
Published in Transactions on Machine Learning Research (11/2023)

Detecting danger in gridworlds using Gromov’s Link Condition

Thomas F Burns thomas.burns@oist.jp
Neural Coding and Brain Computing Unit
OIST Graduate University
1919-1 Tancha, Onna-son, Kunigami-gun
Okinawa, Japan 904-0495

Robert Tang robert.tang@xjtlu.edu.cn
Department of Pure Mathematics
Xi’an Jiaotong–Liverpool University
111 Ren’ai Road, Suzhou Industrial Park
Suzhou, Jiangsu Province, China 215123

Reviewed on OpenReview: https: // openreview. net/ forum? id= t4p612DftO

Abstract

Gridworlds have been long-utilised in AI research, particularly in reinforcement learning,
as they provide simple yet scalable models for many real-world applications such as robot
navigation, emergent behaviour, and operations research. We initiate a study of gridworlds
using the mathematical framework of reconfigurable systems and state complexes due to
Abrams, Ghrist & Peterson. State complexes, a higher-dimensional analogue of state graphs,
represent all possible configurations of a system as a single geometric space, thus making
them conducive to study using geometric, topological, or combinatorial methods. The main
contribution of this work is a modification to the original Abrams, Ghrist & Peterson setup
which we introduce to capture agent braiding and thereby more naturally represent the
topology of gridworlds. With this modification, the state complexes may exhibit geometric
defects (failure of Gromov’s Link Condition). Serendipitously, we discover these failures
for agent-only cases occur exactly where undesirable or dangerous states appear in the
gridworld. Our results therefore provide a novel method for seeking guaranteed safety
limitations in discrete task environments with single or multiple agents, and offer useful
safety information (in geometric and topological forms) for incorporation in or analysis of
machine learning systems. More broadly, our work introduces tools from geometric group
theory and combinatorics to the AI community and demonstrates a proof-of-concept for this
geometric viewpoint of the task domain through the example of simple environments.

1 Introduction

The notion of a state (or configuration/phase) space is commonly used in mathematics and physics to represent
all the possible states of a given system as a single geometric (or topological) object. This perspective provides
a bridge which allows for tools from geometry and topology to be applied to the system of concern. Moreover,
certain features of a given system are reflected by some geometric aspects of the associated state space (such
as gravitational force being captured by curvature in spacetime). Thus, insights into the structure of the
original system can be gleaned by reformulating them in geometric terms.

In discrete settings, state spaces have most commonly be represented in the artificial intelligence (AI)
literature using graphs. In a state graph, each vertex represents a state, and states are connected via edges if
a transition between them is dynamically possible. Such graphs are typically incorporated within Markov
decision processes (MDPs), including in multi-agent navigation and cooperation tasks (Rizk et al., 2019).
MDPs include additional information about probabilities of and expected rewards associated with particular

1

https://openreview.net/forum?id=t4p612DftO


Published in Transactions on Machine Learning Research (11/2023)

state transitions. Within this literature, there has been some work of a more geometric (Arslan et al., 2016) or
topological (Waradpande et al., 2020) flavour. With few exceptions, however, where such works incorporate
geometric realisations, concepts, or techniques, they typically do so in an empirical way and do not utilise
higher dimensional objects such as simplicial or cube complexes.

In the current work, we focus on a higher dimensional analogue of state graphs which take the form of
cube complexes. Abrams, Ghrist & Peterson’s state complexes (Abrams & Ghrist, 2004; Ghrist & Peterson,
2007) provide a general framework for representing discrete reconfigurable systems as non-positively curved
(NPC) cube complexes, giving access to a wealth of mathematical and computational benefits via efficient
optimisation algorithms guided by geometric insight (Ardila et al., 2012). These have been used to develop
efficient algorithms for robotic motion planning (Ardila et al., 2014; 2017) and self-reconfiguration of modular
robots (Larkworthy & Ramamoorthy, 2010). NPC cube complexes also possess rich hyperplane structures
which geometrically capture binary classification (Chatterji & Niblo, 2005; Wise, 2012; Sageev, 2014). However,
their broader utility to fields like AI has until now been relatively unexplored.

Our main contribution is the first application of this geometric approach (of using state complexes) to the
setting of multi-agent gridworlds. We introduce a natural modification to the state complex appropriate to the
setting of multi-agent gridworlds (to capture the braiding or relative movements of agents); however, in the
agent-only case this can lead to state complexes which are no longer NPC. Nevertheless, by applying Gromov’s
Link Condition, we completely characterise when positive curvature occurs in our new state complexes for
these agent-only cases, and relate this to features of the gridworlds (see Theorem 5.2). Serendipitously, we
discover that the states where Gromov’s Link Condition fails are those in which agents can potentially collide.
In other words, collision-detection is naturally embedded into the intrinsic geometry of the system via our
modification. Current approaches to collision-detection and navigation during multi-agent navigation often
rely on modelling and predicting collisions based on large training datasets (Kenton et al., 2019; Fan et al.,
2020; Qin et al., 2021) or by explicitly modelling physical movements (Kano et al., 2021). However, our
approach is purely geometric, requires no training, and can accommodate many conceivable types of actions
and inter-actions, not just simple movements.

In the context of single-agent motor learning and navigation, there has been some work (Peng & van de
Panne, 2017; Reda et al., 2020; Schneider et al., 2023) on how the choices of what and how information
is represented in a learning system can effect task performance. Implicitly, these works can be viewed as
empirical investigations on how changes to the geometry or topology of state spaces relate to the efficacy of
the applied learning algorithms. However, these studies do not seek to incorporate higher-level geometric or
topological information of the originating domain or task in a substantial way, or investigate this formally,
before applying or investigating the performance of the learning algorithms – and even fewer do so for
multi-agent systems (Rizk et al., 2019). One possible reason for this is a lack of known suitable tools. Our
experimental and theoretical results show there is a wealth of geometric information available in (even very
simple) task domains, which is accessible using tools from geometric group theory and combinatorics. Our
work therefore joins a growing body of research aimed towards understanding AI systems from a more
geometric perspective (Hauser & Ray, 2017; Lei et al., 2020; Stephenson et al., 2021; Archer et al., 2021;
Stober et al., 2011).

2 State complex of a gridworld

A gridworld is a two-dimensional, flat array of cells arranged in a grid, much like a chess or checker board.
Each cell can be occupied or unoccupied. A cell may be occupied, in our setting, by one and only one freely-
moving agent or movable object. Other gridworlds may include rewards, punishments, buttons, doors, locks,
keys, checkpoints, dropbears, etc., much like many basic video games. Gridworlds have been a long-utilised
setting in AI research, particularly reinforcement learning, since they are simple yet scalable in size and
sophistication (Da Silva et al., 2020; Waradpande et al., 2020). They also offer clear analogies to many
real-world applications or questions, such as robot navigation (Hodge et al., 2021), emergent behaviour (Kajic
et al., 2020), and operations research (Laurent et al., 2021). For these reasons, gridworlds have also been
developed for formally specifying problems in AI safety (Leike et al., 2017).

2



Published in Transactions on Machine Learning Research (11/2023)

Figure 1: A 3 × 3 gridworld
with one agent (a koala)
and one object (a beach
ball).

A state of a gridworld can be encoded by assigning each cell a label. In the
example shown in Figure 1, these labels are shown for an agent, an object, and
empty floor. A change in the state, such as an agent moving from one cell to
an adjacent empty cell, can be encoded by relabelling the cells involved. This
perspective allows us to take advantage of the notion of reconfigurable systems
as introduced by Abrams, Ghrist & Peterson (Abrams & Ghrist, 2004; Ghrist
& Peterson, 2007).

More formally, consider a graph G and a set A of labels. A state is a function
s : V (G) → A, i.e. an assignment of a label to each vertex of G. A possible
relabelling is encoded using a generator ϕ; this comprises the following data:

• a subgraph SUP (ϕ) ⊆ G called the support;

• a subgraph TR(ϕ) ⊆ SUP (ϕ) called the trace; and

• an unordered pair of local states

uloc
0 , uloc

1 : V (SUP (ϕ)) → A

that agree on V (SUP (ϕ)) − V (TR(ϕ)) but differ on V (TR(ϕ)).

A generator ϕ is admissible at a state s if s|SUP (ϕ) = uloc
0 (or uloc

1 ), in other words, if the assignment of labels
to V (SUP (ϕ)) given by s completely matches the labelling from (exactly) one of the two local states. If this
holds, we may apply ϕ to the state s to obtain a new state ϕ[s] given by

ϕ[s](v) :=
{

uloc
1 (v), v ∈ V (TR(ϕ))

s(v), otherwise.

This has the effect of relabelling the vertices in (and only in) TR(ϕ) to match the other local state of ϕ. Since
the local states are unordered, if ϕ is admissible at s then it is also admissible at ϕ[s]; moreover, ϕ[ϕ[s]] = s.
Definition 2.1 (Reconfigurable system (Abrams & Ghrist, 2004; Ghrist & Peterson, 2007)). A reconfigurable
system on a graph G with a set of labels A consists of a set of generators together with a set of states closed
under the action of admissible generators.

