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Abstract

Neural networks can accurately forecast complex dynamical systems, yet how they internally
represent underlying latent geometry remains poorly understood. We study neural fore-
casters through the lens of representational alignment, introducing anchor-based, geometry-
agnostic relative embeddings that remove rotational and scaling ambiguities in latent spaces.
Applying this framework across seven canonical dynamical systems—ranging from periodic
to chaotic—we reveal reproducible family-level structure: multilayer perceptrons align with
other MLPs, recurrent networks with RNNs, while transformers and echo-state networks
achieve strong forecasts despite weaker alignment. Alignment generally correlates with fore-
casting accuracy, yet high accuracy can coexist with low alignment. Relative geometry thus
provides a simple, reproducible foundation for comparing how model families internalize and
represent dynamical structure.‡

1 Introduction

Neural forecasters— recurrent neural networks (RNNs), transformers, and reservoirs are now routinely de-
ployed to model complex, time-evolving phenomena across science and engineering. While forecasting per-
formance is well studied, the geometry of learned propagated latent states—and how it varies across model

�Equal contribution.
†Equal supervision.
‡
A shorter companion version of this work appears in the GTML (Geometry, Topology, and Machine Learning) 2025

workshop.
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families—remains underexplored. As their use widens, it becomes essential to understand how these fore-
casters internally represent dynamical systems and whether those internal mechanisms align with human
goals such as stability, interpretability, and transfer. A persistent obstacle is that latent spaces learned by
di�erent runs or model families are not directly comparable: coordinates can rotate, scale, shear, or even
undergo more subtle geometric shifts with negligible e�ect on task loss but large e�ects on representational
geometry. As a result, naive cross-model comparisons can be unstable and inconclusive (Figure 1 absolute
latents).

Existing alignment tools only partially address this issue. Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008) captures pairwise relational structure but remains sensitive to the geometry
of the distance matrix and sampling e�ects; Procrustes alignment assumes an approximately isometric map
between spaces and often requires careful pairing; Centered kernel alignment (CKA) Kornblith et al. (2019)
improves robustness to some transformations, but can still depend on dataset sampling, layer scaling, and
kernel choices. Collectively, these limitations complicate systematic studies of how di�erent model families
encode dynamics and how those encodings relate to forecasting performance.

We reuse a geometry-agnostic alternative based on relative embeddings Moschella et al. (2023): anchor-
based, extrinsic representations that index each point by its vector of similarities to a fixed set of anchors. By
construction, these representations quotient out global rotations and scalings, are straightforward to compute,
and yield a common coordinate system in which latent spaces from di�erent seeds, layers, and model families
can be compared directly. We apply this approach for an empirical analysis of encoder–propagator–decoder
neural forecasters for dynamical systems.

This perspective matters for two reasons. First, it enables us to quantify representational families of neu-
ral forecasters—that is, which models converge to similar relational structures even when their raw latent
geometries di�er. Second, it links representation to utility: we find systematic patterns in how multilayer
perceptrons, recurrent networks, transformers, and echo-state networks organize dynamical information, and
show that our alignment signal carries practical information about forecasting accuracy. Notably, high pre-
dictive accuracy can coexist with low cross-forecaster alignment—especially in transformers—highlighting a
gap between performance and representational agreement that standard metrics overlook. By aligning latent
spaces through anchor-based relative embeddings, we expose reproducible family-level geometry across fore-
casters and o�er a reproducible framework for studying how neural networks internalize dynamical structure.

We evaluate three neural model families—multilayer perceptrons (MLPs), recurrent neural networks (RNNs),
and transformers (TF)—together with their Koopman- (K-) and Neural Ordinary Di�erential Equation
(NODE, N-)–augmented variants, and an Echo State Network (ESN) as a no–backpropagation-through-
time (no-BPTT) reference model. Code is available at https://github.com/denizkucukahmetler/

relative-geometry-neural-forecasting.

Contributions.

• We reuse the relative-embedding alignment framework of Moschella et al. (2023) to neural forecast-
ing of dynamical systems, yielding geometry-agnostic, anchor-based latent representations that are
directly comparable across forecasters. Within this framework, we train forecasters end-to-end on
relative representations and demonstrate cross-family latent stitching between MLP and transformer
encoders and decoders.

• We conduct an extensive empirical study spanning seven canonical systems (continuous and discrete;
periodic, quasi-periodic and chaotic) and three model families and a no-BPTT baseline.

• We uncover consistent family-level alignment patterns and characterize their relationship to forecast-
ing error. We show that high predictive accuracy can coexist with low alignment—most prominently
in transformers and ESNs—highlighting the limits of task loss alone and motivating representation-
aware evaluation.

Together, these results suggest that anchor-based relative embeddings provide a simple, scalable basis for
reproducible representation science in neural forecasting, enabling more faithful comparisons across seeds,
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layers, and model families and o�ering new insights into how di�erent model families internalize dynamical
structure.

Scope clarification. Throughout this work, alignment with the “true system” refers exclusively to align-
ment with the relative representation of observed trajectories under a shared anchor set, not to recovery of
the system’s governing equations, physical state variables, or dynamical invariants.

Learning objective and interpretation. All models in this study are trained solely to minimize forecast-
ing loss. Representational alignment is used as an analysis tool, not as an assumed or enforced consequence of
the training objective. Observed alignment—or lack thereof—with the ground-truth relative representation
reflects architectural inductive biases and task-induced representations, rather than evidence that minimiz-
ing forecasting loss recovers the underlying system dynamics. A central empirical finding of this work is
precisely the divergence between forecasting accuracy and representational alignment, most prominently in
transformers and ESNs.

2 Related Work

Dynamical systems. Dynamical systems theory, from Poincaré’s recurrence to modern hyperbolic dy-
namics, provides the mathematical backbone for modeling time-evolving processes, (Arnold, 1989; Katok
& Hasselblatt, 1995; Strogatz, 2018). Compact, low-dimensional models such as the Lorenz-63 attractor
(Lorenz, 1963) and the logistic map (May, 1976) famously revealed sensitive dependence on initial con-
ditions and the geometry of strange attractors (Ruelle, 1978). Variants, including the higher-dimensional
Lorenz-96 system (Lorenz, 1996), the Hamiltonian double pendulum, and the Hopf normal form, have since
become canonical benchmarks for testing data-driven approaches. In fluid mechanics, proper orthogonal de-
composition (POD) reductions of the cylinder wake (Brunton et al., 2016) serve as a tractable proxy for the
Navier-Stokes equations. These systems are now present in most neural forecasting benchmarks: reservoir
computers (Pathak et al., 2017; Matzner & Mráz, 2025), back-propagating RNNs (Vlachas et al., 2020),
physics-informed latent ODEs (Raissi et al., 2019), and Koopman autoencoders (Lusch et al., 2018) are all
routinely evaluated on one or two of them. We adopt the full suite – Lorenz-63, logistic map, Hopf oscillator,
double pendulum, and POD-wake – thereby spanning periodic, quasi-periodic and chaotic regimes in both
continuous and discrete time. This variety allows us to study how representation alignment behaves under
qualitatively di�erent underlying flows.

Neural forecasting. Modeling and forecasting the evolution of dynamical systems is a cornerstone of
scientific inquiry. Methods for dynamical system forecasting cover a wide spectrum, with first-principles
modeling (Strogatz, 2018; Arnold, 1989) and data-driven modeling as two extremes. In the latter approach,
which has gained popularity due to the availability of data and computing resources, the learned latent
geometry of the system are learned directly from observations. Foundational work in nonlinear time-series
analysis demonstrated this possibility by reconstructing system dynamics from data (Takens, 1981; Kantz
& Schreiber, 2004). Today, this tradition is dominated by a diverse family of "neural forecasters," including
RNNs (Hochreiter & Schmidhuber, 1997), transformers (Vaswani et al., 2017), Neural Ordinary Di�erential
Equations (Chen et al., 2018), and forecasters inspired by Koopman operator theory (Lusch et al., 2018).
Our study is situated within this data-driven context.

Representational alignment. Foundational work in neuroscience on representational similarity analysis
(RSA) provided a framework by comparing activity patterns by analyzing their distance matrices (Kriegesko-
rte et al., 2008). In machine learning, similar methods are used, like Procrustes analysis, which seeks an
optimal rotational alignment between two sets of points (Gower, 1975; Schönemann, 1966), and, more re-
cently, centered kernel alignment (CKA), which has become a standard for comparing neural representations
across di�erent initializations and model families (Kornblith et al., 2019; Ding et al., 2021). Other methods
aim to create structured mappings between latent spaces using techniques like topological conjugation (Bizzi
et al., 2025).
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Figure 1: Relative embeddings reveal consistent geometric structure across model families
while removing rotational and scaling ambiguities. (a) Encoder–propagator–decoder forecasters take
an input window of L past states xt≠L+1:t, embed it into a latent vector z, and decode a prediction of the
next H states ‚xt+1:t+H . To compare di�erent forecasters, we compute absolute latent embeddings from data,
transform them into anchor-based relative embeddings using Moschella et al. (2023), and quantify alignment
between forecasters using representational similarity scores. (b) Alignment–performance endpoints after
training for RNNs (blue) and MLPs (green). RNNs achieve higher representational similarity and prediction
accuracy (MSE), while MLPs show a clearer correlation between alignment and performance across seeds. (c-
f) Example systems: Lorenz–63 (c), double pendulum (d), random skew (e), limit cycle (f). Columns display
system trajectories, absolute embeddings (PCA; two or three principal components depending on dimension-
ality), relative embeddings (PCA), cross-forecaster similarity heatmaps averaged over five seeds—ordered as
True System, MLP, Koopman MLP, NODE MLP, RNN, Autoregressive RNN, Koopman RNN, NODE RNN,
Transformer, NODE Transformer, Koopman Transformer, and ESN; —and alignment–performance scatter
plots across hyperparameter settings. Additional systems are shown in Appendix Figure 4 and 5.
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Relative representations. In this work, we adopt a related but more direct approach that was first ap-
plied to computer vision models: anchor-based relative embeddings, which establish a standardized relational
coordinate system to make latent spaces directly comparable (Moschella et al., 2023). Instead of defining a
point’s identity by its absolute coordinates, this technique represents it relationally—through its vector of
similarities to a fixed set of anchor points—thus overcoming geometric ambiguities in latent spaces.

