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Abstract

Trustworthy prediction in Deep Neural Net-
works (DNNs), including Pre-trained Language
Models is important for safety-critical applica-
tions in the real world. However, DNNs of-
ten suffer from uncertainty estimation, such
as miscalibration. In particular, approaches
that require multiple stochastic inference can
mitigate this problem, but the expensive cost
of inference makes them impractical. In this
study, we propose k-Nearest Neighbor Uncer-
tainty Estimation (KNN-UE), which is an un-
certainty estimation method that uses not only
the distances from the neighbors and also label-
existence ratio of neighbors. Experiments on
sentiment analysis, natural language inference,
and named entity recognition show that our
proposed method outperforms the baselines or
recent density-based methods in confidence
calibration, selective prediction, and out-of-
distribution detection. Moreover, our analy-
ses indicate that introducing dimension reduc-
tion or approximate nearest neighbor search
inspired by recent KNN-LM studies reduces
the inference overhead without significantly
degrading estimation performance when com-
bined them appropriately.

1 Introduction

In order To use Deep Neural Networks (DNNs)
including Pre-trained Language Models (PLMs)
in safety-critical regions, uncertainty estimation
(UE) is important. By improving the predictive
uncertainty, the prediction will be calibrated (Guo
etal., 2017),! or improve selective prediction per-
formance, which is predictive performance when
there is a choice to abstain from model predic-
tion (Galil et al., 2023). On the other hand, DNNs
often fail to quantify the predictive uncertainty, for
example, causing miscalibrated prediction (Guo
et al., 2017). Such UE performance problems can

!"Calibration" means the confidence of the model aligns
with its accuracy.
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Figure 1: Illustrations of KNN-UE behavior. The orange
circle indicates predicted data instances and other circles
indicate training data instances. KNN-UE gives high
uncertainty when the predicted query representation is
far from examples obtained from the kNN search (left)
and the predicted label is different from the labels of
neighbors (center). KNN-UE outputs low uncertainty
only when the query representation is close to neighbors
and the labels of neighbors contain many of the model’s
predicted label (right).

be mitigated by the PLMs, such as BERT (Devlin
et al., 2019) or DeBERTa (He et al., 2021b), that
are self-trained on large amounts of data (Ulmer
et al., 2022), although, there is still a need for im-
provement (Desai and Durrett, 2020).

To solve the problem of UE, multiple stochas-
tic inferences such as MC Dropout (Gal and
Ghahramani, 2016) and Deep Ensembles (Lak-
shminarayanan et al., 2017) are generally effec-
tive. On the other hand, these methods require
multiple stochastic inferences for a single data in-
stance, which leads to high computational cost,
and makes them impractical for real world ap-
plication. To obtain reasonable predictive uncer-
tainty without multiple inferences, Temperature
Scaling (Guo et al., 2017) is generally used, which
scales logits with a temperature parameter. Fur-
thermore, density-based methods such as Density
Softmax (Bui and Liu, 2024) and Density Aware
Calibration (DAC) (Tomani et al., 2023), which
correct the model outputs based on estimated den-
sity, have achieved promising very recent years in



terms of UE performance and inference cost. How-
ever, both Density Softmax and DAC only use the
density of training data. Therefore, we can see that
these methods only capture the concept of epis-
temic uncertainty that comes from the knowledge
of the model. To improve the UE performance,
we also need to consider aleatoric uncertainty that
comes from the variance of the data (Hiillermeier
and Waegeman, 2019).

In this study, we propose k-Nearest Neighbor
Uncertainty Estimation (§kNN-UE), a new density-
based UE method that does not require multiple
inferences. KNN-UE uses the labels of neighbors
obtained from kNN search to correct the confidence
as illustrated in Figure 1. Our method weights log-
its according to the score from the distance between
the input example and its neighbors in the datastore
created by the training data and the ratio of the
model’s predicted label matched with the labels in
neighbors. As a result, our method requires only a
single forward inference of the model.

First, our experiments show that kKNN-UE im-
proves the UE performance of existing baselines in
sentiment analysis, natural language inference, and
named entity recognition in both in-domain and
out-of-domain settings by combining neighbor la-
bel information and distances from neighbors. Sec-
ond, to solve the latency in KNN-UE for token-level
tasks, such as sequence-labeling based name entity
recognition, we show that approximate kNN search
or dimension reduction in KNN-UE improves the
inference speed without degrading UE performance
much more, while combining them leads to degrad-
ing the uncertainty performance. Our code will be
available after acceptance.

2 Related Work

Uncertainty Estimation for Natural Language
Processing Tasks Studies about UE for NLP
tasks are limited when compared with those for
image datasets. Kotelevskii et al. (2022) has shown
excellent performance in classification with rejec-
tion tasks and out-of-distribution detection tasks
using uncertainty scores using density estimation
results. Vazhentsev et al. (2022) performed mis-
classification detection using Determinantal point
processes (Kulesza and Taskar, 2012), spectral nor-
malization, Malahanobis distance and loss regular-
ization in text classification and NER. However,
these are still focusing only on the feature represen-
tation or the density, not the labels of the neighbors.

k-Nearest Neighbor Language Models / Ma-
chine Translation k-Nearest Neighbor Lan-
guage Model (kNN-LM) (Khandelwal et al., 2020)
has been proposed, which performs linear interpo-
lation of kNN probability based on distance from
neighbors and base model probability, in the lan-
guage modeling task. k-Nearest Neighbor Ma-
chine Translation (kNN-MT) applied the ENN-
LM framework to machine translation (Khandelwal
et al., 2021). kNN-LM and kKNN-MT have been
successful because they enhance predictive perfor-
mance through the memorization and use of rich
token representations of pre-trained language mod-
els and mitigate problems such as a sparsity comes
from low-frequency tokens (Zhu et al., 2023). The
main issue on kKNN-LM and KNN-MT is the in-
ference overhead, and there are several studies to
solve this problem. He et al. (2021a) employs data-
store compression, adaptive retrieval, and dimen-
sion reduction to reduce computational overhead
with retaining perplexity. Deguchi et al. (2023)
dramatically improves decoding speed by dynam-
ically narrowing down the search area based on
the source sentence. We investigate that whether
UE performance in KNN-UE can keep or not with
reducing inference time by introducing some of the
speed-up techniques established in KNN-LM/MT.