Configurations and their reconfigurations can be used to construct a state graph (or transition graph), which
represents all possible states and transitions between these states in a reconfigurable system. More formally:
Definition 2.2 (State graph). The state graph S(1) associated to a reconfigurable system has as its vertices
the set of all states, with edges connecting pairs of states differing by a single generator.1

Let us now return our attention to gridworlds. We define a graph G to have vertices corresponding to the
cells of a gridworld, with two vertices declared adjacent in G exactly when they correspond to neighbouring
cells (i.e. they share a common side). Our set of labels is chosen to be

A = {‘agent’, ‘object’, ‘floor’}.

We do not distinguish between multiple instances of the same label. We consider two generators:

• Push/Pull. An agent adjacent to an object is allowed to push/pull the object if there is an
unoccupied floor cell straight in front of the object/straight behind the agent; and

• Move. An agent is allowed to move to a neighbouring unoccupied floor cell.

1For a cell complex X , it is standard notation to use X (k) for its k-skeleton (the subcomplex formed by the union of all cells
of dimension at most k).

3



Published in Transactions on Machine Learning Research (11/2023)

Figure 2: An example 1 × 5 gridworld with one agent and one object with two generators – Push/Pull and
Move – and the resulting state graph. In the state graph, edge colours indicate the generator type which
relabels the gridworld.

These two generators have the effect of enabling agents to at any time move in any direction not blocked by
objects or other agents, and for agents to push or pull objects within the environment into any configuration
if there is sufficient room to move. For both types of generators, the trace coincides with the support. For
the Push/Pull generator, the support is a row or column of three contiguous cells, whereas for the Move
generator, the support is a pair of neighbouring cells. A simple example of a state graph, together with the
local states for the two generator types, is shown in Figure 2.

In a typical reconfigurable system, there may be many admissible generators at a given state s. If the trace of
an admissible generator ϕ1 is disjoint from the support of another admissible generator ϕ2, then ϕ2 remains
admissible at ϕ1[s]. This is because the relabelling by ϕ1 does not interfere with the labels on SUP (ϕ2). More
generally, a set of admissible generators {ϕ1, . . . , ϕn} at a state s commutes if SUP (ϕi) ∩ TR(ϕj) = ∅ for all
i ̸= j. When this holds, these generators can be applied independently of one another, and the resulting state
does not depend on the order in which they are applied. A simple example of this in the context of gridworlds
is a large room with n agents spread sufficiently far apart to allow for independent simultaneous movement.

Abrams, Ghrist & Peterson represent this mutual commutativity by adding higher dimensional cubes to the
state graph to form a cube complex called the state complex. We give an informal definition here, and refer
to their papers for the precise formulation (Abrams & Ghrist, 2004; Ghrist & Peterson, 2007).

Cube complexes are higher dimensional analogues of graphs that appear prominently in topology, geometric
group theory, and combinatorics. Background on cube complexes can be found in Schwer (2019); Sageev
(2014); Wise (2012)2.

Informally, a cube complex is a space that can be constructed by gluing cubes together in a fashion not too
dissimilar to a child’s building blocks. An n–cube is modelled on

{(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1 for all i}.

By restricting some co-ordinates to either 0 or 1, we can obtain lower dimensional subcubes. In particular, an
n–cube has 2n vertices and is bounded by 2n faces which are themselves (n − 1)–cubes. A cube complex X is
a union of cubes, where the intersection of every pair of distinct cubes is either empty, or a common subcube.

In the state complex, if {ϕ1, . . . , ϕn} is a set of commuting admissible generators at a state s then there
are 2n states that can be obtained by applying any subset of these generators to s. These 2n states form

2Much of the literature in geometric group theory focusses primarily on non-positively curved cube complexes, whereas in our
study, the presence of positive curvature plays a crucial role.

4



Published in Transactions on Machine Learning Research (11/2023)

the vertices of an n–cube in the state complex. Each n–cube is bounded by 2n faces, where each face is an
(n − 1)–cube: by disallowing a generator ϕi, we obtain a pair of faces corresponding to those states (in the
given n–cube) that agree with one of the two respective local states of ϕi on SUP (ϕi).
Definition 2.3 (State complex). The state complex S of a reconfigurable system is the cube complex
constructed from the state graph S(1) by inductively adding cubes as follows: whenever there is a set of 2n

states related by a set of n admissible commuting generators, we add an n–cube so that its vertices correspond
to the given states, and so that its 2n boundary faces are identified with all the possible (n − 1)–cubes
obtained by disallowing a generator. In particular, every cube is uniquely determined by its vertices.

Figure 3: State complex of a 2 × 2 gridworld with
two agents. Shading indicates squares attached to the
surrounding 4–cycles.

In our gridworlds setting, each generator involves
exactly one agent. This means commuting generators
can only occur if there are multiple agents. A simple
example of a state complex for two agents in a 2 × 2
room is shown in Figure 3. Note that there are six
embedded 4–cycles in the state graph, however, only
two of these are filled in by squares: these correspond
to independent movements of the agents, either both
horizontally or both vertically.

3 Exploring
gridworlds with state complexes

To compute the state complex of a (finite) gridworld,
we first initialise an empty graph G and an empty
‘to-do’ list L. As input, we take a chosen state of
the gridworld to form the first vertex of G and also
the first entry on L. The state complex is computed
according to a breadth-first search by repeatedly
applying the following:

• Let v be the first entry on L. List all admissible generators at v. For each such generator ϕ:

– If ϕ[v] already appears as a vertex of G, add an edge between v and ϕ[v] (if it does not already
exist).

– If ϕ[v] does not appear in G, add it as a new vertex to G and add an edge connecting it to v.
Append ϕ[v] to the end of L.

• Remove v from L.

The process terminates when L is empty. The output is the graph G. When L is empty, we have fully
explored all possible states that can be reached from the initial state. It may be possible that the true state
graph is disconnected, in which case the above algorithm will only return a connected component G. For
our purposes, we shall limit our study to systems with connected state graphs3. From the state graph, we
construct the state complex by first finding all 4–cycles in the state graph. Then, by examining the states
involved, we can determine whether a given 4–cycle bounds a square representing a pair of commuting moves.

To visualise the state complex, we first draw the state graph using the Kamada–Kawai force-directed algorithm
(Kamada & Kawai, 1989) which attempts to draw edges to have similar length. We then shade the region(s)
enclosed by 4–cycles representing commuting moves. For ease of visual interpretation in our figures, we do

3There is no theoretical reason for limiting our study to connected state complexes. In fact, our main theorem would still hold
without the connectedness assumption as it is a purely local statement. If one begins with an initial state, then its connected
component comprises precisely all states which can be reached by applying some sequence of generators. Thus, from a practical
and computational standpoint, one only ever deals with a connected component of the full state complex when exploring from a
specific instance of a gridworld. Another issue is that without the connectedness assumption, the problem of finding a shortest
path between two given states could be impossible.

5



Published in Transactions on Machine Learning Research (11/2023)

not also shade higher-dimensional cubes, although such cubes are noticeable and can be easily computed and
visualised if desired.

Figure 4: State complex (left) of a 3 × 3 gridworld with one
agent and one object (right). The darker vertex in the state
complex represents the state shown in the gridworld state on
the right. Edges in the state complex are coloured according
to their generator – orange for Push/Pull and maroon for
Move. Grey circles which group states where the ball is
static have been added to illustrate the different scales of
geometry.

Constructing and analysing state complexes of
gridworlds is in and of itself an interesting and
useful way of exploring their intrinsic geometry.
For example, Figure 4 shows the state complex
of a 3 × 3 gridworld with one agent and one
object. The state complex reveals two scales
of geometry: larger ‘blobs’ of states organised
in a 3 × 3 grid, representing the location of
the object; and, within each blob, copies of
the room’s remaining empty space, in which
the agent may walk around and approach the
object to Push/Pull. Each 12–cycle ‘petal’ rep-
resents a 12–step choreography wherein the
agent pushes and pulls the object around in a
4–cycle in the gridworld. In this example, the
state complex is the state graph, since there
are no possible commuting moves.

The examples discussed thus far all have planar
state graphs. Planarity does not hold in general
– indeed, the n–cube graph for n ≥ 4 is non-
planar, and a state graph can contain n–cubes if
the gridworld has n agents and sufficient space
to move around. It is tempting to think that
the state complex of a gridworld with more agents should therefore look quite different to one with fewer
agents. However, Figure 5 shows this may not always be the case: there is a symmetry induced by swapping
all ‘agent’ labels with ‘floor’ labels.

Figure 5: State complex (centre) of a 3 × 3 gridworld with three agents (left) and six agents (right). They
share the same state complex due to the ‘agent’ ↔ ‘floor’ label inversion symmetry.

