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Abstract
Objective: Electronic health records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis. How
ever, privacy concerns often restrict access to EHRs, hindering downstream analysis. Current EHR deidentification methods are flawed and can 
lead to potential privacy leakage. Additionally, existing publicly available EHR databases are limited, preventing the advancement of medical 
research using EHR. This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHRs time series 
efficiently.
Materials and Methods: We introduce a new method for generating diverse and realistic synthetic EHR time series data using denoizing diffu
sion probabilistic models. We conducted experiments on 6 databases: Medical Information Mart for Intensive Care III and IV, the eICU Collabo
rative Research Database (eICU), and non-EHR datasets on Stocks and Energy. We compared our proposed method with 8 existing methods.
Results: Our results demonstrate that our approach significantly outperforms all existing methods in terms of data fidelity while requiring less 
training effort. Additionally, data generated by our method yield a lower discriminative accuracy compared to other baseline methods, indicating 
the proposed method can generate data with less privacy risk.
Discussion: The proposed model utilizes a mixed diffusion process to generate realistic synthetic EHR samples that protect patient privacy. 
This method could be useful in tackling data availability issues in the field of healthcare by reducing barrier to EHR access and supporting 
research in machine learning for health.
Conclusion: The proposed diffusion model-based method can reliably and efficiently generate synthetic EHR time series, which facilitates the 
downstream medical data analysis. Our numerical results show the superiority of the proposed method over all other existing methods.
Key words: electronic health records; time series generation; diffusion models. 

Introduction
The electronic health record (EHR) is a digital version of the 
patient’s medical history maintained by healthcare providers. 
It includes information such as demographic attributes, vital 
signals, and lab measurements that are sensitive and impor
tant for clinical research. Researchers have been utilizing stat
istical and machine learning (ML) methods to analyze EHR 
for a variety of downstream tasks such as disease diagnosis, 
in-hospital mortality prediction, and disease phenotyping.1,2

However, due to privacy concerns, EHR data are strictly 
regulated, and thus the availability of EHR data for research 
and education is often limited, creating barriers to the devel
opment of computational models in the field of healthcare. 
Widely used EHR deidentification methods to preserve 
patient information privacy are criticized for having high 
risks of reidentification of the individuals.3

Instead of applying traditional deidentification methods 
that can adversely affect EHR data utility,4 EHR synthetic 
data generation is one promising solution to protect patient 
privacy. Realistic synthetic data preserve crucial clinical 

information in real data while preventing patient information 
leakage.5,6 Synthetic data also have the added benefit of pro
viding a larger sample size for downstream analysis than dei
dentifying real samples.7 As a result, more research initiatives 
have begun to consider synthetic data sharing, such as the 
National COVID Cohort Collaborative supported by the 
U.S. National Institutes of Health and the Clinical Practice 
Research Datalink sponsored by the U.K. National Institute 
for Health and Care Research.8,9 With the advancement in 
ML techniques, applying generative models to synthesize 
high-fidelity EHR data is a popular research of interest.5

Recent advances in generative models have shown significant 
success in generating realistic high-dimensional data like 
images, audio, and texts,10,11 suggesting the potential for 
these models to handle EHR data with complex statistical 
characteristics.

Some representative work utilizing generative models for 
EHR data synthesis includes medGAN,12 medBGAN,13 and 
EHR-Safe (We could not obtain code implementation for this 
work even after reaching out to the authors. Therefore, we 
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are unable to compare TIMEDIFF with this work’s proposed 
methods.).6 However, most approaches to EHR data synthe
sis are GAN-based, and GANs are known for their difficulties 
in model training and deployments due to training instability 
and mode collapse.14 Recently, diffusion probabilistic models 
have shown superb ability over GANs in generating high- 
fidelity image data.15–17 A few studies thus propose to gener
ate synthetic EHR data via diffusion models given their 
remarkable data generation performance.18,19 However, 
most EHR data synthesis methods, either GAN-based or 
diffusion-based, focus on binary or categorical variables such 
as the International Classification of Diseases (ICD) codes. 
Additionally, there is limited prior work on generating EHR 
data with temporal information, and most state-of-the-art 
time series generative models are GAN-based.20 studied the 
diffusion models for EHR time series generation with a focus 
only on continuous-valued time series.1 It resorts to Gaussian 
diffusion for generating discrete sequences, treating them 
similarly to real-valued sequences but with further postpro
cessing of the model output. These observations motivate us 
to bridge the gap by introducing a novel direct diffusion- 
based method to generate realistic EHR time series data with 
mixed variable types.

Specifically, we make the following contributions in this 
paper:

� We propose TIMEDIFF, a new diffusion probabilistic model 
that uses a bidirectional recurrent neural network 
(BRNN) architecture for realistic privacy-preserving EHR 
time series generation. 

� To the best of our knowledge, TIMEDIFF is the first work 
introducing a mixed diffusion approach that combines 
multinomial and Gaussian diffusion for EHR time series 
generation. TIMEDIFF can simultaneously generates both 
continuous and discrete-valued time series. 

� We demonstrate that TIMEDIFF outperforms state-of-the- 
art methods for time series data generation by a big mar
gin in terms of data fidelity and privacy. Additionally, our 
model requires less training effort than GAN-based 
methods. 

