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Abstract

Trustworthy prediction in Deep Neural Net-001
works (DNNs), including Pre-trained Language002
Models is important for safety-critical applica-003
tions in the real world. However, DNNs of-004
ten suffer from uncertainty estimation, such005
as miscalibration. In particular, approaches006
that require multiple stochastic inference can007
mitigate this problem, but the expensive cost008
of inference makes them impractical. In this009
study, we propose k-Nearest Neighbor Uncer-010
tainty Estimation (kNN-UE), which is an un-011
certainty estimation method that uses not only012
the distances from the neighbors and also label-013
existence ratio of neighbors. Experiments on014
sentiment analysis, natural language inference,015
and named entity recognition show that our016
proposed method outperforms the baselines or017
recent density-based methods in confidence018
calibration, selective prediction, and out-of-019
distribution detection. Moreover, our analy-020
ses indicate that introducing dimension reduc-021
tion or approximate nearest neighbor search022
inspired by recent kNN-LM studies reduces023
the inference overhead without significantly024
degrading estimation performance when com-025
bined them appropriately.026

1 Introduction027

In order To use Deep Neural Networks (DNNs)028

including Pre-trained Language Models (PLMs)029

in safety-critical regions, uncertainty estimation030

(UE) is important. By improving the predictive031

uncertainty, the prediction will be calibrated (Guo032

et al., 2017),1 or improve selective prediction per-033

formance, which is predictive performance when034

there is a choice to abstain from model predic-035

tion (Galil et al., 2023). On the other hand, DNNs036

often fail to quantify the predictive uncertainty, for037

example, causing miscalibrated prediction (Guo038

et al., 2017). Such UE performance problems can039

1"Calibration" means the confidence of the model aligns
with its accuracy.
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Figure 1: Illustrations of kNN-UE behavior. The orange
circle indicates predicted data instances and other circles
indicate training data instances. kNN-UE gives high
uncertainty when the predicted query representation is
far from examples obtained from the kNN search (left)
and the predicted label is different from the labels of
neighbors (center). kNN-UE outputs low uncertainty
only when the query representation is close to neighbors
and the labels of neighbors contain many of the model’s
predicted label (right).

be mitigated by the PLMs, such as BERT (Devlin 040

et al., 2019) or DeBERTa (He et al., 2021b), that 041

are self-trained on large amounts of data (Ulmer 042

et al., 2022), although, there is still a need for im- 043

provement (Desai and Durrett, 2020). 044

To solve the problem of UE, multiple stochas- 045

tic inferences such as MC Dropout (Gal and 046

Ghahramani, 2016) and Deep Ensembles (Lak- 047

shminarayanan et al., 2017) are generally effec- 048

tive. On the other hand, these methods require 049

multiple stochastic inferences for a single data in- 050

stance, which leads to high computational cost, 051

and makes them impractical for real world ap- 052

plication. To obtain reasonable predictive uncer- 053

tainty without multiple inferences, Temperature 054

Scaling (Guo et al., 2017) is generally used, which 055

scales logits with a temperature parameter. Fur- 056

thermore, density-based methods such as Density 057

Softmax (Bui and Liu, 2024) and Density Aware 058

Calibration (DAC) (Tomani et al., 2023), which 059

correct the model outputs based on estimated den- 060

sity, have achieved promising very recent years in 061
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terms of UE performance and inference cost. How-062

ever, both Density Softmax and DAC only use the063

density of training data. Therefore, we can see that064

these methods only capture the concept of epis-065

temic uncertainty that comes from the knowledge066

of the model. To improve the UE performance,067

we also need to consider aleatoric uncertainty that068

comes from the variance of the data (Hüllermeier069

and Waegeman, 2019).070

In this study, we propose k-Nearest Neighbor071

Uncertainty Estimation (kNN-UE), a new density-072

based UE method that does not require multiple073

inferences. kNN-UE uses the labels of neighbors074

obtained from kNN search to correct the confidence075

as illustrated in Figure 1. Our method weights log-076

its according to the score from the distance between077

the input example and its neighbors in the datastore078

created by the training data and the ratio of the079

model’s predicted label matched with the labels in080

neighbors. As a result, our method requires only a081

single forward inference of the model.082

First, our experiments show that kNN-UE im-083

proves the UE performance of existing baselines in084

sentiment analysis, natural language inference, and085

named entity recognition in both in-domain and086

out-of-domain settings by combining neighbor la-087

bel information and distances from neighbors. Sec-088

ond, to solve the latency in kNN-UE for token-level089

tasks, such as sequence-labeling based name entity090

recognition, we show that approximate kNN search091

or dimension reduction in kNN-UE improves the092

inference speed without degrading UE performance093

much more, while combining them leads to degrad-094

ing the uncertainty performance. Our code will be095

available after acceptance.096

2 Related Work097

Uncertainty Estimation for Natural Language098

Processing Tasks Studies about UE for NLP099

tasks are limited when compared with those for100

image datasets. Kotelevskii et al. (2022) has shown101

excellent performance in classification with rejec-102

tion tasks and out-of-distribution detection tasks103

using uncertainty scores using density estimation104

results. Vazhentsev et al. (2022) performed mis-105

classification detection using Determinantal point106

processes (Kulesza and Taskar, 2012), spectral nor-107

malization, Malahanobis distance and loss regular-108

ization in text classification and NER. However,109

these are still focusing only on the feature represen-110

tation or the density, not the labels of the neighbors.111

k-Nearest Neighbor Language Models / Ma- 112

chine Translation k-Nearest Neighbor Lan- 113

guage Model (kNN-LM) (Khandelwal et al., 2020) 114

has been proposed, which performs linear interpo- 115

lation of kNN probability based on distance from 116

neighbors and base model probability, in the lan- 117

guage modeling task. k-Nearest Neighbor Ma- 118

chine Translation (kNN-MT) applied the kNN- 119

LM framework to machine translation (Khandelwal 120

et al., 2021). kNN-LM and kNN-MT have been 121

successful because they enhance predictive perfor- 122

mance through the memorization and use of rich 123

token representations of pre-trained language mod- 124

els and mitigate problems such as a sparsity comes 125

from low-frequency tokens (Zhu et al., 2023). The 126

main issue on kNN-LM and kNN-MT is the in- 127

ference overhead, and there are several studies to 128

solve this problem. He et al. (2021a) employs data- 129

store compression, adaptive retrieval, and dimen- 130

sion reduction to reduce computational overhead 131

with retaining perplexity. Deguchi et al. (2023) 132

dramatically improves decoding speed by dynam- 133

ically narrowing down the search area based on 134

the source sentence. We investigate that whether 135

UE performance in kNN-UE can keep or not with 136

reducing inference time by introducing some of the 137

speed-up techniques established in kNN-LM/MT. 138

3 Preliminary 139

In this section, we explain the definitions of sym- 140

bols and existing density-based methods. Then, we 141

introduce the proposed kNN-UE in Section 4. 142

3.1 Definitions 143

In multiclass classification, we assume a dataset 144

D = {(xn, yn)}Nn=1 consisting of N examples, 145

where yn ∈ {1, 2, . . . , J} denotes its correspond- 146

ing class label among J possible classes.2 We use 147

the trained neural network feature extractor f and 148

the classifier g for classification, where f(x) ∈ RD. 149

g gives us the logits z = g(f(x)) and we obtain 150

the confidence p = softmax(z). 151

3.2 Density Softmax 152

Density Softmax (Bui and Liu, 2024) obtains con- 153

fidence by weighting logits with normalized log- 154

likelihood from a trained density estimator. In this 155

study, we use RealNVP (Dinh et al., 2017) as the 156

2In the case of sequence labeling, we can interpret the
number of data N as the product of the raw number of data
instances and the sequence length.
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density estimator (details for the density estima-157

tor are in Appendix A). β is the parameters of158

the density estimator; p(f(x);β) is the normal-159

ized log-likelihood from the density estimator, then160

the corrected confidence is written as161

p(yi|x) =
exp (p(f(x);β) · zi)∑J
j=1 exp (p(f(x);β) · zj)

