = T−1

r Tq→r. (23)

D Supplementation of Experiment

D.1 Details of Dataset Preparation

For the REAL275 [61]and Tyo-Light [62] datasets, we randomly select 80% of the separated scenes
as fine-tuning data, and the rest of the scenes are processed as testing data. The ClearPose [13]
dataset was constructed using sets 1, 4, 5, 6, and 7. Scene 5 from set 1 and scene 6 from sets 4-7
were designated as the test set due to their distinguished visual environments, while the remaining
samples were randomly allocated to the training and testing sets. We treat the scene with a distinct
background as a novel scene, although some of the objects are similar (This is because the appear-
ance of the transparent object is heavily influenced by the background). As the original clearpose
provides dense, continuous views for a scene, we use the sparse version of it, which is downsampled
100 times. The processed clearpose dataset contains 3129 images for training and 643 images for
testing. For testing, we assign objects with distinct backgrounds and shapes as the targets. For each
dataset, the ground truth depth maps are clamped to a given range [Dmin,Dmax], and the specific
value setting is illustrated in the supplementary material Section B.

Table 12: Average SSIM between fine-tuning data and test data
Dataset SSIM

Tyo-L 0.2476 (± 0.1372)
REAL275 0.1676 (± 0.0299)
ClearPose 0.1812 (± 0.0410)

During the experiments, we manually split the data for fine-tuning and testing to ensure the test
scenes are not seen in any format by the model during fine-tuning. To quantify the similarity be-
tween test and fine-tuning data for each dataset, we use the Structural Similarity Index Measure
(SSIM) [75] and then report the mean and standard deviation for each dataset.

From Table 12, we can observe that the SSIM [75] scores between the fine-tuning scenes and test
scenes are relatively low, indicating limited information overlap and acceptable separation.

D.2 Details of Experimental Setup

We fine-tune our model for 80 epochs with a batch size of 16 for all datasets except ClearPose [13],
which is fine-tuned with 40 epochs for a smaller time consumption. We adopt an AdamW optimizer
with an initial learning rate of 0.0005, updated by a cosine annealing scheduler with 3 warmup
epochs. To avoid overfitting, we assign a weight decay of 0.01 to the optimizer. For our proposed
token scaler, the hidden dimension of each layer is 256, the head number of the efficient attention
layer is 4, and the intermediate dimension is 128. For the inception-conv unit, the channel number
of a convolution branch is set to 32, and the intermediate dimension is set to 128 as well. All
the token scalers are followed by a zero-initialized residual convolution layer, which is inspired by
ControlNet [56]. The detailed hyperparameters and experiment environment settings are illustrated
in the supplementary material Section B. We fine-tune the baseline models for 30 epochs using their
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respective original loss functions while keeping all layers frozen except for the depth prediction
heads. In Table 2, these fine-tuned variants are denoted as UniDepth (FT) [49] and Depth-Anything
(FT) [26].

For the relative pose-solving part, the crop ROI size of the target object is 256×256 for efficiency.
We adopt a pre-trained PointDSC [55] to solve the rigid transformation between point clouds with
given correspondence points. Point correspondences within the object region were extracted using
the matching result and filtered by an object mask provided by the dataset or segmentation mod-
els [54]. In REAL275 [61], we select objects from 6 distinct scenes to construct 2000 image pairs.
In Tyo-L [62], we select 2000 image pairs where each query and reference image is captured under
different lighting conditions. In ClearPose [13], we construct 1000 image pairs in which the query
and reference images have different backgrounds, using 6 different objects. All of our experiments
are conducted on an Ubuntu 22.04 server with two Nvidia RTX3090 GPUs. The deep learning
framework is PyTorch 2.2.0 with CUDA 12.4.

D.3 Details of Evaluation Metrics

The absolute relative error (Abs.Rel.)

Abs.Rel. =
|D− D̂|
D+ ϵ

and its quadratic variant, the square relative error(Sq.Rel.)

Sq.Rel. =
|D− D̂|2

D+ ϵ

quantify the local deviation between predicted (D̂) and ground-truth (D) depths. ϵ is a small value
to avoid division by 0.

