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Abstract
Obtaining large-scale, high-quality data with rea-
soning paths is crucial for improving the geomet-
ric reasoning capabilities of multi-modal large
language models (MLLMs). However, existing
data generation methods, whether based on prede-
fined templates or constrained symbolic provers,
inevitably face diversity and numerical general-
ization limitations. To address these limitations,
we propose NeSyGeo, a novel neuro-symbolic
framework for generating geometric reasoning
data. First, we propose a domain-specific lan-
guage grounded in the entity–relation–constraint
paradigm to comprehensively represent all com-
ponents of plane geometry, along with generative
actions defined within this symbolic space. We
then design a symbolic–visual–text pipeline that
synthesizes symbolic sequences, maps them to
corresponding visual and textual representations,
and generates diverse question–answer (Q&A)
pairs using large language models (LLMs). To
the best of our knowledge, we are the first to pro-
pose a neuro-symbolic approach in generating
multimodal reasoning data. Based on this frame-
work, we construct NeSyGeo-CoT and NeSyGeo-
Caption datasets, containing 100k samples, and
release a new benchmark NeSyGeo-Test for eval-
uating geometric reasoning abilities in MLLMs.
Experiments demonstrate that the proposal signifi-
cantly and consistently improves the performance
of multiple MLLMs under both reinforcement
and supervised fine-tuning. With only 4k samples
and two epochs of reinforcement fine-tuning, base
models achieve improvements of up to +15.8%
on MathVision, +8.4% on MathVerse, and +7.3%
on GeoQA. Notably, a 4B model can be improved
to outperform an 8B model from the same series
on geometric reasoning tasks.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. Performance comparison of different MLLMs and LLMs
with and without image input in several geometry datasets. The
minimal or negligible drops observed upon image removal in
GeoQA and R-CoT raise concerns regarding the utilization of
visual information for geometric reasoning.

1. Introduction
Improving the visual reasoning capabilities of MLLMs has
garnered significant attention recently (Liu et al., 2023;
Alayrac et al., 2022; Achiam et al., 2023; Li et al., 2021;
Jiang et al., 2024; Zhang et al., 2025a; Wang et al., 2024a;
Wu et al., 2024; Liang et al., 2024), with models like In-
ternVL (Chen et al., 2024) and the QwenVL series (Wang
et al., 2024c; Bai et al., 2025) demonstrating significant
enhancements in visual-semantic comprehension through
their multimodal capabilities. Among various visual rea-
soning tasks, geometric mathematical reasoning is crucial
for evaluating the reasoning performance of MLLMs (Yan
et al., 2025; 2024), as it requires a deep integration of spa-
tial perception, symbolic understanding, and logical de-
duction. To enhance such reasoning abilities, existing ap-
proaches (Zhang et al., 2024d; 2025b; Zhao et al., 2025) pri-
marily rely on fine-tuning base models using reinforcement
learning (RL) or supervised fine-tuning (SFT) on specialized
geometric reasoning datasets. These methods depend heav-
ily on the availability of large-scale, high-quality geometric
reasoning data, which is often costly and time-consuming
to construct manually. Therefore, automatic data generation
for geometric reasoning has emerged as a promising and
actively explored direction, aiming to alleviate data scarcity
and further improve the reasoning abilities of MLLMs.

Existing approaches for generating datasets in geometric
tasks can be broadly classified into four categories. Text
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augmentation methods like G-LLaVA (Gao et al., 2025)
primarily mutate the conditions of existing datasets through
equivalent condition transformation and numerical scaling.
However, this approach fails to address the scalability of
image generation. Template-based methods (Deng et al.,
2024; Zhang et al., 2024d; Kazemi et al., 2024), use prede-
fined geometric templates with fixed topologies, simplifying
synthesis but constraining diversity by reducing the geomet-
ric space to limited combinations. Solver-based meth-
ods (Huang et al., 2025; Zhang et al., 2024b) inspired by
symbolic prover AlphaGeometry (Trinh et al., 2024), lever-
age formal languages for synthesis but lack metric details
(e.g., angles, lengths, areas), restricting multimodal data to
descriptive annotations and limiting numerical reasoning ap-
plications. Tool-based methods attempt to generate codes
for tools like GeoGebra or MATLAB via LLMs. However,
even advanced models struggle to ensure correctness with
ambiguous natural language instructions and complex geo-
metric spaces. In summary, existing methods grapple with
issues of image scalability, limited geometric diversity, a
lack of precise numerical information, and challenges in
ensuring the reliability of generated content.

Beyond the challenges in data synthesis methodologies, cur-
rent geometric reasoning datasets present several limitations
that impede the advancement of MLLMs. A primary lim-
itation stems from the often inadequate quality and low
resolution of the provided images. Such inputs frequently
fall below the optimal requirements of visual encoders (Rad-
ford et al., 2021; Lin et al., 2025; Liu et al., 2023), hindering
the extraction of crucial fine-grained visual features and
discriminative information essential for robust multimodal
reasoning. Furthermore, our analysis reveals notable infor-
mation redundancy between the textual and visual modal-
ities in many current datasets. As shown in Figure 1, our
comparative experiments demonstrate minimal or negligible
accuracy drops upon image removal. This finding empha-
sizes the urgent need for a dataset that effectively separates
textual and visual information and provides high-quality
images to promote MLLMs’ visual perception and logical
reasoning performance.