We observe an interesting pattern in Figure 5, where ‘clusters’ of vertices in the state complex are arranged in
a gridlike fashion on the plane. This gridlike arrangement is also exhibited in Figures 10 and 12 in Appendix
A.1, as well as in other experiments involving agent-only gridworlds in larger rooms. It is worth emphasising
that these visualisations were generated purely by feeding the state graph into the graph-drawing algorithm,
with no human input involved. This suggests that the gridlike clustering could be revealing an intrinsic
feature of the state complex, rather than simply being an artefact of a particular visualisation.

Indeed, by inspecting several examples, it appears that the visualisation approximates a natural projection
map from the state complex of an agent-only gridworld to the integer lattice in R2. Let us identify the cell
in row i and column j in a gridworld with the integer co-ordinate (i, j) ∈ Z2. Then for each state s ∈ S(0),

6



Published in Transactions on Machine Learning Research (11/2023)

define f(s) ∈ Z2 to be the sum of all co-ordinates corresponding to the cells occupied by an agent. We can
view f as a map which assigns a state to a ‘cluster’ in Z2. Applying a single Move generator to s results
in a state s′ such that f(s′) differs from f(s) by either (±1, 0) or (0, ±1). In particular, any pair of states
mapping to a common ‘cluster’ in Z2 must be non-adjacent in the state graph. Thus, f extends to a graph
map from the state graph S(1) to the standard integer grid (regarded as a graph on the plane).

It would be interesting to see if there could be other graph maps from the state graph to the integer grid
which are not related to the map f by an obvious symmetry. If the answer is no, then this could help explain
why the graph-drawing algorithm appears to produce consistently similar projections for varying numbers of
agents and sizes of rooms.

4 Dancing with myself

The state complex of a gridworld with n agents can be thought of as a discrete analogue of the configuration
space of n points on the 2D–plane. However, there is a problem with this analogy: there can be ‘holes’
created by 4–cycles in the state complex where a single agent walks in a small square-shaped dance by itself,
as shown in Figure 6.

Figure 6: State complex of a 2 × 2 gridworld with one agent under the original definition of Abrams, Ghrist
& Peterson (Abrams & Ghrist, 2004; Ghrist & Peterson, 2007) (left) and with our modification (right). The
blue shading is a filled in square indicating a dance.

The presence of these holes would suggest something meaningful about the underlying gridworld’s intrinsic
topology, e.g., something obstructing the agent’s movement at that location in the gridworld that the agent
must move around. In reality, the environment is essentially a (discretised) 2D–plane with nothing blocking
the agent from traversing those locations. Indeed, these ‘holes’ are uninteresting topological quirks which
arise due to the representation of the gridworld as a graph. We therefore deviate from the original definition
of state complexes by Abrams, Ghrist & Peterson (Abrams & Ghrist, 2004; Ghrist & Peterson, 2007) and
choose to fill in these ‘dance’ 4–cycles with squares.4

Formally, we define a dance δ to comprise the following data:

• the support SUP (δ) given by a 2 × 2 subgrid in the gridworld,

• four local states defined on SUP (δ), each consisting of exactly one agent label and three floor labels,
and

• four Move generators, each of which transitions between two of the four local states (as in Figure 6).

4Ghrist and Peterson themselves ask if there could be better ways to complete the state graph to a higher-dimensional object
with better properties (Question 6.4 in Ghrist & Peterson (2007)).

7



Published in Transactions on Machine Learning Research (11/2023)

We say that δ is admissible at a state s if s|SUP (δ) agrees with one of the four local states of δ. Moreover,
these four local states are precisely the states that can be reached when we apply some combination of the
four constituent Moves. We do not define the trace of a dance, however, we may view the trace of each of the
four constituent Moves as subgraphs of SUP (δ).

A dance is itself not a generator in the sense of Abrams, Ghrist & Peterson; rather, it is a set of 4 states
related by 4 Move generators. Observe that a dance exists precisely when an agent is able to execute a
‘diagonal move’ via two different move sequences: a horizontal move followed by a vertical move; or a vertical
followed by a horizontal one. We can thus view a dance as capturing a ‘spatially commuting’ relationship
between these two move sequences. Note that these Moves are not commuting in the strict Abrams, Ghrist &
Peterson sense (which could be viewed as a ‘temporally commuting’ relationship between generators), as the
pairs of generators involved do not even coincide. Our modifications to the state complex, detailed below,
allow us to treat both notions of commutativity simultaneously via cubes. This demonstrates a conceptual
advantage of working with a complex rather than a graph: with a graph, we can only capture relations
between pairs of states; by allowing higher-dimensional cubes, we can also capture relations between sets of
generators or states.

The notion of commutativity can be extended to incorporate dancing as follows. Suppose that we have a set
{ϕ1, . . . , ϕl, δ1, . . . , δm} of l admissible generators and m admissible dances at a state s. We say that this set
commutes if the supports of its elements are pairwise disjoint. When this holds, there are 2l+2m possible
states that can be obtained by applying some combination of the generators and dances to s: there are two
choices of local state for each ϕi, and four for each δj . We capture this extended notion of commutativity by
attaching additional cubes to the state complex to form our modified state complex.
Definition 4.1 (Modified state complex). The modified state complex S ′ of a gridworld is the cube complex
obtained by filling in the state graph S(1) with higher dimensional cubes whenever there is a set of commuting
moves or dances. Specifically, whenever a set of 2l+2m states are related by a commuting set of l generators
and m dances, we add an n–cube having the given set of states as its vertices, where n = l + 2m. Each of the
2n faces of such an n–cube is identified with an (n − 1)–cube obtained by either disallowing a generator ϕi

and choosing one of its two local states, or replacing a dance δj with one of its four constituent Moves.

Our modification removes uninteresting topology. This can be observed by examining 4–cycles in S ′. On the
one hand, some 4–cycles are trivial (they can be ‘filled in’): dancing-with-myself 4–cycles, and commuting
moves (two agents moving back and forth) 4–cycles (which were trivial under the original definition). These
represent trivial movements of agents relative to one another. On the other hand, there is a non-trivial
4–cycle in the state complex for two agents in a 2 × 2 room, as can be seen in the centre of Figure 3 (here, no
dancing is possible so the modified state complex is the same as the original). This 4–cycle represents the
two agents moving half a ‘revolution’ relative to one another – indeed, performing this twice would give a full
revolution. (There are three other non-trivial 4–cycles, topologically equivalent to this central one, that also
achieve the half-revolution.)

In a more topological sense5, by filling in such squares and higher dimensional cubes, our state complexes
capture the non-trivial, essential relative movements of the agents. This can be used to study the braiding
or mixing of agents, and also allows us to consider path-homotopic paths as ‘essentially’ the same. One
immediate difference this creates with the original state complexes is a loss of symmetries like those shown in
Figure 5, since there is no label inversion for a dance when other agents are crowding the dance-floor.
Remark 4.2. Another approach could be to add edges to the state complex to represent diagonal moves
instead of filling in ‘dance’ squares. However, doing so would further complicate the topology of the state
complex. Heuristically, adding more edges would increase the rank of the fundamental group, introducing
even more unnatural topology. In the example of a 2 × 2 gridworld with one agent, we would obtain a
complete graph on 4 vertices as the state graph (or complex), whose fundamental group is a free group of
rank 3. However, the original state complex is homotopy equivalent to a circle, with the group of integers (the
free group of rank 1) as its fundamental group. Thus, we choose the approach of attaching higher dimensional
cells in order to remove undesirable topology and reduce the rank. In the 2 × 2 example, the modified state
complex is contractible and hence has trivial fundamental group.

5By considering the fundamental group.

8



Published in Transactions on Machine Learning Research (11/2023)

5 Gromov’s Link Condition

The central geometric characteristic of Abrams, Ghrist, & Peterson’s state complexes is that they are
non-positively curved (NPC). Indeed, this local geometric condition is conducive for developing efficient
algorithms for computing geodesics. However, with our modified state complexes, this NPC geometry is
no longer guaranteed – we test for this on a vertex-by-vertex basis using a classical geometric result due to
Gromov (see also Theorem 5.20 of Bridson & Haefliger (1999) and Sageev (2014)).

Before discussing Gromov’s Link Condition, we provide brief explanations of simplicial complexes and links.
Readers familiar with these objects and concepts may safely skip. Further background on simplicial complexes
are detailed in standard algebraic topology texts (Hatcher, 2002; Edelsbrunner & Harer, 2010).

Simplicial complexes. Simplicial complexes are constructed in a similar manner to cube complexes, except
that we use higher dimensional analogues of triangles or tetrahedra instead of cubes. An n–dimensional
simplex (or n–simplex) is modelled on

{(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0 for all i,
∑

i

xi = 1};

this has n + 1 vertices and is bounded by n + 1 faces which are themselves (n − 1)–simplices. For n = 0, 1, 2, 3,
an n–simplex is respectively a point, line segment, triangle, and tetrahedron. A simplicial complex K is an
object that can be constructed by taking a graph and then inductively filling in simplices of progressively
higher dimension; this graph is called the 1–skeleton of K. We require that every finite set of vertices in K
form the vertices of (or spans) at most one simplex; thus simplices in K are uniquely determined by their
vertices. (This rules out loops or multi-edges in the 1–skeleton.)