. (1)162

In Density Softmax, the closer the normalized163

log-likelihood to zero, the closer the prediction to164

Uniform distribution. Density Softmax achieves165

reasonable latency and competitive UE perfor-166

mance with state-of-the-art methods at the cost167

of demanding the density estimator training and168

multiple base model training.169

3.3 Density Aware Calibration (DAC)170

DAC (Tomani et al., 2023) scales the logits by us-171

ing sample-dependent temperature Φ(x, w)172

p(yi|x) =
exp (zi/Φ(x, w))∑J
j=1 exp (zj/Φ(x, w))

(2)173

where174

Φ(x, w) =
L∑

l=1

wlsl + w0. (3)175

w1...wL are the weights for every layer of the base176

model, sl is the averaged distance from kNN search177

on l-th layer, and w0 is the bias term. w0...wL are178

optimized using the L-BFGS-B method (Liu and179

Nocedal, 1989) based on the loss in the validation180

set. In the original DAC paper, the UE performance181

tends to improve with the increase in the number of182

layer’s representation (Tomani et al., 2023). There-183

fore, we use all the hidden representations in each184

layer of the base PLMs.185

4 Proposed Method: k-Nearest Neighbor186

Uncertainty Estimation (kNN-UE)187

The main idea of our proposed method, kNN-UE,188

stems from the notion that the density-based UE189

methods can be further enhanced by using label190

information about the training data instances that191

make up the density.192

To construct the density, we used kNN, which193

is used in kNN-based out-of-distribution detec-194

tion (Sun et al., 2022) or DAC (Tomani et al., 2023)195

for UE. They performed out-of-distribution detec-196

tion or confidence calibration using only the feature197

representation from the classifier when calculating198

the uncertainty scores including confidence. These 199

are non-parametric methods that do not require any 200

assumptions about the training data distribution 201

unlike the density-based methods such as Density 202

Softmax (Bui and Liu, 2024), which rely on some 203

density estimators. On the other hand, recent kNN 204

based DAC relies only on the distances to neigh- 205

bors. Considering that the uncertainty is mainly 206

composed of epistemic uncertainty and aleatoric 207

uncertainty, DAC represents only the epistemic un- 208

certainty, which limits the improvement of UE per- 209

formance. 210

In order to take into accoount the aleatoric un- 211

certainty, our kNN-UE explicitly includes the label 212

agreement information of the predicted instance 213

and its neighbour examples when calculating the 214

confidence. More specifically, we regard the pre- 215

diction as more reliable only when the prediction 216

is in a region where training data is dense and the 217

predicted label and the labels of the data instances 218

that make up the dense region is mostly the same, 219

as illustrated in the right part of Figure 1. Other- 220

wise, for example, if there are a lot of discrepancy 221

in the neighbor labels and the predicted label, we 222

treat the prediction as unreliable, indicated in the 223

middle of Figure 1. 224

In our kNN-UE, we introduce two terms: one 225

related to the density of the training data and one 226

related to the degree of agreement of the predicted 227

data and neighbor labels. Confidence of i-th label 228

obtained by kNN-UE is following formula: 229

p(yi|x) =
exp(WkNN(ŷ) · zi)∑J
j=1 exp(WkNN(ŷ) · zj)

(4) 230

where 231

WkNN(ŷ) =
α

K

K∑

k=1

exp

(
−dk

τ

)

︸ ︷︷ ︸
distance term

232

+ λ

(
S(ŷ)

K
+ b

)

︸ ︷︷ ︸
label term

. (5) 233

K is the number of neighbors from kNN search, 234

S(ŷ) =
∑K

k=1 1(ŷ = yk) is the count when the 235

predicted label ŷ and the label of the k-th neighbor 236

yk is same, dk is the distance between the k-th f(x) 237

representation obtained by kNN search and the 238

representations of training data.3 The parameters 239

3Note that kNN-UE is also "accuracy-preserving" same as
DAC because WkNN(ŷ) is a scalar, not a class-wise score.
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density estimator (details for the density estima-
tor are in Appendix A). � is the parameters of
the density estimator; p(f(x);�) is the normal-
ized log-likelihood from the density estimator, then
the corrected confidence is written as

p(yi|x) =
exp (p(f(x);�) · zi)PJ

j=1 exp (p(f(x);�) · zj)
. (1)

In Density Softmax, the closer the normalized
log-likelihood to zero, the closer the prediction to
Uniform distribution. Density Softmax achieves
reasonable latency and competitive UE perfor-
mance with state-of-the-art methods at the cost
of demanding the density estimator training and
multiple base model training.

3.3 Density Aware Calibration (DAC)

DAC (Tomani et al., 2023) scales the logits by us-
ing sample-dependent temperature �(x, w)

p(yi|x) =
exp (zi/�(x, w))

PJ
j=1 exp (zj/�(x, w))

(2)

where

�(x, w) =
LX

l=1

wlsl + w0. (3)

w1...wL are the weights for every layer of the base
model, sl is the averaged distance from kNN search
on l-th layer, and w0 is the bias term. w0...wL are
optimized using the L-BFGS-B method (Liu and
Nocedal, 1989) based on the loss in the validation
set. In the original DAC paper, the UE performance
tends to improve with the increase in the number of
layer’s representation (Tomani et al., 2023). There-
fore, we use all the hidden representations in each
layer of the base PLMs.

4 Proposed Method: k-Nearest Neighbor
Uncertainty Estimation (kNN-UE)

The main idea of our proposed method, kNN-UE,
stems from the notion that the density-based UE
methods can be further enhanced by using label
information about the training data instances that
make up the density.

To construct the density, we used kNN, which
is used in kNN-based out-of-distribution (OOD)
detection (Sun et al., 2022) or DAC (Tomani et al.,
2023) for UE. They performed OOD detection or
confidence calibration using only the feature repre-
sentation from the classifier when calculating the

uncertainty scores including confidence. These are
non-parametric methods that do not require any
assumptions about the training data distribution
unlike the density-based methods such as Density
Softmax (Bui and Liu, 2024), which rely on some
density estimators. On the other hand, recent kNN
based DAC relies only on the distances to neigh-
bors. Considering that the uncertainty is mainly
composed of epistemic uncertainty and aleatoric
uncertainty, DAC represents only the epistemic un-
certainty, which limits the improvement of UE per-
formance.

In order to take into accoount the aleatoric un-
certainty, our kNN-UE explicitly includes the label
agreement information of the predicted instance
and its neighbour examples when calculating the
confidence. More specifically, we regard the pre-
diction as more reliable only when the prediction
is in a region where training data is dense and the
predicted label and the labels of the data instances
that make up the dense region is mostly the same,
as illustrated in the right part of Figure 1. Other-
wise, for example, if there are a lot of discrepancy
in the neighbor labels and the predicted label, we
treat the prediction as unreliable, indicated in the
middle of Figure 1.

In our kNN-UE, we introduce two terms: one
related to the density of the training data and one
related to the degree of agreement of the predicted
data and neighbor labels. Confidence of i-th label
obtained by kNN-UE is following formula:

p(yi|x) =
exp(WkNN(ŷ) · zi)PJ

j=1 exp(WkNN(ŷ) · zj)
(4)

where

WkNN(ŷ) =
↵

K

KX

k=1

exp

✓
�dk

⌧

◆

| {z }
distance term

+ �

 PK
k=1 (ŷ = yk)

K
+ b

!

| {z }
label term

. (5)

WkNN(ŷ) =
↵

K

KX

k=1

exp

✓
�dk

⌧

◆
+ �

 PK
k=1 (ŷ = yk)

K
+ b

!
.

(6)

K is the number of neighbors from kNN search,
S(ŷ) =

PK
k=1 (ŷ = yk) is the count when the

predicted label ŷ and the label of the k-th neighbor
yk is same, dk is the distance between the k-th f(x)

Base Model Prediction

Softmax Final Confidence: 0.71

Figure 2: A diagram of kNN-UE when K = 3 and the estimated hyperparameters are α = 0.5, τ = 1.0, λ = 0.5
and b = 0.1. A datastore is constructed with the representations of the training data as keys and their labels as
values. The distances of the nearest examples from the test representation, and the neighbor labels are aggregated
into WkNN(ŷ). Finally we obtain calibrated confidence by correcting the raw logits with WkNN(ŷ) as in Eq. 4.