Time series generation
Prior sequential generation methods using GANs rely primar
ily on binary adversarial feedback,21,22 and supervised 
sequence models mainly focus on tasks such as prediction,23

forecasting,24 and classification.25 TimeGAN26 was one of 
the first methods to preserve temporal dynamics in time series 
synthesis. The architecture comprises an embedding layer, 
recovery mechanism, generator, and discriminator, trained 
using both supervised and unsupervised losses. GT-GAN27

considers the generation of both regular and irregular time 
series data using a neural controlled differential equation 
(NCDE) encoder28 and GRU-ODE decoder.29 This frame
work, combined with a continuous time flow processes gen
erator30 and a GRU-ODE discriminator, outperformed 
existing methods in general-purpose time series generation. 
Recently, Bilo�s et al31 proposed to generate time series data 
for forecasting and imputation using discrete or continuous 
stochastic process diffusion (DSPD/CSPD). Their proposed 
method views time series as discrete realizations of an under
lying continuous function. Both DSPD and CSPD use either 
the Gaussian or Ornstein-Uhlenbec process to model noise 

and apply it to the entire time series. The learned distribution 
over continuous functions is then used to generate synthetic 
time series samples.

Diffusion models
Diffusion models32 have been proposed and achieved excel
lent performance in the field of computer vision and natural 
language processing. Ho et al15 proposed denoizing diffusion 
probabilistic models (DDPMs) that generate high-quality 
images by recovering from white latent noise. Gu et al33 pro
posed a vector-quantized diffusion model on text-to-image 
synthesis with significant improvement over GANs regarding 
scene complexity and diversity of the generated images. 
Dhariwal and Nichol34 suggested that the diffusion models 
with optimized architecture outperform GANs on image syn
thesis tasks. Saharia et al35 proposed a diffusion model, 
Imagen, incorporated with a language model for text-to- 
image synthesis with state-of-the-art results. Kotelnikov 
et al36 introduced TabDDPM, an extension of DDPM for 
heterogeneous tabular data generation, outperforming GAN- 
based models. Das et al37 proposed ChiroDiff, a diffusion 
model that considers temporal information and generates chi
rographic data. Besides advancements in practical applica
tions, some recent developments in theory for diffusion 
models demonstrate the effectiveness of this model class. The
oretical foundations explaining the empirical success of diffu
sion or score-based generative models have been 
established.38–40

EHR data generation
There exists a considerable amount of prior work on generat
ing EHR data. Choi et al12 proposed medGAN that generates 
EHR discrete variables. Built upon medGAN, Baowaly et 
al13 suggested 2 models, medBGAN and medWGAN, that 
synthesize EHR binary or discrete variables on ICD codes. 
Yan et al41 developed a GAN that can generate high-utility 
EHR with both discrete and continuous data. Biswal et al42

proposed the EHR Variational Autoencoder that synthesizes 
sequences of EHR discrete variables (ie, diagnosis, medica
tions, and procedures). He et al18 developed MedDiff, a diffu
sion model that generates user-conditioned EHR discrete 
variables. Yuan et al19 created EHRDiff by utilizing the diffu
sion model to generate a collection of ICD diagnosis codes. 
Naseer et al43 used continuous-time diffusion models to gen
erate synthetic EHR tabular data. Ceritli et al44 applied 
TabDDPM to synthesize tabular healthcare data.

However, most existing work focuses on discrete or tabu
lar data generation. There is limited literature on EHR time 
series data generation, and this area of research has not yet 
received much attention.45 Back in 2017, RCGAN22 was cre
ated for generating multivariate medical time series data by 
employing RNNs as the generator and discriminator. Until 
recently, Yoon et al6 proposed EHR-Safe that consists of a 
GAN and an encoder-decoder module. EHR-Safe can gener
ate realistic time series and static variables in EHR with 
mixed data types. Li et al46 developed EHR-M-GAN that 
generates mixed-type time series in EHR using separate 
encoders for each data type. Theodorou et al47 suggested gen
erating longitudinal continuous EHR variables using an 
autoregressive language model. Moreover, Kuo et al20 sug
gested utilizing diffusion models to synthesize discrete and 
continuous EHR time series. However, their approach mainly 
relies on Gaussian diffusion and adopts a U-Net 
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architecture.48 The generation of discrete time series is 
achieved by taking argmax of softmax over real-valued one- 
hot representations. By contrast, our proposed method con
siders multinomial diffusion for discrete time series genera
tion, allowing the generation of discrete variables directly. He 
et al,49 a concurrent work to ours, introduces FLEXGEN- 
EHR for synthesizing heterogeneous longitudinal EHR data 
through a latent diffusion method. It also addresses missing 
modalities by formulating an optimal transport problem to 
create meaningful latent embedding pairs. In comparison, 
our work introduces a direct diffusion model to generate het
erogeneous EHR data, effectively handling potential missing
ness directly within the generation process.

Methods
Datasets
We use 4 publicly available EHR datasets to evaluate TIME

DIFF: Medical Information Mart for Intensive Care III and IV 
(MIMIC-III/IV)50,51 and the eICU Collaborative Research 
Database (eICU).52 Additionally, to evaluate TIMEDIFF with 
state-of-the-art methods for time series generation on non- 
EHR datasets, we include Stocks and Energy datasets from 
studies that proposed TimeGAN26 and GT-GAN.27

Metrics
We evaluate our methods and make comparisons on a series 
of metrics, both qualitative and quantitative, characterizing 
the authenticity of the synthesized data, the performance for 
downstream analysis—in-hospital mortality prediction, and 
the preservation of privacy:

Authenticity
� t-SNE visualization: We flatten the feature dimension and 

use t-SNE dimension reduction visualization53 on syn
thetic, real training, and real testing samples. This qualita
tive metric provides visual guidance on the similarity of 
the synthetic and real samples in 2D space. Details are 
described in A.5.2. 