Building on this foundation, recent works have generalized relative representations. Anchor-based methods
have been used to merge multiple latent spaces into a single aggregated one that preserves each space’s
geometry, akin to fusing several maps into a unified atlas (Crisostomi et al., 2023). This principle of latent-
space stitching extends to other domains: unimodal vision models can be stitched into a multimodal model
without additional training (Norelli et al., 2023), while RL agent policies can be stitched to form new
agents for unseen visual–task combinations (Ricciardi et al., 2024). Further refinements add topological and
geometric stability for zero-shot stitching (García-Castellanos et al., 2024), and even show that simple linear
transformations can rival anchor-based methods in latent space alignment (Lähner & Moeller, 2024).

Building on these insights, Latent Functional Maps (Fumero et al., 2025) introduce a spectral formulation
that enables robust cross-space transfer. Similarly, Maiorca et al. (2023) estimate direct transformations
between latent spaces without training decoders on relative representations. Lastly, Cannistraci et al. (2024)
propose constructing product latent spaces composed of multiple invariant components, each induced by
distinct similarity functions.

Anchor-based relative representations are closely related to landmark-based methods–long used in dimen-
sionality reduction, clustering, and kernel learning Faloutsos & Lin (1995) De Silva & Tenenbaum (2004)
Oglic & Gärtner (2017) Chen & Cai (2011) Liu et al. (2010). Using landmarks, a point is represented as
the distance or similarity to a fixed set of landmarks. Anchor-based approaches extend this to neural latent
spaces.

This study considers such relational and anchor-based techniques within the domain of dynamical systems
forecasting, where comparable latent spaces are essential for analyzing, aligning, and transferring represen-
tations across contexts.

3 Method

3.1 Representational alignment experiment design

The representational alignment framework. Following Sucholutsky et al. (2023), a representational

alignment experiment consists of data, systems (models, in our case), measurements, embeddings and a
similarity metric. We spell out these ingredients for our study:

• Data: simulated trajectories from seven dynamical systems (Sections 3.2 and 4.1)

• Neural forecasters: each trained encoder–propagator–decoder model instance (seed, model) (Sec-
tions 3.3 and 4.2)

• Measurement operator m: the encoder’s latent vector z = „◊e(xt≠L+1:t) (Section 3.4)

• Embeddings: anchor-based relative embeddings r(x) obtained by z-scored distances (Section 3.5)

• Similarity metric: cosine, rank and T1 similarity of two relative embeddings (Section 3.6)

We provide a summary of the notation used in this section in Table 1.

Representational alignment task. In the sense of Sucholutsky et al. (2023), this work primarily ad-
dresses the measuring representational alignment task: we quantify pairwise similarity across encoder ini-
tializations and model families and examine how that similarity relates to forecasting loss. We also explore
aspects of bridging through cross-family latent stitching, though alignment remains substantially stronger
within than across families. Developing e�ective bridging mappings and alignment-driven training interven-
tions is left to future work.
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3.2 Data: Trajectories of dynamical systems

A dynamical system is a triple (T, X, �) in which T is an additive monoid that plays the role of time (e.g.,
T = R for continuous time, or T = Z for discrete time), X is a non-empty state space, and � : T ◊ X æ X

is the evolution map (also called the flow) satisfying �(0, x) = x and �(t2, �(t1, x)) = �(t1 + t2, x) for all
admissible t1, t2 œ T and x œ X. For a fixed initial state x œ X, the curve �x : T æ X, t ‘æ �(t, x) is the
trajectory (or orbit) through x; its image “x = {�(t, x) | t œ T} is the set of states visited over time.

3.3 Model: Neural forecasters

Given a window of L past states xt≠L+1:t œ RL◊d, the aim of the forecasting task is to predict the next
H steps xt+1:t+H œ RH◊d. In this study, we employ encoder–propagator–decoder neural networks g =
Â◊d ¶ P� ¶ „◊e as forecasters: the encoder „◊e : RL◊d æ Rk maps the input slice to a latent vector, the
propagator P� : Rk æ Rk evolves that latent, and the decoder Â◊d : Rk æ RH◊d produces the H-step
prediction. Parameters are trained to minimise a forecasting loss Lpred (we use mean-squared error (MSE))
over trajectories drawn from the unknown dynamical system. We use the term forecaster for a trained model
instance (architecture, hyperparameters, and learned weights), and model for the corresponding untrained
architecture or configuration.

3.4 Measurements: Latent representations

The encoder „◊e : RL◊d æ Rk maps an input segment to a latent vector z œ Rk. Training the same model
with di�erent random seeds, or swapping to a di�erent model, yields a family of encoders

)
„

(s)

◊
(s)
e

*S

s=1
whose

latent space alignment is the subject of this study.

3.5 Embeddings: Anchor-based relative embeddings

Let V = {zj}N

j=1
µ Rk denote the set of latent representations obtained by applying the encoder to input

windows:
zj = „◊e(xtj≠L+1:tj ), xtj≠L+1:tj œ RL◊d

.

We select a subset A = {ai}m

i=1
µ V as anchors. Let sim : Rk ◊ Rk æ R be a similarity function.

Relative embeddings via z-scoring. Each encoder produces latent vectors zj = „◊e(xtj≠L+1:tj ) œ Rk,
which are first z-scored feature-wise across the dataset. A fixed subset A = {ai}m

i=1
µ {zj}N

j=1
serves as

anchors, and each normalized latent yields a relative embedding

zÕ = rrel(z) =
!
sim(z, a1), . . . , sim(z, am)

"
.

where sim(·, ·) denotes a similarity function introduced in Section 3.6. This produces, for each forecaster, a
matrix Rrel œ RN◊m whose rows correspond to data points and columns to anchors.

3.6 Similarity metric: Similarity of two encoders

We quantify the similarity between two encoders „
(1)

◊
(1)
e

and „
(2)

◊
(2)
e

over a dataset V using three complementary
metrics: cosine similarity, rank similarity, and T1 score. Each of these captures di�erent aspects of agreement
between the encoders’ relative embeddings zÕ(1) and zÕ(2).

Cosine similarity. The representational similarity score (RSS) is defined as the mean cosine similarity of
the relative embeddings:

–cos

1
„

(1)

◊
(1)
e

, „
(2)

◊
(2)
e

; V
2

= 1
|V|

ÿ

zœV

+
zÕ(1)

, zÕ(2)
,

ÎzÕ(1)Î2 ÎzÕ(2)Î2

,

where zÕ(s) = r(s)

rel
(z) denotes the relative embedding induced by encoder s œ {1, 2}, and –cos denotes the

RSS used throughout our experiments. Rank similarity and T1 score are defined in Appendix B.
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3.7 Stitching

We define a stitched model as the composition of an encoder that produces a latent, a fixed relative transfor-
mation with a global anchor set A (Moschella et al., 2023; Crisostomi et al., 2023), and a task-specific prop-

agator–decoder that operates in the |A|-dimensional relative space. Concretely, the encoder „◊e : RL◊d æRk

maps an input window to a latent vector, which is mapped to a relative representation via cosine similar-
ities to A (z-scored per anchor) (Moschella et al., 2023). The propagator P� : R|A| æ R|A| and decoder
Â◊d : R|A| æRH◊d are trained end-to-end in this relative space.

Crucially, because all decoders consume the same relative representation, any trained decoder can be stitched

to any trained encoder without additional training (Moschella et al., 2023; Norelli et al., 2023; Ricciardi et al.,
2024). We evaluate stitching by swapping encoders and decoders across families and reporting H-step MSE.
For comparison, we also train absolute variants that omit the relative transform; such models can only be
stitched when latent dimensions match and are generally less stable (Lähner & Moeller, 2024; Maiorca et al.,
2023). Recurrent model families (e.g., RNN/ESN) are excluded from cross-family stitching due to their
dependence on hidden state, which is not provided by non-recurrent encoders.

4 Experimental setup

4.1 Dynamical systems

Dynamical systems considered. We evaluate neural forecasters on a collection of canonical dynamical
systems spanning discrete and continuous time, dissipative and conservative dynamics, and low- to moder-
ately high-dimensional state spaces (details in Appendix D). For clarity, we briefly summarize the qualitative
dynamical regime represented by each system.

• Lorenz–63 (chaotic, dissipative). A three-dimensional continuous-time system with a strange
attractor, characterized by sensitive dependence on initial conditions and strong nonlinear coupling.
It represents a classical example of low-dimensional dissipative chaos.

• Stable limit cycle system (periodic). A two-dimensional radial–spiral flow whose trajectories
converge to a closed orbit. This system provides a simple nonlinear periodic regime with smooth
and predictable long-term behavior.

• Double pendulum (Hamiltonian chaos).†A four-dimensional energy-conserving mechanical sys-
tem exhibiting chaotic motion due to nonlinear interactions. Unlike dissipative chaotic systems,
trajectories evolve on a conserved-energy manifold.

• Hopf normal form (nonlinear periodic). A two-dimensional system undergoing a supercritical
Hopf bifurcation, producing a single-frequency stable limit cycle. It represents weakly nonlinear
periodic dynamics near the onset of oscillations.

• Logistic map (discrete chaos). A one-dimensional discrete-time system at a parameter value
yielding chaotic behavior. Its stretching-and-folding dynamics provide a canonical example of
discrete-time chaos distinct from continuous flows.

• POD wake (reduced spatiotemporal dynamics). A three-mode Proper Orthogonal Decompo-
sition of a fluid wake, capturing coherent structures of an underlying high-dimensional spatiotem-
poral flow. The resulting reduced-order system exhibits multi-scale temporal variability inherited
from turbulent dynamics.

• Skew-product system (high-dimensional coupled chaos). A six-dimensional system formed
by weakly coupling multiple chaotic subsystems Lai et al. (2025). This construction introduces
interacting but partially separable chaotic modes, increasing e�ective dynamical complexity while
retaining interpretable structure.

†
quasi-periodic for low amplitude
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• iEEG recordings (real neural dynamics; external test case). Intracranial EEG (iEEG)
time series from a human subject Ghosh (2024), providing a high-dimensional, noisy, and partially
observed real-world dynamical system. We use this dataset as an external validation to assess
whether the relative geometric trends observed on synthetic systems transfer to empirical neural
data, focusing on representational geometry rather than neuroscientific interpretation (details in
Appendix F).