To address these challenges, we propose NeSyGeo, a neuro-
symbolic framework for synthesising high-quality multi-
modal geometric reasoning datasets. NeSyGeo integrates
three components: 1) A formal geometric symbolic space
defined by a domain-specific language (DSL), capturing
primitive entities (points, lines, circles), topological rela-
tions (parallelism, incidence, perpendicularity), and metric
constraints (angles, lengths), enabling diverse geometric
configurations via systematic sampling within constrained
parametric bounds. 2) A bidirectional conversion engine
that transforms symbolic constructs into decoupled modali-
ties, producing annotated vector graphics paired with con-
cise textual axioms. 3) A causal Q&A pairs and theorem-

Figure 2. Comparison of dataset characteristics synthesized by our
method and other popular synthesis approaches. “High Resolution”
denotes average image pixels exceeding 336×336. “Symbolic
Form” refers to the symbolic meta-information associated with
the image. “Classification of Elements” signifies categorization
by geometric elements. “Visual Understanding” represents the
mitigation of image-text redundancy for stronger visual grounding
in reasoning. More specific examples of different methods are in
Appendix A.

grounded Chain-of-Thought (CoT) sequences generator that
effectively merges neural reasoning with symbolic verifi-
cation. To our knowledge, we are the first to develop a
neuro-symbolic framework for producing multimodal rea-
soning data.

Our framework enhances the diversity and validity of gen-
erated geometric reasoning data while effectively mitigat-
ing information redundancy and the underutilization of vi-
sual signals during training. Specifically, the comprehen-
sive Geo-DSL and its expansive symbolic synthesis action-
space promote diverse and well-grounded image genera-
tion. Meanwhile, our CoT sequence generator, powered by
LLMs’ strong reasoning and language capabilities, conducts
a backwards search across the geometric space to construct
Q&A pairs, thereby enriching textual diversity. The unique
identification of geometric elements via our symbolic lan-
guage and dedicated conversion engine ensures visual va-
lidity. In parallel, a bidirectional cross-validation process
using expert LLMs ensures textual validity. By strategically
distributing complementary information across image and
text modalities, our approach

encourages MLLMs to actively engage with visual infor-
mation when solving problems, enhancing their abilities to
perceive visually and effectively utilize images.

Leveraging the NeSyGeo pipeline, we construct two train-
ing datasets, NeSyGeo-Caption and NeSyGeo-CoT, com-
prising 100k samples. NeSyGeo-Caption aims to improve
the perceptual understanding of geometric elements, while
NeSyGeo-CoT primarily focuses on enhancing logical rea-
soning. The key characteristics of our dataset compared to
other popular multimodal geometric datasets are presented
in Figure 1. Additionally, we develop an evaluation set,
NeSyGeo-Test, with 2668 Q&A pairs, enabling a thorough
assessment of the geometric reasoning capabilities of main-
stream MLLMs. We conducted an extensive and compre-
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Figure 3. The overview of our neuro-symbolic data generation framework. The framework comprises three steps: In the first step, we get
a symbolic language sequence in a limited symbolic action space. In the second step, the conversion engine parses the Geo-DSL sequence
and translates it back to natural language and visual image without losing soundness. In the third step, we employ LLMs to take a reverse
search and forward validation process to get final Q&A pairs with CoT.

hensive evaluation of the geometric reasoning capabilities of
current mainstream open-source and closed-source models,
with details presented in Appendix E. Notably, our training
dataset consistently and efficiently enhances the geometric
reasoning performance of MLLMs across multiple bench-
marks. With only 4k samples and two epochs of RL training,
base models achieve performance improvements of up to
+15.8% on MathVision, +8.4% on MathVerse, and +7.3%
on GeoQA. Moreover, InternVL2.5-4B can be improved to
outperform the 8B model in the same series on geometric
reasoning tasks.

In summary, our contributions are as follows:

• We propose NeSyGeo, a novel framework for geomet-
ric reasoning data generation, featuring a Geo-DSL
for symbolic synthesis, a conversion engine for im-
age and text generation, and an LLM-driven generator
for Q&A pairs with CoT. NeSyGeo ensures validity
through rigorous symbolic definitions and diversity via
varied actions and neural searching.

• Using our framework, we synthesize the NeSyGeo-
Caption and NeSyGeo-CoT training datasets with
100k high-quality samples, alongside a comprehensive
geometric task evaluation set NeSyGeo-Test. These

datasets are characterized by their diversity, rigor, and
balanced distribution of information across image and
text modalities.

• We demonstrate significant performance improvements
on several MLLMs across multiple benchmarks using
both RL and SFT training methods with our training
sets, validating the effectiveness of our framework and
the high quality of our datasets.

2. Related Works
2.1. Geometric Problem-Solving

Early approaches to geometric reasoning predominantly
relied on symbolic solvers that used formal languages to
tackle the tasks. For instance, Inter-GPS (Lu et al., 2021)
and PGDP (Zhang et al., 2022) employed symbolic methods
by manually crafting reasoning rules and symbolic repre-
sentations for geometric entities. These systems typically
transform visual input into symbolic forms through instance
segmentation and apply theorem search to derive solutions.
However, these methods lacked scalability due to their de-
pendence on manually designed rules. Their inability to
generalize beyond specific problem types further limited
their universality and effectiveness across diverse geometric
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challenges.

The advent of MLLMs has shifted the paradigm toward
data-driven geometric reasoning, leveraging their robust
reasoning capabilities. Recent advancements include Geo-
DRL (Peng et al., 2023)and GeoGen (Krueger et al., 2021).
Despite these developments, geometric reasoning poses sig-
nificant challenges for MLLMs, requiring seamless inte-
gration of image perception, geometric knowledge, and
multi-step reasoning. GeoSense (Xu et al., 2025) identifies
the identification and application of geometric principles as
a persistent bottleneck. Similarly, GeoEval (Zhang et al.,
2024a) reveals that current MLLMs exhibit significantly
low accuracy when facing more challenging geometric prob-
lems. MathVerse (Zhang et al., 2024c) further highlights
MLLMs’ over-reliance on textual information, underscor-
ing the critical need for balanced multimodal datasets to
enhance cross-modal reasoning capabilities.