� UMAP visualization: We follow the same procedure as 
using t-SNE for visualization of distribution similarity 
between synthetic, real training, and real testing samples. 
UMAP preserves a better global structure compared to t- 
SNE,54 and thus we provide it as a complementary 
metric. 

� Discriminative and Predictive Scores: A GRU-based dis
criminator is trained to distinguish between the synthetic 
and real samples. For the predictive score, a GRU-based 
predictor is trained using synthetic samples and evaluated 
on real samples for next-step vector prediction based on 
mean absolute error over each sequence. Details of the 
score computations are described in A.5.2. 

Performance for downstream task (in-hospital 
mortality prediction)
� Train on Synthetic, Test on Real (TSTR): We train ML 

models using synthetic data and evaluate them on real test 
data based on the area under the receiver operating char
acteristic curve (AUC) for in-hospital mortality predic
tion. We compare the TSTR score to the Train on Real, 
Test on Real (TRTR) score, which is the AUC obtained 

from the model trained on real training data and eval
uated on real test data. 

� Train on Synthetic and Real, Test on Real (TSRTR): Simi
lar to the TSTR, we train ML models and evaluate them 
on real test data using AUC. We use 2000 real training 
data in combination with different proportions of syn
thetic samples to train ML models. This metric evaluates 
the impact of synthetic data for training on ML model per
formance. Note that we use 2000 real training samples to 
simulate the real-world scenario where clinical researchers 
struggle to obtain limited real EHR data. In this case, we 
evaluate the viability of using TIMEDIFF to generate realistic 
samples as a data augmentation technique. 

Privacy
� Nearest Neighbor Adversarial Accuracy Risk (NNAA): 

This score measures the degree to which a generative 
model overfits the real training data.55 NNAA is an 
important metric for evaluating the privacy of synthetic 
data as it quantifies the risk of reidentification by measur
ing how easily an adversary can distinguish between real 
and synthetic data points. Thus, this metric effectively 
indicates the potency of anonymization techniques in pro
tecting sensitive information within the synthetic dataset. 

� Membership Inference Risk (MIR): An F1 score is com
puted based on whether an adversary can correctly iden
tify the membership of a synthetic data sample.56 MIR 
provides a precise measurement of the security of syn
thetic datasets, particularly in assessing the likelihood 
that individual data points can be traced back to the origi
nal dataset, thereby evaluating the robustness of data ano
nymization techniques. 

For all the experiments, we split each dataset into training 
and testing sets and used the training set to develop genera
tive models. The synthetic samples obtained from trained 
generative models are then used for evaluation. We repeat 
each experiment over 10 times and report the mean and SD 
of each quantitative metric. Further details for our experi
ments and evaluation metrics are discussed in Supplementary 
Appendix A.

Baselines
We compare TIMEDIFF with 9 methods: HALO,47 EHR-M- 
GAN,46 GT-GAN,27 TimeGAN,26 RCGAN,22 C-RNN- 
GAN,21 RNNs trained with teacher forcing (T-Forcing)57,58

and professor forcing (P-Forcing),59 and DSPD/CSPD with 
Gaussian (GP) or Ornstein-Uhlenbeck (OU) processes (We 
also hoped to include comparison with EHR-Safe.6 However, 
despite attempts, we were unable to obtain the code imple
mentation.).31 In addition we compare with standard GRU 
and LSTM approach, with results in Table 1.

Diffusion process on EHR time series
We first introduce our notations for the generation of both 
continuous-valued and discrete-valued time series in our 
framework, as both are present in EHR. Specifically, let D
denote our EHR time series dataset. Each patient in D has 
continuous-valued and discrete-valued multivariate time ser
ies X 2 RPr×L and C 2 ZPd ×L, respectively. L is the number of 
time steps, and Pr and Pd are the number of variables for con
tinuous and discrete data types.
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To generate both continuous-valued and discrete-valued 
time series, we consider a “mixed sequence diffusion” 
approach by adding Gaussian and multinomial noises. For 
continuous-valued time series, we perform Gaussian diffusion 
by adding independent Gaussian noise similar to DDPM. The 
forward process is thus defined as: 

q X 1:Tð ÞjX 0ð Þ
� �

¼
YT

t¼1

YL

l¼1

q X tð Þ
�;l jX

t − 1ð Þ

�;l

� �
; (1) 

where qðXðtÞ
�;l jX

ðt − 1Þ
�;l Þ ¼ N ðXðtÞ

�;l ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βðtÞ
q

Xðt − 1Þ
�;l ;βðtÞIÞ and X �;l 

is the lth observation of the continuous-valued time series. In 
a similar fashion as eqn (12), we define the reverse process 
for continuous-valued features as pθðXð0:TÞÞ ¼ pðXðTÞÞ
QT

t¼1 pθðXðt − 1ÞjXðtÞÞ, where 
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I