Tasks Datasets Nclass Train Val Test
SA IMDb 2 25,000 12,500 12,500

Yelp 2 - - 19,000
NLI MNLI 3 392,702 4,907 4,908

SNLI 3 - - 9,824
NER OntoNotes 5.0 (bn) 37 10,683 1,295 1,357

OntoNotes 5.0 (nw) 37 - - 2,327
OntoNotes 5.0 (tc) 37 - - 1,366

Table 1: Dataset Statistics. Bolds indicate In-domain.

α, τ , λ and b are optimized using the L-BFGS-B240

method based on the loss in the validation set.241

The lower both distance term and label term and242

the closer WkNN(ŷ) is to zero, the closer the pre-243

diction is to Uniform distribution, which allows244

us to better estimate confidence of the prediction.245

In this study, we also conduct experiments with-246

out the label term in Equation 5, to emphasize the247

importance of kNN neighbor labels in UE. We sum-248

marize a diagram of kNN-UE in Figure 2.249

5 Experimental Settings250

5.1 Tasks and Datasets251

We measure the UE performance on Sentiment252

Analysis (SA), Natural Language Inference (NLI),253

and Named Entity Recognition (NER) in In-254

domain (ID) and Out-of-Domain (OOD) settings.255

Dataset statistics are described in Table 1.256

Sentiment Analysis (SA) is a task to classify257

whether the text sentiment is positive or negative.258

The IMDb movie review dataset (Maas et al., 2011) 259

is treated as ID, and the Yelp restaurant review 260

dataset (Zhang et al., 2015) is treated as OOD. 261

Natural Language Inference (NLI) classifies 262

the relationship between a hypothesis sentence and 263

a premise sentence. We treat the Multi-Genre Nat- 264

ural Language Inference (MNLI) dataset (Williams 265

et al., 2018) as ID and the Stanford Natural Lan- 266

guage Inference (SNLI) dataset (Bowman et al., 267

2015) as OOD. 268

Named Entity Recognition (NER) extracts the 269

named entities, such as a person, organization, or 270

location. The NER task was carried out in the 271

framework of sequence labeling. We regard the 272

OntoNotes 5.0 dataset (Pradhan et al., 2013) broad- 273

cast news (bn) domain as ID, and newswire (nw) 274

and telephone conversation (tc) domains as OOD. 275

5.2 Existing Methods 276

We consider the simple baselines: Softmax Re- 277

sponse (SR) (Cordella et al., 1995), Temperature 278

Scaling (TS) (Guo et al., 2017), Label Smooth- 279

ing (Miller et al., 1996; Pereyra et al., 2017) and 280

MC Dropout (Gal and Ghahramani, 2016). In addi- 281

tion, we use the recent baselines for UE: Spectral- 282

Normalized Gaussian Process (SNGP) (Liu et al., 283

2020), Posterior Networks (PN) (Charpentier 284

et al., 2020), Mahalanobis Distance with Spectral- 285

Normalized Network (MDSN) (Vazhentsev et al., 286
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2022), E-NER (Zhang et al., 2023), Density Soft-287

max (Bui and Liu, 2024), and DAC (Tomani et al.,288

2023). Details on baselines are in Appendix B.289

We have also experimented a variant of kNN-UE290

without the label term in Eq. 5 denoted by "w/o291

label".292

5.3 Training Setting293

In all experiments, we train and evaluate the mod-294

els on a single NVIDIA A100 GPU with 40GB295

of memory. We used DeBERTaV3BASE
4 and296

mDeBERTaV3BASE
5 (He et al., 2023), as the297

transformer encoder from transformers (Wolf298

et al., 2020) pre-trained model checkpoints. Cross-299

entropy loss is minimized by AdamW (Loshchilov300

and Hutter, 2019) with a linear scheduler (Goyal301

et al., 2017). The batch size is 32, and gradient302

clipping is applied with the maximum norm of 1.303

The initial learning rate was set to 1e-5. All experi-304

ments are run five times, and we report the mean305

and standard deviation of the scores.306

Detailed settings for the density based methods307

including kNN search are given in Appendix C.308

5.4 Evaluation Metrics309

To evaluate the confidence calibration performance,310

we choose Expected Calibration Error (ECE) and311

Maximum Calibration Error (MCE). For selec-312

tive prediction, we evaluate Area Under the Re-313

ceiver Operator Characteristic curve (AUROC)314

and Excess-Area Under the Risk-Coverage curve315

(E-AURC). Evaluation metrics computation details316

are described in Appendix D.317

6 Results318

6.1 Sentiment Analysis319

In SA, we evaluate the UE performance (calibration320

and selective prediction) and the out-of-distribution321

detection performance.322

6.1.1 Confidence Calibration and Selective323

Prediction324

First, we present the UE results for sentiment anal-325

ysis. Table 2 shows the results of in-domain and326

out-of-domain UE. kNN-UE consistently outper-327

forms existing methods in terms of ECE, MCE, and328

E-AURC. In AUROC, LS outperforms in OOD set-329

ting, but kNN-UE outperforms existing methods330

in ID setting. Furthermore, the proposed method331

4microsoft/deberta-v3-base
5microsoft/mdeberta-v3-base

clearly outperforms DAC that uses an ensemble 332

of neighbor search results for each hidden repre- 333

sentation, by adding the label term. The lower UE 334

performance than kNN-UE in DAC is probably due 335

to the difficulty in optimizing hyperparameters by 336

using many layers. 337

6.1.2 Out-of-Distribution Detection 338

Following the previous study (Tomani et al., 2023), 339

we carried out the experiments in the out-of- 340

distribution detection task. Out-of-distribution de- 341

tection is the task that determines whether the data 342

is in-domain or not. This task is based on the 343

intuition that we want to return predictions with 344

high confidence in ID but with low confidence 345

in predictions in OOD. We evaluated the out-of- 346

distribution detection performance by using maxi- 347

mum softmax probability as the uncertainty score, 348

and report FPR@95 (the FPR when the TPR is 349

95%), AUROC, Area Under the Precision-Recall 350

curve (AUPR)-in and AUPR-out. AUPR-in indi- 351

cates the AUPR score when ID samples are treated 352

as positive; AUPR-out is vice versa. 353

Table 4 shows the out-of-distribution detection 354

results when using IMDb/Yelp Polarity datasets 355

as ID/OOD, respectively, in mDeBERTaV3BASE 356

model. kNN-UE consistently shows the out-of- 357

distribution detection performance improvement. 358

359

6.2 Natural Language Inference 360

We show the results of in-domain and out-of- 361

domain UE in NLI task using the DeBERTaV3 362

model in Table 3. Similar to Section 6.1.1, kNN- 363

UE shows the best UE performance, especially 364

when including the label term. Galil et al. (2023) 365

have reported that improving calibration perfor- 366

mance does not necessarily lead to improving se- 367

lective prediction performance, but our proposed 368

method improves both type of metrics. On the other 369

hand, the degree of improvement is greater for cal- 370

ibration performance. Specifically, the largest im- 371

provement is obtained on SNLI, where kNN-UE 372

reduces MCE by more than 31.49 % pt compared 373

to SR. Additional experimental results on the Brier 374

score are in Appendix E. 375

6.3 Named Entity Recognition 376

To evaluate NLP tasks other than simple multi-class 377

classification, we evaluate our proposed method for 378

UE in NER. Since NER focuses on entities, it is 379

necessary to obtain the confidence of the entity. 380

5



Methods IMDb (In-domain) Yelp (Out-of-domain)
ECE (↓) MCE (↓) AUROC (↑) E-AURC (↓) ECE (↓) MCE (↓) AUROC (↑) E-AURC (↓)