2.2. Multimodal Geometry Datasets

Large-scale, high-quality datasets are essential for enhanc-
ing the performance of MLLMs in solving geometric prob-
lems. Early datasets such as GeoS (Seo et al., 2015) (186
problems), Geometry3k (Lu et al., 2021) (3000 problems)
and GeoQA (Chen et al., 2021) (4998 problems) utilized
human manual annotation. Their datasets are thus limited
to a small scale. With the development of MLLMs, datasets
of greater magnitude have become essential. To address
this, numerous efforts have shifted toward automatic data
generation.

G-LLaVA (Gao et al., 2025) rephrased questions from
GeoQA and Geometry3k to create 115,000 Q&A pairs,
but failed to enhance image variety. Template-based meth-
ods (Zhang et al., 2024d; Deng et al., 2024) typically rely
on 10–20 predefined geometric figures, limiting the diver-
sity of the generated images. AlphaGeometry (Trinh et al.,
2024), a notable work that combines symbolic solvers for
geometric proofs, employs a symbolic language definition.
Yet, due to the absence of numerical attributes such as an-
gle measures and segment lengths in its geometric space,
attempts to automatically generate datasets using the Al-
phaGeometry framework (Huang et al., 2025; Zhang et al.,
2024b) are confined to caption datasets, failing to produce
the numerical Q&A pairs critical for current MLLMs train-
ing. In contrast to prior approaches, our method pioneers a
neuro-symbolic framework, being the first to integrate the
precision of symbolic definition with the diversity of neural
search for generating multimodal reasoning data.

3. Methods
To address the urgent need for large-scale and high-quality
multimodal datasets in MLLMs for geometric reasoning,

we propose NeSyGeo, a novel three-stage data generation
pipeline. The pipeline is built upon Geo-DSL, a symbolic
DSL designed to represent most elements in plane geometry
space concisely and wholly. Its entity-relation-constraint
structure allows any element to be defined via a single state-
ment, while its expressive power ensures comprehensive
coverage of all geometric elements and values.

NeSyGeo’s generation process unfolds in three distinct
stages: First, a symbolic generator performs action augmen-
tations within the finite symbolic space to produce a Geo-
DSL sequence. This approach effectively constrains the
synthesis and augmentation process, ensuring validity and
controllability by generating outside the infinite domains of
natural language and image spaces (Section 3.2). Second, a
conversion engine maps the generated Geo-DSL sequences
back into natural language descriptions and visual image
representations. This process synthesizes high-quality im-
ages and valid text while avoiding intermodal information
overlap. Third, to get Q&A Pairs with reasoning paths, we
utilize expert LLMs to conduct backwards search to iden-
tify the geometric unknowns to be solved and generate the
CoT in a forward manner (Section 3.4). The search process
primarily ensures the diversity of the Q&A pairs, while the
forward verification confirms the correctness of the CoT
and the final answer. The overall framework of NeSyGeo is
illustrated in Figure 3.

3.1. Symbolic Definition
Existing symbolic languages for plane geometry have cer-
tain limitations. The definitions in AlphaGeometry (Trinh
et al., 2024) are tailored for proof-based problems, thus
lacking definitions related to specific numerical values. In-
terGPS (Lu et al., 2021) defines a predicate as a geomet-
ric shape entity, geometric relation, or arithmetic function,
constructing 91 predicates. However, this approach overly
fragments shape, attribute, and relation definitions into in-
dependent statements, often requiring multiple statements
to specify a single element in the figure. This significantly
increases the complexity of a conversion engine’s identifi-
cation of elements within the symbolic space and further
conversion of them.

We propose Geo-DSL, a concise and comprehensive sym-
bolic language for plane geometry to address these limita-
tions. It employs an entity-relation-constraint framework,
using well-defined rules to uniquely define 13 types of
points, 7 types of lines, 3 types of angles, and 14 types
of shapes, covering all plane geometry elements and incor-
porating numerical attributes like lengths and angles for
precise specifications. Table 1 provides partial examples of
symbolic definitions. Geo-DSL offers two key advantages.
First, its comprehensive coverage includes all geometric
elements and their numerical properties, enabling accurate
and complete descriptions. Second, its simplicity allows a
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Table 1. Examples of our Geo-DSL and Corresponding Natural Language. Geo-DSL is defined by an entity-relation-constraint framework,
encompassing 13 point types, 7 line types, 3 angle types, and 14 shape types in plane geometry. See Appendix H for complete Geo-DSL
definitions.

Type Geo-DSL Language Natural Language

Shape Triangle(A,B,C) = (x, y, α) Triangle ABC has AB = x, BC = y, ∠B = α
Circle(O) = (x) Circle O has radius x

Point Foot(D,A,Line(B,C)) D is the foot of the perpendicular from A to BC
Intersection(E,Line(A,B), Line(C,D)) E is the intersection of line AB and line CD

Line Para(Line(A,B), Line(C,D), x) Line AB is parallel to CD, AB = x

Angle Angle(P,Q,R) = α ∠PQR = α

single statement to specify an element uniquely, promoting
the incremental integration of the symbolic action space
and the sequential parsing of statements by the conversion
engine. This combination of completeness and simplicity
makes Geo-DSL an efficient and powerful geometric repre-
sentation and processing solution.