The root mean squared error (RMSE) and mean absolute error (MAE) are defined as:

RMSE =

√√√√ 1

HW

H∑
i=1

W∑
j=1

(d̂ij − dij)2

MAE =
1

HW

H∑
i=1

W∑
j=1

|d̂ij − dij |

The (log10) metric is calculated with:

log10 =
1

HW

H∑
i=1

W∑
j=1

∣∣∣log10(d̂ij)− log10(dij)
∣∣∣

For the 6D pose estimation metrics [62], Visible Surface Discrepancy (VSD) quantifies the spatial
gap between an object’s surfaces when comparing its true position to its estimated position.

VSD =
1

|V (P̂, δ) ∪ V (P̄, δ)|

∑
p

∣∣DP̂(p)−DP̄(p)
∣∣ ,

where P̂ is the predicted pose, P̄ is the ground-truth, and δ is a distance threshold. V (P̂, δ) repre-
sents the set of pixels visible under pose P̂ and whose depth difference is less than δ.

The greatest distance between two poses’ surfaces, accounting for symmetry, is measured by the
Maximum Symmetry-Aware Surface Distance (MSSD):

MSSD(P̂, P̄, SM , VM ) = min
S∈SM

max
x∈VM

∥∥∥P̂x− P̄Sx
∥∥∥ ,

where the set SM contains global symmetry transformations of the object model M , VM is a set of
the model vertices.
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The Maximum Symmetry-Aware Projection Distance (MSPD) aims to measure how visually differ-
ent an object appears (measured in pixels) when it’s rendered using an incorrect pose while account-
ing for all possible symmetries.

MSPD = min
S∈SM

max
x∈VM

∥∥∥proj(P̂x)− proj(P̄Sx)
∥∥∥ ,

where proj(·) represents the operation of projecting a three-dimensional point onto an image plane.

ADD(S)-0.1d measures the recall in pose estimation based on error threshold: a pose is considered
correctly estimated when its error is less than 10% of the object’s diameter. For an asymmetric
object, the error is computed as:

ADD =
1

|VM |
∑

x∈VM

∥∥∥P̂x− P̄x
∥∥∥ ,

where |VM | represents the size of the vertice set, P̂x and P̄x represent the position of vertice x in
the estimated and true poses respectively. For a symmetric object:

ADD-S =
1

|VM |
∑

x∈VM

min
x′∈VM

∥∥∥P̂x− P̄x′
∥∥∥ ,

where x′ represents the closest symmetry point to x in the 3D model.

D.4 Sensitivity Analysis

We conduct the sensitivity analysis on the weight of Lnorm, Ledge, and Lscale. Figure 8 illustrates
the curve of the results. We consolidate the final value of weights through extensive experiments.

D.5 More Experimental Result

D.5.1 Cross-domain Depth Fine-tuning

To further validate the cross-domain generalization capability of our method, we conducted addi-
tional experiments involving domain transfer evaluation. Specifically, we fine-tuned the depth esti-
mation model on a single source dataset (e.g., REAL275 [61], which primarily contains industrial
and everyday objects under static lighting conditions) and directly evaluated its performance on
target datasets with different characteristics, ClearPose [13] (transparent objects in complex spatial
environments) and Toyota-Light [62] (dynamic lighting variations)without any domain adaptation or
additional fine-tuning. These three datasets exhibit distinct scales and environmental characteristics
with substantial variations in camera viewpoints and intrinsic parameters, thereby enabling com-
prehensive validation of our method’s cross-domain generalization capabilities. The cross-domain
evaluation results are presented in Table 13.

Table 13: Quantitative result of metric depth estimation with cross-validation. The first column
denotes the generalization direction from the fine-tuned dataset to the evaluation datasets.