3 Preliminary

In this section, we explain the definitions of sym-
bols and existing density-based methods. Then, we
introduce the proposed kKNN-UE in Section 4.

3.1 Definitions

In multiclass classification, we assume a dataset
D = {(xn,yn)}Y_, consisting of N examples,
where y,, € {1,2,...,J} denotes its correspond-
ing class label among .J possible classes.> We use
the trained neural network feature extractor f and
the classifier g for classification, where f(x) € RP.
g gives us the logits z = g(f(x)) and we obtain
the confidence p = softmax(z).

3.2 Density Softmax

Density Softmax (Bui and Liu, 2024) obtains con-
fidence by weighting logits with normalized log-
likelihood from a trained density estimator. In this
study, we use ReaINVP (Dinh et al., 2017) as the

%In the case of sequence labeling, we can interpret the
number of data N as the product of the raw number of data
instances and the sequence length.



density estimator (details for the density estima-
tor are in Appendix A). § is the parameters of
the density estimator; p(f(x);3) is the normal-
ized log-likelihood from the density estimator, then
the corrected confidence is written as

exp (p(f(x); B) - zi)

. 1
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In Density Softmax, the closer the normalized
log-likelihood to zero, the closer the prediction to
Uniform distribution. Density Softmax achieves
reasonable latency and competitive UE perfor-
mance with state-of-the-art methods at the cost
of demanding the density estimator training and
multiple base model training.

p(yilz) =

3.3 Density Aware Calibration (DAC)

DAC (Tomani et al., 2023) scales the logits by us-
ing sample-dependent temperature ®(x, w)

exp (z;/®(x,w))

| L) = 2
PO =T np ey o))
where
L
O(x,w) = Zwlsl + wy. 3)
=1

wi...wy, are the weights for every layer of the base
model, s; is the averaged distance from kNN search
on [-th layer, and wy is the bias term. wy...wy, are
optimized using the L-BFGS-B method (Liu and
Nocedal, 1989) based on the loss in the validation
set. In the original DAC paper, the UE performance
tends to improve with the increase in the number of
layer’s representation (Tomani et al., 2023). There-
fore, we use all the hidden representations in each
layer of the base PLMs.

4 Proposed Method: i-Nearest Neighbor
Uncertainty Estimation (\NN-UE)

The main idea of our proposed method, KNN-UE,
stems from the notion that the density-based UE
methods can be further enhanced by using label
information about the training data instances that
make up the density.

To construct the density, we used kNN, which
is used in KNN-based out-of-distribution detec-
tion (Sun et al., 2022) or DAC (Tomani et al., 2023)
for UE. They performed out-of-distribution detec-
tion or confidence calibration using only the feature
representation from the classifier when calculating

the uncertainty scores including confidence. These
are non-parametric methods that do not require any
assumptions about the training data distribution
unlike the density-based methods such as Density
Softmax (Bui and Liu, 2024), which rely on some
density estimators. On the other hand, recent kNN
based DAC relies only on the distances to neigh-
bors. Considering that the uncertainty is mainly
composed of epistemic uncertainty and aleatoric
uncertainty, DAC represents only the epistemic un-
certainty, which limits the improvement of UE per-
formance.

In order to take into accoount the aleatoric un-
certainty, our KNN-UE explicitly includes the label
agreement information of the predicted instance
and its neighbour examples when calculating the
confidence. More specifically, we regard the pre-
diction as more reliable only when the prediction
is in a region where training data is dense and the
predicted label and the labels of the data instances
that make up the dense region is mostly the same,
as illustrated in the right part of Figure 1. Other-
wise, for example, if there are a lot of discrepancy
in the neighbor labels and the predicted label, we
treat the prediction as unreliable, indicated in the
middle of Figure 1.

In our KNN-UE, we introduce two terms: one
related to the density of the training data and one
related to the degree of agreement of the predicted
data and neighbor labels. Confidence of ¢-th label
obtained by kKNN-UE is following formula:

exp(Winn(9) - %)

pyilz) = - “)
Z‘jjzl exp(Winn(9) - 25)
where
o K dp
Winn(9) = 5 > exp <—T)
k=1
distance term
S(9)
A —=+b). 5
+ ( % T Q)
label term

K is the number of neighbors from kNN search,
S(y) = Zszl 1(§ = ") is the count when the
predicted label ¢ and the label of the k-th neighbor
y" is same, dj, is the distance between the k-th f(z)
representation obtained by kNN search and the
representations of training data.> The parameters

3Note that kNN-UE is also "accuracy-preserving" same as
DAC because Winn (9) is a scalar, not a class-wise score.
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Figure 2: A diagram of kNN-UE when K = 3 and the estimated hyperparameters are « = 0.5, 7 = 1.0, A = 0.5
and b = 0.1. A datastore is constructed with the representations of the training data as keys and their labels as
values. The distances of the nearest examples from the test representation, and the neighbor labels are aggregated
into Winn (7). Finally we obtain calibrated confidence by correcting the raw logits with Wi (4) as in Eq. 4.