SR 4.42±0.41 24.06±3.52 98.35±0.10 10.60±2.81 4.69±1.20 21.02±6.74 98.15±0.39 11.84±3.15
TS 4.10±0.31 20.43±5.01 98.45±0.21 11.36±2.82 5.10±1.19 19.70±1.35 98.20±0.46 12.91±4.12
LS 1.88±0.41 21.50±4.53 98.36±0.45 14.52±7.24 2.53±0.43 16.47±3.51 98.30±0.45 12.90±6.09
MC Dropout 4.28±0.27 23.74±3.52 98.57±0.12 9.17±1.74 4.33±0.54 20.17±2.79 98.28±0.25 10.01±2.01
SNGP 4.18±0.30 22.69±4.83 98.53±0.15 9.95±1.17 4.89±0.59 21.28±4.68 98.10±0.27 11.42±2.14
PN 4.28±0.43 24.43±0.20 98.06±0.27 10.99±5.63 4.69±0.35 24.41±0.32 97.56±0.25 15.82±3.94
MDSN 4.45±0.43 23.97±5.05 98.48±0.08 10.25±0.86 5.32±0.92 21.33±2.91 98.00±0.20 11.12±3.53
Density Softmax 4.23±0.36 27.10±6.92 98.34±0.08 11.39±2.48 4.99±0.48 21.98±3.68 98.09±0.24 13.05±2.72
DAC 1.51±0.33 14.17±2.73 98.36±0.37 12.72±6.15 2.35±0.12 6.44±2.23 97.86±0.60 14.26±5.90
kNN-UE (w/o label) 1.33±0.36 13.13±3.24 98.65±0.13 9.36±0.36 2.23±0.29 6.33±2.76 98.27±0.11 10.97±0.91
kNN-UE 0.95±0.12 9.02±1.39 98.64±0.12 7.97±0.61 1.45±0.15 4.17±1.52 98.23±0.39 9.92±0.61

Table 2: ECE, MCE, AUROC, and E-AURC results about SA task on IMDb (In-domain) and Yelp (Out-of-domain)
for mDeBERTaV3BASE model. Bolds indicate the best result.

Methods MNLI (In-domain) SNLI (Out-of-domain)
ECE (↓) MCE (↓) AUROC (↑) E-AURC (↓) ECE (↓) MCE (↓) AUROC (↑) E-AURC (↓)

SR 8.36±0.61 37.61±7.53 97.03±0.12 31.29±2.23 9.77±0.55 36.61±14.05 96.07±0.17 37.62±0.67
TS 2.73±1.86 15.81±11.05 97.06±0.02 31.24±1.86 3.92±1.79 18.13±10.69 96.08±0.13 38.40±2.06
LS 2.89±0.14 28.64±7.90 96.56±0.55 37.98±12.64 3.97±0.45 23.18±6.17 95.61±0.40 44.18±9.18
MC Dropout 8.13±0.65 30.17±6.83 96.97±0.06 32.31±2.25 9.62±0.53 28.90±5.03 96.10±0.11 37.19±2.99
SNGP 10.45±0.56 35.42±13.89 95.91±0.12 42.03±2.72 14.28±1.04 31.16±3.42 93.40±0.44 63.21±6.84
PN 33.83±0.51 37.10±0.71 96.96±0.10 26.33±1.22 32.01±0.61 35.37±0.58 95.57±0.29 40.94±4.49
MDSN 8.34±0.46 29.04±6.43 97.07±0.14 32.03±2.29 9.44±0.47 38.59±13.94 96.11±0.12 38.91±3.06
Density Softmax 8.42±0.43 36.20±5.78 97.03±0.10 32.56±3.29 10.09±0.40 33.59±4.57 95.96±0.19 41.43±2.25
DAC 1.42±0.30 18.79±10.81 96.92±0.10 33.89±2.60 2.27±0.16 11.55±3.48 96.08±0.07 40.23±3.00
kNN-UE (w/o label) 1.28±0.43 16.53±11.45 97.09±0.10 30.22±2.80 2.12±0.36 10.00±6.07 96.12±0.16 37.33±4.70
kNN-UE 1.41±0.47 10.77±2.34 97.18±0.09 23.83±1.29 1.80±0.37 5.12±1.47 96.00±0.22 34.97±2.48

Table 3: ECE, MCE, AUROC, and E-AURC results about NLI task on MNLI (In-domain) and SNLI (Out-of-domain)
for DeBERTaV3BASE model.

Methods FPR@95 (↓) AUROC (↑) AUPR-In (↑) AUPR-Out (↑)
SR 82.51±9.49 63.18±5.14 69.51±2.57 54.70±8.48
TS 83.12±7.50 65.63±3.64 70.99±2.02 56.19±6.11
LS 86.88±4.27 62.17±2.83 69.50±1.51 51.38±3.81
MC Dropout 87.33±3.38 63.96±4.09 70.13±2.39 53.18±5.41
SNGP 81.92±3.46 63.27±3.07 68.83±2.10 55.91±3.20
PN 82.84±5.11 67.54±4.29 66.59±2.45 55.32±5.26
Density Softmax 87.54±3.14 58.73±4.33 67.34±2.57 49.19±4.36
DAC 84.98±4.19 64.65±6.18 70.69±3.59 54.81±7.29
kNN-UE (w/o label) 75.87±2.16 70.44±1.70 74.77±1.44 63.39±2.24
kNN-UE 73.55±5.01 71.11±2.92 73.80±2.19 65.01±3.45

Table 4: Out-of-distribution detection results on
mDeBERTaV3BASE model using IMDb/Yelp Polar-
ity as ID/OOD datasets, respectively.

In this research, we use the product of the confi-381

dence of the tokens that construct the entity as the382

confidence of the entity.383

Table 5 shows the results of in-domain and out-384

of-domain UE using the OntoNote 5.0 dataset in385

the mDeBERTaV3 model. kNN-UE shows the best386

performance in 4 cases, which are ECE or MCE,387

often resulting in large improvements compared388

to the SR. On the other hand, E-AURC in NER389

is consistently better without using the kNN-UE390

label term. E-NER which is a recent UE method391

that can be used for confidence calibration and392

selective prediction in NER, is close to kNN-UE in393

selective prediction performance at the entity level,394

but calibration performance is not good.395

kNN-UE shows good UE performance even396

when the target domain is relatively far from source 397

domain bn, such as tc. We have thought that kNN- 398

UE might not work if the prediction is too far from 399

the training data distribution. This is because if the 400

prediction is too far from the training data, the rep- 401

resentation of the prediction from the model will 402

be unreliable when compared to the prediction in 403

the same domain as the training data. In general, 404

methods based on feature distances assume that 405

they contain information relevant to the correct- 406

ness of the prediction (Postels et al., 2022). We 407

hypothesize that this problem could be mitigated 408

in our experiments because the domains that the 409

base models do not recognize are limited in the 410

NLP community where there are many strong pre- 411

trained models based on self-supervised learning 412

such as DeBERTaV3. 413

6.4 Case Study: Effects of the Label Term in 414

kNN-UE for a Misclassified Example 415

Table 6 shows SR and kNN-UE confidences, and 416

S(ŷ) in kNN-UE for a misclassified example. In 417

this case, SR and kNN-UE make incorrect predic- 418

tion even though the true label is negative. How- 419

ever, the confidence is appropriately reduced by 420

including the distances from the neighbors in kNN- 421

UE, compared to SR. Moreover, by using the infor- 422
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Methods bn (In-domain) nw(Out-of-domain) tc(Out-of-domain)
ECE (↓) MCE (↓) E-AURC (↓) ECE (↓) MCE (↓) E-AURC (↓) ECE (↓) MCE (↓) E-AURC (↓)