Setting Method δ1.05 ↑ δ1.10 ↑ δ1.25 ↑ RMSE↓ log10 ↓ Abs.Rel.↓ Sq.Rel.↓ MAE↓

REAL275 → Tyo-L
Unidepth (FT) 8.35 22.61 42.01 0.983 1.419 1.855 0.702 0.500
DPA v2 (FT) 10.55 28.93 50.23 0.519 0.764 0.399 0.177 0.326

Ours 28.13 34.91 55.72 0.377 0.471 0.223 0.119 0.218

REAL275 → ClearPose
Unidepth (FT) 8.74 14.02 25.91 0.364 0.268 0.294 0.312 0.273
DPA v2 (FT) 20.85 44.48 62.36 0.258 0.232 0.207 0.280 0.181

Ours 42.19 66.25 79.70 0.182 0.106 0.131 0.228 0.109

The experimental results show that cross-domain performance drops as expected, reflecting the do-
main sensitivity inherent in depth estimation tasks. Nevertheless, our method consistently outper-
forms fine-tuned baselines (e.g., DPA v2 [26] and UniDepth [49]) under the same cross-domain
settings. This superior generalization stems from our token scaler’s design philosophy. Unlike meth-
ods tailored for specific datasets, it adaptively modulates intermediate features in a data-agnostic
manner. This generic approach enables better generalization across diverse visual inputs without
being constrained by particular dataset characteristics.
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(a) Performance to differnt weights of Ledge.

(b) Performance to differnt weights of Lscale.

(c) Performance to differnt weights of Lnorm.

Figure 8: Sensitivity analysis to the weights of our proposed losses on REAL275.

Moreover, the introduced loss functions are designed to regularize the model for consistent geomet-
ric understanding. By leveraging cues such as edges and surface normals, they focus on capturing
generalizable geometric structures rather than overfitting to the distribution of a particular dataset.
Therefore, this suggests that the improvements brought by our approach are not solely due to domain-
specific tuning but also stem from its advanced intrinsic mechanism. Besides, the proposed modules
are inherently transferable and can be seamlessly integrated into other visual tasks (such as depth-
based navigation, etc.), demonstrating strong potential for broader applicability beyond the current
setting for other directions.

D.5.2 Results On Additional Pose Benchmarks

We conducted two additional experiments on LM-O [62] and YCB-V [62], which are representa-
tive benchmarks featuring occlusions and weakly textured objects, such as monochromatic, single-
material objects. We evaluate pose estimation on three different target objects, generating 120 image
pairs for each. Table 14 reports the quantitative results.

The experimental results show that heavy occlusion still causes a significant drop in performance.
However, our method consistently outperforms the baseline significantly within the single RGB ref-
erence setting. This improvement stems from our framework’s human vision-inspired mechanism,
which adaptively adjusts features across different layers using both appearance and spatial informa-
tion. While conventional approaches like Oryon [6] or SIFT [64] rely primarily on RGB similarity,
our matching strategy incorporates spatial context to improve alignment accuracy. Additionally, we
maintain spatial consistency throughout both coarse and fine-grained matching stages (see Figure 1).
These designs result in substantially better robustness, particularly in challenging scenarios where
appearance cues alone prove inadequate, such as under heavy occlusion.
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Table 14: 6D pose estimation results on YCB-V and LM-O dataset.
Dataset Matcher Depth AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

LM-O
Oryon Oracle 6.1 3.1 6.9 8.3 5.5

Ours 3.8 1.9 4.2 5.4 2.7

Ours Oracle 9.9 4.3 11.5 13.9 8.7
Ours 5.3 2.6 5.7 7.3 3.8

vs. Oryon ∆ +2.7 +0.95 +3.1 +3.8 +2.2

YCB-V
Oryon Oracle 8.6 4.7 9.3 11.8 7.5

Ours 5.8 2.4 6.6 8.4 5.2

Ours Oracle 11.4 5.2 12.3 15.7 8.9
Ours 7.9 3.7 8.5 11.6 6.4

vs. Oryon ∆ +2.45 +0.90 +2.45 +3.55 +1.30

For multi-object situations, our pipeline naturally extends to these scenarios by simply incorporat-
ing an off-the-shelf object detector or segmenter, such as SAM [54] or SAM2 [76]. This design
highlights the generality and scalability of our approach, making it readily adaptable to diverse real-
world applications without requiring major architectural changes. The experiment results illustrate
the robustness of our method under occlusion scenarios.