Tasks | Datasets Nejass Train Val Test
SA IMDb 2 25,000 12,500 12,500
Yelp 2 - 19,000
NLI | MNLI 3 392,702 4,907 4,908
SNLI 3 - - 9,824
NER | OntoNotes 5.0 (bn) | 37 10,683 1,295 1,357
OntoNotes 5.0 (nw) | 37 - - 2327
OntoNotes 5.0 (tc) | 37 1,366

Table 1: Dataset Statistics. Bolds indicate In-domain.

a, T, A and b are optimized using the L-BFGS-B
method based on the loss in the validation set.

The lower both distance term and label term and
the closer Winn(9) is to zero, the closer the pre-
diction is to Uniform distribution, which allows
us to better estimate confidence of the prediction.
In this study, we also conduct experiments with-
out the label term in Equation 5, to emphasize the
importance of kNN neighbor labels in UE. We sum-
marize a diagram of kKNN-UE in Figure 2.

5 Experimental Settings

5.1 Tasks and Datasets

We measure the UE performance on Sentiment
Analysis (SA), Natural Language Inference (NLI),
and Named Entity Recognition (NER) in In-
domain (ID) and Out-of-Domain (OOD) settings.
Dataset statistics are described in Table 1.

Sentiment Analysis (SA) is a task to classify
whether the text sentiment is positive or negative.

The IMDDb movie review dataset (Maas et al., 2011)
is treated as ID, and the Yelp restaurant review
dataset (Zhang et al., 2015) is treated as OOD.

Natural Language Inference (NLI) classifies
the relationship between a hypothesis sentence and
a premise sentence. We treat the Multi-Genre Nat-
ural Language Inference (MNLI) dataset (Williams
et al., 2018) as ID and the Stanford Natural Lan-
guage Inference (SNLI) dataset (Bowman et al.,
2015) as OOD.

Named Entity Recognition (NER) extracts the
named entities, such as a person, organization, or
location. The NER task was carried out in the
framework of sequence labeling. We regard the
OntoNotes 5.0 dataset (Pradhan et al., 2013) broad-
cast news (bn) domain as ID, and newswire (nw)
and telephone conversation (tc) domains as OOD.

5.2 Existing Methods

We consider the simple baselines: Softmax Re-
sponse (SR) (Cordella et al., 1995), Temperature
Scaling (TS) (Guo et al., 2017), Label Smooth-
ing (Miller et al., 1996; Pereyra et al., 2017) and
MC Dropout (Gal and Ghahramani, 2016). In addi-
tion, we use the recent baselines for UE: Spectral-
Normalized Gaussian Process (SNGP) (Liu et al.,
2020), Posterior Networks (PN) (Charpentier
et al., 2020), Mahalanobis Distance with Spectral-
Normalized Network (MDSN) (Vazhentsev et al.,



2022), E-NER (Zhang et al., 2023), Density Soft-
max (Bui and Liu, 2024), and DAC (Tomani et al.,
2023). Details on baselines are in Appendix B.
We have also experimented a variant of KNN-UE
without the label term in Eq. 5 denoted by "w/o
label".

5.3 Training Setting

In all experiments, we train and evaluate the mod-
els on a single NVIDIA A100 GPU with 40GB
of memory. We used DeBERTaV3pasg* and
mDeBERTaV3gase® (He et al., 2023), as the
transformer encoder from transformers (Wolf
et al., 2020) pre-trained model checkpoints. Cross-
entropy loss is minimized by AdamW (Loshchilov
and Hutter, 2019) with a linear scheduler (Goyal
et al., 2017). The batch size is 32, and gradient
clipping is applied with the maximum norm of 1.
The initial learning rate was set to le-5. All experi-
ments are run five times, and we report the mean
and standard deviation of the scores.

Detailed settings for the density based methods
including £NN search are given in Appendix C.

5.4 Evaluation Metrics

To evaluate the confidence calibration performance,
we choose Expected Calibration Error (ECE) and
Maximum Calibration Error (MCE). For selec-
tive prediction, we evaluate Area Under the Re-
ceiver Operator Characteristic curve (AUROC)
and Excess-Area Under the Risk-Coverage curve
(E-AURC). Evaluation metrics computation details
are described in Appendix D.

6 Results

6.1 Sentiment Analysis

In SA, we evaluate the UE performance (calibration
and selective prediction) and the out-of-distribution
detection performance.

6.1.1 Confidence Calibration and Selective
Prediction

First, we present the UE results for sentiment anal-
ysis. Table 2 shows the results of in-domain and
out-of-domain UE. KNN-UE consistently outper-
forms existing methods in terms of ECE, MCE, and
E-AURC. In AUROC, LS outperforms in OOD set-
ting, but kKNN-UE outperforms existing methods
in ID setting. Furthermore, the proposed method

“microsoft/deberta-v3-base
>microsoft/mdeberta-v3-base

clearly outperforms DAC that uses an ensemble
of neighbor search results for each hidden repre-
sentation, by adding the label term. The lower UE
performance than KNN-UE in DAC is probably due
to the difficulty in optimizing hyperparameters by
using many layers.

6.1.2 Out-of-Distribution Detection

Following the previous study (Tomani et al., 2023),
we carried out the experiments in the out-of-
distribution detection task. Out-of-distribution de-
tection is the task that determines whether the data
is in-domain or not. This task is based on the
intuition that we want to return predictions with
high confidence in ID but with low confidence
in predictions in OOD. We evaluated the out-of-
distribution detection performance by using maxi-
mum softmax probability as the uncertainty score,
and report FPR@95 (the FPR when the TPR is
95%), AUROC, Area Under the Precision-Recall
curve (AUPR)-in and AUPR-out. AUPR-in indi-
cates the AUPR score when ID samples are treated
as positive; AUPR-out is vice versa.

Table 4 shows the out-of-distribution detection
results when using IMDb/Yelp Polarity datasets
as ID/OOD, respectively, in mDeBERTaV3pask
model. kNN-UE consistently shows the out-of-
distribution detection performance improvement.