SR 7.79±0.53 50.07±24.15 21.90±1.31 17.05±0.69 37.06±3.13 81.49±4.17 21.20±2.03 42.60±5.84 76.05±5.72
TS 5.34±0.43 75.71±21.96 19.63±1.22 12.76±0.62 26.57±3.97 72.90±4.72 19.69±0.95 47.72±7.34 71.87±8.83
LS 6.46±0.74 50.99±26.73 24.93±1.19 14.78±0.61 30.54±2.84 81.50±6.98 20.99±2.16 65.40±17.16 76.65±7.33
MC Dropout 6.76±0.64 53.13±26.07 19.91±3.39 15.27±1.01 33.60±4.93 77.21±3.72 21.93±1.63 56.56±12.32 75.68±9.30
E-NER 7.98±0.42 61.87±27.06 19.44±1.81 17.42±0.88 40.46±5.33 74.32±4.47 25.42±2.09 59.16±10.33 72.00±6.57
Density Softmax 7.32±0.25 59.05±27.76 25.17±2.63 16.10±0.62 44.66±21.67 80.14±8.50 24.40±1.84 62.50±10.46 80.06±6.27
DAC 1.62±0.42 42.96±28.25 21.47±2.90 7.91±0.75 25.28±5.15 75.24±2.43 14.42±1.57 47.92±20.98 80.72±8.19
kNN-UE (w/o label) 3.37±0.71 33.15±3.65 17.63±0.66 8.78±0.62 24.91±1.81 70.10±4.03 14.61±0.67 35.26±7.16 65.41±8.11
kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 7.50±0.42 16.53±2.61 74.27±5.43 14.15±0.33 39.84±6.02 71.81±9.04

Table 5: ECE, MCE, and E-AURC results about NER on OntoNotes 5.0 dataset for mDeBERTaV3BASE model.

Text As long as you go into this movie with
the understanding that it’s not going to
contain any historical fact whatsoever, it’s
not bad.<br /><br />It’s on par with Sam
Raimi’s Ḧercules: The Legendary Jour-
neys̈, as far as plot, acting, humour, and
production values are concerned. You’ll
see the similarities at several points. Most
of the fight scenes are not as good however
and the film suffers from that. ...

Label negative
SR & kNN-UE
pred.

positive

SR conf. 0.76
kNN-UE
(w/o label) conf.

0.71

kNN-UE conf. 0.60
S(ŷ) 11

Table 6: An example of a part of text to be predicted in
ID setting, answer, predicted label in SR & kNN-UE
and their confidences, and S(ŷ) in kNN-UE.

Methods SNLI OntoNotes 5.0 nw

SR 21.59±0.76 5.75±0.27
TS 21.64±0.07 5.79±0.17
LS 21.70±0.07 5.80±0.19
MC Dropout 396.86±1.10 101.98±0.83
SNGP 24.59±0.08 -
PN 23.26±0.05 -
MDSN 23.39±0.85 -
E-NER - 5.78±0.61
Density Softmax 22.02±0.05 6.02±0.07
DAC 2346.62±36.06 326.00±1.41
kNN-UE (w/o label) 23.02±0.04 10.36±0.21
kNN-UE 23.07±0.05 10.48±0.12

Table 7: Inference time [s] on SNLI test set and
OntoNotes 5.0 nw test set. Other results on ID datasets
are in Appendix H.

mation that there are only 11 examples in K = 32423

neighbors with the same label as the predicted la-424

bel among the neighbors obtained by kNN search,425

our kNN-UE shows that the confidence is further426

reduced.427

7 Analysis: Impact of Efficient Nearest428

Neighbor Search Techniques429

In this section, we investigate the inference time430

and UE performance when applying approximate431

nearest neighbor search techniques and dimension432

reduction when executing kNN search in kNN-UE.433

As shown in Table 7, in the sequence labeling based 434

NER that requires the kNN search execution per 435

token, it takes twice as much inference time as 436

SR. On the other hand, in kNN-LM (Khandelwal 437

et al., 2020), dimension reduction and approximate 438

kNN search techniques are effective to improve 439

inference speed while maintaining perplexity (He 440

et al., 2021a; Xu et al., 2023). Therefore, inspired 441

by these works for faster kNN-LM, we investigate 442

how the approximate nearest neighbor search tech- 443

niques, such as Product Quantization (Jégou et al., 444

2011) or clustering, and dimension reduction af- 445

fect the UE and inference speed of our proposed 446

method: kNN-UE. 447

Product Quantization Product Quantization 448

(PQ) (Jégou et al., 2011) is a data compression 449

technique based on vector quantization. In PQ, a 450

D-dimensional representation is divided into N sub 451

subvectors and quantized by performing k-means 452

clustering on the vectors in each subspace. Vector 453

quantization can significantly reduce the amount 454

of memory occupied by vectors.6 In addition, by 455

calculating the distance between compressed PQ 456

codes, we can efficiently calculate the estimated 457

value of the original Euclidean distance. 458

Clustering The original kNN-LM uses an in- 459

verted file index (IVF) technique that speeds up 460

the search by dividing the representation into N list 461

clusters by k-means and searching for neighbors 462

based on Nprobe centroids. In this study, we evalu- 463

ate the UE performance and inference speed when 464

the number of clusters N list = 100. 465

Dimension Reduction In general, Transformer- 466

based models such as PLM have high-dimensional 467

token representations. In high-dimensional spaces, 468

nearest neighbor search often suffer from the curse 469

of dimensionality. To reduce this problem, we ap- 470

ply dimension reduction to kNN-UE similar to He 471

6For example, raw datastore in kNN-UE is 636MB on
OntoNotes 5.0 bn, but PQ reduces it to 10MB.
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OntoNotes 5.0 bn (In-domain) OntoNotes 5.0 nw (Out-of-domain)
Methods ECE (↓) MCE (↓) E-AURC (↓) time [s] ECE (↓) MCE (↓) E-AURC (↓) time [s]
SR 7.79±0.53 50.07±24.15 21.90±1.31 2.49±0.08 17.05±0.69 37.06±3.13 81.49±4.17 5.75±0.27
kNN-UE (w/o label) 3.37±0.71 33.15±3.65 17.63±0.66 4.94±0.10 8.78±0.62 24.91±1.81 70.10±4.03 10.36±0.21
kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 4.99±0.07 7.50±0.42 16.53±2.61 74.27±5.43 10.48±0.12
+PQ (N sub = 32) 1.96±0.31 31.33±18.74 20.23±1.27 3.32±0.05 7.57±0.45 16.43±2.73 74.38±5.36 7.23±0.16
+Clustering (Nprobe = 32) 1.92±0.31 28.55±11.24 20.13±1.22 3.31±0.06 7.60±0.41 17.12±2.35 74.34±5.35 7.33±0.21
+DR (Dpca = 128) 2.14±0.37 33.52±10.84 20.12±1.26 2.87±0.04 8.08±0.53 24.03±5.46 74.50±5.42 6.20±0.20
Only DR (Dpca = 128) 1.80±0.36 27.85±13.80 20.13±1.29 3.41±0.10 7.54±0.45 16.42±2.73 74.30±5.44 7.75±0.24

Table 8: ECE, MCE, E-AURC and inference time results about NER on OntoNotes 5.0 bn (In-domain) and
OntoNotes 5.0 nw (Out-of-domain) for mDeBERTaV3BASE model when applied PQ, clustering, and dimension
reduction sequentially. DR indicates dimension reduction. For comparison, we also present the results when
dimension reduction is only applied to kNN-UE.