Links. The local geometry about a vertex v in a cube complex X is captured by a simplicial complex
known as its link lk(v). Intuitively, this is the intersection of a small sphere centred at v within X, and
can be regarded as the space of possible directions emanating from v. Each edge in X emanating from v
determines a vertex (0–simplex) in lk(v). If two such edges bound a ‘corner’ of a square in X based at v,
then there is an edge (1–simplex) connecting the associated vertices in lk(v). More generally, each ‘corner’ of
an n–cube incident to v gives rise to an (n − 1)–simplex in lk(v); moreover, the boundary faces of the simplex
naturally correspond to the faces of the cube bounding the corner. Since the cube complexes we consider
have cubes completely determined by their vertices, each simplex in lk(v) is also completely determined by
its vertices. Figure 7 illustrates four separate examples of links of vertices in cube complexes.

Gromov’s Link Condition. Local curvature in a cube complex can be detected by examining the
combinatorial structure of the links of its vertices. Specifically, Gromov’s Link Condition gives a method for
proving that a cube complex is NPC6, where there is an absence of positive curvature. In the bottom-right
example in Figure 7, where there is positive curvature, we observe a ‘hollow’ triangle in its link. In the other
examples of Figure 7, where there is only negative or zero curvature, there are no such hollow triangles (or
hollow simplices).

This absence of ‘hollow’ or ‘empty’ simplices is formalised by the flag property: a simplicial complex is flag if
whenever a set of n + 1 vertices spans a complete subgraph in the 1–skeleton, they must span an n–simplex.
In particular, a flag simplicial complex is determined completely by its 1–skeleton. If v is a vertex in a cube
complex X, then the flag condition on lk(v) can be re-interpreted as a ‘no empty corner’ condition for the
cube complex: whenever we see (what appears to be) the corner of an n–cube, then the whole n–cube actually
exists.
Theorem (Gromov’s Link Condition (Gromov, 1987)). A finite-dimensional cube complex X is non-positively
curved if and only if the link of each vertex in X is a flag simplicial complex.

Thus, the local geometry of a cube complex is determined by the combinatorics of its links.
6In the sense that geodesic triangles are no fatter than Euclidean triangles (Bridson & Haefliger, 1999).

9



Published in Transactions on Machine Learning Research (11/2023)

Figure 7: Four separate examples of links of vertices in cube complexes. In the bottom-right example, where
there is positive curvature, lk(v) is a ‘hollow’ triangle and is thus not a flag simplicial complex. For the other
examples, lk(v) is a flag complex and therefore, by Gromov’s Link Condition, there is only negative or zero
curvature. In the bottom-left example, the cube complex is a solid cube joined to a filled-in square at a
common vertex v.

Under the Abrams, Ghrist & Peterson setup, if v is a state in S then the vertices of its link lk(v) represent
the possible admissible generators at v. Since cubes in S are associated with commuting sets of generators,
each simplex in lk(v) represents a set of commuting generators. Gromov’s Link Condition for lk(v) can be
reinterpreted as follows: whenever a set of admissible generators is pairwise commutative, then it is setwise
commutative. Using this, it is straightforward for Abrams, Ghrist & Peterson to verify that this always holds
for their state complexes (see Theorem 4.4 of Ghrist & Peterson (2007)).
Remark 5.1. The terms “non-positively curved (NPC)” and “locally CAT(0)” are synonymous in the context
of geodesic metric spaces. For a cube complex, the CAT(0) property is equivalent to it being both NPC (via
Gromov’s Link Condition) and simply connected (i.e. it has trivial fundamental group). The state complexes
of Abrams, Ghrist & Peterson are always NPC, but they are not necessarily simply connected. For example,
the 2 × 2 gridworld with 2 agents is homotopy equivalent to a circle (see Figure 3), hence it is not simply
connected and therefore not CAT(0). In the work of Ardila et al. (2012) on state complexes for robotic
arms, it is the simple connectedness (a global property) which is harder to establish – NPC geometry holds
immediately thanks to Abrams & Ghrist (2004); Ghrist & Peterson (2007). Thus, in the interest of technical
correctness, we consider it preferable to use the terms “NPC” or “locally CAT(0)” instead of “CAT(0)” to
describe the geometry of a cube complex when the status of simple connectedness is unknown.

For our modified states complexes, the situation is not as straightforward. The key issue is that our cubes do
not only arise from commuting generators – we must take dances into account. Indeed, when attempting
to prove that Gromov’s Link Condition holds, we discovered some very simple gridworlds where it actually
fails; see Figure 8 and Appendix A.1. Despite this apparent drawback, we nevertheless show that Figure 8
accounts for all the possible failures of Gromov’s Link Condition in the setting of agent-only gridworlds7.

7While writing this paper, the first author was involved in two scooter accidents – collisions involving only agents (luckily
without serious injury). So, while this class of gridworlds is strictly smaller than those also involving objects or other labels, it is
by no means an unimportant one. If only the scooters had Gromov’s Link Condition checkers!

10



Published in Transactions on Machine Learning Research (11/2023)

Failure of the Link Condition can indicate available moves at some state that cannot be safely performed
simultaneously and independently without risking collisions between labels. Another interpretation of positive
curvature in this context is something akin to what real-time computer strategy games call ‘fog of war’
(distance-dependent limiting of observations which extends from the player-controlled agents), and more
specifically the viewable distance from an agent’s line-of-sight. Such fog makes AI systems operating in such
environments particularly challenging, although remarkable success has been achieved in games like StarCraft
(Vinyals et al., 2019).

Figure 8: The two situations which lead to failure of Gromov’s
Link Condition in multi-agent gridworlds. Maroon arrows
indicate admissible moves and blue squares indicate admissible
dances. Note that in the links (bottom row), the triangle is
missing in the left example, while the (solid) tetrahedron is
missing in the right (however, all 2D faces are present). This
is due to the respective collections of moves and dances failing
to commute – an agent interrupts the other’s dance (left) or
two dances collide (right).

To further explicate the connection between
the structure of links and collision avoidance
in the gridworlds setting, consider the follow-
ing setup. Each time step involves a planning
phase and an execution phase. In the plan-
ning phase, each agent may propose an action
(e.g., Move). Our modified setup also permits
an agent to simultaneously propose both a
horizontal and vertical Move from a common
Dance to indicate an intended ‘diagonal step’.
The set of proposed actions P can be regarded
as a set of vertices in lk(v) of the current state
v. If P spans a simplex in lk(v), then all ac-
tions can be safely performed simultaneously
in the execution phase. If not, then we choose
a maximal simplex in the subcomplex of lk(v)
spanned by P , yielding a maximal subset of
simultaneously valid actions to be executed.
More formally, we could regard such a ‘colli-
sion avoidance policy’ as a function from the
power set of V (lk(v)) to lk(v). Thus, we can
reframe the problem of collision avoidance in
terms of the combinatorial structure of links
which, in turn, is captured by the local geom-
etry of the state complex.

We now characterise the situations leading to
failures of Gromov’s Link Condition in the
agent-only case. Before doing so, let us first
classify low-dimensional simplices in lk(v) for
a vertex v in our modified state complex S ′. A 0–simplex in lk(v) corresponds to an admissible move at
v. However, a 1–simplex either represents a pair of commuting moves, or two moves in a common dance.
A 2–simplex either represents three agents moving pairwise independently, or a dancing agent commuting
with a moving agent. Finally, a 3–simplex represents either four agents moving pairwise independently, one
dancing agent and two moving agents that pairwise commute, or a pair of commuting dancers.
Theorem 5.2 (Gromov’s Link Condition in the modified state complex). Let v be a vertex in the modified
state complex S ′ of an agent-only gridworld. Then

• lk(v) satisfies Gromov’s Link Condition if and only if it has no empty 2–simplices nor 3–simplices,
and

• if lk(v) fails Gromov’s Link Condition then there exist a pair of agents whose positions differ by
either a knight move or a 2–step bishop move (as in Figure 8).

Proof. If lk(v) satisfies Gromov’s Link Condition, then it has no empty simplices of any dimension, giving
the forward implication. For the converse, assume that lk(v) has no empty 2–simplices nor 3–simplices.

11



Published in Transactions on Machine Learning Research (11/2023)

Suppose there exist n + 1 vertices spanning a complete subgraph of lk(v), where n ≥ 4. We want to show
that these vertices span an n–simplex. By induction, we may assume that every subset of n vertices from this
set spans an (n − 1)–simplex. Since n ≥ 4, every quartuple of vertices in this subgraph spans a 3–simplex.
Therefore, appealing to our classification of low-dimensional simplices, every pair of moves or dances involved
has disjoint supports. Thus, the desired n–simplex exists. Consequently, potential failures can only be caused
by empty 2–simplices or 3–simplices.