3.2. Symbolic Sequence Generation

To generate a Geo-DSL sequence, we introduce a step-
action augmenter that iteratively synthesizes a sequence
of statements, as detailed in Algorithm 1. Based on dataset
preferences, we first configure the step count N , weight
matrices I and A for selecting elements and actions with
respective probabilities, and ranges [lmin, lmax] for lengths
and [θmin, θmax] for angles. Then, the augmenter iteratively
generates symbolic statements over N steps. For each step,
we randomly sample parameters x, y, z and α, select an ele-
ment vj ∈ fv using weights from I , and choose an action
ak based on weights from A (see Appendix I for action de-
tails). The new statement snew is then incorporated into the
sequence fs. Leveraging Geo-DSL’s symbolic definitions
and well-defined actions, this approach ensures the validity
and accuracy of each statement. Meanwhile, randomized
elements, diverse action selections, and customizable hyper-
parameter preferences promote diversity.

3.3. Informalization
Following the generation of sequences within the formal
symbolic space, it is necessary to map them back to the text
and image spaces for further processing and visualization.
Our approach generates high-quality images and rigorous
natural language, allocating information between them to
compel MLLMs to leverage visual data effectively.

Visual image. For the visual space, our visualization en-
gine parses each Geo-DSL statement as a geometric element
to generate high-quality images using Matplotlib. The rig-
orous symbolic language space ensures the determinacy
and uniqueness of the conversion process, thereby enabling
precise image generation. Additionally, the engine pro-
duces images with detailed annotations absent from the

Figure 4. Reverse search and forward validation with expert LLMs

text, requiring models to leverage images during problem-
solving, enhancing their visual perception and ability to
extract image-based information.

Natural language. We adopt a template-based transforma-
tion approach, parsing and mapping each symbolic state-
ment to multiple predefined natural language templates.
This produces a text-full version containing all details and
captions of the image and a text-lite version retaining only
essential conditions, not included in the image annotations,
as the final form in our datasets. The text-lite version avoids
intermodal information redundancy, while diverse templates
ensure the validity and diversity of the synthesized condition
text.

3.4. CoT Generation
To generate Q&A pairs with CoT reasoning, we utilize the
strong reasoning abilities of expert LLMs to ensure diverse
and reliable output. Using the text-full version generated
as described in Section 3.3 as input, we develop a two-step
process comprising reverse search and forward validation
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Algorithm 1 The overall framework of the symbolic sequence generation process
Input: Step count N , Action weight matrix A, Element selection weight matrix I , Line length range [lmin, lmax],
Angle range [θmin, θmax]. ▷ Set customizable hyperparameter
Output: Generated Geo-DSL statement sequence fs.

1: Initialize fs=Initialize( ) . ▷ Initialize the sequence fs with the first statement
2: Initialize symbolic state space elements fv = Initialize(fs). ▷ Initialize state based on fs
3: for i = 1 to N do
4: Randomly sample x, y, z from [lmin, lmax].
5: Randomly sample α from [θmin, θmax].
6: Element vj=Selected elements(fv ,I). ▷ Select element vj from fv randomly.
7: Action ak=Selected action(vj ,A). ▷ Select action ak based on the type of vj randomly
8: snew=Generate DSL(ak, x, y, z, α). ▷ Generate new DSL statement
9: fs=Update(fs,snew) ▷ Add the new statement to the sequence

10: fv=Update(fv ,snew). ▷ Update state space elements
11: end for
12: return fs.

as shown in Figure 4. Prompts are detailed in Appendix G.

Reverse search. We use DeepSeek R1 (DeepSeek-AI et al.,
2025) for reverse search, starting from the given conditions,
iteratively exploring and deriving conclusions step by step,
and ultimately producing the final conclusions at the end of
the reasoning chain along with their corresponding answers.
This reverse approach starts from known information and
recursively builds a reasoning chain, reducing Q&A genera-
tion complexity and hallucinations. R1’s strong reasoning
and exploration capabilities yield diverse conclusions, en-
riching the variety of Q&A pairs.

Forward validation. To ensure the correctness of Q&A
pairs and generate step-by-step CoT reasoning, we re-input
the questions and text-full conditions into DeepSeek V3,
requesting both the reasoning process with final answer, and
cross-validate these answers against those from R1 to in-
clude only consistent pairs in our final dataset. This process
guarantees answer correctness and yields diverse, valid CoT
without an extensive search space.

4. Experiments
We present a series of experiments to investigate the follow-
ing four research questions:

Efficacy – To what extent does training on our synthesized
dataset in both RL and SFT improve the geometric reasoning
performances of several MLLMs?

Efficiency – Is the data generated by NeSyGeo more effec-
tive in yielding models with better performance compared to
using data from existing automatic synthesis frameworks?

Diversity – Does the NeSyGeo framework effectively en-
sure diversity across both the text and image spaces of the
generated synthetic geometric dataset?

Visual Effectiveness – Can our datasets compel models to
effectively utilize visual information for enhanced under-
standing by appropriately distributing information between
modalities?

4.1. Experimental Setup

Dataset. To synthesize a diverse dataset, we set hyperparam-
eters for generating images by configuring the step count,
length range, and angle range. The step count N ranges
from one to four. The line length is defined within the ba-
sic range [lmin, lmax] = [1, 5], scalable by any multiple of 2
(e.g., [4, 20]). The angle is constrained to multiples of 15°
within [15◦, 165◦], with increased weights assigned to spe-
cial angles. We generate various types of weight matrices A
and I by adjusting their corresponding values. This process
yields a NeSyGeo-CoT dataset with 30k Q&A pairs and a
NeSyGeo-Caption dataset with 70k Q&A pairs. Additional
dataset statistics are provided in Appendix B.