Methods OntoNotes 5.0 bn OntoNotes 5.0 nw

kNN-UE 100.0 100.0
+PQ (N sub = 32) 21.30 51.68
+Clustering (Nprobe = 32) 18.60 11.04
+DR (Dpca = 128) 0.02 0.04
Only DR (Dpca = 128) 43.98 20.35

Table 9: Coverages when PQ, clustering, and PCA are
applied sequentially to the example indices obtained
by default kNN-UE. Results when applying dimension
reduction by PCA individually are also presented for
reference.

et al. (2021a). In this study, we use Principal Com-472

ponent Analysis (PCA) as a dimension reduction473

algorithm to reduce the dimension of the datastore474

representations and the query representation Dpca.475

Results: Combination of PQ, Clustering, and476

Dimension Reduction We evaluate the UE per-477

formance and inference speed when applying PQ,478

clustering, and dimension reduction are applied se-479

quentially. The evaluations are performed on the480

OntoNotes 5.0 test set, and the results for different481

parameters of PQ, clustering and dimension reduc-482

tion are shown in Appendix F. Table 8 shows the483

results on OntoNotes 5.0 bn and nw as ID/OOD,484

respectively. We can see that while the uncertainty485

performance is not significantly degraded when486

PQ and clustering are applied simultaneously to487

kNN-UE, ECE and MCE are degraded when di-488

mension reduction by PCA is further applied.7 On489

the other hand, the comprehensive results and dis-490

cussion when tuning parameters in PQ, IVF and491

PCA presented in Appendix F demonstrate that ap-492

plying them appropriately improve inference time493

with mitigating the degradation in UE performance,494

especially PQ with IVF.495

To deepen our understanding of the changes in496

the behavior of the uncertainty performance due497

7Distance recomputation does not mitigate this behavior,
see Appendix G.

to appling of approximate kNN search techniques 498

or dimension reduction in kNN-UE, we calculated 499

the coverage that how much the indices obtained 500

when using the default exhaustive search are cov- 501

ered when applying PQ, clustering, and dimension 502

reduction, sequentially. Table 9 shows the cov- 503

erages on OntoNotes 5.0 bn and nw as ID/OOD 504

settings, respectively. 505

We can see that applying PQ, clustering, and 506

PCA simultaneously hardly covers any of the in- 507

dices from the default kNN-UE. It is assumed that 508

applying PQ and PCA in the same time leads to 509

coarse distance computation in a single subvector, 510

which would correspondingly degrade the UE per- 511

formance in kNN-UE. Actually, the experimental 512

results in Table 14 in Appendix F.3 suggest that 513

excessive dimension reduction in distance com- 514

putation could have a negative impact on the UE 515

performance. On the other hand, if combined with 516

PQ and IVF, or applied PCA individually, some 517

of the ground-truth nearest neighbor examples still 518

exist. 519

8 Conclusion 520

In this paper, we proposed kNN-UE, which esti- 521

mates uncertainty by using the distance to neigh- 522

bors and labels of neighbors. The experimental 523

results showed that our method showed higher UE 524

performance than existing UE methods in SA, NLI 525

and NER. Our method can greatly improve UE 526

performance, especially in text classification tasks, 527

with little degrading in inference speed. On the 528

other hand, to address the degradation of the infer- 529

ence speed in token-level tasks such as NER, we 530

investigated the effects of efficient neighbor search 531

techniques in kNN-UE. As a result, we found that 532

product quantization, clustering, or dimension re- 533

duction improves inference speed without degrad- 534

ing the UE much more, unless combining all of 535

them simultaneously. 536
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9 Limitations537

In this study, we focused only on the classification-538

based tasks. On the other hand, taking advan-539

tage of the recent growth of Large Language Mod-540

els, UE in text generation is also attracting atten-541

tion (Fadeeva et al., 2023; Lin et al., 2024). There-542

fore, to investigate the effectiveness of kNN-UE543

in text generation tasks is an interesting direction544

for future research. Furthermore, although kNN-545

UE only used the representation of the last layer546

of the base model, exploring for an appropriate547

representation for UE is a future challenge.548

Ethical Considerations549

In this study, we used existing datasets that have550

cleared ethical issues following policies of pub-551

lished conferences. Therefore, they do not intro-552

duce any ethical problems. On the other hand, we553

have an ethical consideration about UE. Specifi-554

cally, decision support systems with machine learn-555

ing algorithms do not necessarily have a positive556

effect on performance. Jacobs et al. (2021) showed557

that collaboration with machine learning models558

does not significantly improve clinician’s treatment559

selection performance, and that performance is sig-560

nificantly degraded due to the presentation of incor-561

rect recommendations. This problem is expected562

to remain even if UE methods are applied to ma-563

chine learning models. In addition, introducing UE564

methods could conversely lead humans to give over-565

confidence in machine learning models, resulting566

in performance degradation.567
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A Training Settings for Density Estimator 846

in Density Softmax 847

In Density Softmax (Bui and Liu, 2024), we use Re- 848

alNVP (Dinh et al., 2017) which has two coupling 849

structures. Table 10 shows the hyperparameters 850

for training RealNVP as the density estimator in 851

Density Softmax. 852

Hyperparameters Values
learning rate 1e-4
optimizer AdamW (Loshchilov and Hutter, 2019)
early stopping patient 5
number of coupling layers 4
hidden units 16

Table 10: Hyperparameters for RealNVP in Density
Softmax.

B Details of Baselines 853

Softmax Response (SR) is a trivial baseline, 854

which treats the maximum score from output 855
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of the base model’s softmax layer as the confi-856

dence (Cordella et al., 1995).857

Temperature Scaling (TS) is a calibration tech-858

nique by which the logits are divided by a tem-859

perature parameter T before applying the softmax860

function (Guo et al., 2017). We optimized T by861

L-BFGS on validation set loss.862

Label Smoothing (LS) is the calibration and gen-863

eralization technique by introducing a small degree864

of uncertainty ϵ in the target labels during train-865

ing (Miller et al., 1996; Pereyra et al., 2017). In LS,866

we optimized ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.3} by us-867

ing validation set accuracy when SA and NLI, and868

validation set F1 when NER.869

MC Dropout is an UE technique by M times870

stochastic inferences with activating dropout (Gal871

and Ghahramani, 2016). In our experiments, we872

set M = 20 for all evaluations, and the dropout873

rate is 0.1.874

Spectral-Normalized Gaussian Process (SNGP)875

uses spectral normalization of the weights for876

distance-preserving representation and Gaussian877

Processes in the output layer for estimating uncer-878

tainty (Liu et al., 2020).879

Posterior Networks (PN) is one of the meth-880

ods in the Evidential Deep Learning (EDL) frame-881

work (Sensoy et al., 2018) that assumes a prob-882

ability distribution for class probabilities (Char-883

pentier et al., 2020), which uses normalizing884

flow (Rezende and Mohamed, 2015) to estimate885

the density of each class in the latent space.886

Mahalanobis Distance with Spectral-887

Normalized Network (MDSN) is a Mahalanobis888

distance based UE method that benefits from by889

spectral normalization of the weights (Vazhentsev890

et al., 2022), similar to SNGP.891

E-NER applies EDL framework for NER by in-892

troducing uncertainty-guided loss terms (Zhang893

et al., 2023).894

C Detailed Settings on the Density-based895

Methods896

Datastore Construction It is necessary to pre-897

serve the representation of the data for training898

a density estimator in Density Softmax and kNN899

search in DAC and kNN-UE. We maintain final900

layer representations corresponding to CLS tokens901

in SA and NLI. In NER, we stored the hidden repre- 902

sentation of the final layer as a token representation 903

corresponding to the beginning of the word. 904

k-Nearest Neighbor Search We use 905

faiss (Douze et al., 2024) as the GPU-accelerated 906

kNN search toolkit. Unless otherwise specified, 907

we fix the number of neighbors K = 32 in kNN 908

search, and use faiss.IndexFlatL2 as the de- 909

fault index in kNN-UE. The indexes corresponding 910

to approximate nearest neighbor search techniques 911

are used in Section 7. 912

D Details of Evaluation Metrics 913

Expected Calibration Error (ECE) ECE 914

(Naeini et al., 2015) quantifies the difference 915

between the accuracy and confidence of a model. 916

Formally, ECE is expressed as: 917

ECE =

B∑

b=1

|Db|
n

|acc(Db)− conf(Db)| (6) 918

where B is the number of confidence interval bins, 919

Db denotes the set of examples with predicted con- 920

fidence scores in the b-th bin, n is the total number 921

of examples, acc(Db) is the accuracy of the model 922

on the examples in Db, and conf(Db) is the average 923

confidence of the model on the examples in Db. In 924

this study, we use B = 10. 925

Maximum Calibration Error (MCE) MCE, as 926

detailed by Naeini et al. (2015) measures the maxi- 927

mum difference between the model’s accuracy and 928

the confidence across variouts confidence levels. 929

MCE is defined as: 930

MCE =
B

max
b=1

|acc(Db)− conf(Db)| , (7) 931

A lower MCE means that there is a small risk that 932

the confidence of the model’s prediction will devi- 933

ate greatly from the actual correct answer. In this 934

study, we use B = 10, same as ECE. 935

Area Under the Risk-Coverage curve (AURC) 936

The AURC is the area of the risk-coverage curve 937

when the confidence levels of the forecasts corre- 938

sponding to the N data points are sorted in descend- 939

ing order. The larger the area, the lower the error 940

rate corresponding to a higher confidence level, 941

which means that the output confidence level is 942

more appropriate. Formally, AURC is defined as: 943

AURC =
N∑

n=1

∑n
j=1 g(xj)

i×N
(8) 944
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Methods SA NLI
IMDb Yelp Polarity MNLI SNLI