Unless noted otherwise, all synthetic dynamical systems provide trajectories from 30 distinct initial condi-
tions, each of length T=500 time steps. These trajectories are equally split into training, validation, and test
sets, and a sliding window is used for data augmentation. All channels are z-scored using statistics computed
on the training split, and no external noise is added. Data generation scripts for the synthetic systems are
provided in the GitHub repository.

4.2 Neural forecasters

Given an input window of L past states xt≠L+1:t œ RL◊d
, the forecasting task is to predict the next H steps

xt+1:t+H œ RH◊d
. All encoder–decoder models share the factorization

‚xt+1:t+H = Â◊d

!
P�

!
„◊e(xt≠L+1:t)

""
,

with encoder „◊e : RL◊d æ Rk, optional latent propagator P� : Rk æ Rk, and decoder Â◊d : Rk æ RH◊d.
We instantiate this framework with MLP, RNN, and transformer families, together with their K-, N-, and
A- variants defined in Section 1, and include an ESN baseline described at the end of this section.

Latent state propagation. To impose temporal structure in the latent space, the encoder maps the input
window to an initial latent state z0 = „◊e(xt≠L+1:t), which is then evolved forward for H steps through a
latent propagator P�. The terminal latent state zH is decoded to produce the forecast, ‚xt+1:t+H = Â◊d

!
zH

"
.

We consider the following choices for P�:

Identity: zH = z0,

Neural-ODE: ż = f�(z, t), zH = RK45
!
f�, z0, H�t

"
,

Koopman (linear): zk+1 = K zk, k = 0, . . . , H ≠ 1, K œ Rk◊k
.

In the identity case, the model reduces to a standard one-shot encoder–decoder forecaster, ‚xt+1:t+H =
Â◊d

!
„◊e(xt≠L+1:t)

"
. A summary of the propagators is provided in Table 2.

Transformer forecaster. Our transformer forecaster follows a standard encoder–decoder architecture
with multi-head self-attention, feed-forward layers, residual connections, and sinusoidal positional encodings
(Vaswani et al., 2017). In contrast to recurrent models, the transformer does not maintain or propagate
an explicit latent state across forecast steps. Instead, it performs block (one-shot) multi-step prediction:
the encoder summarizes the input window into a latent representation, and the decoder predicts the entire
H-step forecast in a single forward pass. Causal masking is applied in the decoder to preserve temporal
ordering within the prediction horizon, but this masking does not induce a recurrent hidden-state evolution.
As a result, the transformer’s internal representations need not form smooth latent trajectories over forecast
time, which distinguishes it from RNN- and propagator-based forecasters.

Reservoir baseline. The echo-state network does not use an encoder–decoder split. A fixed sparse reser-
voir updates via rk+1 = tanh(W rk +Uxk); all L inputs are retained (no wash-out). Only the linear read-out
Wout is fitted by ridge regression, providing a no-BPTT reference.
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Table 1: Summary of notation used for trajectories, latent states, anchors, and representational similarity.
Symbol Description
Trajectories and dynamical systems (Section 3.2)

T Time index set (discrete or continuous).
X State space of the dynamical system.
� : T ◊ X æ X Evolution map of the dynamical system.
x œ X Initial condition or system state.
�x(t) Trajectory starting from x.
“x Image of the trajectory �x.
Latent states and forecasting model (Section 3.3, 3.4) )
L Input (context) window length.
H Forecast horizon.
xt≠L+1:t Input window of observed states.
z Latent state produced by the encoder.
„◊e Encoder mapping inputs to latent space.
P� Latent propagator (identity, NODE, or Koopman).
zH Latent state after H propagation steps.
Â◊d Decoder mapping latent states to predictions.
Anchors and relative latent representations (Section 3.5, Section 3.6)

N Number of encoded input windows used to construct the latent set V .
V = {zj}N

j=1
Set of latent states obtained by encoding N input windows for model m.

A = {ai}m

i=1
Anchor set, a subset of V .
(per model; anchors correspond to the same sampled input windows across models)

ai i-th anchor latent vector.
m Number of anchors.
z

Õ Relative embedding of latent z with respect to anchors.
z

Õ
i

i-th coordinate of z
Õ.

sim(·, ·) Similarity function between latent vectors.
–cos Mean cosine similarity between two models relative embeddings

Table 2: Encoder–Propagator–Decoder decomposition across model families.

Model Encoder Propagator Decoder

MLP MLP (feed-forward) Identity (P(z) = z) MLP (feed-forward)

RNN RNN (GRU) Identity RNN (GRU)

A-RNN RNN (GRU, autoregressive) Identity RNN (GRU, autoregressive)

Transformer (TF) Transformer (causal attention) Identity Transformer (causal attention)

N–MLP, RNN, TF Same as base model NODE: ż = f�(z, t) Same as base model

K–MLP, RNN, TF Same as base model Linear: zk+1 = Kzk Same as base model

ESN None (random reservoir) rk+1 = tanh(W rk + Uxk) Linear readout

4.3 Training details

Optimisation. Adam optimiser, step size 10≠3, exponential decay factor 0.95. Early stopping (pa-
tience 20) monitors validation MSE. The hyperparameter tuning settings and results are reported at
compiled_results.csv, and the tuned parameters used in the reported experiments (i.e., cross-forecaster
alignment, benchmarking, and perturbation experiments) are provided at best_model_parameters.csv for
all trainable models, and at esn_hyperparams.csv for the ESN.
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Key hyperparameters. For each dynamical system and each model variant (excluding ESNs), we selected
the best configuration from the hyperparameter search based on validation performance. Across all MLP,
Koopman-MLP, and NODE-MLP models, selected learning rates lay in the range 5 ◊ 10≠4–10≠3. Batch
size was typically 64, with NODE-MLP models consistently using batch size 32 across systems. Latent
dimensionality ranged from 64 to 256, while hidden layer widths varied between 128 and 1024, depending
on system complexity.

RNN, Koopman-RNN, and NODE-RNN models used encoder widths between 64 and 512 (most frequently
256), with 2–5 layers in both encoder and decoder. Latent dimensions for these models ranged from 32 to
128 across systems.

Transformer, Koopman-Transformer, and NODE-Transformer models consistently selected model dimen-
sions between 128 and 384, using 2–8 attention heads. Batch size was 64 for Transformer and Koopman-
Transformer models and 128 for NODE-Transformer models, with learning rates of either 10≠3 or 5 ◊ 10≠4

depending on the specific system–model combination. Dropout was applied selectively and most often set
to 0.1.

No single architectural variant (identity, Koopman, or NODE) dominated uniformly across all systems;
instead, di�erent variants were preferred for di�erent system–model combinations. Full hyperparameter
ranges and corresponding validation performances are reported in compiled_results.csv and the best
combinations producing the lowest validation MSE are reported in best_model_parameters.csv.

4.4 Evaluation metrics

Test performance (five random seeds) is reported using (i) mean-squared error (MSE), (ii) root-mean-squared
error (RMSE), and (iii) mean absolute error (MAE). Each metric is computed per step and then averaged
over the 50-step forecast.

5 Experimental Results

Table 3: Performance and Alignment for lorenz

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.3828 ± 0.0080 0.2804 ± 0.0050 0.6187 ± 0.0064 0.7148 ± 0.0193 0.3786 ± 0.0025 0.7121 ± 0.0187

Koopman MLP 0.3597 ± 0.0288 0.2824 ± 0.0179 0.5994 ± 0.0245 0.6372 ± 0.0252 0.3722 ± 0.0048 0.6344 ± 0.0271

NODE MLP 0.3684 ± 0.0081 0.2939 ± 0.0176 0.6070 ± 0.0067 0.7489 ± 0.0088 0.3928 ± 0.0008 0.7476 ± 0.0115

RNN 0.0096 ± 0.0018 0.0570 ± 0.0073 0.0979 ± 0.0092 0.9125 ± 0.0128 0.5100 ± 0.0162 0.9031 ± 0.0117
Autoregressive RNN 0.0422 ± 0.0082 0.1172 ± 0.0106 0.2045 ± 0.0203 0.9084 ± 0.0124 0.5084 ± 0.0124 0.8990 ± 0.0150

Koopman RNN 0.1259 ± 0.0364 0.2413 ± 0.0262 0.3520 ± 0.0503 0.8899 ± 0.0167 0.4952 ± 0.0113 0.8824 ± 0.0167

NODE RNN 0.1576 ± 0.0486 0.2629 ± 0.0340 0.3931 ± 0.0624 0.9053 ± 0.0132 0.5150 ± 0.0113 0.8950 ± 0.0142

Transformer 0.0049 ± 0.0014 0.0547 ± 0.0085 0.0693 ± 0.0102 0.7263 ± 0.0473 0.4316 ± 0.0167 0.7295 ± 0.0417

Koopman Transformer 0.0129 ± 0.0019 0.0882 ± 0.0056 0.1132 ± 0.0085 0.7447 ± 0.0365 0.4208 ± 0.0082 0.7467 ± 0.0337

NODE Transformer 0.0244 ± 0.0050 0.1206 ± 0.0111 0.1556 ± 0.0153 0.6373 ± 0.1201 0.3398 ± 0.0322 0.6192 ± 0.0800

ESN 0.0102 ± 0.0050 0.0256 ± 0.0046 0.0988 ± 0.0241 0.3435 ± 0.0025 0.3124 ± 0.0022 0.3388 ± 0.0026

We next evaluate how relative embeddings capture representational geometry across model families, systems,
and training conditions, focusing on (i) cross-family alignment, (ii) its relationship to forecasting accuracy,
and (iii) its stability under perturbations.

Relative embeddings establish a shared representational space across model families. Figure 1
illustrates that anchor-based relative embeddings reduce geometric arbitrariness (rotations, scalings) in latent
spaces, making cross-forecaster comparisons more interpretable. With colors indicating distinct forecaster
labels, the relative space reveals similarities and di�erences across forecasters in a common coordinate system.
For completeness, we also quantitatively assessed cross-forecaster alignment in the original latent spaces,
confirming substantial misalignment (Appendix Figure 11).