6.2 Natural Language Inference

We show the results of in-domain and out-of-
domain UE in NLI task using the DeBERTaV3
model in Table 3. Similar to Section 6.1.1, KNN-
UE shows the best UE performance, especially
when including the label term. Galil et al. (2023)
have reported that improving calibration perfor-
mance does not necessarily lead to improving se-
lective prediction performance, but our proposed
method improves both type of metrics. On the other
hand, the degree of improvement is greater for cal-
ibration performance. Specifically, the largest im-
provement is obtained on SNLI, where kKNN-UE
reduces MCE by more than 31.49 % pt compared
to SR. Additional experimental results on the Brier
score are in Appendix E.

6.3 Named Entity Recognition

To evaluate NLP tasks other than simple multi-class
classification, we evaluate our proposed method for
UE in NER. Since NER focuses on entities, it is
necessary to obtain the confidence of the entity.



Methods IMDb (In-domain) Yelp (Out-of-domain)

ECE (}) MCE (]) AUROC (1) E-AURC(]) | ECE() MCE () AUROC (1) E-AURC (|)
SR 4424041 24.06+3.52 98.35+0.10 10.60+2.81 | 4.69+1.20 21.02+6.74 98.15+0.39 11.84+3.15
TS 4.10£0.31 20.43£5.01 98.45+0.21 11.36+2.82 | 5.10+£1.19 19.70£1.35 98.20+0.46 12.914+4.12
LS 1.88+£0.41 21.504+4.53 98.36+0.45 14.52+7.24 | 2.53+0.43 16.47+3.51 98.30+0.45 12.904+6.09
MC Dropout 4.284+0.27 23.74+3.52 98.57+0.12  9.17+£1.74 | 433+£0.54 20.17+2.79 98.284+0.25 10.014+2.01
SNGP 4.184+0.30 22.69+4.83 98.53+0.15  9.95+1.17 | 4.89+0.59 21.28+4.68 98.10+0.27 11.42+2.14
PN 4.28+0.43 24434020 98.06+0.27 10.99+5.63 | 4.69+0.35 24.41+0.32 97.56+0.25 15.824+3.94
MDSN 4454043 23.97+5.05 98.48+0.08 10.25+0.86 | 5.324+0.92 21.33+2.91 98.00+0.20 11.12+3.53
Density Softmax 4234036 27.10+£6.92 98.34+0.08 11.39+2.48 | 4.994+0.48 21.98+3.68 98.09+0.24 13.05+2.72
DAC 1.51£0.33 14.17£2.73  98.36+0.37 12.72+6.15 | 2.35+0.12 6.444+2.23 97.86+0.60 14.264+5.90
kNN-UE (w/o label) | 1.33+0.36  13.13+£3.24 98.65+0.13  9.36+0.36 | 2.23+£0.29 6.33+£2.76 98.274+0.11 10.97+0.91
kNN-UE 0.954+0.12  9.02+1.39 98.64+0.12  7.97+0.61 | 1.45+0.15 4.17£1.52 98.23+0.39  9.92+0.61

Table 2: ECE, MCE, AUROC, and E-AURC results about SA task on IMDb (In-domain) and Yelp (Out-of-domain)
for mDeBERTaV3g sk model. Bolds indicate the best result.

Methods MNLI (In-domain) SNLI (Out-of-domain)

ECE (}) MCE () AUROC (1) E-AURC () ECE (}) MCE () AUROC (1) E-AURC ()
SR 8.36+£0.61  37.61+7.53 97.03+£0.12 31.29+2.23 | 9.77+£0.55 36.61£14.05 96.07+0.17 37.62+0.67
TS 2.73+1.86  15.814+11.05 97.06+£0.02 31.24+1.86 | 3.92+1.79 18.13+10.69 96.08+0.13  38.40+2.06
LS 2.894+0.14  28.64+£7.90 96.56+0.55 37.98+12.64 | 3.97+0.45 23.18+6.17 95.61+£0.40 44.18+9.18
MC Dropout 8.13+0.65  30.17+£6.83  96.97+0.06 32.314+2.25 | 9.62+0.53  28.90+5.03 96.10+0.11  37.194+2.99
SNGP 10.454+0.56 35.42+13.89 95914+0.12 42.03+2.72 | 14.28+£1.04 31.16£3.42 93.404+0.44 63.21+6.84
PN 33.83+0.51 37.10£0.71  96.96+0.10 26.33+1.22 | 32.01£0.61 35.37£0.58 95.574+0.29  40.94+4.49
MDSN 8.34+0.46  29.04+£6.43 97.07+0.14 32.03£2.29 | 9.44+0.47 38.59+13.94 96.11+0.12 38.91+3.06
Density Softmax 8.42+0.43  36.20+5.78 97.03+£0.10 32.56+3.29 | 10.094+0.40 33.594+4.57 95.96+0.19 41.43+2.25
DAC 1.42+£0.30 18.79£10.81 96.92+0.10 33.89+£2.60 | 2.27+0.16  11.554+3.48 96.08+0.07 40.23+£3.00
kNN-UE (w/o label) | 1.2840.43 16.53£11.45 97.09+0.10 30.22+2.80 | 2.12+0.36  10.00+£6.07  96.12+0.16 37.33+4.70
kNN-UE 1414047  10.77+2.34 97.18+£0.09 23.83+1.29 | 1.80+0.37 5.124+1.47 96.00+£0.22 34.97+2.48

Table 3: ECE, MCE, AUROC, and E-AURC results about NLI task on MNLI (In-domain) and SNLI (Out-of-domain)

for DeBERTaV3gask model.