SR 5.00±0.27 5.83±0.98 9.50±0.40 11.02±0.41
TS 5.09±0.42 6.67±1.36 8.31±0.25 9.60±0.21
LS 4.64±0.23 5.16±0.92 8.73±0.23 10.18±0.17
MC Dropout 4.88±0.21 5.45±0.55 9.33±0.36 11.00±0.28
SNGP 4.78±0.15 5.99±0.39 12.25±5.38 13.45±4.57
PN 10.31±0.28 11.16±0.22 20.76±0.32 21.11±0.42
Density Softmax 4.82±0.18 6.05±0.38 9.60±0.34 11.28±0.41
DAC 4.44±0.33 5.44±0.71 8.21±0.25 9.55±0.35
kNN-UE (w/o label) 4.37±0.16 5.10±0.12 8.15±0.15 9.52±0.32
kNN-UE 4.21±0.14 5.02±0.42 8.07±0.18 9.44±0.28

Table 11: Brier score results using IMDb/Yelp Polarity
and MNLI/SNLI as ID/OOD datasets, respectively.

where g(x) returns 1 if the prediction is wrong and945

0 otherwise.946

Excess-Area Under the Risk-Coverage curve (E-947

AURC) E-AURC (Geifman et al., 2019) is a mea-948

sure of the AURC score normalized by the small-949

est risk-coverage curve area AURC⋆ ≈ r̂ + (1 −950

r̂)ln(1− r̂), where r̂ is the error rate of the model.951

The reason for normalizing the AURC is that the952

AURC depends on the predictive performance of953

the model and allows for performance comparisons954

of confidence across different models and training955

methods. E-AURC is defined as:956

E-AURC = AURC − AURC⋆ (9)957

E-AURC scores are reported with multiplying by958

1,000 due to visibility.959

E Additional Results on the Brier score960

The Brier score is a widely used metric in UE com-961

munity for evaluating the probabilistic predictions.962

The metric measures the mean squared difference963

between the predicted probability assigned to the964

predicted label and the actual outcome. This eval-965

uation serves as a holistic assessment of model966

performance, reflecting both fit and calibration, in967

the following formula:968

Brier score =
1

N

N∑

n=1

(pn − on), (10)969

where pn is the predicted probability assigned970

to the prediction, and on is the actual outcome. Ta-971

ble 11 shows the results on the Brier score. These972

results indicate kNN-UE improves calibration per-973

formance more prominently than other methods974

while maintaining prediction performance.975

Methods ECE (↓) MCE (↓) E-AURC (↓) time [s]
OntoNotes 5.0 bn (In-domain)

SR 7.79±0.53 50.07±24.15 21.90±1.31 2.49±0.08
kNN-UE (w/o label) 3.37±0.71 33.15±3.65 17.63±0.66 4.94±0.10
kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 4.99±0.07
kNN-UE (N sub = 16) 1.90±0.27 31.18±11.17 20.16±1.12 3.27±0.06
kNN-UE (N sub = 32) 1.96±0.31 31.33±18.74 20.23±1.27 3.32±0.05
kNN-UE (N sub = 64) 1.88±0.34 31.06±16.36 20.16±1.23 4.11±0.11

OntoNotes 5.0 nw (Out-of-domain)
SR 17.05±0.69 37.06±3.13 81.49±4.17 5.75±0.27
kNN-UE (w/o label) 8.78±0.62 24.91±1.81 70.10±4.03 10.36±0.21
kNN-UE 7.50±0.42 16.53±2.61 74.27±5.43 10.48±0.12
kNN-UE (N sub = 16) 7.66±0.48 17.07±3.81 74.47±5.53 7.22±0.19
kNN-UE (N sub = 32) 7.57±0.45 16.43±2.73 74.38±5.36 7.23±0.16
kNN-UE (N sub = 64) 7.57±0.44 16.38±2.66 74.35±5.49 8.90±0.18

Table 12: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3BASE model when applied PQ in differ-
ent N sub.

F Each Result of Product Quantization, 976

Clustering, and Dimension Reduction 977

F.1 Product Quantization 978

We evaluated UE performance and inference time 979

when the number of clusters in the codebook was 980

fixed at 32, and the number of subvectors was 981

changed to N sub ∈ {16, 32, 64}. 982

Table 12 shows the UE performance and infer- 983

ence time results in different N sub. In ECE and 984

E-AURC, there are almost no degradation in UE 985

performance due to PQ. On the other hand, in MCE 986

in ID setting, the UE performance consistently de- 987

grades. Furthermore, compared to kNN-UE among 988

different N sub, the larger N sub, the better the UE 989

performance tends to improve, but the inference 990

time increases. 991

The larger N sub is, the more time is required 992

for inference but the UE performance improves. 993

We assumed that these results are derived from 994

the decrease in quantization error over the vector 995

with PQ with larger N sub because each subvector is 996

divided into smaller subspaces and the quantization 997

is performed for each subspace. On the other hand, 998

an increase in N sub requires additional distance 999

computations etc., then more inference time. 1000

F.2 Clustering 1001

In this study, we evaluate the UE performance 1002

and inference speed when the number of clusters 1003

N list = 100 and applying PQ with N sub = 32 are 1004

fixed and the number of cluster centroids to search 1005

changesNprobe ∈ {8, 16, 32, 64}. 1006

Table 13 shows the performance of UE when 1007

changing Nprobe in ID and OOD settings using 1008

OntoNotes 5.0. In ECE, scores are slightly reduced 1009

13



Methods ECE (↓) MCE (↓) E-AURC (↓) time [s]
OntoNotes 5.0 bn (In-domain)

SR 7.79±0.53 50.07±24.15 21.90±1.31 2.49±0.08
kNN-UE (w/o label) 3.37±0.71 33.15±3.65 17.63±0.66 4.94±0.10
kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 4.99±0.07
kNN-UE (Nprobe = 8) 1.82±0.28 30.18±16.77 20.14±1.21 2.84±0.08
kNN-UE (Nprobe = 16) 1.86±0.25 29.48±16.91 20.13±1.21 3.11±0.03
kNN-UE (Nprobe = 32) 1.92±0.31 28.55±11.24 20.13±1.22 3.31±0.06
kNN-UE (Nprobe = 64) 1.83±0.28 27.00±9.43 20.14±1.21 3.71±0.06

OntoNotes 5.0 nw (Out-of-domain)
SR 17.05±0.69 37.06±3.13 81.49±4.17 5.75±0.27
kNN-UE (w/o label) 8.78±0.62 24.91±1.81 70.10±4.03 10.36±0.21
kNN-UE 7.50±0.42 16.53±2.61 74.27±5.43 10.48±0.12
kNN-UE (Nprobe = 8) 7.52±0.41 16.01±1.92 74.33±5.37 6.09±0.28
kNN-UE (Nprobe = 16) 7.56±0.36 16.93±3.38 74.31±5.39 6.65±0.17
kNN-UE (Nprobe = 32) 7.60±0.41 17.12±2.35 74.34±5.35 7.33±0.21
kNN-UE (Nprobe = 64) 7.53±0.40 17.28±2.45 74.33±5.37 7.89±0.12