D.5.3 Comparison With Additional Baselines

We find that Any-6D [43], FS6D [10], and the original LoFTR [27] are comparable methods. There-
fore, to further investigate the performance of them compared to our SingRef6D. We conduct several
experiments and report the results in Table 15.

Table 15: More 6D pose estimation results on the Tyo-L dataset.
Matcher Depth AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

FS6D [10]
Oracle 14.1 5.2 17.9 19.2 10.0
DPAV2 1.6 0.5 1.9 2.4 0.3

Ours 9.3 1.8 6.3 7.8 3.2

Any-6D [43]
Oracle 43.3 15.8 55.8 58.4 32.2
DPAV2 5.2 1.3 4.3 11.0 2.2

Ours 31.6 13.5 33.5 47.8 13.2

Ours
Oracle 42.0 34.2 44.1 47.6 35.0
DPAV2 5.8 2.8 3.5 11.1 2.9

Ours 31.7 13.9 33.8 47.3 13.1

Our method outperforms FS6D [10] across the selected evaluation metrics. Any-6D [43], benefiting
from its strong 3D reconstruction backbone, achieves slightly better results than ours when using
annotated depth. However, it exhibits a strong dependency on the quality of depth inputits perfor-
mance drops significantly when using DPAv2-predicted depth. This is because Any-6D [43] adopts
a more global optimization strategy (e.g., point cloud registration or global pose supervision), which
effectively constrains the maximum deviation (results in higher recall on MSSD and MSPD). How-
ever, the accumulation of depth errors in local regions leads to lower recall of VSD. In contrast,
our method emphasizes local pixel-wise alignment (e.g., fine-grained optimization based on depth
maps), resulting in higher recall on VSD. Nonetheless, it is less robust in handling certain keypoints
or symmetries, which leads to lower recall on MSSD and MSPD.

The performance gap between Any-6D [43] and our method with different depth inputs, and the
differences seen when switching from oracle to predicted depth within each method, show that our
pipeline is more robust and overall superior for both pose estimation and depth prediction. Further-
more, our method delivers more stable depth reconstruction and enhanced geometric awareness for
pose estimation. Designed modularly, our methods can be integrated seamlessly into downstream
pose estimation pipelines or incorporated as components within other depth estimation models. On
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the Tyo-L [62] dataset, vanilla LoFTR [27] for RGB-based matching yields an AR of 27.2, while our
method achieves 31.7. This demonstrates more robust and accurate feature matching of our method
under identical conditions.

In addition, we conduct the comparison studies with DVMNet [46] and 3DAHV [45] by iteratively
inferring from the image pair. Table 16 reports the corresponding results.

Table 16: Comparison with other models on LM-O dataset
Method AR ADD Angular Error

3DAHV [45] 7.7 6.3 52.71
DVMNet [46] 8.6 7.4 51.66

Ours 9.9 8.7 51.89

While our method exhibits slightly higher angular error compared to DVMNet [46], it achieves
superior performance in terms of AR and ADD, reflecting more accurate translation estimation.
This difference stems from the fact that DVMNet [46] and 3DAHV [45] are supervised with full
ground-truth metric poses and trained on large-scale datasets with extensive pose annotations. In
contrast, our method is only fine-tuned using predicted depth and does not require additional pose
supervision.

Furthermore, DVMNet [46] and 3DAHV [45] focus on relative pose estimation under the same-
scene conditions with encoded latent 3D representation, whereas our method is designed to handle
cross-scene situations and estimate 6D poses. This highlights a key distinction: DVMNet [46] is
suitable for applications requiring accurate SO(3) rotation estimation in stable environments, while
our approach provides a more generalizable and lightweight solution for full-pose estimation without
dependence on dense pose labels. This advantage facilitates the implementation of our method in
real-world cases.

D.5.4 Comparison With Additional Registration Methods

Iterative Closest Point (ICP) [77] is a well-known algorithm for point registration; we admit ICP [77]
is a baseline worthy of comparison. We conducted ICP [77] experiments using point clouds from
both reference and query views. The results are shown in the Table 17.

Table 17: 6D Pose estimation result on the ClearPose dataset compared to ICP.