Methods FPR@95 () AUROC (1) AUPR-In (1) AUPR-Out (1)
SR 82.514+9.49 63.18+£5.14  69.51+£2.57 54.70+8.48
TS 83.1247.50 65.63£3.64 70994202  56.1946.11
LS 86.884+4.27 62.17£2.83  69.50+1.51 51.38+3.81
MC Dropout 87.33+3.38  63.96+4.00 70.13+239  53.18+5.41
SNGP 81.92+3.46 63.27+3.07 68.83+2.10 55.91+3.20
PN 82.844+5.11 67.54+4.29 66.59+2.45 55.3245.26
Density Softmax 87.5443.14 5873433 67344257  49.19+4.36
DAC 84.984+4.19 64.65+£6.18 70.69+3.59 54.81+7.29
ENN-UE (w/o label) | 75.8742.16 7044170 74.77E144 63394224
kNN-UE 73.55+5.01 71.114+2.92 73.80+2.19 65.01+3.45
Table 4: Out-of-distribution detection results on

mDeBERTaV3pasg model using IMDb/Yelp Polar-
ity as ID/OOD datasets, respectively.

In this research, we use the product of the confi-
dence of the tokens that construct the entity as the
confidence of the entity.

Table 5 shows the results of in-domain and out-
of-domain UE using the OntoNote 5.0 dataset in
the mDeBERTaV3 model. KNN-UE shows the best
performance in 4 cases, which are ECE or MCE,
often resulting in large improvements compared
to the SR. On the other hand, E-AURC in NER
is consistently better without using the KNN-UE
label term. E-NER which is a recent UE method
that can be used for confidence calibration and
selective prediction in NER, is close to KNN-UE in
selective prediction performance at the entity level,
but calibration performance is not good.

kNN-UE shows good UE performance even

when the target domain is relatively far from source
domain bn, such as tc. We have thought that KNN-
UE might not work if the prediction is too far from
the training data distribution. This is because if the
prediction is too far from the training data, the rep-
resentation of the prediction from the model will
be unreliable when compared to the prediction in
the same domain as the training data. In general,
methods based on feature distances assume that
they contain information relevant to the correct-
ness of the prediction (Postels et al., 2022). We
hypothesize that this problem could be mitigated
in our experiments because the domains that the
base models do not recognize are limited in the
NLP community where there are many strong pre-
trained models based on self-supervised learning
such as DeBERTaV3.

6.4 Case Study: Effects of the Label Term in
kNN-UE for a Misclassified Example

Table 6 shows SR and KNN-UE confidences, and
S(y) in kNN-UE for a misclassified example. In
this case, SR and kNN-UE make incorrect predic-
tion even though the true label is negative. How-
ever, the confidence is appropriately reduced by
including the distances from the neighbors in KNN-
UE, compared to SR. Moreover, by using the infor-



Methods bn (In-domain) nw(Out-of-domain) tc(Out-of-domain)

ECE (}) MCE (1) E-AURC () ECE (}) MCE ({) E-AURC () ECE () MCE (1) E-AURC ()
SR 7.794£0.53 50.07+24.15 21.90+1.31 | 17.05£0.69 37.06+3.13  81.49+4.17 | 21.20£2.03  42.60+£5.84  76.05+5.72
TS 5.34+£0.43 75.71+£21.96 19.63£1.22 | 12.76£0.62 26.57£3.97  72.90+£4.72 | 19.69£0.95 47.72+£7.34  71.87+8.83
LS 6.46+0.74 50.99+£26.73 24.93£1.19 | 14.784+0.61 30.54+2.84  81.50+6.98 | 20.99+2.16 65.40£17.16 76.65+£7.33
MC Dropout 6.76+0.64 53.13+£26.07 19.91+3.39 | 15.27£1.01 33.60£4.93  77.21+£3.72 | 21.93£1.63 56.56+12.32  75.68+9.30
E-NER 7.98+0.42 61.87£27.06 19.44+1.81 | 17.424+0.88 40.46+533  74.32+£4.47 | 25.4242.09 59.16£10.33  72.00£6.57
Density Softmax 7.3240.25 59.05+£27.76  25.17+£2.63 | 16.10+0.62 44.66+21.67 80.14+£8.50 | 24.40+1.84 62.50+£10.46 80.06+£6.27
DAC 1.62+0.42 429642825 21474290 | 7.91+0.75  25.28+5.15  75.2442.43 | 14.42+1.57 47.924+20.98 80.72+8.19
kNN-UE (w/o label) | 3.37+0.71  33.15+3.65 17.63+£0.66 | 8.78+0.62 2491+1.81 70.10£4.03 | 14.61+0.67 35.26+7.16 65.41+8.11
kENN-UE 1.78+£0.32  26.02£13.72 20.14£1.27 | 7.50+0.42 16.53+2.61 74274543 | 14.15+0.33 39.84+6.02 71.81+9.04

Table 5: ECE, MCE, and E-AURC results about NER on OntoNotes 5.0 dataset for mDeBERTaV3gagg model.

Text As long as you go into this movie with
the understanding that it’s not going to
contain any historical fact whatsoever, it’s
not bad.<br /><br />It’s on par with Sam
Raimi’s Hercules: The Legendary Jour-
neys; as far as plot, acting, humour, and
production values are concerned. You'll
see the similarities at several points. Most
of the fight scenes are not as good however
and the film suffers from that. ...

Label negative

SR & ENN-UE ..

positive

pred.

SR conf. 0.76

kNN-UE

(w/o label) conf. 0.71

kNN-UE conf. 0.60

S@) I

Table 6: An example of a part of text to be predicted in
ID setting, answer, predicted label in SR & KNN-UE
and their confidences, and S(¢) in kKNN-UE.