Next, we want to determine when three pairwise adjacent vertices in lk(v) span a 2–simplex. These vertices
represent three admissible moves at v. Since they are pairwise adjacent, they either correspond to three
agents each doing a Move, or to one agent dancing with another one moving. In the former case, the supports
are pairwise disjoint and so these moves form a commuting set of generators. Therefore, the desired 2–simplex
exists (indeed, in the absence of dancers, the situation is the same as the original Abrams, Ghrist & Peterson
setup). For the latter case, suppose that the first agent is dancing while the second moves. Since the
0–simplices are pairwise adjacent, each of the two admissible moves within the dance has disjoint support
with the second agent’s move. Thus, the only way the support of the dance fails to be disjoint from that of
the second agent’s move is if the second agent can move into the diagonally opposite corner of the dance.
Therefore, the only way an empty 2–simplex can arise is if the agents’ positions differ by a ‘knight move’ (see
Figure 8 for illustration).

It remains to determine when four pairwise adjacent vertices in lk(v) span a 3–simplex. We may assume that
each triple of vertices in this set spans a 2–simplex, for otherwise we can reduce to the previous case. Let us
analyse each case by the number of involved agents. If there are four involved agents, then each 0–simplex
corresponds to exactly one agent moving. Since no dances are involved, it immediately follows that the
desired 3–simplex exists. If there are three involved agents, then one is dancing while the other two move.
Since each triple of 0–simplices spans a 2–simplex, we deduce that each move has disjoint support with the
dance. Therefore, the dance and the two moves form a commuting set, and so the 3–simplex exists. Finally,
if there are two agents then they must both be dancers. By the assumption on 2–simplices, each admissible
move within the dance of one agent has disjoint support from the dance of the other agent. Thus, the only
way for the two dances to have overlapping supports is if their respective diagonally opposite corners land on
the same cell. Therefore, the only way an empty 3–simplex can arise (assuming no empty 2–simplices) is if
two agents’ positions differ by a ‘2–step bishop move’ (see Figure 8 for illustration).

Consequently, if the Link Condition fails at all, it must fail at dimension 2 or 3. This can be interpreted as
saying that we only need a bounded amount of foresight to detect potential collisions: under fog-of-war, each
agent needs a line-of-sight of only four moves.

Positive curvature could indicate collisions between any specified labels (e.g., objects), however, for this
interpretation to be valid we would need to carefully identify which other potential cycles in the state complex
ought to be filled in. Doing this in a ‘natural’ way is in itself a non-trivial task, and is the subject of further
investigation.

6 Experiments and applications

Although our main contribution is theoretical, we conduct some small initial experiments to demonstrate
the type of information which can be captured in the geometry and topology (see Appendix A.1). To run
these experiments, we developed and used a custom Python-based tool (detailed in Appendix A.2). Our
focus on small rooms is largely expository, i.e., they are the simplest non-trivial examples illustrating the key
features we want to isolate, and naturally reoccur in all larger rooms. Our intention is also to demonstrate a
combinatorial explosion in the number of states. We don’t recommend constructing the entire state complex
in practical applications (indeed, to implement addition of integers on a computer, it is infeasible and
unnecessary to construct all integers).
Remark 6.1. By a simple counting argument, one can deduce the total number of states in a gridworld. For
an agent-only gridworld with n cells and k agents, there is a total of

(
n
k

)
states. If there are n cells, k agents,

and j objects, then there are
(

n
k

)(
n−k

j

)
states. Thus, even for a moderately sized 10 × 10 room with 50 agents,

there are
(100

50
)

≈ 1.008 × 1029 vertices in the state complex.

12



Published in Transactions on Machine Learning Research (11/2023)

By Theorem 5.2, checking if lk(v) satisfies Gromov’s Link Condition requires computing the link only up to
dimension 3 and then checking whether it is a flag complex; if not, we count the number of empty simplices.
Checking this for an individual vertex in the state complex is not too computationally demanding, however
doing so across the entire state complex becomes more difficult due to the combinatorial explosion in the
number of states as the number of agents or room size grows. In practical applications, such as calculating
collision-avoiding navigation routes, it is – again, by Theorem 5.2 – only necessary to construct a small local
subcomplex. But perhaps even more importantly, to detect potential collisions between agents, it is not even
necessary to construct lk(v), since Theorem 5.2 provides a computational shortcut: just check for supports of
knight or two-step bishop moves between agents.

To quantify the reduction in the computation workload, let us estimate the potential number of simplices
in the link vs. the number of those which actually require checking. The number of k-simplices in the link
should be on the order of at most nk+1, however, we don’t need to check these for k > 3 thanks to Theorem
5.2. The number of potential 3–simplices in the link could be quartic in the number of agents (arising due to
4 agents moving); however, there are at most quadratically many that require checking since a failure can
only arise due to a pair of agents, again by Theorem 5.2. Similarly, the number of potential 2–simplices is at
most cubic, but only quadratically many of these need to be checked. Consequently, checking Gromov’s Link
Condition at a given state is at most quadratic in the number of agents (due to the number of possible pairs).

By using Gromov’s Link Condition, we can identify a precise measure of how far ahead agents ought to look
in order to safely proceed without fear of collisions. Table 1 gives a summary analysis of a 3 × 3 room with
varying numbers of agents. We noticed several symmetries. Commuting moves and the number of states
have a symmetry about 4.5 agents (due to the label-inversion symmetry as previously illustrated in Figure
5). However, curiously, the number of dances has a symmetry about 3.5 agents. This difference leads to
the asymmetrical distribution of positive curvature and failures of Gromov’s Link Condition – which, while
maximal for 3 agents as a proportion of total states, exhibited the highest mean failure rate for 4 agents.

This shows that, heuristically, we expect most states to satisfy NPC (see Table 1), and so existing greedy
algorithms (Ardila et al., 2012) for calculating geodesics will work well in most situations. However, to
implement an efficient, collision-free path-finding algorithm in our modified state complexes, we need to add
an additional check. Specifically, when we are near a potentially dangerous state, we should implement a
predefined ‘detour’ to avoid the collision, which can be done on a local basis using the identified supports
which lead to positive curvature (as in Figure 8).

Table 1: Data of Gromov’s Link Condition failure and commuting 4–cycles in the state complexes of a 3 × 3
room with varying numbers of agents and no objects. The percentage of NPC states (shown in brackets in
the second column) is rounded to the nearest integer. The mean number of Gromov’s Link Condition failures
(shown in the penultimate column) is the mean number of failures over the total number of states, and is
rounded to two decimal places.

Gromov’s Link
Condition Failures

Agents States (% NPC) Dances Commuting moves Total Mean Max
0 1 (100) 0 0 0 0 0
1 9 (100) 4 0 0 0 0
2 36 (78) 20 44 32 0.89 4
3 84 (62) 40 220 184 2.19 14
4 126 (65) 40 440 288 2.29 11
5 126 (68) 20 440 152 1.21 6
6 84 (86) 4 220 16 0.19 2
7 36 (100) 0 44 0 0 0
8 9 (100) 0 0 0 0 0
9 1 (100) 0 0 0 0 0

13



Published in Transactions on Machine Learning Research (11/2023)

7 Conclusions and future directions

This study presents novel applications of tools from geometric group theory and combinatorics to the AI
research community, opening new ways for recasting and analysing AI problems as geometric ones. Using
these tools, we show an example of how the intrinsic geometry of a task space serendipitously embeds safety
information and makes it possible to determine how far ahead in time an AI system needs to observe to be
guaranteed of avoiding dangerous actions.

Leike et al. (2017) show deep reinforcement learning agents cannot solve many AI safety problems specified
on gridworlds, e.g., minimising unwanted side-effects or ensuring robustness to agent self-modification.
Having described the agent-only case in this study, there is now ripe opportunity to account for positive
curvature or other geometric features arising due to other labels or generators (actions) present in specified
AI safety problems, e.g., agents pushing/pulling objects, pressing buttons, modifying their form or behaviour,
rewards/punishments, opening/unlocking doors, etc.. By considering directed modified state complexes,
irreversible actions can be captured by ‘invariant subcomplexes’ (i.e., you can’t escape from them), allowing
geometric study of the tree/flowchart of irreversible actions and related recurrence/transience. Braiding can
be used to study route planning, back-tracking, cooperation, assembly, and topological entropy in congestion
(Ghrist, 2009). Numerous extensions are possible, allowing us to study and geometrically represent further
problems with a view to developing efficient, geometrically-inspired local algorithms without the need for
training.

Do learning algorithms already implement such geometrically-inspired algorithms, the related geometry, or
approximations thereof? To find out, it will be interesting to investigate how modified state complexes map
to learned internal representations of neural networks trained to predict multi-agent gridworld dynamics.
Such mappings would connect the geometry and topology of a task space directly to optimisation procedures
and learning trajectories in latent representation spaces, potentially highlighting topological and geometric
differences and opportunities for deeper insight and improvement of optimisation procedures, in the spirit
of Naitzat et al. (2020); Zhao & Zhang (2022). One could also compare biological optimisation processes
and internal representations of allocentric and egocentric navigation (Burgess, 2006; Gardner et al., 2022),
and how this interacts with the position of other agents (Duvelle & Jeffery, 2018; Sutherland & Bilkey,
2020). Additionally, geometrically integrating safety information to constrain learning and control algorithms
(Verginis et al., 2021) may be fruitful.