� �
;
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� �

¼
1
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To model discrete-valued time series, we use multinomial 
diffusion.60 The forward process is defined as: 

q ~C
1:Tð Þ
j~C

0ð Þ
� �

¼
YT

t¼1

YPd

p¼1

YL

l¼1

q ~C
tð Þ

p;lj
~C
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p;l

� �
; (3) 

q ~C
tð Þ

p;lj
~C

t − 1ð Þ

p;l

� �
:¼ C ~C

tð Þ
p;l; 1 − β tð Þ
� �
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t − 1ð Þ

p;l þ β tð Þ=K
� �

; (4) 

where C is a categorical distribution, ~C
0ð Þ

p;l 2 f0;1g
K is a one- 

hot encoded representation of Cp;l (We perform one-hot 
encoding on the discrete-valued time series across the feature 
dimension. For example, if our time series is f0, 1, 2g, its one- 
hot representation becomes f 1;0;0½ �

>
; 0;1;0½ �

>
; 0;0;1½ �

>
g.), 

and the addition and subtraction between scalars and vectors 
are performed element-wise. The forward process posterior 
distribution is defined as follows, where � represents the 
Hadamard product that returns a matrix with each element 
being the product of the corresponding elements from the orig
inal 2 matrices: 

q ~C
t − 1ð Þ
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p;l
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�
�
�
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The reverse process pθð ~C
ðt − 1Þ
p;l j~C

ðtÞ
p;lÞ is parameterized 

as qð~C
ðt − 1Þ
p;l j~C

ðtÞ
p;l; sθð~C

ðtÞ
p;l; tÞÞ. We train our neural network, 

sθ, using both Gaussian and multinomial diffusion 
processes: 

LN θð Þ :¼ EX 0ð Þ;ε;t kε − sθ

ffiffiffiffiffiffiffi
�α tð Þ

p
X 0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �α tð Þ

p
ε; t

� �
k

2
h i

; (7) 

Table 1. Predictive and discriminative scores of TIMEDIFF and the baselines.

Metric Method Stocks Energy MIMIC-III MIMIC-IV eICU

Discriminative TIMEDIFF 0.048 ± 0.028 0.088 ± 0.018 0.028 ± 0.023 0.030 ± 0.022 0.015 ± 0.007
Score EHR-M-GAN 0.483 ± 0.027 0.497 ± 0.006 0.499 ± 0.002 0.499 ± 0.001 0.488 ± 0.022
(#) DSPD-GP 0.081 ± 0.034 0.416 ± 0.016 0.491 ± 0.002 0.478 ± 0.020 0.327 ± 0.020

DSPD-OU 0.098 ± 0.030 0.290 ± 0.010 0.456 ± 0.014 0.444 ± 0.037 0.367 ± 0.018
CSPD-GP 0.313 ± 0.061 0.392 ± 0.007 0.498 ± 0.001 0.488 ± 0.010 0.489 ± 0.010
CSPD-OU 0.283 ± 0.039 0.384 ± 0.012 0.494 ± 0.002 0.479 ± 0.005 0.479 ± 0.017
GT-GAN 0.077 ± 0.031 0.221 ± 0.068 0.488 ± 0.026 0.472 ± 0.014 0.448 ± 0.043
TimeGAN 0.102 ± 0.021 0.236 ± 0.012 0.473 ± 0.019 0.452 ± 0.027 0.434 ± 0.061
RCGAN 0.196 ± 0.027 0.336 ± 0.017 0.498 ± 0.001 0.490 ± 0.003 0.490 ± 0.023
C-RNN-GAN 0.399 ± 0.028 0.499 ± 0.001 0.500 ± 0.000 0.499 ± 0.000 0.493 ± 0.010
T-Forcing 0.226 ± 0.035 0.483 ± 0.004 0.499 ± 0.001 0.497 ± 0.002 0.479 ± 0.011
P-Forcing 0.257 ± 0.026 0.412 ± 0.006 0.494 ± 0.006 0.498 ± 0.002 0.367 ± 0.047
HALO 0.491 ± 0.006 0.500 ± 0.000 0.497 ± 0.003 0.494 ± 0.004 0.370 ± 0.074
Real Data 0.019 ± 0.016 0.016 ± 0.006 0.012 ± 0.006 0.014 ± 0.011 0.004 ± 0.003

Predictive TIMEDIFF 0.037 ± 0.000 0.251 ± 0.000 0.469 ± 0.003 0.432 ± 0.002 0.309 ± 0.019
Score EHR-M-GAN 0.120 ± 0.047 0.254 ± 0.001 0.861 ± 0.072 0.880 ± 0.079 0.913 ± 0.179
(#) DSPD-GP 0.038 ± 0.000 0.260 ± 0.001 0.509 ± 0.014 0.586 ± 0.026 0.320 ± 0.018