Evaluation. Our evaluation is conducted on several bench-
marks: the Test set of GeoQA(Chen et al., 2021), the
Test MINI set of MathVision(Wang et al., 2024b), and the
MathVerse(Zhang et al., 2024c). For the MathVerse bench-
mark, we select the Vision Only, Vision Dominant, and
Vision Intensive sets to better assess the visual perception
and logical reasoning capabilities of MLLMs. We extract
in-domain metrics from other datasets, including angle, area,
length, and Plane Geometry, to effectively evaluate the mod-
els’ capabilities in geometric reasoning problems, in addi-
tion to the GeoQA dataset, which focuses entirely on plane
geometry. For GeoQA, we employed hard-coded extraction
for comparison, while other evaluations are assessed using
the automated VLMEvalKit framework(Duan et al., 2024).
Appendix C provides additional experimental details and
evaluation results.
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4.2. Empirical Results
Efficacy: Training multiple MLLMs with NeSyGeo
via both SFT and RL significantly enhances geometric
problem-solving performances.

We first sample 4k samples from our NeSyGeo-CoT dataset
and apply the Group Relative Policy Optimization (GRPO)
algorithm to train two epochs with Deepseek R1’s format
and answer rewards. The training code framework is based
on VLM-R1 (Shen et al., 2025). As shown in Tables 2,
models achieve the best performance among the baselines
after training. InternVL2.5-4B significantly improved in the
angle knowledge domain with gains of 8.4 (MathVerse), 7.3
(GeoQA), and 5.3 (MathVision). Qwen2.5-VL-3B achieved
a +15.8 performance boost in the area domain of MathVi-
sion. Notably, across all evaluated metrics, the InternVL2.5-
4B model trained on the NeSyGeo dataset achieves perfor-
mance on par with or superior to its 8B counterpart.

We also conducted SFT experiments, initially training
on our NeSyGeo-Caption dataset to enhance the mod-
els’ perception of geometric images, followed by train-
ing on the NeSyGeo-CoT dataset to improve reasoning
capabilities. The experiments were conducted on LLaMA-
Factory (Zheng et al., 2024) framework. Evaluation results
on MathVerse (Vision Intensive) and GeoQA are presented
in Table 3. The trained model demonstrates performance
improvements over the base model on most metrics.

Efficiency: Under the same data budget, the generated
data from our framework is better than that from popu-
lar automatic generation frameworks.

We randomly sampled 4k samples from MAVIS (Zhang
et al., 2024d) and R-CoT (Deng et al., 2024), which are
automatic frameworks in geometry problem generation. To
ensure a fair comparison, we maintained consistent settings.

Table 3. SFT performance comparison: The trained model
demonstrates performance improvements over the base model
on most metrics.

GeoQA MathVerse

Model Angle Area Length Plane

Qwen2.5-VL-7B 69.4 43.0 27.5 46.2 44.1
Qwen2.5-VL-7B+Ours 71.8 (+2.4) 46.1 (+3.1) 23.1 (-4.4) 49.5 (+3.3) 46.7 (+2.6)

LLaVA-7B 22.6 28.5 6.6 16.5 20.4
LLaVA-7B+Ours 26.1 (+3.5) 30.6 (+2.1) 7.7 (+1.1) 19.2 (+2.7) 22.9 (+2.5)

As illustrated in Figure 5 and Table 2, while all datasets
help the model improve over the baseline, our dataset out-
performed others in most metrics, validating its superior
performance.

Diversity: Datasets synthesized by our NeSyGeo frame-
work exhibit high diversity in text and visual features.

Figure 5. Efficiency comparison of our NeSyGeo-CoT dataset ver-
sus other mainstream automated synthesis datasets. The models
are trained using RL methods with InternVL2.5-4B.

Figure 6. T-SNE of the text features of different automatic frame-
works. The G-LLaVA method augments the text space on the
manually annotated GeoQA dataset. Thus, its text diversity can ap-
proximate that of real data more closely. Similar to G-LLaVA, our
method exhibits a uniform distribution in the space, demonstrating
superior diversity.

A critical challenge for automatic data synthesis methods is
whether the dataset is sufficiently diverse to avoid quality
degradation due to potential overfitting risks from inherent
domain constraints. We employ t-SNE (van der Maaten
& Hinton, 2008) dimensionality reduction for mapping in
text space to evaluate the diversity across different methods.
This analysis allows us to assess the diversity of the textual
descriptions themselves. Given that in geometric problems,
the text conditions depict specific visual elements, and the
diversity observed in the text space also serves as a valuable
indicator of the diversity in the corresponding visual dia-
grams. To ensure a fair comparison, we remove all prompts
related to guiding large models, retaining only condition
and question texts, and randomly sample 5k texts from
each dataset. The results are illustrated in Figure 6. Our
method and G-LLaVA (Gao et al., 2025) exhibit uniformly
distributed features in the space, indicating low data overlap
and high diversity. In contrast, R-CoT and MAVIS display
varying degrees of clustered distribution, indicating more
feature-similar samples. To directly assess the diversity
of the visual features, we also performed t-SNE on image
features extracted by ResNet, with detailed experimental
results presented in Appendix C.

Visual Perception: Models trained on NeSyGeo
data shows modest gains over information-redundant
datasets when textual shortcuts exist, yet achieves sub-
stantial improvements when image understanding is nec-
essary. This indicates that ours enhances not only logical
reasoning but also image perception and utilization of
the model.
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Table 2. RL performance comparison: Models trained with only 4k samples of NeSyGeo-CoT show performance gains over the base
models, with the InternVL2.5-4B model exceeding the 8B variant in geometry problem-solving.