From a more mathematical perspective, state complexes of gridworlds give rise to an interesting class of
geometric spaces. It would be worthwhile to investigate their geometric and topological properties to more
deeply understand various aspects of multi-agent gridworlds. For example, for a gridworld with n agents in a
sufficiently large room, we hypothesise that the modified state complex should be a classifying space for the
n–strand braid group. This is clearly false when the room is packed full of agents (in which case the state
complex is a single point), so it may be fruitful to determine if there is some ‘critical’ density at which a
topological transition occurs.

Using the failure of Gromov’s Link Condition in an essential way appears to be a relatively unexplored
approach. Indeed, much of the mathematical literature concerning cube complexes focusses on showing that
the Link Condition always holds. In works such as Abrams & Ghrist (2004); Ghrist & Peterson (2007); Ardila
et al. (2012) NPC is a property which may be exploited using subsequent related properties of the cube
complex (e.g., known hyperplane arrangements or CAT(0) geometry) to prove statements about the modelled
systems. In contrast, since NPC does not always hold in our modified state complexes, we can instead use
it (or its failure) as a condition to detect some interesting features; namely, potential collisions of agents.
To our knowledge, the only other works which go against this trend are Abrams & Ghrist (2004), in which
failure detects global disconnection of a metamorphic system, and Bell et al. (2019), where failure detects
non-trivial loops on topological surfaces. It would be interesting to explore cube complexes arising in other
settings where failure captures critical information.

Another interesting mathematical direction to explore is the potential connection of (modified) state complexes
and the work of Ghrist & Lavalle (2006). In Ghrist & Lavalle (2006), a ‘roadmap co-ordination space’ is
constructed by taking a product of n graphs, then deleting an ‘obstacle’ set. Here, each graph involved

14



Published in Transactions on Machine Learning Research (11/2023)

represents a ‘roadmap’ where the corresponding agent can move. One may adapt this to the setting of n
(distinguished) agents in a gridworld: choose the gridworld as the roadmap for each agent, then delete cubes
when there is a collision between two agents (this needs to be done carefully). We expect the resulting
roadmap co-ordination space to be the same as the state complex for the (labelled) n agent gridworld obtained
by directly constructing the (unmodified) state complex. In other words, we believe the Ghrist–Lavalle and
Abrams–Ghrist–Peterson approaches should both yield the same object in the context of distinguished agents
in a gridworld. Under either approach, one obtains an object which is NPC. However, both frameworks suffer
from a common limitation: each agent is confined to move on a graph – a 1–dimensional space. However, as
we argue in Section 4, a gridworld ought to be regarded as a discretised 2–dimensional domain. In this light,
it would be interesting to define a ‘modified roadmap configuration space’ which allows each roadmap to be a
(discretised) rectangle (or whatever shape the room might be). It seems plausible that by deleting ‘collision’
cubes in an appropriate manner, one should recover our modified state complex (for n labelled agents). If so,
it would further support the case that filling squares whenever there are dances is the most natural approach.
Indeed, our guiding intuition for the modified state complex of an n-agent gridworld is that it should serve as
a discrete analogue of the configuration space of n points on the plane.

Broader Impact Statement

A limitation of our work is that we have so far only explored very simple AI environments. Further work is
needed to expand the framework and results to more general, sophisticated, and real-world environments.
For this reason, although our work provides new geometric perspectives, data, and potential algorithms
for an important AI safety issue, we caution against hasty real-world implementation of the main results.
To avoid potential negative societal impacts, it would still be important to perform rigorous checks and
tests in application domains, since our results do not directly extend to situations beyond which the stated
assumptions hold.

Acknowledgements

This project began as a rotation project during the first author’s PhD programme. We wish to acknowledge
and thank Anastasiia Tsvietkova for supporting the first author to do a research rotation in the Topology and
Geometry of Manifolds Unit at OIST, in which the second author was a postdoctoral scholar. The first author
thanks Nick Owad for 3D printing a model state complex. The second author acknowledges the support of
the National Natural Science Foundation of China (NSFC 12101503) and the Suzhou Science and Technology
Programme (ZXL2022473). We thank anonymous reviewers for their suggestions to improve exposition. The
authors declare no other competing interests.

References
Aaron Abrams and Robert Ghrist. State complexes for metamorphic robots. The International Journal of

Robotics Research, 23(7-8):811–826, 2004.

Karen Archer, Nicola Catenacci Volpi, Franziska Bröker, and Daniel Polani. A space of goals: the cognitive
geometry of informationally bounded agents. arXiv:2111.03699, 2021.

Federico Ardila, Megan Owen, and Seth Sullivant. Geodesics in CAT(0) cubical complexes. Adv. in Appl.
Math., 48(1):142–163, 2012. ISSN 0196-8858. doi: 10.1016/j.aam.2011.06.004. URL https://doi.org/10.
1016/j.aam.2011.06.004.

Federico Ardila, Tia Baker, and Rika Yatchak. Moving robots efficiently using the combinatorics of CAT(0)
cubical complexes. SIAM Journal on Discrete Mathematics, 28(2):986–1007, 2014. doi: 10.1137/120898115.
URL https://doi.org/10.1137/120898115.

Federico Ardila, Hanner Bastidas, Cesar Ceballos, and John Guo. The configuration space of a robotic arm
in a tunnel. SIAM Journal on Discrete Mathematics, 31(4):2675–2702, 2017. doi: 10.1137/16M1089411.
URL https://doi.org/10.1137/16M1089411.

15

https://arxiv.org/abs/2111.03699
https://doi.org/10.1016/j.aam.2011.06.004
https://doi.org/10.1016/j.aam.2011.06.004
https://doi.org/10.1137/120898115
https://doi.org/10.1137/16M1089411


Published in Transactions on Machine Learning Research (11/2023)

Omur Arslan, Dan P Guralnik, and Daniel E Koditschek. Coordinated robot navigation via hierarchical
clustering. IEEE Transactions on Robotics, 32(2):352–371, 2016.

Mark C. Bell, Valentina Disarlo, and Robert Tang. Cubical geometry in the polygonalisation complex. Math.
Proc. Cambridge Philos. Soc., 167(1):1–22, 2019. ISSN 0305-0041. doi: 10.1017/s0305004118000130. URL
https://doi.org/10.1017/s0305004118000130.

Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1999. ISBN 3-540-64324-9. doi: 10.1007/978-3-662-12494-9. URL https://doi.org/10.1007/
978-3-662-12494-9.

Neil Burgess. Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences,
10(12):551–557, 2006. ISSN 1364-6613. doi: https://doi.org/10.1016/j.tics.2006.10.005. URL https:
//www.sciencedirect.com/science/article/pii/S1364661306002713.

Indira Chatterji and Graham Niblo. From wall spaces to CAT(0) cube complexes. International Journal
of Algebra and Computation, 15(05n06):875–885, 2005. doi: 10.1142/S0218196705002669. URL https:
//doi.org/10.1142/S0218196705002669.

Felipe Leno Da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. Uncertainty-aware
action advising for deep reinforcement learning agents. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):5792–5799, Apr. 2020. doi: 10.1609/aaai.v34i04.6036. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6036.

E. Duvelle and K.J. Jeffery. Social spaces: Place cells represent the locations of others. Current Biology,
28(6):R271–R273, 2018. ISSN 0960-9822. doi: https://doi.org/10.1016/j.cub.2018.02.017. URL https:
//www.sciencedirect.com/science/article/pii/S0960982218301714.

Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. American Mathematical
Society, 01 2010. ISBN 978-0-8218-4925-5. doi: 10.1007/978-3-540-33259-6_7.

Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi-robot collision avoidance via deep re-
inforcement learning for navigation in complex scenarios. The International Journal of Robotics Research, 39
(7):856–892, 2020. doi: 10.1177/0278364920916531. URL https://doi.org/10.1177/0278364920916531.

Richard J. Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A. Baas, Benjamin A. Dunn,
May-Britt Moser, and Edvard I. Moser. Toroidal topology of population activity in grid cells. Nature, 602
(7895):123–128, Feb 2022. ISSN 1476-4687. doi: 10.1038/s41586-021-04268-7. URL https://doi.org/10.
1038/s41586-021-04268-7.

R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in Applied Mathematics,
38(3):302–323, 2007. ISSN 0196-8858. doi: https://doi.org/10.1016/j.aam.2005.08.009. URL https:
//www.sciencedirect.com/science/article/pii/S0196885806001175.

Robert Ghrist. Configuration spaces, braids, and robotics, pp. 263–304. World Scientific Publishing,
2009. doi: 10.1142/9789814291415_0004. URL https://www.worldscientific.com/doi/abs/10.1142/
9789814291415_0004.