Matcher Depth AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

ICP [77]
Manual 19.8 5.5 23.2 32.9 20.6

Raw 0.3 0.04 0.25 0.61 0.9
Ours 8.1 2.6 9.4 12.4 4.5

Ours
Manual 32.4 10.1 38.8 48.2 33.4

Raw 1.4 0.2 1.2 2.8 2.0
Ours 19.4 5.1 19.7 33.5 10.0

ICP [77] performs unsatisfactorily due to its sensitivity to initialization and noise, making correspon-
dence unreliable. In contrast, our depth-aware matching operates in latent space, preserving pixel-
level consistency and mitigating the pitfalls of noisy 3D reconstructions. Our method is enriched
with spatial cues in a coarse-to-fine manner, further boosted following pose solving, performing
better under transparent and low-texture conditions where ICP struggles.

We also consider learning-based registration methods [78, 71] to substitute ICP [77]. Table 18 shows
that although LePard [71] and EYOC [78] are notable 3D registration methods, their performance
under the proposed setting is lower than our method. Directly applying registration methods to
raw reconstructed point clouds yields suboptimal performance due to two key limitations. First,
in our experimental setup, there is only 1 reference sample, which is not guaranteed to originate
from the same scene as the query. This makes it challenging for registration-based approaches
to infer reliable relative spatial relationships from scene geometry alone, as a single cross-scene
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Table 18: 6D pose estimation results on three benchmarks compared to learning-based registration
methods.

Method Real275 Tyo-L ClearPose
AR ADD AR ADD AR ADD

LePard [71] 11.9 5.1 14.8 6.5 8.0 4.2
EYOC [78] 13.1 5.5 15.2 7.0 8.3 4.4

Ours 28.7 11.6 31.7 13.1 19.4 10.0

RGB reference inherently provides a limited overlapped region (even using ground-truth depth).
Second, point clouds derived from depth estimation are frequently incomplete due to occlusions and
viewpoint variations, which significantly undermine registration effectiveness.

In contrast, our method first employs depth-aware matching to establish initial correspondences
between query and reference images. These correspondences directly guide subsequent pose es-
timation, enabling our pipeline to reduce dependence on the completeness of reconstructed point
clouds. This design allows our method to maintain robust performance even in cross-scene scenar-
ios or when dealing with partial or noisy point cloudsa key advantage over approaches that rely
exclusively on learning-based registration.

Additional experiments reveal that applying ICP [77] refinement after the initial registration leads to
only marginal gains (for LePard [71]: +0.12 AR on Real275 [61], +0.06 AR on ClearPose [13], and
+0.11 AR on Tyo-L [62]), with negligible differences in ADD. This underscores the role of accurate
initial correspondence and further substantiates the effectiveness of our approach. Notably, despite
utilizing a lightweight architecture, our method surpasses learning-based registration models under
our single-RGB cross-scene reference settings, demonstrating both the practicality and superiority
of the proposed framework.

D.5.5 Results on Benchmark with Reflective Objects

To provide an analysis on reflective objects specifically, we fine-tuned our depth model on a subset
of the training data and evaluated 6D pose estimation on the validation subset of HouseCat6D [79].
We manually selected three reflective objects (teapoint, knife, and cup) as targets and generated 100
image pairs for each.

Table 19: More 6D pose estimation results on the HouseCat6D dataset.
Matcher Depth AR ↑ VSD ↑ MSSD ↑ MSPD ↑ ADD ↑

Oryon [6]
Oracle 57.4 41.0 62.6 68.7 68.8
DPAV2 26.6 9.1 33.6 37.3 39.5

Ours 38.1 20.8 44.4 49.3 49.0

Ours
Oracle 63.2 48.2 73.0 78.6 76.2
DPAV2 30.1 12.0 41.9 46.3 43.8

Ours 44.5 26.1 51.8 55.5 55.2
vs. Oryon ∆ +6.4 +5.3 +7.4 +6.2 +6.2

As shown in Table 19, our method outperforms the baseline and achieves higher depth quality com-
pared to the vanilla fine-tuned DPAv2 [26]. This is because baseline methods like Oryon [6] heavily
rely on RGB information, while the HouseCat6D [79] dataset is specifically designed to challenge
such dependence. It provides dynamic variations in RGB cues through high-resolution images and
carefully selected reflective objects, which naturally exhibit different surface appearances from vary-
ing viewpoints. This makes it difficult for RGB-dependent methods like Oryon [6] to establish
reliable correspondences.