Models form reproducible family-level alignment patterns. Cross-forecaster similarity in Figure 1
(pairwise alignment heatmaps; cosine similarity of relative embeddings) reveals consistent family structure
across systems: (i) in all systems, the MLP family (MLP, Koopman–MLP, NODE–MLP) forms a cluster; (ii)
the RNN family (RNN, autoregressive RNN, Koopman–RNN, NODE–RNN) is well-aligned in all systems
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except the Logistic Map (Appendix Figure 5), where alignment weakens; (iii) the ESN baseline exhibits
noticeably lower alignment in Lorenz-63, double pendulum, and the random skew product; (iv) the trans-

former family tends to align less with other families— prominently in double pendulum, Lorenz-63 and
random skew—suggesting a di�erent inductive bias in how context is summarized for forecasting. Over-
all, these patterns indicate that architectural choices induce reproducible representational geometries within
families, while some dynamics (e.g., Logistic Map) challenge specific families (RNNs). As an external vali-
dation, we additionally report preliminary results on a high-dimensional real-world iEEG forecasting task in
Appendix F, where we observe qualitatively similar family-level alignment patterns across architectures.

Forecast accuracy and representational alignment diverge across model families.

To assess the alignment with the true system for each forecaster family more systematically, we trained
multiple forecasters per dynamical system (Figure 1, Alignment vs. Performance column; single forecaster
results in Appendix Figure 10) and plotted the final MSE against the alignment with the true system. For
MLPs, performance is more strongly related with alignment. Transformers, on the other hand, exhibit higher
variability: they achieve both the best and worst scores across seeds, and strong performance does not always
coincide with strong alignment. However, they rarely appear in the bottom-left quartile of the plot, indicating
that transformers typically do not show low performance and low alignment jointly. RNNs mostly cluster in
the top-right quadrant, suggesting that they consistently attain both high performance and high alignment.
Overall, across model families, we observe a general positive relationship between representational similarity
and forecasting accuracy, although its strength varies by forecaster family and dynamical system (Figure 1).

Next we studied performance to alignment with the true system during training. We observe family-specific
training trajectories (First column in Figure 2). RNNs begin with comparatively high alignment and remain
stable through training across systems (except for Logistic Maps), while their test error decreases steadily.
MLPs either show a similar pattern to RNNs (high alignment from the beginning, seen in all systems except
Lorenz-63 and double pendulum) or start with lower alignment that increases as training proceeds (seen in
Lorenz-63 and double pendulum), tracking improvements in error. Transformers display lower and more
variable alignment across seeds, yet often achieve competitive or superior performance—frequently surpassing
the MLP family and often rivaling RNN variants. This underscores that high alignment is helpful but not

strictly necessary for strong forecasting: transformers can achieve good accuracy with a representational
geometry that aligns less to the ground-truth relative space.

Noise and input length di�erently a�ect representational stability across forecasters. To
evaluate the e�ects of practically relevant parameters such as input noise or available (input) sequence
length (L), we measured both predictive performance and representational alignment with the ground-
truth dynamics under varying noise levels and sequence lengths. For these experiments, we selected one
representative forecaster from each major family and report results for MLP, transformer, and autoregressive
RNN (Figure 2; see Appendix 6 for the remaining systems).

Increasing the noise level consistently degraded both alignment and forecasting accuracy, but impacts the
forecasters di�erently. Across all dynamical systems, RNNs tended to lose representational similarity more
rapidly than predictive performance with a nearly linear trend. In contrast, transformers show a more
nonlinear behavior, where performance decreases steeply with noise in the Lorenz-63 and double pendulum
systems. A similar pattern can be seen for MLPs for the limit cycle. The random skew system shows a
qualitatively similar picture but the patterns are overall less clear in this case.

The e�ect of input length (L) varied across both forecasters and dynamical systems. In many cases, neither
performance nor alignment changed dramatically with L (like for transformers in Lorenz, random skew or
limit cycle), though notable exceptions exist. RNN and transformers show a similar pattern: performance
remained largely stable across systems, but alignment exhibited high variability for some systems (double
pendulum and logistic-map for RNNs and double pendulum and POD-wake for transformers). By compar-
ison, MLPs were more sensitive to longer input windows—their performance and alignment degraded with
increasing L in the Lorenz, double pendulum, limit cycle, POD-wake, and Hopf systems, while remaining
stable in the random skew and logistic-map settings.

11



Published in Transactions on Machine Learning Research (02/2026)

Training-time evolution

Lorenz-63a

Double Pendulume

i Random Skew

Limit Cyclem

RSS

M
SE

 (v
ali

da
tio

n)

Input noise perturbation

b

RSS
M

SE
 (v

ali
da

tio
n)

f

j

n

Sequence length (L)

c

RSS

M
SE

 (v
ali

da
tio

n)

g

k

o

Test performance

d

M
SE

h

l

p

0.5 0.9 0.2 1.0

0.3 0.8 0.2 1.0

0.6 0.95

0.2 1.0

0.2 1.0

0.2 1.0

MLP
K-MLP

N-MLP
RNN

A-RNN
N-RNN

K-RNN
TF

N-TF
K-TF

ESN

0.3

1.1

0.001

0.007

0.2

1.4

0.05

0.4

0.01

0.1

0.01

0.1

0.06

0.1

0.0001

0.001

0.01

0.001

0.01

0.1

0.001

0.01

0.1

0.1

1.0

0.1

0.01

0.4 1.0

0.4 1.0

0.6 0.9

0.75 0.95

0.001

0.01

0.1

0.1

1.0

0.1

1

0.1

0.01

1

K-MLP
K-RNN

K-TF

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

M
SE

MLP
K-MLP

N-MLP
RNN

A-RNN
N-RNN

K-RNN
TF

N-TF
K-TF

ESN
K-MLP

K-RNN
K-TF

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

M
SE

MLP
K-MLP

N-MLP
RNN

A-RNN
N-RNN

K-RNN
TF

N-TF
K-TF

ESN
K-MLP

K-RNN
K-TF

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

RSS

M
SE

 (v
ali

da
tio

n)

M
SE

MLP
K-MLP

N-MLP
RNN

A-RNN
N-RNN

K-RNN
TF

N-TF
K-TF

ESN
K-MLP

K-RNN
K-TF

Figure 2: Performance–alignment trade-o�s across training, noise, and input conditions.
Columns show (a-m) training time evolution, (b-n) e�ects of input noise, (c-o) e�ects of sequence length L,
and (d-p) test performance across model families (MLP, K-MLP: Koopman MLP, N-MLP: NODE MLP,
RNN, A-RNN: Autoregressive RNN, K-RNN: Koopman RNN, N-RNN: NODE RNN, TF: Transformer, N-
TF: NODE Transformer, K-TF: Koopman Transformer, ESN). Each point represents the mean squared error
(MSE) and the representational similarity score (RSS) of a given a forecaster trained with a di�erent random
seed (color-coded by forecaster family; same-colored lines/points denote di�erent initializations of the same
forecaster). MLPs and RNNs exhibit consistent performance–alignment relationships, while transformers
show larger variability; ESNs are excluded due to their no–backpropagation-through-time (no-BPTT) train-
ing. Increasing input noise consistently degrades both alignment and accuracy, whereas varying L produces
system-dependent e�ects, highlighting di�erences in robustness across model families. Test results (d-p)
indicate that no single family dominates across all dynamical systems. Results for additional systems in
Appendix 6.

These results highlight that researchers interested in geometric or representational stability, rather than ac-
curacy alone, should consider noise levels and input-length choices when selecting forecasting model families.

Alignment estimates stabilize with increasing number of anchors. We empirically assess how the
number of anchors a�ects relative-representation alignment between our pretrained MLP–MLP forecaster and
the ground-truth Lorenz-63 system by correlating their anchor–sample similarity matrices using the method
Moschella et al. (2023). We swept the number of anchors K œ {1, 2, 3, 4, 5, 6, 8, 16, 32, 64, 128, 512, 800, 999}
and, for each K, repeated the estimation 30 times with independently sampled anchors (without replace-
ment). The alignment estimates display an approximately constant mean once K Ø 16 (around r ¥ 0.74),
while the across-repeat variability decreases markedly with increasing K (Appendix Figure 9). This vari-
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Figure 3: Temporal evolution of representational alignment across dynamical systems. Each
row shows the true system (left), reconstructed trajectories from di�erent model families (MLPs, RNNs,
transformers, ESN; same colour coding as in Figure 2), and their temporal similarity profiles (right; line
thickness encodes time, T = 300). For visualisation purposes we use relative coordinates z

Õ
i

with respect
to three anchor points (axes z

Õ
1
, z

Õ
2
, z

Õ
3
). For the Lorenz–63, double pendulum, and random skew systems,

MLPs and RNNs maintain representations closely aligned with the true dynamics, whereas transformers and
ESNs diverge. For the limit cycle and other periodic systems (see Appendix 7), all families capture similarly
structured representations. The Logistic map is omitted due to its one-dimensional, contractive behavior.

ance reduction indicates convergence of the estimator as more anchors are used. Balancing stability and
computation, we fixed K = 80 for all experiments except in the stitching experiment, where K = 32 was
used.

As a random baseline (orange line in Appendix Figure 9), we drew distinct anchor sets for the forecaster
and the true system. Under this mismatch, alignment was near zero across all K (r ¥ 0), confirming that
the observed nonzero alignment with shared anchors reflects genuine representational correspondence rather
than sampling artifacts.

As three anchors already yield a relatively reliable similarity estimate, this suggests that the relative coor-
dinates can directly be used for (a randomized) low-dimensional visualization of embedded latent geometry.

Alignment varies along trajectories and across model families. So far we have computed represen-
tational alignment over all latent points. To assess how alignment with the true system locally evolves along
a given trajectory, we computed representational similarity along an embedded trajectory of length 300. As
outlined above, we use three anchor points to create a direct visualization of the relative latent spaces. Fig-
ure 3 illustrates the temporal evolution of alignment along a given trajectory. Consistent with our broader
findings, forecasters within the same family tend to form similar temporal representations, whereas trans-
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formers and ESNs display distinct alignment patterns—particularly in the Lorenz-63, double pendulum, and
random skew systems.