Robert Ghrist and Steven M Lavalle. Nonpositive curvature and pareto optimal coordination of robots. SIAM
Journal on Control and Optimization, 45(5):1697–1713, 2006.

M. Gromov. Hyperbolic groups. In S. M. Gersten (ed.), Essays in Group Theory, pp. 75–263. Springer
New York, New York, NY, 1987. ISBN 978-1-4613-9586-7. doi: 10.1007/978-1-4613-9586-7_3. URL
https://doi.org/10.1007/978-1-4613-9586-7_3.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.

16

https://doi.org/10.1017/s0305004118000130
https://doi.org/10.1007/978-3-662-12494-9
https://doi.org/10.1007/978-3-662-12494-9
https://www.sciencedirect.com/science/article/pii/S1364661306002713
https://www.sciencedirect.com/science/article/pii/S1364661306002713
https://doi.org/10.1142/S0218196705002669
https://doi.org/10.1142/S0218196705002669
https://ojs.aaai.org/index.php/AAAI/article/view/6036
https://ojs.aaai.org/index.php/AAAI/article/view/6036
https://www.sciencedirect.com/science/article/pii/S0960982218301714
https://www.sciencedirect.com/science/article/pii/S0960982218301714
https://doi.org/10.1177/0278364920916531
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1038/s41586-021-04268-7
https://www.sciencedirect.com/science/article/pii/S0196885806001175
https://www.sciencedirect.com/science/article/pii/S0196885806001175
https://www.worldscientific.com/doi/abs/10.1142/9789814291415_0004
https://www.worldscientific.com/doi/abs/10.1142/9789814291415_0004
https://doi.org/10.1007/978-1-4613-9586-7_3


Published in Transactions on Machine Learning Research (11/2023)

Michael Hauser and Asok Ray. Principles of Riemannian geometry in neural networks. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper/2017/file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf.

Victoria J. Hodge, Richard Hawkins, and Rob Alexander. Deep reinforcement learning for drone navigation
using sensor data. Neural Computing and Applications, 33(6):2015–2033, Mar 2021. ISSN 1433-3058. doi:
10.1007/s00521-020-05097-x. URL https://doi.org/10.1007/s00521-020-05097-x.

Ivana Kajic, Eser Aygün, and Doina Precup. Learning to cooperate: Emergent communication in multi-agent
navigation. In 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020), 2020. URL
https://cogsci.mindmodeling.org/2020/papers/0459/index.html.

Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1):7–15, 1989. ISSN 0020-0190. doi: https://doi.org/10.1016/0020-0190(89)90102-6.
URL https://www.sciencedirect.com/science/article/pii/0020019089901026.

Takeshi Kano, Mayuko Iwamoto, and Daishin Ueyama. Decentralised control of multiple mobile agents for
quick, smooth, and safe movement. Physica A: Statistical Mechanics and its Applications, 572:125898, 2021.
ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2021.125898. URL https://www.sciencedirect.
com/science/article/pii/S0378437121001709.

Zac Kenton, Angelos Filos, Yarin Gal, and Owain Evans. Generalizing from a few environments in safety-
critical reinforcement learning. Safe Machine Learning workshop at ICLR, pp. 1–9, 2019.

Tom Larkworthy and Subramanian Ramamoorthy. An efficient algorithm for self-reconfiguration planning in
a modular robot. In 2010 IEEE International Conference on Robotics and Automation, pp. 5139–5146,
2010. doi: 10.1109/ROBOT.2010.5509482.

Florian Laurent, Manuel Schneider, Christian Scheller, Jeremy Watson, Jiaoyang Li, Zhe Chen, Yi Zheng,
Shao-Hung Chan, Konstantin Makhnev, Oleg Svidchenko, Vladimir Egorov, Dmitry Ivanov, Aleksei
Shpilman, Evgenija Spirovska, Oliver Tanevski, Aleksandar Nikov, Ramon Grunder, David Galevski, Jakov
Mitrovski, and Sharada Mohanty. Flatland Competition 2020: MAPF and MARL for Efficient Train
Coordination on a Grid World, pp. 275–301. PMLR, 08 2021.

Na Lei, Dongsheng An, Yang Guo, Kehua Su, Shixia Liu, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng
Gu. A geometric understanding of deep learning. Engineering, 6(3):361–374, 2020. ISSN 2095-8099. doi:
https://doi.org/10.1016/j.eng.2019.09.010. URL https://www.sciencedirect.com/science/article/
pii/S2095809919302279.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew Lefrancq, Laurent Orseau,
and Shane Legg. AI safety gridworlds. arXiv:1711.09883, 2017. URL http://arxiv.org/abs/1711.09883.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. Journal of
Machine Learning Research, 21(184):1–40, 2020. URL http://jmlr.org/papers/v21/20-345.html.

Xue Bin Peng and Michiel van de Panne. Learning locomotion skills using deeprl: Does the choice of action
space matter? In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
SCA ’17, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350914. doi:
10.1145/3099564.3099567. URL https://doi.org/10.1145/3099564.3099567.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-agent control
with decentralized neural barrier certificates. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.

Daniele Reda, Tianxin Tao, and Michiel van de Panne. Learning to locomote: Understanding how environment
design matters for deep reinforcement learning. In Proceedings of the 13th ACM SIGGRAPH Conference
on Motion, Interaction and Games, pp. 1–10, 2020.

17

https://proceedings.neurips.cc/paper/2017/file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf
https://doi.org/10.1007/s00521-020-05097-x
https://cogsci.mindmodeling.org/2020/papers/0459/index.html
https://www.sciencedirect.com/science/article/pii/0020019089901026
https://www.sciencedirect.com/science/article/pii/S0378437121001709
https://www.sciencedirect.com/science/article/pii/S0378437121001709
https://www.sciencedirect.com/science/article/pii/S2095809919302279
https://www.sciencedirect.com/science/article/pii/S2095809919302279
https://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
http://jmlr.org/papers/v21/20-345.html
https://doi.org/10.1145/3099564.3099567
https://openreview.net/forum?id=P6_q1BRxY8Q


Published in Transactions on Machine Learning Research (11/2023)

Yara Rizk, Mariette Awad, and Edward W Tunstel. Cooperative heterogeneous multi-robot systems: A
survey. ACM Computing Surveys (CSUR), 52(2):1–31, 2019.

Michah Sageev. CAT(0) cube complexes and groups. In Geometric group theory, volume 21 of IAS/Park
City Math. Ser., pp. 7–54. Amer. Math. Soc., Providence, RI, 2014. doi: 10.1090/pcms/021/02. URL
https://doi.org/10.1090/pcms/021/02.

Jan Schneider, Pierre Schumacher, Daniel Häufle, Bernhard Schölkopf, and Dieter Büchler. Investigating the
impact of action representations in policy gradient algorithms. arXiv preprint arXiv:2309.06921, 2023.

Petra Schwer. Lecture notes on CAT(0) cube complexes, 2019. URL https://arxiv.org/abs/1910.06815.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon Chung. On the
geometry of generalization and memorization in deep neural networks. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=V8jrrnwGbuc.

Jeremy Stober, Risto Miikkulainen, and Benjamin Kuipers. Learning geometry from sensorimotor experience.
In 2011 IEEE International Conference on Development and Learning (ICDL), volume 2, pp. 1–6, 2011.
doi: 10.1109/DEVLRN.2011.6037381.

Christina J. Sutherland and David K. Bilkey. Hippocampal coding of conspecific position. Brain Research,
1745:146920, 2020. ISSN 0006-8993. doi: https://doi.org/10.1016/j.brainres.2020.146920. URL https:
//www.sciencedirect.com/science/article/pii/S0006899320302766.

Christos K. Verginis, Franck Djeumou, and Ufuk Topcu. Learning-based, safety-constrained control from
scarce data via reciprocal barriers. In 2021 60th IEEE Conference on Decision and Control (CDC), pp.
83–89, 2021. doi: 10.1109/CDC45484.2021.9682945.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P Agapiou, Max Jaderberg, Alexander S
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom L Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019. ISSN 0028-0836. doi: 10.1038/s41586-019-1724-z.

Vikram Waradpande, Daniel Kudenko, and Megha Khosla. Deep reinforcement learning with graph-based
state representations. arXiv:2004.13965, 2020. URL https://arxiv.org/abs/2004.13965.

Daniel T. Wise. From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, volume
117 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012.
ISBN 978-0-8218-8800-1. doi: 10.1090/cbms/117. URL https://doi.org/10.1090/cbms/117.

Yang Zhao and Hao Zhang. Quantitative performance assessment of CNN units via topological entropy
calculation. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=xFOyMwWPkz.

18

https://doi.org/10.1090/pcms/021/02
https://arxiv.org/abs/1910.06815
https://openreview.net/forum?id=V8jrrnwGbuc
https://www.sciencedirect.com/science/article/pii/S0006899320302766
https://www.sciencedirect.com/science/article/pii/S0006899320302766
https://arxiv.org/abs/2004.13965
https://arxiv.org/abs/2004.13965
https://doi.org/10.1090/cbms/117
https://openreview.net/forum?id=xFOyMwWPkz
https://openreview.net/forum?id=xFOyMwWPkz


Published in Transactions on Machine Learning Research (11/2023)

A Appendix

A.1 Gallery.