DSPD-OU 0.039 ± 0.000 0.252 ± 0.000 0.497 ± 0.006 0.474 ± 0.023 0.317 ± 0.023
CSPD-GP 0.041 ± 0.000 0.257 ± 0.001 1.083 ± 0.002 0.496 ± 0.034 0.624 ± 0.066
CSPD-OU 0.044 ± 0.000 0.253 ± 0.000 0.566 ± 0.006 0.516 ± 0.051 0.382 ± 0.026
GT-GAN 0.040 ± 0.000 0.312 ± 0.002 0.584 ± 0.010 0.517 ± 0.016 0.487 ± 0.033
TimeGAN 0.038 ± 0.001 0.273 ± 0.004 0.727 ± 0.010 0.548 ± 0.022 0.367 ± 0.025
RCGAN 0.040 ± 0.001 0.292 ± 0.005 0.837 ± 0.040 0.700 ± 0.014 0.890 ± 0.017
C-RNN-GAN 0.038 ± 0.000 0.483 ± 0.005 0.933 ± 0.046 0.811 ± 0.048 0.769 ± 0.045
T-Forcing 0.038 ± 0.001 0.315 ± 0.005 0.840 ± 0.013 0.641 ± 0.017 0.547 ± 0.069
P-Forcing 0.043 ± 0.001 0.303 ± 0.006 0.683 ± 0.031 0.557 ± 0.030 0.345 ± 0.021
HALO 0.042 ± 0.006 0.299 ± 0.053 0.816 ± 0.020 0.767 ± 0.012 0.378 ± 0.038
Real Data 0.036 ± 0.001 0.250 ± 0.003 0.467 ± 0.005 0.433 ± 0.001 0.304 ± 0.017

Bolded values are best-performing models, and italic values are for real data.
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p;l

� �
jjpθ ~C
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tð Þ
p;l
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" #

;

(8) 

where LN and LC are the losses for continuous-valued and 
discrete-valued multivariate time series, respectively. The 
training of the neural network is performed by minimizing 
the following loss: 

Ltrain θð Þ ¼ λLC θð ÞþLN θð Þ; (9) 

where λ is a hyperparameter for creating a balance between 
the 2 losses. We investigate the effects of λ in Supplementary 
Appendix B.6.

Missing value representation
In medical applications, missing data and variable measure
ment times play a crucial role as they could provide addi
tional information and indicate a patient’s health status.61

We thus derive a missing indicator mask M 2 f0;1gPr×L (or 
alternatively, M 2 f0;1gPd×L if the time series is discrete- 
valued) for each X 2 D (For simplicity in writing, we refer to 
X only, but this procedure can also be applied on C.): 

Mp;l ¼
0; if Xp;l is present;

1; if Xp;l is missing:

(

(10) 

Then M encodes the measurement time points of X. If X 
contains missing values, we impute them in the initial value 
of the forward process, that is, X 0ð Þ, using the corresponding 
sample mean (Using the sample mean for imputation is a 
straightforward and computationally efficient method. It 
helps maintain the central tendencies and distributional char
acteristics of the original data, minimizing the introduction of 
biases that might occur with more complex methods.62,63). 
Nevertheless, M retains the information regarding the posi
tions of missing values. Our method generates discrete and 
continuous-valued time series, allowing us to seamlessly rep
resent and generate M as a discrete time series.

TIMEDIFF architecture
In this section, we describe our architecture for the diffusion 
model. A commonly used architecture in DDPM is U-Net.48

However, most U-Net-based models are tailored to image 
generation tasks, requiring the neural network to process 
pixel-based data rather than sequential information.15,17,64

Even its 1D variant, 1D-U-Net, comes with limitations such 
as restriction on the input sequence length (which must be a 
multiple of U-Net multipliers) and a tendency to lose tempo
ral dynamics information during down-sampling. On the 
other hand, TabDDPM36 proposed a mixed diffusion 
approach for tabular data generation but relied on a multi
layer perceptron architecture, making it improper for multi
variate time series generation.

To address this challenge of handling EHR time series, we 
need an architecture capable of encoding sequential informa
tion while being flexible to the input sequence length. The 
time-conditional BRNN or NCDE28 can be possible options. 
After careful evaluation, we found that BRNN without atten
tion mechanism offers superior computational efficiency and 
have chosen it as the neural backbone sθ for all of our 

experiments. A more detailed discussion of NCDE is pro
vided in Supplementary Material SA.4.1.

Diffusion step embedding
To inform the model about the current diffusion time step t, 
we use sinusoidal positional embedding.65 The embedding 
vector output from the embedding layer then goes through 2 
fully connected (FC) layers with GeLU activation in 
between.66 The embedding vector is then fed to a SiLU acti
vation66 and another FC layer. The purpose of this additional 
FC layer is to adjust the dimensionality of the embedding vec
tor to match the stacked hidden states from BRNN. Specifi
cally, we set the dimensionality of the output to be 2 times 
the size of the hidden dimension from BRNN. We denote the 
transformed embedding vector as tembed. This vector is then 
split into 2 vectors, each with half of the current size, namely 
tembed scale and tembed shift. Both vectors share the same dimen
sionality as BRNN’s hidden states and serve to inform the 
network about the current diffusion time step.

Time-conditional BRNN
In practice, BRNN can be implemented with either LSTM or 
GRU units. To condition BRNN on time, we follow these 
steps. We first obtain noisy samples from Gaussian (for 
continuous-valued data) and multinomial (for discrete-valued 
data) diffusion. The 2 samples are concatenated and fed to 
our BRNN, which returns a sequence of hidden states fhlg

L
l¼1 

that stores the temporal dynamics information about the time 
series. To stabilize learning and enable proper utilization of 
tembed, we apply layernorm67 on fhlg

L
l¼1. The normalized 

sequence of hidden states, f~h lg
L
l¼1, is then scaled and shifted 

using f~hl � tembed scaleþ1ð Þþ tembed shiftg
L
l¼1. These scaled hid

den states contain information about the current diffusion 
step t, which is then passed through an FC layer to produce 
the final output. The output contains predictions for both 
multinomial and Gaussian diffusions, which are extracted 
correspondingly and used to calculate Ltrain in eqn (9). A vis
ual demonstration of our architecture is shown in Figure 1, 
where the use of BRNN allows the denoizing of noisy time 
series samples of arbitrary length L, and the diffusion step 
embedding is utilized to inform the model about the stage of 
the reverse diffusion process.