Methods SNLI OntoNotes 5.0 nw
SR 21.59+0.76 5.75+0.27
TS 21.64+0.07 5.79+0.17
LS 21.70+0.07 5.80+0.19
MC Dropout 396.86+1.10 101.9840.83
SNGP 24.59+0.08 -

PN 23.26+0.05 -
MDSN 23.3940.85 -
E-NER - 5.78+0.61
Density Softmax 22.024+0.05 6.02+0.07
DAC 2346.62+36.06 326.00+1.41
KkNN-UE (w/o label) 23.02+0.04 10.36+0.21
kNN-UE 23.07+0.05 10.48+0.12

Table 7: Inference time [s] on SNLI test set and

OntoNotes 5.0 nw test set. Other results on ID datasets
are in Appendix H.

mation that there are only 11 examples in K = 32
neighbors with the same label as the predicted la-
bel among the neighbors obtained by kNN search,
our kKNN-UE shows that the confidence is further
reduced.

7 Analysis: Impact of Efficient Nearest
Neighbor Search Techniques

In this section, we investigate the inference time
and UE performance when applying approximate
nearest neighbor search techniques and dimension
reduction when executing kNN search in kKNN-UE.

As shown in Table 7, in the sequence labeling based
NER that requires the kNN search execution per
token, it takes twice as much inference time as
SR. On the other hand, in KNN-LM (Khandelwal
et al., 2020), dimension reduction and approximate
kNN search techniques are effective to improve
inference speed while maintaining perplexity (He
etal., 2021a; Xu et al., 2023). Therefore, inspired
by these works for faster KNN-LM, we investigate
how the approximate nearest neighbor search tech-
niques, such as Product Quantization (Jégou et al.,
2011) or clustering, and dimension reduction af-
fect the UE and inference speed of our proposed
method: KNN-UE.

Product Quantization Product Quantization
(PQ) (Jégou et al., 2011) is a data compression
technique based on vector quantization. In PQ, a
D-dimensional representation is divided into N gy
subvectors and quantized by performing k-means
clustering on the vectors in each subspace. Vector
quantization can significantly reduce the amount
of memory occupied by vectors.® In addition, by
calculating the distance between compressed PQ
codes, we can efficiently calculate the estimated
value of the original Euclidean distance.

Clustering The original KNN-LM uses an in-
verted file index (IVF) technique that speeds up
the search by dividing the representation into Vs
clusters by k-means and searching for neighbors
based on N ope centroids. In this study, we evalu-
ate the UE performance and inference speed when
the number of clusters Ny = 100.

Dimension Reduction In general, Transformer-
based models such as PLM have high-dimensional
token representations. In high-dimensional spaces,
nearest neighbor search often suffer from the curse
of dimensionality. To reduce this problem, we ap-
ply dimension reduction to KNN-UE similar to He

*For example, raw datastore in kNN-UE is 636MB on
OntoNotes 5.0 bn, but PQ reduces it to 10MB.



OntoNotes 5.0 bn (In-domain) OntoNotes 5.0 nw (Out-of-domain)

Methods ECE (1) MCE () E-AURC (]) time [s] ECE () MCE (]) E-AURC(]) time [s]
SR 7.7940.53 50.07+£24.15 21.90£1.31 2.49+0.08 | 17.05+£0.69 37.064+3.13 81.49+4.17  5.75+0.27
kNN-UE (w/o label) 3.37£0.71  33.15£3.65 17.63+£0.66 4.94+0.10 | 8.78+£0.62 24.91£1.81 70.10£4.03 10.36+0.21
kNN-UE 1.78+£0.32 26.02+13.72 20.14+1.27 4.9940.07 | 7.50+£0.42 16.53+£2.61 74.27+5.43 10.48+0.12
+PQ (Nguwp = 32) 1.96+0.31 31.33+18.74 20.23+1.27 3.32+0.05 | 7.57£0.45 16.43+£2.73 74.38+£5.36  7.23+0.16
+Clustering (Nprobe = 32) | 1.924£0.31 28.55+11.24  20.13+1.22  3.31£0.06 | 7.60+£0.41 17.12+£2.35 74.34+5.35  7.33+0.21
+DR (Dpca = 128) 2.14£0.37 33.524+10.84 20.12+1.26 2.87+£0.04 | 8.08£0.53 24.03+£5.46 74.50+5.42 6.20+0.20
Only DR (Dj¢; = 128) 1.80+0.36  27.85+£13.80 20.13£1.29 3.41+£0.10 | 7.544+0.45 16.424+2.73 74.30+5.44 7.75+0.24

Table 8: ECE, MCE, E-AURC and inference time results about NER on

OntoNotes 5.0 bn (In-domain) and

OntoNotes 5.0 nw (Out-of-domain) for mDeBERTaV3pasg model when applied PQ, clustering, and dimension
reduction sequentially. DR indicates dimension reduction. For comparison, we also present the results when

dimension reduction is only applied to KNN-UE.

Methods OntoNotes 5.0 bn  OntoNotes 5.0 nw
kNN-UE 100.0 100.0
+PQ (N = 32) 21.30 51.68
+Clustering (N probe = 32) 18.60 11.04
+DR (Dpea = 128) 0.02 0.04
Only DR (Dpea = 128) 43.98 20.35

Table 9: Coverages when PQ, clustering, and PCA are
applied sequentially to the example indices obtained
by default KENN-UE. Results when applying dimension
reduction by PCA individually are also presented for
reference.

et al. (2021a). In this study, we use Principal Com-
ponent Analysis (PCA) as a dimension reduction
algorithm to reduce the dimension of the datastore
representations and the query representation Dic,.

Results: Combination of PQ, Clustering, and
Dimension Reduction We evaluate the UE per-
formance and inference speed when applying PQ,
clustering, and dimension reduction are applied se-
quentially. The evaluations are performed on the
OntoNotes 5.0 test set, and the results for different
parameters of PQ, clustering and dimension reduc-
tion are shown in Appendix F. Table 8 shows the
results on OntoNotes 5.0 bn and nw as ID/OOD,
respectively. We can see that while the uncertainty
performance is not significantly degraded when
PQ and clustering are applied simultaneously to
kNN-UE, ECE and MCE are degraded when di-
mension reduction by PCA is further applied.” On
the other hand, the comprehensive results and dis-
cussion when tuning parameters in PQ, IVF and
PCA presented in Appendix F demonstrate that ap-
plying them appropriately improve inference time
with mitigating the degradation in UE performance,
especially PQ with IVE.