In contrast, our approach employs a coarse-to-fine matching strategy that effectively leverages depth
cues. This enables robust matching even when RGB signals are unreliable, as our method can rely
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Figure 9: The rendered images obtained from different viewpoints are referenced with respect to the
Z axis.

on geometric structures and spatial consistency. Furthermore, the use of high-resolution feature
maps allows for refined correspondence estimation, reducing errors in challenging cases. These
results not only demonstrate the architectural advantage of our method but also highlight its practical
applicability in real-world scenarios where RGB signals may dynamically vary.

D.5.6 Influences of Query-Reference Viewpoint Gap

We conduct an experiment that manually rotates the scene with a specific angle α ∈ [15◦, 150◦]
along the X ,Y , and Z axes, respectively. Specifically, we use accessible 3D models (e.g., from
BOP [62] datasets) to construct a scene with BlenderProc and rotate the camera by α (The reference
scene and the query differ in background and contain different objects, except for the target object).
We define a right-handed coordinate system, where the Z-axis points vertically upward, perpendicu-
lar to the object surface, and the X and Y axes lie in the horizontal plane. The camera is positioned
at (1, 1, 1), measured in meters, looking down at the scene, with all objects placed on the XY plane.
Since most existing benchmarks adopt a top-down perspective, we follow the same setup. Figure 9
illustrates an example of this albation environment. To evaluate the effect of viewpoint variation, we
report results under different camera rotations along the X and Z axes. Rotation along the Y axis
is omitted, as we observed a strong correlation between rotations around the X and Y axes during
the experiments, with a Spearman coefficient exceeding 0.86. This correlation is likely due to the
symmetry of the setup. Therefore, we report only the X-axis rotation in the Table 20 to represent
horizontal-axis variations. In future revisions, we plan to include finer-grained angular distinctions
and explicit values for Y -axis rotations on more scenes.

Table 20: Results of rotation differences between reference and query viewpoints along three axes.
Axis\α 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 120◦ 150◦

AR ADD AR ADD AR ADD AR ADD AR ADD AR ADD AR ADD AR ADD

X 69.84 65.70 61.17 60.42 50.52 54.38 42.36 46.91 33.71 38.64 30.12 33.47 22.83 24.36 20.54 21.90
Z 74.26 72.19 71.50 69.83 68.13 67.21 65.80 64.02 62.42 60.57 58.31 56.48 39.76 36.73 31.95 28.54

From the table, we observe that pose estimation performance degrades with increasing viewpoint
differences between the reference and query images, especially when the rotation is along the X-
axis. This is because X-axis rotations significantly alter perspective and occlusion patterns, making
it more challenging for the model to match spatial features. In contrast, Z-axis rotations mainly
induce in-plane transformations with relatively mild geometric distortion, leading to a more gradual
performance drop. However, when the rotation exceeds 90◦, even Z-axis changes cause noticeable
degradation. This is likely due to decreased visual discriminability for example, the front of a
mug may have a distinct texture or logo, while the back is plain, reducing the object’s appearance
discriminability and making it harder for the model to rely on appearance and forcing it to depend
solely on geometry and spatial consistency.

Despite this challenge, our method exhibits a smaller performance drop (65%) under such extreme
conditions, while baselines like Oryon [6] and SIFT [64] fail almost entirely, with performance
degradation exceeding 90%. This robustness stems from our models ability to effectively exploit
spatial consistency and adapt spatial representations through the proposed token scaler, thus boosting
geometric understanding in the coarse-to-fine matching process. This mechanism helps to improve
matching accuracy when RGB cues are unreliable. Furthermore, our loss functions impose strong
geometric constraints such as normal consistency and edge emphasis, enabling the model to maintain
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Table 21: Pose Estimation Result (AR) with Binned Query-Reference Viewpoint Difference
Bin Real275 Tyo-L ClearPose[
0, π

4

)
33.1 41.5 31.1[

π
4 ,

π
2

)
27.2 34.2 20.1[

π
2 ,

3π
4

)
23.3 30.1 16.6[

3π
4 , π

]
19.9 26.8 11.8

a reasonable estimation accuracy even under large viewpoint changes. These results and analyses
demonstrate the robustness of our model and highlight its potential for real-world applications.