Results
Authenticity of the generated EHR time series
We evaluate the authenticity of the generated synthetic EHR 
time series both qualitatively and quantitatively. We provide 
a visualization of the distributions of the synthetic and real 
data using t-SNE, following,6 shown in Figure 2. Addition
ally, we present another visualization metric using UMAP in  
Figure 3. Both visualization methods indicate the synthesized 
data generated from TIMEDIFF overlaps with real training and 
test data, suggesting TIMEDIFF can generate more realistic 
data compared to other baselines. Visualizations of the raw 
synthetic and real data per feature are presented in Supple
mentary Appendix B.1. Note that t-SNE and UMAP are only 
for qualitative evaluation and are not precise. We next 
present quantitative metrics for precise evaluation. By com
paring the predictive and discriminative scores in Table 1, we 
observe that TIMEDIFF yields significantly lower scores than 
all the baseline methods across 6 datasets. For instance, TIME

DIFF yields a 95.4% lower mean discriminative score 
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compared to DSPD-GP and obtains a 1.6% higher mean pre
dictive score than real testing data on the eICU dataset. For 
non-EHR datasets, TIMEDIFF achieves a 37.7% lower and a 
60.2% lower mean discriminative scores on the Stocks and 
Energy datasets than GT-GAN while having similar mean 
predictive scores as using real testing data.

Data performance on in-hospital mortality 
prediction
We evaluate the data performance of the generated synthetic 
EHR time series on one common downstream task: in- 
hospital mortality prediction.68,69 We use 6 ML algorithms: 

XGBoost (XGB),70 Random Forest (RF),71 AdaBoost (AB),72

and ‘1 and ‘2 regularized Logistic Regression (LR L1/L2).73

Additionally, to simulate the practical scenario where syn
thetic samples are used for data augmentation, we compute 
the TSRTR score for each ML model. The prediction models 
are trained using synthetic samples from TIMEDIFF and 
assessed on real test data.

From Figure 4, we observe that the TSTR scores obtained 
from models trained using synthetic EHR time series are close 
to the TRTR scores yielded from models trained using real 
data. We also notice a nondecreasing trend in the TSRTR 
scores as the percentage of synthetic EHR data increases for 

Figure 1. Visualization of TIMEDIFF architecture. FC, fully connected layer; SiLU, sigmoid linear unit activation; SinuPos Embedding, shorthand for 
sinusoidal positional embedding; GeLU, Gaussian error linear unit activation.

Figure 2. t-SNE visualization of the eICU (first row) and the MIMIC-IV (second row) datasets. Synthetic samples in blue, real training samples in red, and 
real testing samples in orange. We observe that there is a significant overlap between synthetic samples from TIMEDIFF and real testing samples, 
suggesting TIMEDIFF produces realistic synthetic EHR data. DSPD-GP and HALO also yield noticeable overlap.
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ML model training. Additional TSTR and TSRTR evalua
tions for all baseline generative models can be found in Sup
plementary Material SB.4.2.

Note that in addition to the 6 ML classifiers mentioned 
above, we utilize GRU and LSTM for prediction due to their 
ability in handling sequential data. We present the TSTR and 
TRTR scores obtained from RNNs in Supplementary Mate
rial SB.4.3, Table S10. We observe that they achieve lower 
scores compared to the conventional classifiers.

Data privacy of synthetic EHR time series
We also assess the risks of the generated synthetic EHR time 
series being attacked by malicious entities using the NNAA 
and the MIR scores. These metrics allow us to evaluate 
whether our approach can produce privacy-preserving syn
thetic EHR samples. As presented in Table 2, we observe that 

TIMEDIFF yields the AAtest and AAtrain scores around 0.5 
across all 4 EHR datasets. TIMEDIFF also obtains low NNAA 
and MIR scores compared to baseline methods. Note that the 
full results are presented in Supplementary Material SB.4.

Model runtime comparison
We compare the number of hours to train TIMEDIFF with 
EHR-M-GAN, TimeGAN, and GT-GAN presented in  
Table 3. As shown in Table 3, TIMEDIFF requires less training 
time compared to GAN-based approaches.

Note that in our experiments, to demonstrate that our pro
posed approach outperforms GANs in terms of training time, 
we primarily compared the training time of our proposed dif
fusion model with GANs. Most of the GANs primarily 
involve pretraining the embedding layer and subsequently 
training with adversarial feedback. This staged procedure 

Figure 3. UMAP visualization of the eICU and the MIMIC-IV datasets. Synthetic samples in blue, real training samples in red, and real testing samples in 
orange. We observe a similar result as the t-SNE visualizations, where there is an overlap between synthetic and real testing samples for TIMEDIFF. The 
overlap for other models is less significant.

Figure 4. TSTR scores compared to TRTR scores (Top) and TSRTR scores (Bottom).
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made GANs more computationally heavy to train than diffu
sion models (which only requires optimizing one loss func
tion for one neural network in our proposed approach).