Latent stitching reveals family-specific representational compatibility

Table 4 summarizes absolute and relative stitching losses on the Lorenz-63 dataset. Within model families—
MLPs with MLPs and transformers with transformers—relative stitching outperforms absolute stitching.
Transformer decoders act as strong universal decoders, achieving low losses even with absolute represen-
tations. However, relative stitching o�ers no benefit across families, as seen when mapping transformer
representations to MLP decoders. RNNs were excluded because their reliance on hidden states makes both
in-family and cross-family stitching incompatible under our current setup, leaving hidden-state stitching
for future work. Overall, these results show that representational compatibility—and hence the ability to
“stitch” encoders and decoders—is largely confined to model families that share similar latent geometries.

enc/dec MLP N-MLP K-MLP TF N-TF K-TF
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

MLP 1.655 0.383 2.334 0.479 2.459 2.818 0.293 0.825 1.181 1.067 0.923 0.988
N-MLP 2.195 0.404 3.916 0.491 3.511 3.078 0.233 0.813 0.545 1.040 1.235 0.925
K-MLP 1.621 0.753 2.224 0.759 2.523 0.891 0.290 0.587 1.233 0.974 0.835 0.679

TF 1.538 2.019 2.389 1.754 2.118 9.517 0.265 0.043 1.383 0.587 0.599 0.076
N-TF 1.514 1.780 2.003 1.580 2.039 7.112 0.184 0.061 1.017 0.757 0.689 0.256
K-TF 1.590 2.011 2.095 1.750 2.129 9.466 0.254 0.042 1.325 0.586 0.840 0.075

Table 4: Cross-architecture average stitching loss (MSE) over encoder–decoder pairs for absolute (Abs.)
and relative (Rel.) stitching. Each decoder column is independently normalized; darkest cell shows highest
MSE and lightest shows lowest MSE respectively. Lower value per pair in bold.

Similarity metrics and robustness. Our primary measure of representational alignment is cosine simi-
larity computed on anchor-based relative embeddings, which provides a geometry-agnostic comparison across
architectures and seeds. To assess robustness to the choice of similarity metric, we additionally evaluate sev-
eral standard representational similarity measures on the same models and dynamical systems. Specifically,
we compare against representational similarity analysis (RSA), Procrustes-based alignment, and centered
kernel alignment (CKA), each applied to the absolute latent representations following standard practice.
Across all metrics, we observe consistent qualitative trends: in particular, strong within-family alignment for
RNN- and MLP-based forecasters, systematically weaker alignment for transformers and ESNs, and a clear
dissociation between forecasting accuracy and representational alignment for attention-based and reservoir
models. While absolute similarity values vary across metrics, the family-level structure and relative ordering
of architectures remain stable (Appendix Figure 15).

6 Discussion and Conclusions

This study examined neural forecasters for dynamical systems through the lens of relative embeddings

(Moschella et al., 2023). Across periodic, quasi-periodic, and chaotic regimes, we observed reproducible,
family-specific alignment patterns, alongside cases where strong forecasting performance coexisted with com-
paratively low cross-forecaster and system alignment—most notably in transformers and ESNs. These find-
ings suggest that task loss alone does not fully capture how forecasters internalize latent geometry, echoing
prior observations that similar task performance in neural networks can arise from distinct representational
organizations (Kriegeskorte et al., 2008; Kornblith et al., 2019). Together, these results position representa-
tional alignment as a complementary dimension for understanding and evaluating neural forecasters.

To interpret these findings, we first clarify what relative alignment measures reveal about learned represen-
tations. Relative embeddings do not require estimating an explicit alignment or mapping between latent
spaces. In contrast to Procrustes-based approaches, they do not assume linear or isometric correspondence
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between representations (Gower, 1975; Schönemann, 1966). Unlike CKA, which compares representations
through similarity matrices computed on matched inputs, relative embeddings define a shared relational
coordinate system via similarities to a fixed set of anchors (Kornblith et al., 2019; Moschella et al., 2023).
Alignment often increased with forecasting quality, but not universally. Model families with di�erent induc-
tive biases appear to summarize temporal context in distinct ways, achieving accurate predictions despite
divergent relational geometries. In practice, representational alignment analysis thus complements forecast-
ing loss functions when stability, interpretability, or transferability are priorities. Although not serving as
evidence of learned physical dynamics ‡, it exposes architectural inductive biases and task-induced geometry.

To further interpret the observed family-level alignment patterns, it is instructive to relate them to archi-
tectural inductive biases within the shared encoder–propagator–decoder framework. RNN-based forecasters
maintain a recursively updated hidden state, which induces temporally coherent latent-state evolution and re-
sults in consistently high representational alignment across seeds and architectural variants. MLP forecasters
compress each input window into a single global latent representation via a fixed feedforward mapping, yield-
ing a di�erent, but relatively stable within-family geometry. In contrast, Transformer encoders construct
token-wise contextual representations in parallel through self-attention, without architectural pressure to
form smooth or trajectory-like latent representations. As a result, the representational regime for Trans-
formers seems to focus on contextual summarization rather than latent-state evolution, which helps explain
why strong forecasting accuracy can coexist with comparatively weaker geometric alignment. Finally, ESNs
rely on fixed random reservoirs with only a trained readout layer, so reservoir trajectories primarily reflect
internal reservoir dynamics rather than task-induced structure, accounting for their systematically lower
alignment with the ground-truth relative representation.

A practical advantage of relative embeddings is more stable and interpretable visualization of learned la-
tents. Standard projections of absolute embeddings (e.g., PCA) are sensitive to arbitrary rotations and
scalings across seeds. Anchor-based relative spaces define a shared reference frame, making low-dimensional
projections and neighborhood relations comparable across models. This facilitates diagnostics analogous to
representational dissimilarity matrices in RSA (Kriegeskorte et al., 2008) and population “hyperalignment”
in neuroimaging (Haxby et al., 2011). Combined with PCA, t-distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten & Hinton, 2008), or Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018) such spaces enable tracking of training trajectories, identifying attractor-specific
regimes, and monitoring representational drift. In short, relative embeddings turn visualization from an
exploratory tool into a quantitative diagnostic of representational geometry.

Alignment may serve several practical roles. It can serve as an auxiliary selection criterion during model devel-
opment—favoring configurations that jointly achieve low forecast error and high representational agreement,
particularly when downstream stitching or transfer is anticipated. Alignment trajectories during training
may provide early warnings for overfitting or instability, for example when the relative space fragments. Fi-
nally, stitching encoders and decoders is more feasible when embeddings are computed relative to a common
anchor set (Moschella et al., 2023). Together, these roles highlight alignment as a lightweight yet informative
signal for model selection, monitoring, and interoperability.

Our analysis relies on a finite anchor set and a chosen similarity function. Too few anchors reduce dis-
criminability; too many increase computational cost. While we empirically found stable behavior beyond a
moderate anchor budget, adaptive anchor selection (e.g., farthest-point sampling or clustering) could improve
robustness in higher dimensions. Relative embeddings are also less sensitive to certain non-isometric deforma-
tions (e.g., local shear). Complementary approaches based on geodesic/transport-aware comparisons—e.g.,
OT-based (optimal transport, OT) anchor bootstrapping of Cannistraci et al. (2023) and latent-space trans-
lation (Maiorca et al., 2023)—may capture finer structure. Finally, we focused on simulated benchmarks with
controlled noise; assessments on high-dimensional and real-world systems will be necessary to test scalability
and domain robustness. These limitations delineate a clear path toward more adaptive and geometry-aware
alignment frameworks.

Several directions appear promising. (i) Adaptive anchor selection and bootstrapped ensembling of relative
spaces could further stabilize estimates under limited data. In the context of dynamical systems, anchors

‡
Preliminary experiments with a simple linear readout probe are shown in E.
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could be selected more informatively by targeting representative regions of the attractor or dynamically
salient states. (ii) Alignment-aware training—for instance through auxiliary losses or early-stopping crite-
ria—might promote generalizable latent representations. (iii) Richer comparators, including OT-based or
spectral/functional-map techniques, could link alignment more tightly to long-horizon accuracy (García-
Castellanos et al., 2024; Fumero et al., 2025). (iv) Disentangling architectural and algorithmic e�ects, for
example by comparing standard training with long-horizon–aware objectives or alternative optimization
schemes, may clarify which aspects of alignment are architecture-driven. (v) Extended evaluations, including
long-term statistics, spectral properties, or topological features, could reveal whether alignment better pre-
dicts faithful dynamical behavior beyond short-horizon MSE. (vi) Applications to scientific forecasting and
control may benefit from alignment-guided ensembling and forecaster monitoring. More broadly, integrating
representational alignment into training and evaluation may help unify geometric, statistical, and dynamical
perspectives on learning in neural systems.

Our findings show that neural forecasters develop reproducible, family-specific representational geometries
that can diverge despite similar forecasting accuracy. This dissociation underscores the need for evaluation
metrics that go beyond task performance and capture the geometry of learned latent geometry. By aligning
latent spaces through anchor-based relative embeddings, we provide a simple and reproducible approach to
study how di�erent model families internalize structure in time-evolving systems. Relative geometry o�ers a
compact, interpretable, and reproducible lens on learned representations—one that may help bridge analyses
of artificial and biological neural systems.

7 Broader Impact Statement

This work is methodological and focuses on analyzing learned representations in neural forecasters rather
than developing deployable prediction systems. In addition to canonical dynamical benchmarks, we include
a preliminary analysis on open, de-identified intracranial EEG (iEEG) recordings, using the dataset solely
as a testbed for representation analysis in a high-dimensional real-world setting. The study does not aim
to perform clinical inference, diagnosis, or intervention, and all human-related data are observational and
ethically released.

A key limitation is that representational alignment should not be interpreted as evidence of model correct-
ness, causal validity, or recovery of true neural dynamics. Overall, the work presents low societal risk and
contributes tools for understanding and comparing internal representations in neural and scientific time-series
models beyond task performance alone.

8 Funding

Computational resources were provided by the Max Planck Computing and Data Facility (MPCDF). D.K.
was supported by the DAAD project SECAI (project no. 57616814), funded by the German Federal Ministry
of Research, Technology and Space (BMFTR). N.S. was supported by BMFTR through ACONITE (grant
no. 16IS22065) and the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Leipzig,
as well as by the European Union and the Free State of Saxony through BIOWIN.