The 2 × 3 room with two agents shows multiple instances of local positive curvature in the associated modified
state complex. Figure 9 shows one such state where Gromov’s Link Condition fails due to the agents being
separated by a knight’s move (see Theorem 5.2). At this state, there are actually two empty 2–simplices in
its link – this is because the pattern appearing in the 5–cell subgrid with two agents (as in Figure 8) arises
in two different ways within the given state on the gridworld. The only other state where Gromov’s Link
Condition fails is a mirror image of the one shown.

Further small gridworlds and their respective state complexes are shown in Figures 10, 11, and 12.

Figure 9: A 2 × 3 room with two agents (top right) and its state complex (top left), where dances are shaded
blue and commuting moves are shaded red. The darker-shaded vertex represents the state of the gridworld
shown. Also shown is the state complex with only commuting moves (bottom left) and only dances (bottom
right).

A.2 Python tool for constructing gridworlds and their state complexes

We developed a Python-based tool for constructing gridworlds with objects and agents. It includes a GUI
application for the easy specification of gridworlds and a script which will produce plots and data of the
resulting state complex. We ran all experiments on a Lenovo IdeaPad 510-15ISK laptop. The open-source
code is available here: https://github.com/tfburns/State-Complexes-of-Gridworlds.

For the sake of generality and future-proofing of our software, we chose to construct the links in our
implementation of checking Gromov’s Link Condition in gridworlds, which is not necessary in-practice.
Instead, in practical situations, one can directly check for supports of knight or two-step bishop moves
between agents, which per Theorem 5.2 provides a computational short-cut for detecting failures in agent-only
gridworlds. Another area of computational efficiency available in many rooms are in the symmetries of the

19

https://github.com/tfburns/State-Complexes-of-Gridworlds


Published in Transactions on Machine Learning Research (11/2023)

Figure 10: A 3 × 3 room with two agents (right) and its state complex (left), where dances are shaded blue
and commuting moves are shaded red. The darker-shaded vertex represents the state of the gridworld shown.
Naturally-occurring copies of this state complex can be found as sub-complexes in the state complex shown
in Figure 12.

Figure 11: A 4 × 1 corridor with two agents (right) and its state complex (left). There are no dances and
only one commuting move, shaded red. The darker-shaded vertex represents the state of the gridworld shown.
Naturally-occurring copies of this state complex can be found as sub-complexes in the state complex shown
in Figure 12.

room itself. For example, an evenly-sized square room can be cut into eighths (like a square pizza), where
each eighth is geometrically identical to every other.

Users of the code will notice a small but important implementation detail in the code which we chose to
omit the particulars of in this paper: in the code, we need to include labelled walls along the borders of
our gridworlds. This is because we construct our gridworlds computationally as coordinate-free, abstract
graphs. For Move, the lack of a coordinate system is not an issue – if an agent label sees a neighbouring
vertex with an empty floor label, the support exists and the generator can be used. However, Push/Pull
only allows objects to be pushed or pulled by the agent in a straight line within the gridworld. We ensure

20



Published in Transactions on Machine Learning Research (11/2023)

Figure 12: A 4 × 4 room with two agents (right) and its state complex (left), where dances are shaded blue
and commuting moves are shaded red. The darker-shaded vertex represents the state of the gridworld shown.
Embedded within this state complex are naturally-occurring copies of the state complex of the 4 × 1 corridor
with two agents, shown in Figure 11. There are also naturally-occurring copies of state complex of the 3 × 3
room with two agents, shown in Figure 10.

this straightness in the abstract graph by identifying a larger subgraph around the object and agent than is
illustrated in Figure 2. Essentially, we incorporate three wildcard cells (cells of any labelling) adjacent to
three labelled cells (‘agent’, ‘object’, and ‘floor’), such that together they form a 2 × 3 grid.

A.3 Classification of 4–cycles

A 4–cycle in the state graph could arise in several different ways. For example, it could arise from a pair of
commuting moves, one agent dancing, or two agents doing a half-revolution about one another as in Figure 3.
To distinguish these in our implementation for agent-only gridworlds, we count the number of times a cell is
occupied by an agent within the 4–cycle. We use this fact in our Python tool to identify commuting move
and dancing 4–cycles.

For the remainder of this section, let v0, v1, v2, v3 denote the vertices of an embedded 4–cycle in the modified
state complex of an agent-only gridworld, and suppose ϕi is the generator such that ϕi[vi] = vi+1 (modulo 4)
for each i. Let U := ∪iSUP (ϕi).
Lemma A.1 (Supports of 4–cycles). There are exactly 4 cells contained in U .

Proof. Consider applying the generators ϕ0, ϕ1, ϕ2, ϕ3 sequentially starting from the initial state v0. Each ϕi

is a Move generator which swaps the ‘agent’ and ‘floor’ labels in a pair of adjacent cells. Since we return
to v0 at the end of this 4–cycle, each cell in U appears in an even number of the ϕi’s. Therefore, U comprises
at most 4 cells.

Suppose for a contradiction that U contains exactly n ≤ 3 cells. Suppose that there are k ‘agent’ labels
appearing on any (hence every) restricted state vi|U . Then there are

(
n
k

)
possible ways to label the cells of

U with exactly k agents. Since
(

n
k

)
≤ 3 for all n ≤ 3 and 0 ≤ k ≤ n, it follows that the vi|U cannot all be

distinct. Since all vi agree outside U , we deduce that v0, v1, v2, v3 cannot all be distinct. This contradicts the
assumption that they form an embedded 4–cycle.

21



Published in Transactions on Machine Learning Research (11/2023)

Lemma A.2 (4–cycle classification). Any embedded 4–cycle in the modified state complex of an agent-only
gridworld arises from either:

• a single agent doing a dance,

• a pair of commuting moves,

• a pair of agents doing a half-twist in a 2 × 2 subgrid, or

• three agents doing an ‘inverted’ dance.

Proof. We consider the cases depending on the number of involved agents, that is, the number of ‘agent’
labels appearing on v0|U .

If there is only one involved agent, then this agent must occupy each cell in U exactly once throughout the
4–cycle. Since the agent must Move to an adjacent cell at each step, it must move along an embedded 4–cycle
in the (dual graph of the) gridworld. The only way this can occur is if U is a 2 × 2 subgrid. Therefore, the
agents performs a dance.

The case of three involved agents follows analogously by inverting the ‘agent’ and ‘floor’ labels.

Now suppose there are two agents involved. After performing the 4–cycle, the two agents either return to
their starting locations, or swap their positions. In the former case, each agent must move exactly twice
throughout the 4–cycle. The only way this can occur is if each agent moves to an adjacent cell and then
moves back to its initial position. Since U comprises exactly 4 cells, the supports of the respective Moves
must be disjoint. Therefore, the agents perform a pair of commuting Moves.

It remains to deal with the case where the agents swap positions. Let us view U as an induced subgraph
in the gridworld. Since the agents swap positions, U must be connected. Since U has 4 cells, it must be
isomorphic to either a path graph of length 3, a ‘tripod’ (a tree with one vertex of valence 3 and three vertices
of valence 1), or a cycle graph of length 4. If U is a path graph then it is impossible for the agents to swap
positions. The state graph for two agents in a tripod is isomorphic to a cycle graph of length 6 (as in Figure
13), therefore the agents cannot swap positions using only 4 Moves. It follows that U must be a cycle graph,
and so the involved cells form a 2 × 2 subgrid. Therefore, our problem reduces to examining 4–cycles in the
state complex for two agents in a 2 × 2 room, as depicted in Figure 3. The 4–cycles where the agents swap
positions are precisely those that are not filled in with a square. In each of these cases, our 4–cycle arises
from two agents performing a ‘half-twist’ in a 2 × 2 subgrid.

Lemma A.3 (4–cycle identification). The type of an embedded 4–cycle in the modified state complex of an
agent-only gridworld can be identified by counting the occurrences each involved grid cell is occupied by an
agent. Specifically, we have

• a dance ⇐⇒ one count in each of the four cells,

• commuting moves ⇐⇒ two counts in each of the four cells,

• a half-twist ⇐⇒ three counts in one cell, two counts in two cells, one count in one cell, and

• an inverted dance ⇐⇒ three counts in each of the four cells.

Proof. This follows by inspecting each case as described in Lemma A.2 and counting the number of occurrences
each grid cell is occupied by an agent.

22



Published in Transactions on Machine Learning Research (11/2023)

Figure 13: The state complex of a T–shaped room with two agents, forming a 6–cycle.

23


	Introduction
	State complex of a gridworld
	Exploring gridworlds with state complexes
	Dancing with myself
	Gromov's Link Condition
	Experiments and applications
	Conclusions and future directions
	Appendix
	Gallery.
	Python tool for constructing gridworlds and their state complexes
	Classification of 4–cycles