Ablation study
We further investigate the effect of utilizing multinomial dif
fusion in TIMEDIFF on missing indicators for EHR discrete 
sequence generation. We compare it with TIMEDIFF using 
Gaussian diffusion, with the following 2 methods applied to 

the resulting output as transformations to discrete sequences: 
(1) direct rounding; (2) applying argmax to the softmax out
put of real-valued, one-hot encoded representations (The syn
thetic one-hot encoding is not discrete since we use Gaussian 
diffusion. This method is also adopted by Ref.20 for generat
ing discrete time series with diffusion models.).

We present the discriminative and predictive scores 
obtained using the aforementioned methods on the MIMIC- 
III/IV and the eICU datasets in Table 4. We notice that TIME

DIFF using multinomial diffusion obtains lower discriminative 
and predictive scores across all 3 datasets.

Discussion
The synthetic samples generated by TIMEDIFF exhibit remark
able overlap with real training and testing data (see Figure 2), 
indicating that the generated samples preserve similar data 
distribution to real data. Note that we obtain the same 

Table 2. Privacy scores of the synthesized EHR time series yielded from TIMEDIFF and the baseline methods.

Metric Method MIMIC-III MIMIC-IV eICU

AAtest (�0.5) TIMEDIFF 0.574 ± 0.002 0.517 ± 0.002 0.537 ± 0.001
EHR-M-GAN 0.998 ± 0.000 1.000 ± 0.000 0.977 ± 0.000
DSPD-GP 0.974 ± 0.001 0.621 ± 0.002 0.888 ± 0.000
DSPD-OU 0.927 ± 0.000 0.804 ± 0.003 0.971 ± 0.000
CSPD-GP 0.944 ± 0.001 0.623 ± 0.002 0.851 ± 0.001
CSPD-OU 0.967 ± 0.001 0.875 ± 0.002 0.982 ± 0.000
GT-GAN 0.995 ± 0.000 0.910 ± 0.001 0.981 ± 0.000
TimeGAN 0.997 ± 0.000 0.974 ± 0.001 1.000 ± 0.000
RCGAN 0.983 ± 0.001 0.999 ± 0.000 1.000 ± 0.000
HALO 0.698 ± 0.002 0.709 ± 0.002 0.653 ± 0.001
Real Data 0.552 ± 0.002 0.497 ± 0.002 0.501 ± 0.002

AAtrain (�0.5) TIMEDIFF 0.573 ± 0.002 0.515 ± 0.002 0.531 ± 0.002
EHR-M-GAN 0.999 ± 0.000 1.000 ± 0.000 0.965 ± 0.002
DSPD-GP 0.968 ± 0.002 0.620 ± 0.003 0.888 ± 0.001
DSPD-OU 0.928 ± 0.001 0.788 ± 0.003 0.971 ± 0.000
CSPD-GP 0.940 ± 0.002 0.629 ± 0.005 0.852 ± 0.001
CSPD-OU 0.966 ± 0.001 0.880 ± 0.003 0.983 ± 0.000
GT-GAN 0.995 ± 0.001 0.907 ± 0.002 0.981 ± 0.000
TimeGAN 0.997 ± 0.000 0.969 ± 0.003 1.000 ± 0.000
RCGAN 0.984 ± 0.001 0.999 ± 0.000 1.000 ± 0.000
HALO 0.696 ± 0.001 0.717 ± 0.002 0.653 ± 0.002
Real Data 0.286 ± 0.003 0.268 ± 0.004 0.266 ± 0.002

NNAA (#) TIMEDIFF 0.002 ± 0.002 0.002 ± 0.002 0.006 ± 0.002
EHR-M-GAN 0.000 ± 0.000 0.000 ± 0.000 0.012 ± 0.003
DSPD-GP 0.005 ± 0.003 0.003 ± 0.003 0.001 ± 0.001
DSPD-OU 0.001 ± 0.001 0.016 ± 0.004 0.000 ± 0.000
CSPD-GP 0.004 ± 0.002 0.007 ± 0.005 0.001 ± 0.001
CSPD-OU 0.001 ± 0.001 0.005 ± 0.003 0.001 ± 0.001
GT-GAN 0.001 ± 0.000 0.004 ± 0.002 0.000 ± 0.000
TimeGAN 0.000 ± 0.000 0.005 ± 0.003 0.000 ± 0.000
RCGAN 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
HALO 0.002 ± 0.002 0.008 ± 0.002 0.002 ± 0.001
Real Data 0.267 ± 0.004 0.229 ± 0.003 0.235 ± 0.003

MIR (#) TIMEDIFF 0.191 ± 0.008 0.232 ± 0.048 0.227 ± 0.021
EHR-M-GAN 0.025 ± 0.007 0.435 ± 0.031 0.049 ± 0.006
DSPD-GP 0.032 ± 0.021 0.050 ± 0.009 0.000 ± 0.000
DSPD-OU 0.060 ± 0.032 0.007 ± 0.006 0.000 ± 0.000
CSPD-GP 0.060 ± 0.028 0.034 ± 0.017 0.000 ± 0.000
CSPD-OU 0.066 ± 0.046 0.016 ± 0.020 0.000 ± 0.000
GT-GAN 0.005 ± 0.002 0.046 ± 0.013 0.000 ± 0.000
TimeGAN 0.010 ± 0.002 0.173 ± 0.020 0.000 ± 0.000
RCGAN 0.013 ± 0.002 0.277 ± 0.049 0.000 ± 0.000
HALO 0.189 ± 0.007 0.019 ± 0.012 0.036 ± 0.040
Real Data 0.948 ± 0.000 0.929 ± 0.005 0.927 ± 0.001

Bolded values are for best-performing models, and italic values are for real data.