GeoQA MathVision MathVerse

Model Angle Area Length Angle Area Length Plane

Qwen2.5-VL-3B 53.3 26.3 26.3 21.1 31.3 20.9 37.0 32.5
Qwen2.5-VL-3B+Ours 55.7 (+2.4) 26.3 (+0.0) 42.1 (+15.8) 26.3 (+5.2) 32.6 (+1.3) 23.5 (+2.6) 37.2 (+0.2) 35.5 (+3.0)

InternVL2.5-4B 61.9 36.8 31.6 26.3 31.5 22.7 31.9 30.7
InternVL2.5-4B+MAVIS 63.5 (+1.6) 31.6 (-5.2) 26.3 (-5.3) 31.6 (+5.3) 37.1 (+5.6) 20.9 (-1.8) 35.3 (+3.4) 33.7 (+3.0)
InternVL2.5-4B+R-CoT 63.3 (+1.4) 31.6 (-5.2) 31.6 (+0.0) 21.1 (-5.2) 31.2 (-0.3) 18.3 (-4.4) 34.3 (+2.4) 28.7 (-2.0)
InternVL2.5-4B+Ours 69.2 (+7.3) 42.1 (+5.3) 36.8 (+5.2) 26.3 (+0.0) 39.9 (+8.4) 24.9 (+2.2) 36.1 (+4.2) 36.7 (+6.0)

InternVL2.5-8B 66.2 36.8 36.8 21.1 36.9 23.1 34.8 36.6

Table 4. Comparison between NeSyGeo-CoT and text-redundant datasets with equivalent data budgets. Models are trained via RL on the
InternVL2.5-4B. The highest value for each metric is underlined. The results show that our dataset improves models’ visual perception
and logical reasoning capabilities.

Text Dominant Vision Only

Dataset Angle Area Length Plane Geometry Angle Area Length Plane Geometry

Base 47.1 27.5 43.4 44.1 24.4 20.9 29.1 27.3

NeSyGeo 49.2 28.6 44.0 45.5 29.0 27.5 34.1 31.8

NeSyGeo+RED 52.8 27.5 44.5 45.1 27.5 25.3 33.0 30.2
R-CoT 51.8 24.2 45.0 46.5 25.9 23.1 31.3 29.2

A key question is whether reducing redundancy and forcing
models to extract visual information improves their geo-
metric reasoning capabilities. We evaluate models on the
MathVerse(Text Dominant), which provides redundant text
descriptions and implicit properties enabling reasoning with-
out images, and the MathVerse(Vision Only) version, where
all information is embedded entirely within the images. For
this comparison, we selected two text-redundant datasets:
NeSyGeo+RED, the original NeSyGeo-CoT dataset supple-
mented with textual equivalents of its image annotations,
and the R-CoT dataset. Results presented in Table 4 show
that our model outperforms the baseline on Text-Dominant
but lags behind other datasets in some metrics. On Vision-
Only, our model surpasses them across all metrics, demon-
strating enhanced geometric reasoning and visual percep-
tion.

5. Conclusion
This paper introduces NeSyGeo, a neurosymbolic frame-
work for automatically synthesizing multimodal geometric
datasets. Our approach transforms the generation process
into a controllable symbolic space using Geo-DSL, maps the
symbolic representation back to image and natural language
spaces via a conversion engine, and then utilizes LLMs for
backwards search and forward solving to produce Q&A
pairs. Using this framework, we construct the NeSyGeo-
CoT and NeSyGeo-Caption datasets, totalling 100k samples.
We also propose NeSyGeo-Test, a comprehensive bench-

mark for evaluating MLLMs’ geometric reasoning capabili-
ties. Our datasets significantly and consistently improve the
reasoning abilities of multiple MLLMs through both SFT
and RL.

Future Work: We intend to extend NeSyGeo to other mul-
timodal domains, such as analytical geometry and visual
question answering. This extensibility will be achieved
by defining new domain-specific languages, correspond-
ing synthesis rules within the symbolic space, and tailored
conversion engines. Furthermore, we plan to develop an au-
tomated symbolic solver capable of conducting search and
validation directly within the symbolic space. This would
remove reliance on LLMs, potentially reducing generation
costs and ensuring complete correctness of the datasets.
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Table 5. Statistics of NeSyGeo-Caption

Statistic Number

Total Counts

Total number of images 70k
Total number of captions 70k

DSL Statement Percentage

One Statement 5.4%
Two Statements 25.8%
Three Statements 34.7%
Four Statements 23.4%
Five Statements 10.7%

Length of Captions

Maximum length (words) 220
Minimum length (words) 34
Average length (words) 73.3
Average length (characters) 385.4

Image Dimensions

Average dimensions (pixels) 723.1 × 724.0

Table 6. Statistics of NeSyGeo-CoT

Statistic Number

Total Counts

Total number of images 15.3k
Total number of Q&A pairs 30.1k

Question Statistics

Length-based type 54.6%
Area-based type 34.4%
Angle-based type 11.1%
Average length (words) 26.9
Average length (characters) 140.6

CoT Statistics

Below four steps 35.4%
Four steps or above 64.5%
Average length (words) 91.8
Average length (characters) 365.9

Image Dimensions

Average dimensions (pixels) 731.0 × 727.4

A. Comparison with Specific Examples of Popular Geometry Datasets
To facilitate comparison of dataset characteristics synthesized by our method and other popular approaches, we showcase
a randomly selected example from NeSyGeo-CoT alongside each of the different approaches in Figure 7. Geometry-3K
is a manually synthesized dataset, while the remaining approaches employ automatic generation techniques. To ensure a
fair comparison, we standardize the text format by removing model-guiding prompts and appending options when present.
Furthermore, we annotate each sample with image pixels and CoT word counts.

Compared to other datasets, our dataset features clear, human-aesthetically pleasing images, high-quality step-by-step
reasoning chains, symbolic form meta-information enabling subsequent image augmentation and mutation, and well-
distributed conditional information between images and text. Additional examples of our NeSyGeo-CoT dataset can be
found in the Appendix 11.