To deepen our understanding of the changes in
the behavior of the uncertainty performance due

"Distance recomputation does not mitigate this behavior,
see Appendix G.

to appling of approximate kNN search techniques
or dimension reduction in kNN-UE, we calculated
the coverage that how much the indices obtained
when using the default exhaustive search are cov-
ered when applying PQ, clustering, and dimension
reduction, sequentially. Table 9 shows the cov-
erages on OntoNotes 5.0 bn and nw as ID/OOD
settings, respectively.

We can see that applying PQ, clustering, and
PCA simultaneously hardly covers any of the in-
dices from the default kNN-UE. It is assumed that
applying PQ and PCA in the same time leads to
coarse distance computation in a single subvector,
which would correspondingly degrade the UE per-
formance in kKNN-UE. Actually, the experimental
results in Table 14 in Appendix F.3 suggest that
excessive dimension reduction in distance com-
putation could have a negative impact on the UE
performance. On the other hand, if combined with
PQ and IVF, or applied PCA individually, some
of the ground-truth nearest neighbor examples still
exist.

8 Conclusion

In this paper, we proposed KNN-UE, which esti-
mates uncertainty by using the distance to neigh-
bors and labels of neighbors. The experimental
results showed that our method showed higher UE
performance than existing UE methods in SA, NLI
and NER. Our method can greatly improve UE
performance, especially in text classification tasks,
with little degrading in inference speed. On the
other hand, to address the degradation of the infer-
ence speed in token-level tasks such as NER, we
investigated the effects of efficient neighbor search
techniques in kKNN-UE. As a result, we found that
product quantization, clustering, or dimension re-
duction improves inference speed without degrad-
ing the UE much more, unless combining all of
them simultaneously.



9 Limitations

In this study, we focused only on the classification-
based tasks. On the other hand, taking advan-
tage of the recent growth of Large Language Mod-
els, UE in text generation is also attracting atten-
tion (Fadeeva et al., 2023; Lin et al., 2024). There-
fore, to investigate the effectiveness of KNN-UE
in text generation tasks is an interesting direction
for future research. Furthermore, although kNN-
UE only used the representation of the last layer
of the base model, exploring for an appropriate
representation for UE is a future challenge.

Ethical Considerations

In this study, we used existing datasets that have
cleared ethical issues following policies of pub-
lished conferences. Therefore, they do not intro-
duce any ethical problems. On the other hand, we
have an ethical consideration about UE. Specifi-
cally, decision support systems with machine learn-
ing algorithms do not necessarily have a positive
effect on performance. Jacobs et al. (2021) showed
that collaboration with machine learning models
does not significantly improve clinician’s treatment
selection performance, and that performance is sig-
nificantly degraded due to the presentation of incor-
rect recommendations. This problem is expected
to remain even if UE methods are applied to ma-
chine learning models. In addition, introducing UE
methods could conversely lead humans to give over-
confidence in machine learning models, resulting
in performance degradation.
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A Training Settings for Density Estimator
in Density Softmax

In Density Softmax (Bui and Liu, 2024), we use Re-
alNVP (Dinh et al., 2017) which has two coupling
structures. Table 10 shows the hyperparameters
for training RealNVP as the density estimator in
Density Softmax.

Hyperparameters Values

learning rate le-4

optimizer AdamW (Loshchilov and Hutter, 2019)
early stopping patient 5

number of coupling layers 4

hidden units 16

Table 10: Hyperparameters for ReaINVP in Density
Softmax.

B Details of Baselines

Softmax Response (SR) is a trivial baseline,
which treats the maximum score from output
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of the base model’s softmax layer as the confi-
dence (Cordella et al., 1995).

Temperature Scaling (TS) is a calibration tech-
nique by which the logits are divided by a tem-
perature parameter 7" before applying the softmax
function (Guo et al., 2017). We optimized 1" by
L-BFGS on validation set loss.

Label Smoothing (LS) is the calibration and gen-
eralization technique by introducing a small degree
of uncertainty € in the target labels during train-
ing (Miller et al., 1996; Pereyra et al., 2017). In LS,
we optimized € € {0.01,0.05,0.1,0.2,0.3} by us-
ing validation set accuracy when SA and NLI, and
validation set F1 when NER.

MC Dropout is an UE technique by M times
stochastic inferences with activating dropout (Gal
and Ghahramani, 2016). In our experiments, we
set M = 20 for all evaluations, and the dropout
rate is 0.1.

Spectral-Normalized Gaussian Process (SNGP)
uses spectral normalization of the weights for
distance-preserving representation and Gaussian
Processes in the output layer for estimating uncer-
tainty (Liu et al., 2020).

Posterior Networks (PN) is one of the meth-
ods in the Evidential Deep Learning (EDL) frame-
work (Sensoy et al., 2018) that assumes a prob-
ability distribution for class probabilities (Char-
pentier et al., 2020), which uses normalizing
flow (Rezende and Mohamed, 2015) to estimate
the density of each class in the latent space.

Mahalanobis  Distance  with  Spectral-
Normalized Network (MDSN) is a Mahalanobis
distance based UE method that benefits from by
spectral normalization of the weights (Vazhentsev
et al., 2022), similar to SNGP.

E-NER applies EDL framework for NER by in-
troducing uncertainty-guided loss terms (Zhang
et al., 2023).