Table 13: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3BASE model when applied IVF in dif-
ferent N probe.

for ID, but only slightly worse for OOD; MCE also1010

shows degradation for ID but little for OOD, and1011

even improves when Nprobe = 8; E-AURC shows1012

almost no change in scores when Nprobe is changed1013

for both ID and OOD. In terms of inference time,1014

the larger Nprobe, the longer it takes. We derive1015

the improvement in MCE when increasing Nprobe1016

in ID setting from the fact that more clusters are1017

targeted, making it possible to cover ground-truth1018

nearest neighbor examples. On the other hand, the1019

tendency of slight decrease when increasing Nprobe1020

in OOD setting may comes from the reliability of1021

the vector, similar to the discussion in Section 6.3.1022

In addition, Taken together with the results in1023

Table 8 in Section 7, we can see that the degrada-1024

tion of the UE performance can be mitigated with1025

improvement latency when applying PQ and IVF1026

with lower Nprobe, compared to applying PQ, IVF1027

and PCA simultaneously.1028

F.3 Dimension Reduction1029

As shown in Table 14, the UE performance depends1030

on the number of target dimension, and the perfor-1031

mance degrades when Dpca = 64 or Dpca = 128.1032

On the other hand, the performance in Dpca = 2561033

is almost the same as default kNN-UE. This sug-1034

gest that excessive dimension reduction in distance1035

computation to extract nearest examples by kNN1036

search could have a negative impact on the UE1037

performance.1038

G Distance Recomputation for kNN-UE1039

When using efficient kNN search techniques in1040

Section 7, we use approximate distances to com-1041

pute Eq. 4. Although we can get raw vectors by1042

Methods ECE (↓) MCE (↓) E-AURC (↓) time [s]
OntoNotes 5.0 bn (In-domain)

SR 7.79±0.53 50.07±24.15 21.90±1.31 2.49±0.08
kNN-UE (w/o label) 3.37±0.71 33.15±3.65 17.63±0.66 4.94±0.10
kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 4.99±0.07
kNN-UE (Dpca = 64) 1.89±0.37 31.01±14.35 20.06±1.25 3.24±0.08
kNN-UE (Dpca = 128) 1.80±0.36 27.85±13.80 20.13±1.29 3.41±0.10
kNN-UE (Dpca = 256) 1.80±0.40 26.23±12.61 20.13±1.28 3.85±0.06

OntoNotes 5.0 nw (Out-of-domain)
SR 17.05±0.69 37.06±3.13 81.49±4.17 5.75±0.27
kNN-UE (w/o label) 8.78±0.62 24.91±1.81 70.10±4.03 10.36±0.21
kNN-UE 7.50±0.42 16.53±2.61 74.27±5.43 10.48±0.12
kNN-UE (Dpca = 64) 7.48±0.41 16.20±2.75 74.33±5.49 7.37±0.26
kNN-UE (Dpca = 128) 7.54±0.45 16.42±2.73 74.30±5.44 7.75±0.24
kNN-UE (Dpca = 256) 7.56±0.43 16.13±2.59 74.26±5.40 8.51±0.46

Table 14: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3BASE model when applied PCA in dif-
ferent Dpca.

Methods ECE (↓) MCE (↓) E-AURC (↓) time [s]
OntoNotes 5.0 bn (In-domain)

kNN-UE 1.78±0.32 26.02±13.72 20.14±1.27 4.99±0.07
kNN-UE (Approx.) 2.14±0.37 33.52±10.84 20.12±1.26 2.87±0.04
kNN-UE (Recomp.) 2.35±0.44 30.47±7.50 20.16±1.17 16.24±0.77

OntoNotes 5.0 nw (Out-of-domain)
kNN-UE 7.50±0.42 16.53±2.61 74.27±5.43 10.48±0.12
kNN-UE (Approx.) 8.08±0.53 24.03±5.46 74.50±5.42 6.20±0.20
kNN-UE (Recomp.) 8.30±0.51 25.67±5.26 74.58±5.53 34.22±0.78

Table 15: ECE, MCE, E-AURC and inference time
results about NER on OntoNotes 5.0 bn (In-domain)
and OntoNotes 5.0 nw (Out-of-domain) when applying
distance recomputation in kNN-UE. "Approx." indi-
cates using approximate distances, and "Recomp." indi-
cates using exact distances by distance recomputation.
Both "Approx." and "Recomp." are applied PQ with
N sub = 32, clustering with N probe = 32 and dimension
reduction with Dpca = 128.

using the example indices obtained from approxi- 1043

mate nearest neighbor search and compute accurate 1044

distance, in kNN-LM this has been shown to lead 1045

to performance gains and latency degradation (He 1046

et al., 2021a). We measure the UE performance 1047

and inference speed when PQ, clustering, and di- 1048

mension reduction are applied simultaneously and 1049

re-computing accurate distances, reported in Ta- 1050

ble 15. These results show that the UE performance 1051

does not improve except for MCE in the ID setting, 1052

and the latency is about 5-7x slower when reading 1053

raw vectors from the datastore and re-computing 1054

distances. Moreover, these results suggest that ex- 1055

act distance computation for examples that are not 1056

actually nearest neighbors are not very effective in 1057

kNN-UE. 1058

H Additional Inference Time Results 1059

We show additional inference time results on In- 1060

domain test sets in Table 16, apart from the out-of- 1061

domain test sets presented in Table 7. 1062
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Methods MNLI OntoNotes 5.0 bn

SR 8.41±0.03 2.49±0.08
TS 8.42±0.07 2.51±0.08
LS 8.44±0.06 2.53±0.03
MC Dropout 157.52±0.51 39.81±0.39
SNGP 10.58±2.09 -
PN 9.11±0.07 -
MDSN 9.65±1.36 -
E-NER - 2.51±0.12
Density Softmax 8.57±0.06 2.59±0.05
DAC 785.15±6.72 183.46±0.76
kNN-UE (w/o label) 9.05±0.07 4.94±0.10
kNN-UE 9.08±0.10 4.99±0.07

Table 16: Inference time [s] on MNLI test set and
OntoNotes 5.0 bn test set.
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Figure 3: Changes in ECE and E-AURC in SA when
changing the number of neighbors of kNN-UE.

I Impact of Top-K1063

To understand the behavior of kNN-UE, we eval-1064

uated the performance in UE when changing the1065

number of neighbors K ∈ {8, 16, 32, 64, 128} dur-1066

ing kNN execution.1067

Figure 3 shows the results for SA, and Figure1068

4 shows the results for NER. As is noticeable in1069

NER, the smaller K, the better UE tends to be.1070

Since our method averages the distance to the top1071

K examples, logits are scaled to be more limited to1072

neighbors by reducing K. It is assumed that the UE1073

performance is slightly improved as the kNN-UE1074

scoring becomes more dependent on neighbor data1075

if K is small.1076

J Licenses of Datasets, Tools and Models1077

Datasets IMDb movie dataset can1078

be used for research purpose as de-1079

scribed in https://developer.imdb.1080

com/non-commercial-datasets/. Yelp1081

Polarity dataset can be used for aca-1082

demic purpose as described in https:1083

//s3-media0.fl.yelpcdn.com/assets/srv0/1084

engineering_pages/f64cb2d3efcc/assets/1085

vendor/Dataset_User_Agreement.pdf. MNLI1086
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Figure 4: Changes in ECE and E-AURC in NER when
changing the number of neighbors of kNN-UE.

dataset is licensed for research purpose as described 1087

in Williams et al. (2018). SNLI dataset can be used 1088

for research purpose as described in https: 1089

//nlp.stanford.edu/projects/snli/. 1090

OntoNotes 5.0 dataset can be used for 1091

research purpose as described in https: 1092

//catalog.ldc.upenn.edu/LDC2013T19. 1093

Tools transformers is licensed by Apache-2.0. 1094

faiss is MIT-licensed. 1095

Models DeBERTaV3BASE and 1096

mDeBERTaV3BASE from Huggingface model 1097

checkpoints are MIT-licensed. 1098
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