References
Vladimir I Arnold. Mathematical methods of classical mechanics, volume 60. Springer-Verlag, 1989.

Arthur Bizzi, Lucas Nissenbaum, and João M Pereira. Neural conjugate flows: A physics-informed archi-
tecture with flow structure. Proceedings of the AAAI Conference on Artificial Intelligence, 2025. To
appear.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113
(15):3932–3937, 2016.

16



Published in Transactions on Machine Learning Research (02/2026)

Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, and Emanuele
Rodolà. Bootstrapping parallel anchors for relative representations. arXiv preprint arXiv:2303.00721,
2023.

Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodolà. From bricks
to bridges: Product of invariances to enhance latent space communication. In The Twelfth International

Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=vngVydDWft.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary di�erential
equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 25, pp. 313–318, 2011.

Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro Liò, and
Emanuele Rodolà. From charts to atlas: Merging latent spaces into one. arXiv preprint arXiv:2311.06547,
2023.

Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using landmark points. Technical
report, technical report, Stanford University, 2004.

Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. Grounding Representation Similarity Through
Statistical Testing. In Advances in Neural Information Processing Systems, volume 34, pp. 1556–1568.
Curran Associates, Inc., 2021.

Christos Faloutsos and King-Ip Lin. Fastmap: A fast algorithm for indexing, data-mining and visualization
of traditional and multimedia datasets. In Proceedings of the 1995 ACM SIGMOD international conference

on Management of data, pp. 163–174, 1995.

Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodolà. Latent
functional maps: a spectral framework for representation alignment, 2025. URL https://arxiv.org/

abs/2406.14183.

Alejandro García-Castellanos, Giovanni Luca Marchetti, Danica Kragic, and Martina Scolamiero. Relative
representations: Topological and geometric perspectives. In UniReps: 2nd Edition of the Workshop on Uni-

fying Representations in Neural Models, 2024. URL https://openreview.net/forum?id=RDfkKNoET5.

Saptarshi Ghosh. Swec-ethz ieeg seizure detection dataset for bangalore neuromorphic bnew workshop 2025,
December 2024. URL https://doi.org/10.5281/zenodo.14578383.

John C Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, 1975.

James V Haxby, Jyoti S Guntupalli, Andrew C Connolly, Yaroslav O Halchenko, Brian R Conroy, M Ida
Gobbini, Michael Hanke, and Peter J Ramadge. A common, high-dimensional model of the representational
space in human ventral temporal cortex. Neuron, 72(2):404–416, 2011. doi: 10.1016/j.neuron.2011.08.026.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Holger Kantz and Thomas Schreiber. Nonlinear time series analysis, volume 7. Cambridge university press,
2004.

Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54.
Cambridge university press, 1995.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geo�rey Hinton. Similarity of neural network
representations revisited. In International Conference on Machine Learning, pp. 3519–3529. PMLR, 2019.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-connecting
the branches of systems neuroscience. Frontiers in systems neuroscience, 2:4, 2008.

17

https://openreview.net/forum?id=vngVydDWft
https://arxiv.org/abs/2406.14183
https://arxiv.org/abs/2406.14183
https://openreview.net/forum?id=RDfkKNoET5
https://doi.org/10.5281/zenodo.14578383


Published in Transactions on Machine Learning Research (02/2026)

Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In Proceedings of UniReps:

the First Workshop on Unifying Representations in Neural Models, pp. 158–169. PMLR, 2024.

Je�rey Lai, Anthony Bao, and William Gilpin. Panda: A pretrained forecast model for universal represen-
tation of chaotic dynamics, 2025. URL https://arxiv.org/abs/2505.13755.

Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised learning.
In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 679–686, 2010.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2):130–141, 1963.

Edward N Lorenz. Predictability: A problem partly solved. In Proceedings of the Seminar on Predictability,
volume 1, pp. 1–18. ECMWF, 1996.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of
nonlinear dynamics. Nature Communications, 9(1):4950, 2018.

Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, and Emanuele
Rodolà. Latent space translation via semantic alignment. In Thirty-seventh Conference on Neural Infor-

mation Processing Systems, 2023.

Filip Matzner and Frantiöek Mráz. Locally connected echo state networks for time series forecasting. In
The Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.

net/forum?id=KeRwLLwZaw.

Robert M May. Simple mathematical models with very complicated dynamics. Nature, 261(5560):459–467,
1976.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for
dimension reduction. arXiv preprint arXiv:1802.03426, 2018. URL https://arxiv.org/abs/1802.03426.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele
Rodolà. Relative representations enable zero-shot latent space communication. In The Eleventh Interna-

tional Conference on Learning Representations, 2023.

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodola, and Francesco Lo-
catello. Asif: Coupled data turns unimodal models to multimodal without training. Advances in Neural

Information Processing Systems, 36:15303–15319, 2023.

Dino Oglic and Thomas Gärtner. Nyström method with kernel k-means++ samples as landmarks. In
International Conference on Machine Learning, pp. 2652–2660. PMLR, 2017.

Jaideep Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott. Using machine learning to
replicate chaotic attractors and calculate lyapunov exponents from data. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 27(12), December 2017. ISSN 1089-7682. doi: 10.1063/1.5010300. URL
http://dx.doi.org/10.1063/1.5010300.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial di�erential equations.
Journal of Computational Physics, 378:686–707, 2019.

Antonio Pio Ricciardi, Valentino Maiorca, Luca Moschella, Riccardo Marin, and Emanuele Rodolà. R3l:
Relative representations for reinforcement learning. arXiv preprint arXiv:2404.12917, 2024.

David Ruelle. What are the measures that describe turbulence? Progress of Theoretical Physics Supplement,
64:339–345, 1978.

Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):
1–10, 1966.

18

https://arxiv.org/abs/2505.13755
https://openreview.net/forum?id=KeRwLLwZaw
https://openreview.net/forum?id=KeRwLLwZaw
https://arxiv.org/abs/1802.03426
http://dx.doi.org/10.1063/1.5010300


Published in Transactions on Machine Learning Research (02/2026)

Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and

engineering. CRC press, 2018.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C Love,
Erin Grant, Iris Groen, Jascha Achterberg, et al. Getting aligned on representational alignment. arXiv

preprint arXiv:2310.13018, 2023.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick

1980, pp. 366–381. Springer, 1981.

Laurens van der Maaten and Geo�rey Hinton. Visualizing data using t-sne. Journal of Machine Learning

Research, 9:2579–2605, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, £ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Pantelis R Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan, Edward Ott, and
Petros Koumoutsakos. Backpropagation algorithms and reservoir computing in recurrent neural networks
for the forecasting of complex spatiotemporal dynamics. Neural Networks, 126:191–217, 2020.

19



Published in Transactions on Machine Learning Research (02/2026)

A Remaining Experimental Results

b Hopf

a POD

Figure 4: Forecasting and representational alignment. (a, b) Example systems: proper orthogonal
decomposition (POD)-wake (a), Hopf (b). Columns show time series trajectories, absolute embeddings
(visualized with principal component analysis (PCA); we plot the first 2 components for 2-dimensional
systems and 3 components for the rest of the systems), relative embeddings (PCA), cross-forecaster similarity
heatmaps (averaged over five seeds) with the order of True System, MLP, Koopman MLP, NODE MLP,
RNN, Autoregressive RNN, Koopman RNN, NODE RNN, Transformer, NODE Transformer, Koopman
Transformer, and ESN; and alignment–performance of forecasters with di�erent hyperparameter settings.

Table 5: Results for double_pendulum

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.4122 ± 0.0096 0.4573 ± 0.0049 0.6420 ± 0.0075 0.6745 ± 0.0105 0.4262 ± 0.0065 0.6754 ± 0.0115

Koopman MLP 0.4314 ± 0.0267 0.4871 ± 0.0202 0.6565 ± 0.0202 0.6097 ± 0.0241 0.4112 ± 0.0076 0.6033 ± 0.0287

NODE MLP 0.3573 ± 0.0102 0.4364 ± 0.0033 0.5977 ± 0.0085 0.6212 ± 0.0076 0.4186 ± 0.0025 0.6211 ± 0.0100

RNN 0.2879 ± 0.0117 0.3618 ± 0.0095 0.5365 ± 0.0109 0.8254 ± 0.0059 0.5044 ± 0.0151 0.8197 ± 0.0048

Autoregressive RNN 0.3994 ± 0.0494 0.4450 ± 0.0407 0.6310 ± 0.0397 0.8791 ± 0.0241 0.5526 ± 0.0434 0.8708 ± 0.0256
Koopman RNN 0.4881 ± 0.0843 0.5148 ± 0.0381 0.6966 ± 0.0590 0.8608 ± 0.1458 0.5928 ± 0.0279 0.8622 ± 0.1272

NODE RNN 0.3799 ± 0.0332 0.4512 ± 0.0233 0.6159 ± 0.0270 0.8631 ± 0.0348 0.5274 ± 0.0210 0.8528 ± 0.0382

Transformer 0.0072 ± 0.0010 0.0685 ± 0.0049 0.0846 ± 0.0057 0.6468 ± 0.1621 0.4360 ± 0.0150 0.6485 ± 0.1541

Koopman Transformer 0.0129 ± 0.0004 0.0931 ± 0.0023 0.1135 ± 0.0019 0.7574 ± 0.0240 0.4462 ± 0.0067 0.7512 ± 0.0245

NODE Transformer 0.0178 ± 0.0040 0.1072 ± 0.0098 0.1329 ± 0.0144 0.3844 ± 0.0465 0.3986 ± 0.0173 0.4068 ± 0.0378

ESN 1.3081 ± 0.0863 0.7915 ± 0.0342 1.1432 ± 0.0379 0.1601 ± 0.0014 0.3808 ± 0.0010 0.1501 ± 0.0015

Table 6: Results for random_skew

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.9778 ± 0.0532 0.6652 ± 0.0174 0.9886 ± 0.0271 0.7533 ± 0.0227 0.8138 ± 0.0034 0.7724 ± 0.0159

Koopman MLP 0.8137 ± 0.1571 0.5918 ± 0.0409 0.8989 ± 0.0837 0.8523 ± 0.0229 0.8304 ± 0.0038 0.8440 ± 0.0279