B. Statistics of NeSyGeo-Caption and NeSyGeo-CoT
Detailed numerical statistics and element distribution for the NeSyGeo-Caption and NeSyGeo-CoT datasets are presented in
Table 5 and 6. For element distribution statistics, we randomly sampled 1.8k Geo-DSL sequences corresponding to images
from each dataset, counting the frequency of different geometric elements. To facilitate interpretation, these elements are
converted into corresponding natural language descriptions.

C. Additional Experimental Details and Results
We utilized the VLM-R1 (Shen et al., 2025) framework for RL experiments, conducted on 6 vGPU-32 GB. We set epochs to
2, num generations to 6, batchsize to 1. To enhance the visual perception capabilities of MLLMs, parameters of the language
model and vision modules are set to be trainable.
For SFT experiments, we employed the LLaMA-Factory (Zheng et al., 2024) framework on 2 A800 GPUs with LoRA. We
set the learning rate of 1 × 10−5, LoRA rank of 64, and use Adam optimization. Training on NeSyGeo-Caption used 1
epoch, while NeSyGeo-CoT used 2 epochs.

Table 7 presents the detailed performance of models trained on various automatically synthesized datasets across the
MathVerse benchmark. Models trained using our dataset demonstrate superior performance on most metrics compared to
others, exhibiting substantial performance gains relative to the base model.As shown in Figure 9. We also evaluated model

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

NeSyGeo: A Neuro-Symbolic Framework for Multimodal Geometric Reasoning Data Generation

Figure 7. Comparison NeSyGeo-CoT dataset with other Popular Geometry Datasets. Geometry-3K is a manually synthesized dataset,
while the remaining approaches employ automatic generation techniques. Our dataset features clear, human-aesthetically pleasing images,
high-quality step-by-step reasoning chains, symbolic form meta-information enabling subsequent image augmentation and mutation, and
well-distributed conditional information between images and text.

Table 7. Detailed RL experiments evaluation on MathVerse. Here, ‘AGL’, ‘ARA’, ‘LTH’, and ‘PG’ denote angle, area, length, and plane
geometry, respectively.

Vision Intensive Vision Dominant Vision Only

Model AGL ARA LTH PG AGL ARA LTH PG AGL ARA LTH PG

Qwen2.5-VL-3B 31.6 22.0 34.6 33.3 31.6 17.6 40.7 31.4 30.6 23.1 35.7 32.7
InternVL2.5-4B 36.8 22.0 33.0 31.8 33.2 25.3 33.7 32.9 24.4 20.9 29.1 27.3
InternVL2.5-8B 44.0 23.1 36.3 41.8 40.4 20.9 36.8 37.3 26.4 25.3 31.3 30.6
Qwen2.5-VL-3B+RL 33.7 23.1 36.8 34.7 32.1 20.9 37.4 36.6 32.1 26.4 37.4 35.1
InternVL2.5-4B+RL 45.6 20.9 37.9 40.2 45.1 26.4 36.2 38.2 29.0 27.5 34.1 31.8
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Figure 8. Frequency of different geometric elements. To facilitate interpretation, these elements are converted into corresponding natural
language descriptions.

performance as RL training steps increased when using NeSyGeo-CoT. Most metrics improved with more training steps,
demonstrating the robustness and effectiveness of our datasets.

To investigate visual diversity directly across datasets, we randomly sampled 1k images from each, extracted features
using ResNet, and visualized them via t-SNE. As illustrated in Figure 10, G-LLaVA—having augmented only the textual
components of its base dataset—displays a distinctly non-uniform distribution in the image feature space. Conversely, our
method exhibits uniform feature distributions, underscoring the substantial visual diversity of images generated by our
approach.

D. More Examples of NeSyGeo-CoT Dataset
We present more examples from the NeSyGeo-CoT dataset in Figure 11. Our bidirectional conversion engine can generate
high-quality visual images from a symbolic form based on our Geo-DSL language. To further enhance image diversity, the
engine introduces variability by randomly selecting values for the unit length and applying random rotations to the generated

Figure 9. Model performance on Mathverse as the RL training steps increase. With InternVL2.5-4B as our base model, most metrics
exhibit progressive improvement throughout training, demonstrating the robustness and effectiveness of our datasets.
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Figure 10. T-SNE of the image features of different automatic frameworks. Our datasets exhibit uniform feature distributions, underscoring
the substantial visual diversity of images generated by the NeSyGeo framework.

diagrams during creation. While other visual attributes, such as element and background colours, could also be randomized,
they were set to default values in our current synthesis process. Our symbolic language helps identify parts of the image,
and our conversion process ensures the images are geometrically correct.

Due to LLMs’ powerful search and reasoning capabilities, we obtain diverse Q&A pairs concerning properties like lengths,
angles, or areas alongside high-quality CoT step-by-step. This process, involving backwards search across the geometric
space defined by the symbolic form and forward validation, ensures the correctness of the numerical answers, thereby
enriching textual diversity.

To support evaluation and training paradigms such as curriculum learning, we annotate each sample with a difficulty level.
Given that geometric reasoning tasks primarily require models’ image perception and logical reasoning capabilities, we
scientifically define the difficulty level as

0.3× perception difficulty + 0.7× reasoning difficulty, (1)

where perception difficulty is the number of Geo-DSL statements, and reasoning difficulty is the number of reasoning steps.

Each synthesized sample includes detailed meta-information stored as a symbolic form based on our Geo-DSL language.
This symbolic form accurately describes the geometric setup and offers promising directions for future research. For
instance, valid geometric configurations could be generated by augmenting or mutating existing symbolic forms within
constrained parametric bounds.