Table 3. Runtime comparisons between the TIMEDIFF and baseline 
methods (hours).

Dataset TIMEDIFF EHR-M-GAN TimeGAN GT-GAN

MIMIC-III 2.7 18.9 10.8 21.8
MIMIC-IV 2.7 28.8 29.5 47.3
eICU 8.7 87.1 110 59.1

Bolded values are the best-performing models.
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observation across all datasets, with the rest of the visualiza
tions presented in Supplementary Material SB.2.

The discriminative and predictive scores in Table 1 suggest 
that the synthetic time series generated by TIMEDIFF has the 
closest data distribution to real data compared to samples 
generated by other baseline methods. We notice that the 
DSPD/CSPD baseline method from a recent work does not 
yield good performance on EHR datasets. This observation 
can be attributed to its temporal modeling, which treats time 
series as discrete realizations of an underlying continuous 
process. This continuity assumption may not hold for EHR 
time series data, which are highly discontinuous.

Additionally, Table 4 from the ablation study indicates 
that the synthesized EHR time series is more realistic when 
using multinomial diffusion in TIMEDIFF. Evaluation using 
TSTR and TSRTR metrics is also performed to compare 
TIMEDIFF with the “with Gaussian and softmax” alternative, 
where we observe that TIMEDIFF outperforms the alternative. 
The result is presented in Supplementary Material SB.4.2, 
Figures S26 and S35.

We observe from Figure 4 that models trained using syn
thetic time series yield similar AUC scores compared to those 
trained on the real data, indicating that the synthetic EHR 
time series obtained from TIMEDIFF maintains high data utility 
for performing downstream tasks. Additionally, we notice 
that most of the ML models yield increasing AUC scores with 
the increase in the number of synthetic samples added to 
model training. This observation is consistent with our pre
vious findings, indicating the high utility of our synthetic data.

The close to 0.5 scores of AAtest and AAtrain computed 
from TIMEDIFF shown in Table 2 suggest that TIMEDIFF gener
ates high-fidelity synthetic time series and does not overfit its 
training data. By contrast, although most of the baseline 
methods have low NNAA and MIR scores, they all have 
higher AAtest and AAtrain scores, which implies that there may 
be overfitting on the training data for baseline methods.

Lastly, to assess the effects of EHR time series generation, 
most features selected in our study are frequent measure
ments such as vital signs. This design choice enables us to 
evaluate the ability of TIMEDIFF to generate sequential meas
urements without interference from measurement frequen
cies. Thus, our study does not focus on infrequent time series 
measurements or static features. Nevertheless, we acknowl
edge that this is a limitation in our study and have conducted 
additional experiments on the ability of TIMEDIFF to generate 
static and infrequent measurements. The results can be found 
in Supplementary Material SB.7.

Conclusion
We propose TIMEDIFF for synthetic EHR time series generation 
by using mixed sequence diffusion and demonstrate its 

superior performance compared with all state-of-the-art time 
series generation methods in terms of data utility. We also 
demonstrate that TIMEDIFF can facilitate downstream analysis 
in healthcare while protect patient privacy. Thus, we believe 
TIMEDIFF could be a useful tool to support medical data analy
sis by producing realistic, synthetic, and privacy-preserving 
EHR data to tackle data scarcity issues in healthcare. How
ever, it is important to acknowledge the limitations of our 
study. While our results suggest that TIMEDIFF offers some 
degree of patient privacy protection, it should not be seen as a 
replacement for official audits, which may still be necessary 
prior to data sharing. It is also interesting to investigate TIME

DIFF within established privacy frameworks, eg, differential 
privacy. Additionally, to provide better interpretability and 
explainability of TIMEDIFF, subgroup analysis and theoretical 
analysis are to be developed. While we utilized sample mean 
imputation for computational efficiency, more advanced miss
ing value imputation techniques could be considered to further 
evaluate TIMEDIFF’s behavior. Lastly, it would also be meaning
ful to investigate the modeling of highly sparse and irregular 
temporal data, such as lab tests and medications. We leave the 
above potential improvements of TIMEDIFF for future work.
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Table 4. Ablation study on generating missing indicators using multinomial diffusion.

Metric Method MIMIC-III MIMIC-IV eICU

Discriminative score (#) with Gaussian and rounding 0.355 ± 0.020 0.121 ± 0.025 0.030 ± 0.018
with Gaussian and softmax 0.088 ± 0.023 0.155 ± 0.032 0.042 ± 0.045
with multinomial 0.028 ± 0.023 0.030 ± 0.022 0.015 ± 0.007

Predictive score (#) with Gaussian and rounding 0.486 ± 0.005 0.433 ± 0.003 0.312 ± 0.031
with Gaussian and softmax 0.472 ± 0.004 0.434 ± 0.002 0.320 ± 0.035
with multinomial 0.469 ± 0.003 0.432 ± 0.002 0.309 ± 0.019

Bolded values are the best-performing method.
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the eICU Collaborative Research Database. We also consider 
the following non-EHR time-series dataset for comparisons. 
Stocks: the dataset is available online and can be accessed 
from the historical Google stock price on Yahoo; Energy: this 
dataset can be obtained from UCI machine learning 
repository.

Code availability
Our code is available at https://github.com/MuhangTian/ 
TimeDiff.
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