NODE MLP 0.9145 ± 0.0960 0.6545 ± 0.0195 0.9552 ± 0.0509 0.7384 ± 0.0174 0.8090 ± 0.0047 0.7536 ± 0.0159

RNN 0.8815 ± 0.0283 0.6481 ± 0.0081 0.9388 ± 0.0151 0.8155 ± 0.0204 0.7840 ± 0.0091 0.8058 ± 0.0209

Autoregressive RNN 0.7683 ± 0.0171 0.5823 ± 0.0089 0.8765 ± 0.0097 0.8099 ± 0.0153 0.8178 ± 0.0134 0.8059 ± 0.0153

Koopman RNN 0.7356 ± 0.0369 0.5991 ± 0.0196 0.8575 ± 0.0213 0.8329 ± 0.0406 0.8394 ± 0.0280 0.8338 ± 0.0362

NODE RNN 0.7211 ± 0.0172 0.5897 ± 0.0055 0.8491 ± 0.0102 0.8617 ± 0.0213 0.8528 ± 0.0202 0.8558 ± 0.0189

Transformer 0.4378 ± 0.0074 0.4459 ± 0.0083 0.6617 ± 0.0056 0.7417 ± 0.0355 0.8000 ± 0.0158 0.7426 ± 0.0321

Koopman Transformer 0.4690 ± 0.0150 0.4600 ± 0.0073 0.6848 ± 0.0108 0.7288 ± 0.0211 0.8174 ± 0.0093 0.7342 ± 0.0195

NODE Transformer 0.4429 ± 0.0105 0.4425 ± 0.0121 0.6655 ± 0.0079 0.3904 ± 0.0591 0.5410 ± 0.0433 0.3957 ± 0.0482

ESN 0.6436 ± 0.0436 0.5803 ± 0.0206 0.8019 ± 0.0268 0.9074 ± 0.0211 0.8340 ± 0.0199 0.9008 ± 0.0185
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Figure 5: Cross-model similarity in Logistic Maps.
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Figure 6: Perturbation experiments for POD-wake, Hopf and Logistic Maps. (X) The noise experiment could not

be performed because the data were obtained from Brunton et al. (2016), and only the principal components—not the original

data—were available.
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Figure 7: Temporal alignment visualization for POD-wake and Hopf.

Figure 8: Temporal alignment rotated visualization of the True System of Lorenz.

22



Published in Transactions on Machine Learning Research (02/2026)

Table 7: Results for spiral

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.0002 ± 0.0000 0.0059 ± 0.0004 0.0128 ± 0.0010 0.8848 ± 0.0122 0.4020 ± 0.0029 0.8788 ± 0.0104

Koopman MLP 0.0002 ± 0.0001 0.0049 ± 0.0006 0.0136 ± 0.0035 0.8700 ± 0.0200 0.4200 ± 0.0035 0.8573 ± 0.0232

NODE MLP 0.0003 ± 0.0001 0.0067 ± 0.0012 0.0178 ± 0.0028 0.8796 ± 0.0127 0.4004 ± 0.0067 0.8698 ± 0.0121

RNN 0.0002 ± 0.0001 0.0108 ± 0.0017 0.0153 ± 0.0027 0.9917 ± 0.0039 0.6222 ± 0.0442 0.9906 ± 0.0038

Autoregressive RNN 0.0017 ± 0.0004 0.0298 ± 0.0044 0.0407 ± 0.0044 0.9936 ± 0.0040 0.5424 ± 0.0452 0.9921 ± 0.0033

Koopman RNN 0.0061 ± 0.0009 0.0633 ± 0.0044 0.0782 ± 0.0055 0.9952 ± 0.0033 0.5570 ± 0.0229 0.9938 ± 0.0026
NODE RNN 0.0043 ± 0.0006 0.0527 ± 0.0037 0.0658 ± 0.0045 0.9913 ± 0.0036 0.5330 ± 0.0208 0.9880 ± 0.0040

Transformer 0.0013 ± 0.0003 0.0254 ± 0.0033 0.0364 ± 0.0035 0.9822 ± 0.0040 0.4324 ± 0.0061 0.9774 ± 0.0037

Koopman Transformer 0.0025 ± 0.0009 0.0381 ± 0.0066 0.0493 ± 0.0095 0.9792 ± 0.0125 0.4344 ± 0.0074 0.9743 ± 0.0114

NODE Transformer 0.0044 ± 0.0009 0.0495 ± 0.0042 0.0664 ± 0.0068 0.9824 ± 0.0054 0.4216 ± 0.0105 0.9760 ± 0.0055

ESN 0.0003 ± 0.0001 0.0041 ± 0.0010 0.0151 ± 0.0053 0.9702 ± 0.0027 0.3874 ± 0.0058 0.9637 ± 0.0026

Table 8: Results for pod

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.0270 ± 0.0046 0.0862 ± 0.0071 0.1637 ± 0.0141 0.9511 ± 0.0107 0.8886 ± 0.0079 0.9024 ± 0.0175

Koopman MLP 0.0331 ± 0.0111 0.0931 ± 0.0125 0.1800 ± 0.0303 0.9277 ± 0.0179 0.8810 ± 0.0099 0.8679 ± 0.0308

NODE MLP 0.0317 ± 0.0075 0.0942 ± 0.0115 0.1770 ± 0.0227 0.9367 ± 0.0063 0.8758 ± 0.0118 0.8783 ± 0.0082

RNN 0.0242 ± 0.0063 0.0841 ± 0.0110 0.1547 ± 0.0195 0.9402 ± 0.0586 0.8876 ± 0.0558 0.9170 ± 0.0467

Autoregressive RNN 0.0422 ± 0.0097 0.1305 ± 0.0096 0.2043 ± 0.0239 0.9781 ± 0.0086 0.9328 ± 0.0186 0.9450 ± 0.0197

Koopman RNN 0.0826 ± 0.0201 0.2120 ± 0.0297 0.2857 ± 0.0347 0.9612 ± 0.0622 0.9280 ± 0.0457 0.9482 ± 0.0570

NODE RNN 0.0522 ± 0.0011 0.1697 ± 0.0019 0.2285 ± 0.0025 0.9953 ± 0.0022 0.9662 ± 0.0077 0.9741 ± 0.0137
Transformer 0.0227 ± 0.0043 0.0952 ± 0.0074 0.1501 ± 0.0142 0.8310 ± 0.0403 0.8506 ± 0.0176 0.8321 ± 0.0171

Koopman Transformer 0.0367 ± 0.0058 0.1310 ± 0.0097 0.1910 ± 0.0155 0.9149 ± 0.0101 0.8700 ± 0.0121 0.8767 ± 0.0135

NODE Transformer 0.0680 ± 0.0266 0.1645 ± 0.0173 0.2571 ± 0.0491 0.9019 ± 0.0490 0.8326 ± 0.0479 0.8574 ± 0.0668

ESN 0.0127 ± 0.0041 0.0483 ± 0.0076 0.1113 ± 0.0198 0.9262 ± 0.0210 0.8636 ± 0.0145 0.8774 ± 0.0384

Table 9: Results for hopf

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.0002 ± 0.0001 0.0080 ± 0.0006 0.0146 ± 0.0028 0.9672 ± 0.0088 0.5190 ± 0.0078 0.9596 ± 0.0119

Koopman MLP 0.0002 ± 0.0001 0.0061 ± 0.0006 0.0135 ± 0.0039 0.9463 ± 0.0119 0.5440 ± 0.0175 0.9300 ± 0.0227

NODE MLP 0.0003 ± 0.0001 0.0096 ± 0.0007 0.0169 ± 0.0027 0.9550 ± 0.0082 0.5160 ± 0.0162 0.9463 ± 0.0107

RNN 0.0001 ± 0.0000 0.0042 ± 0.0022 0.0070 ± 0.0031 0.9907 ± 0.0040 0.5474 ± 0.0297 0.9905 ± 0.0044

Autoregressive RNN 0.0015 ± 0.0001 0.0332 ± 0.0009 0.0386 ± 0.0012 0.9888 ± 0.0068 0.5638 ± 0.0358 0.9904 ± 0.0052

Koopman RNN 0.0130 ± 0.0016 0.1010 ± 0.0060 0.1137 ± 0.0069 0.9938 ± 0.0020 0.5976 ± 0.0284 0.9937 ± 0.0020

NODE RNN 0.0108 ± 0.0006 0.0919 ± 0.0026 0.1038 ± 0.0029 0.9963 ± 0.0014 0.6192 ± 0.0310 0.9958 ± 0.0014
Transformer 0.0061 ± 0.0012 0.0673 ± 0.0064 0.0776 ± 0.0076 0.9874 ± 0.0093 0.5452 ± 0.0218 0.9871 ± 0.0074

Koopman Transformer 0.0056 ± 0.0011 0.0645 ± 0.0044 0.0748 ± 0.0069 0.9895 ± 0.0064 0.5606 ± 0.0200 0.9891 ± 0.0061

NODE Transformer 0.0130 ± 0.0075 0.0893 ± 0.0290 0.1095 ± 0.0355 0.9901 ± 0.0061 0.5486 ± 0.0239 0.9883 ± 0.0062

ESN 0.0000 ± 0.0000 0.0004 ± 0.0000 0.0011 ± 0.0002 0.9978 ± 0.0003 0.5216 ± 0.0036 0.9949 ± 0.0005

Table 10: Results for logistic_map

Performance (¿) Similarity (ø)

Model MSE MAE RMSE Cosine Top-1 Spearman fl

MLP 0.0002 ± 0.0000 0.0118 ± 0.0006 0.0157 ± 0.0008 0.9489 ± 0.0074 0.0232 ± 0.0040 0.7468 ± 0.0035

Koopman MLP 0.3713 ± 0.4895 0.4102 ± 0.4452 0.4505 ± 0.4586 0.9906 ± 0.0047 0.0232 ± 0.0051 0.7468 ± 0.0044
NODE MLP 0.8986 ± 0.0191 0.8939 ± 0.0109 0.9479 ± 0.0101 0.9165 ± 0.0085 0.0228 ± 0.0046 0.7446 ± 0.0044