To further investigate the influence of the viewpoint gap statistically, we provide a quantitative break-
down of the pose estimation results on these three datasets, binned by the query-reference viewpoint
difference with the geodesic distance [80]. We adopt the same definition as in [80], where geodesic
distance on a unit sphere is calculated with SO(3) rotations and ranges from 0 to π. Based on this,
we performed a bin-wise statistical analysis on the three benchmark datasets used in our study. The
ARs are shown in Table 21. Note that all statistical numbers are calculated based on ground-truth
pose annotations. We conducted a basic stability check and removed a few outlier samples with
abnormally low overlap, ensuring that the resulting subset maintained a similar distribution to the
overall dataset. Additionally, we examined the distribution of ground-truth distances and found that
the proportions across different intervals were generally consistent, with no single range overwhelm-
ingly dominating the distribution.

The performance of pose estimation deteriorates as the geodesic distance between the query and ref-
erence increases. On the ClearPose [13] dataset, we observe that when the geodesic distance range
shifts from

[
0, π

4

)
to
[
π
2 ,

3π
4

)
, the Average Recall (AR) of our method decreases by approximately

29.6%, whereas AR of Oryon [6] declines by 50.3%. This further substantiates the superiority of
our approach over the baseline under the proposed evaluation setting. It is important to note that,
since our query-reference pairs originate from different scenes, additional factors-such as variations
in background, occlusions caused by surrounding objects, and changes in scene layout-also influ-
ence performance fluctuations. For instance, on the REAL275 [61] dataset, the AR decreases by
approximately 29.6% for the same geodesic distance shift (

[
0, π

4

)
→
[
π
2 ,

3π
4 )), compared to a

46.6% drop on ClearPose [13], which contains glass objects. This is because glass objects in Clear-
Pose [13] are more difficult for the model to capture common appearance features, indicating that
the intrinsic material properties of objects also impact this performance trend.

D.6 More Visualizations

In this section, we visualize the prediction from two notable metric depth estimation models,
SPIdepth [53] and Unidepth [49]. Figure 4 illustrates the comparison between ours and theirs.
UniDepth [49], though it estimates acceptable scales, lacks enough representation of objects’ de-
tails. SPIDepth [53], while identifying the object well, outputs an unsatisfactory overall scale.

In addition, we present visualizations of depth predictions using different weight distributions across
F1 to F4. The term Scaled F

F represents the ratio of the mean value of the feature processed by the
token scaler to that of the original feature. The rows corresponding to 0.0 represent cases where we
manually initialized the output convolution layer weights to zero, resulting in the network effectively
ignoring these layers during initial training iterations. Figure 10, Figure 11, and Figure 12 shows the
visualization results of REAL275 [61], ClearPose [13], and Tyo-L [62] dataset, respectively. The
special cases are illustrated on the upper right of each figure. “0.0 for all” means the token scaler
is a zero constant, which deactivates the fusion process, and the prediction is obtained purely from
the vanilla F1. “-1.5 for all” or “-1.0 for all” are special cases in which we manually clamp the
scaler output to negative values and deploy such a strategy to all layers. It is obvious from the figure
that “0.0 for all” results in low-quality output that lacks clear representation and distinguishment of
objects and background. “-1.5 for all” or “-1.0 for all” leads to meaningless output since a too large
weight may break the distribution within the feature map, thus impairing the inference process in
the depth head.
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Figure 10: Comparison of different fusion weights on Real275 dataset. Each column is independent
and varies the corresponding weight from 1.0 to -2.5.
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Figure 11: Comparison of different fusion weights on ClearPose dataset. Each column is indepen-
dent and varies the corresponding weight from 1.5 to -2.0.
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Figure 12: Comparison of different fusion weights on the Tyo-L dataset. Each column is indepen-
dent and varies the corresponding weight from 1.0 to -2.5.
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