E. Details of NeSyGeo-Test Benchmark.
Our NeSyGeo-Test benchmark comprises 2668 Q&A pairs. Consistent with the training set, numerical annotations are
embedded in the image space, with only essential conditions and questions provided in the text. The type of numerical
quantity categorizes the dataset sought: Angle (658 pairs), Shape (730 pairs), and Length (1280 pairs). Shape type includes
shape area and perimeter, while length type includes edge and arc lengths. Based on the difficulty level in D, problem
difficulty is divided into three levels: Easy (1537 pairs), Medium (908 pairs), and Hard (223 pairs). Evaluation results on
current mainstream open-source and closed-source MLLMs are shown in Table 8.

F. Limitations
• Limited Training Paradigm: Our current evaluation of the NeSyGeo dataset relies on a simple training paradigm

to assess its efficacy for automated data generation. This approach lacks advanced training strategies, such as CLIP
alignment or curriculum learning, which restricts the development of specialized models optimized for geometric
reasoning tasks.

• Restricted Domain Scope: The NeSyGeo framework is currently tailored to plane geometry, limiting its generalizability
to other domains. However, we believe that for multimodal datasets in other domains, we can similarly achieve synthesis
by defining symbolic statements, shifting the synthesis process to a controllable symbolic space, and constructing a
symbolic-to-image engine, which we plan to explore in our future work.

• Dependency on External APIs: The construction of Q&A pairs in this study partly relies on the reasoning capabilities
of LLMs. This dependency increases generation costs and introduces potential inconsistencies. We aim to develop an
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Figure 11. Examples of the NeSyGeo-CoT dataset. Each sample comprises a symbolic image definition based on our Geo-DSL language,
a high-quality annotated image, a concise text caption, diverse Q&A pairs, and a detailed reasoning process step-by-step.
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Table 8. NeSyGeo-Test Benchmark on several mainstream MLLMs. The highest accuracy for open-source and closed-source MLLMs
is marked in red and blue, respectively.

Task Type Question Difficulty

Model Param Angle Shape Length Easy Medium Hard Total

Open-source MLLMs

Qwen2.5-VL-3B-Instruct 3B 44.1 31.8 27.8 30.5 29.1 31.9 30.9
Qwen2.5-VL-7B-Instruct 7B 38.3 30.7 32.2 36.8 27.5 32.3 43.3
InternVL2.5-4B 4B 53.8 53.1 53.5 62.9 49.4 32.0 53.4
InternVL2.5-8B 8B 55.9 56.2 55.4 64.5 49.4 43.3 55.8
LLaVA-NeXT-7B 7B 23.7 15.5 15.4 18.6 14.7 13.3 6.4
LLaVA-NeXT-13B 13B 15.7 15.6 16.0 15.8 16.0 15.2 15.8
LLaVA-NeXT-34B 34B 23.7 21.0 18.5 19.1 21.5 19.2 19.9

Closed-source MLLMs

InternVL3-latest – 81.7 65.2 68.3 77.8 62.0 56.7 68.7
GPT-4o-mini – 58.7 62.1 55.7 63.0 54.0 41.7 58.2
Claude-3.5-Sonnet-latest – 68.8 78.0 71.0 77.8 73.2 56.5 74.5
Qwen-VL-plus – 38.5 29.6 31.7 36.6 27.2 29.6 32.8
Gemini-2.0-Flash – 36.8 60.4 67.7 54.3 63.8 61.0 58.1

automated solver that conducts search and validation directly within the symbolic space, thereby removing reliance on
LLMs. This could further reduce costs and ensure complete rigor.

G. Details of Prompts in Reverse Search and Forward Validation
In our automatic synthesis framework, we employ DeepSeek R1 as the expert LLM for reverse search and DeepSeek V3 for
forward validation. The specific prompts utilized are detailed in Figures 12 and 13, respectively. Note that the blue text in
these prompts is substituted with actual content.

H. Detailed Definition of Geo-DSL
Geo-DSL adopts an entity-relation-constraint framework to define geometric elements in plane geometry, encompassing 13
types of points, 7 types of lines, 3 types of angles, and 14 types of shapes. Representative examples of symbolic statements
and their corresponding natural language descriptions are illustrated in Figures 18, 15, 17, and 16. With a single statement,
Geo-DSL uniquely specifies spatial elements, ensuring the accuracy of geometric synthesis while significantly facilitating
parsing and transformation by our conversion engine. This language achieves comprehensive coverage of plane geometry,
including numerical attributes such as lengths and angle measures, enabling precise and complete geometric representations.
By streamlining definitions into concise statements, Geo-DSL reduces the complexity of symbolic processing, enhances the
efficiency of the conversion engine, and supports seamless integration with neural synthesis pipelines. These advantages
make Geo-DSL a robust and versatile solution for generating high-quality multimodal geometric reasoning data.

I. Detailed Actions in Symbolic Spaces
As illustrated in Figure 14, we enumerate all statements within the action space defined by our Geo-DSL. The content within
square brackets denotes annotations for each statement.

As outlined in Algorithm 1, for each step, we first generate three lengths, x, y, and z, along with an angle α, sampled from
predefined ranges. Subsequently, based on the weight matrices A and I , we determine the specific statement to be selected.
The chosen statement, paired with its corresponding numerical values, is then appended to the Geo-DSL sequence. For
different types of actions, we provide a concrete example for each, highlighted with a gray background to indicate the
available action space when the respective element is selected.
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Figure 12. Prompt for Deepseek R1 in reverse search.

Figure 13. Prompt for Deepseek V3 in forward validation.
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Figure 14. Detailed Actions in Symbolic Spaces. Actions can be categorized into four parts based on the type of selected geometric
element: line-based, point-based, shape-based, and angle-based.
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Figure 15. Geo-DSL definitions of line.
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Figure 16. Geo-DSL definitions of shape.
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Figure 17. Geo-DSL definitions of angle.

Figure 18. Geo-DSL definitions of point.
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