RNN 0.0025 ± 0.0038 0.0325 ± 0.0245 0.0421 ± 0.0302 0.7056 ± 0.1526 0.0302 ± 0.0059 0.6182 ± 0.1131

Autoregressive RNN 0.0065 ± 0.0041 0.0648 ± 0.0197 0.0771 ± 0.0255 0.6875 ± 0.2004 0.0240 ± 0.0074 0.5479 ± 0.2504

Koopman RNN 0.0483 ± 0.0427 0.1801 ± 0.0573 0.2074 ± 0.0817 0.6835 ± 0.2288 0.0264 ± 0.0054 0.5198 ± 0.2503

NODE RNN 0.0239 ± 0.0029 0.1429 ± 0.0062 0.1545 ± 0.0091 0.7063 ± 0.0921 0.0198 ± 0.0057 0.6261 ± 0.1181

Transformer 0.0068 ± 0.0015 0.0667 ± 0.0085 0.0820 ± 0.0092 0.9953 ± 0.0023 0.0230 ± 0.0074 0.7413 ± 0.0013

Koopman Transformer 0.0142 ± 0.0043 0.1008 ± 0.0098 0.1183 ± 0.0168 0.9908 ± 0.0023 0.0188 ± 0.0034 0.7398 ± 0.0010

NODE Transformer 0.2153 ± 0.4374 0.2831 ± 0.3738 0.3117 ± 0.3844 0.9964 ± 0.0008 0.0208 ± 0.0077 0.7413 ± 0.0019

ESN 0.0000 ± 0.0000 0.0007 ± 0.0011 0.0013 ± 0.0024 0.9307 ± 0.0083 0.0162 ± 0.0004 0.7401 ± 0.0008
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Figure 9: Anchor ablation and baseline. (Blue) Alignment vs. number of anchors K; lines show mean over 30 repeats.

Stabilization occurs for K Ø 16; we choose K = 80 (vertical marker) for the main experiments. (Orange) Random baseline

with disjoint anchor sets across spaces, yielding near-zero alignment.

Figure 10: Hyperparameter Tuning for All Systems and Models. ESN is exluded since it needed additional manual

hyperparameter tuning due to its sensitivity to hyperparameters and unstable nature.

24



Published in Transactions on Machine Learning Research (02/2026)

Lorenz-63 Double-pendulum

Random-skew POD

Limit-cycle Hopf

Logistic Map

Figure 11: Cross-model similarity using absolute embeddings.
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B Similarity Metrics

T1 similarity. The T1 score measures the agreement in the identity of the most similar anchor across
encoders. For each latent z œ V, we check whether the anchor with highest similarity under encoder 1
coincides with that under encoder 2:
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Rank similarity. The rank similarity evaluates how similarly two encoders order the set of anchors for
each latent z. For each encoder s œ {1, 2}, let rank¿(r(s)

rel
(z)) denote the vector of descending ranks (with 1

assigned to the largest component) of the relative similarity vector r(s)

rel
(z), with ties resolved using a stable

sort order. The average Spearman correlation between these rank vectors defines the rank similarity:
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where fl denotes Spearman’s rank correlation coe�cient, implemented as the Pearson correlation between
the rank-transformed relative similarity vectors.

C Stitching Details

Figure 12: Average cosine similarity over all 5 seeds for each forecaster pair, excluding exact same forecaster and seed.

Models were trained on relative latent spaces rather than absolute spaces.
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D Dynamical Systems Details

Lorenz–63 (3-D chaotic ODE). ẋ = ‡(y≠x), ẏ = x(fl≠z)≠y, ż = xy≠—z, with ‡ = 10, fl = 28, — = 8/3.
Initial states are sampled from [≠20, 20]3 and integrated with Runge–Kutta 45 (RK45) at �t = 0.01.
Its compact phase space and positive Lyapunov exponent (¥ 0.91) make it a classical multi-step-forecast
benchmark.

Stable limit cycle (2-D radial–spiral ODE). ṙ = µ(R ≠ r), ◊̇ = Ê, (x, y) = (r cos ◊, r sin ◊), with
µ = 1, R = 1, Ê = 1. Trajectories start from r0 ≥ U [0, 20] and ◊0 ≥ U [0, 2fi]; integration uses RK45 with
�t = 0.01.

Double pendulum (4-D Hamiltonian chaos). Two unit–mass, unit–length links evolve under gravity
g=9.81. Writing the state as (◊1, ◊2, Ê1, Ê2) with � = ◊2 ≠ ◊1, the equations of motion are

◊̇1 = Ê1, ◊̇2 = Ê2,

Ê̇1 = Ê
2
1

sin � cos � + g sin ◊2 cos � + Ê
2
2

sin � ≠ 2g sin ◊1

2 ≠ cos2 � ,

Ê̇2 = ≠Ê
2
2

sin � cos � + 2g sin ◊1 cos � ≠ 2Ê
2
1

sin � ≠ 2g sin ◊2

2 ≠ cos2 � .

Initial angles are sampled from [≠20¶
, 20¶] and angular velocities from [≠1, 1]. Trajectories are integrated

with RK45 at �t=0.01. The system exhibits strongly chaotic, nearly energy–conserving motion, with a
positive Lyapunov exponent of ¥ 1.5.

Hopf normal form (2-D near-critical oscillation). ẋ = µx≠Êy ≠ (x2 +y
2)x, ẏ = Êx+µy ≠ (x2 +y

2)y,
with µ = 0, Ê = 1. Starting points (x0, y0)≥U [≠2, 2]2 spiral onto a unit-radius limit cycle; �t = 0.01 with
RK45.

Logistic map (1-D near-onset discrete chaos). xt+1 = 3.57 xt(1 ≠ xt) with x0 ≥ U(0, 1); sequences of
length T=500 are recorded at an e�ective step �t = 0.1.

Fluid wake behind a cylinder (POD-wake coe�cients; d = 3). We adopt the three leading Proper-
Orthogonal-Decomposition coe�cients from Brunton et al. (2016) (Re = 100, Strouhal ¥ 0.16). We supply
10 trajectories per split, each of T=500 snapshots sampled at �t = 0.2; only z-score normalisation is applied.

Skew-product of 3-D chaotic founders (6-D weakly coupled ODE). Following Lai et al. (2025),
select two founders from {Lorenz–63, Rössler, Chen}, jitter parameters by multiplicative log-normal noise
(log s ≥ N (0, 0.152), sign preserved), and couple them in a skew-product: the first 3-D system x œ R3

drives the second y œ R3 via a weak injection into the first response coordinate. Writing ẋ = fa(x; pa) and
ẏ = fb(y; pb) for the founders with jittered parameters,

ẋ = fa(x; pa), ẏ = fb(y; pb) + Á e1 x1, Á = 0.05, e1 = (1, 0, 0)€.

Founder templates and nominal seeds:

Lorenz–63: ẋ = ‡(y ≠ x), ẏ = x(fl ≠ z) ≠ y, ż = xy ≠ —z; (‡, fl, —) = (10, 28, 8/3), x0 = (1, 1, 1),
Rössler: ẋ = ≠y ≠ z, ẏ = x + ay, ż = b + z(x ≠ c); (a, b, c) = (0.2, 0.2, 5.7), x0 = (0.1, 0, 0),

Chen: ẋ = a(y ≠ x), ẏ = (c ≠ a)x ≠ xz + cy, ż = xy ≠ bz; (a, b, c) = (35, 3, 28), x0 = (≠10, 0, 37).

A single skew system is sampled once per dataset; train/val/test splits then di�er only by initial conditions.
Initial states jitter the concatenated founder seeds z0 = [x0; y0] with i.i.d. Gaussian noise of scale 0.1.
Trajectories are integrated with DOP853 at the dataset step �t (absolute tolerance 10≠8, relative 10≠6).
We discard an initial warm-up fraction (default 10%) and keep the next T steps. Runs are rejected if any
state is non-finite, the radius exceeds 106, or the summed channel variance falls below 10≠6; on rejection we
resample once.
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E Probing state information in latent representations.

To assess the extent to which learned latent representations preserve information about the underlying
system state, we perform a simple linear probing analysis on a representative dynamical system (Lorenz–
63). For each trained model, we freeze the encoder and fit a single linear ridge regressor to decode the current
observable state x(t) from the corresponding latent representation z(t), training on the training split and
evaluating on held-out test data. When probing absolute latent representations, decoding performance is
near-perfect across all model families, indicating that the encoder latents retain almost complete information
about the instantaneous system state. When applying the same probe to anchor-based relative embeddings,
decoding performance remains high but exhibits a modest, architecture-dependent reduction. This behavior
is expected, as relative embeddings are designed to quotient out certain geometric degrees of freedom in order
to enable cross-model comparison, rather than to preserve all linearly decodable structure. We emphasize
that this probing analysis is intended as a sanity check on representational content rather than as evidence of
system identification or recovery of governing dynamics. We report these results in Figure 13 and interpreted
as bounding the information retained by the representations, rather than as a claim about learning the true
dynamical system.

A

B

Figure 13: Mean test-set R
2 of a linear ridge probe decoding the current system state x(t) from absolute

latent representations z(t) for the Lorenz–63 system, averaged over three random seeds (error bars denote
standard deviation).
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A B C

CKA RSA Procrustes

Figure 14: Cross model alignment using centered kernel alignment (CKA), representational similarity analysis
(RSA), and Procrustes-based alignment. Values indicate the average of three seeds.

F Preliminary Results on iEEG Data.

We include this experiment as a preliminary external validation of the representational alignment analysis in
a high-dimensional, real-world setting, using human intracranial EEG recordings from the first participant
(ID1) of the SWEC–ETHZ dataset (Ghosh (2024)). In contrast to the simulated systems, where representa-
tional similarity can be measured directly against known ground-truth dynamics, such a comparison is not
possible in the iEEG setting, as the underlying generative system is unknown.

The goal of this experiment is not to benchmark forecasting accuracy or to draw neuroscientific conclusions,
but to assess whether the family-level alignment patterns observed in controlled dynamical systems persist
when models are trained on real neural time series under otherwise comparable experimental conditions.

A B

Figure 15: A. Cross model alignment in forecasters trained on forecasting iEEG dataset. B. Performances
of forecasters.
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