C Detailed Settings on the Density-based
Methods

Datastore Construction It is necessary to pre-
serve the representation of the data for training
a density estimator in Density Softmax and kNN
search in DAC and £KNN-UE. We maintain final
layer representations corresponding to CLS tokens
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in SA and NLI. In NER, we stored the hidden repre-
sentation of the final layer as a token representation
corresponding to the beginning of the word.

k-Nearest = Neighbor Search We  use
faiss (Douze et al., 2024) as the GPU-accelerated
kNN search toolkit. Unless otherwise specified,
we fix the number of neighbors K = 32 in kNN
search, and use faiss.IndexFlatL2 as the de-
fault index in kNN-UE. The indexes corresponding
to approximate nearest neighbor search techniques
are used in Section 7.

D Details of Evaluation Metrics

Expected Calibration Error (ECE) ECE
(Naeini et al., 2015) quantifies the difference
between the accuracy and confidence of a model.
Formally, ECE is expressed as:

B
D
ECE = E [Ds] lacc(Dy) — conf(Dy)|  (6)
n
b=1

where B is the number of confidence interval bins,
Dy, denotes the set of examples with predicted con-
fidence scores in the b-th bin, n is the total number
of examples, acc(Dy) is the accuracy of the model
on the examples in Dy, and conf(Dy) is the average
confidence of the model on the examples in D. In
this study, we use B = 10.

Maximum Calibration Error MCE) MCE, as
detailed by Naeini et al. (2015) measures the maxi-
mum difference between the model’s accuracy and
the confidence across variouts confidence levels.

MCE is defined as:

MCE = riﬁlx lace(Dy) — conf(Dy)|,  (7)
A lower MCE means that there is a small risk that
the confidence of the model’s prediction will devi-
ate greatly from the actual correct answer. In this
study, we use B = 10, same as ECE.

Area Under the Risk-Coverage curve (AURC)
The AURC is the area of the risk-coverage curve
when the confidence levels of the forecasts corre-
sponding to the /N data points are sorted in descend-
ing order. The larger the area, the lower the error
rate corresponding to a higher confidence level,
which means that the output confidence level is
more appropriate. Formally, AURC is defined as:

AURC = Z

] 1g$]

ix N ®



Methods SA NLI
IMDb Yelp Polarity MNLI SNLI

SR 5.00+£0.27  5.83+0.98  9.50+0.40 11.024+0.41
TS 5.09+0.42 6.67+1.36 8.31+0.25  9.60+0.21
LS 4.64+0.23 5.16+0.92 8.73+0.23  10.18+0.17
MC Dropout 4.88+0.21 5454055  9.33+0.36  11.00+0.28
SNGP 4.78+0.15 5.994+0.39 12.254+5.38  13.45+4.57
PN 10.31+0.28  11.16+0.22  20.76+0.32 21.11+0.42
Density Softmax 4.82+0.18 6.05+0.38 9.60+£0.34  11.284+0.41
DAC 4.44+0.33 5.4440.71 8.21+0.25  9.55+0.35
kNN-UE (w/o label) | 4.37+0.16 ~ 5.10+0.12  8.15+0.15  9.5240.32
kNN-UE 4.21+0.14  5.02+042  8.07+0.18  9.44+0.28

Table 11: Brier score results using IMDb/Yelp Polarity
and MNLI/SNLI as ID/OOD datasets, respectively.

where g(z) returns 1 if the prediction is wrong and
0 otherwise.

Excess-Area Under the Risk-Coverage curve (E-
AURC) E-AURC (Geifman et al., 2019) is a mea-
sure of the AURC score normalized by the small-
est risk-coverage curve area AURC* ~ 7 + (1 —
7)In(1 — 7), where 7 is the error rate of the model.
The reason for normalizing the AURC is that the
AURC depends on the predictive performance of
the model and allows for performance comparisons
of confidence across different models and training
methods. E-AURC is defined as:

E-AURC = AURC — AURC* )
E-AURC scores are reported with multiplying by
1,000 due to visibility.

E Additional Results on the Brier score

The Brier score is a widely used metric in UE com-
munity for evaluating the probabilistic predictions.
The metric measures the mean squared difference
between the predicted probability assigned to the
predicted label and the actual outcome. This eval-
uation serves as a holistic assessment of model
performance, reflecting both fit and calibration, in
the following formula:

N
. 1
Brier score = N Z(pn — o),

n=1

(10)

where p,, is the predicted probability assigned
to the prediction, and o,, is the actual outcome. Ta-
ble 11 shows the results on the Brier score. These
results indicate KNN-UE improves calibration per-
formance more prominently than other methods
while maintaining prediction performance.
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Methods ECE (}) MCE (1) E-AURC ()  time[s]
OntoNotes 5.0 bn (In-domain)
SR 7.79£0.53  50.07£24.15 21.90+1.31  2.49+0.08
kNN-UE (w/o label) 3.37+0.71  33.15£3.65 17.63+0.66  4.94+0.10
kNN-UE 1.784£0.32  26.02+13.72  20.14£1.27  4.99+0.07
kNN-UE (Ngp = 16) | 1.90+0.27 31.18%11.17 20.16+1.12  3.27+0.06
KNN-UE (Ngp = 32) | 1.964+0.31 31.33+18.74 20.23+1.27  3.32+0.05
KNN-UE (Ngp = 64) | 1.8840.34 31.06£16.36 20.16+1.23  4.11£0.11
OntoNotes 5.0 nw (Out-of-domain)
SR 17.05+£0.69  37.06+3.13  81.49+4.17  5.75+0.27
kNN-UE (w/o label) 8.78+£0.62  24.91+1.81 70.10+4.03 10.36+0.21
kNN-UE 7.50+£0.42  16.53+£2.61 7427+543 10.48+0.12
ENN-UE (Ngp = 16) | 7.66+0.48  17.07+£3.81 74.4745.53  7.2240.19
kNN-UE (Ngp = 32) | 7.57+045 1643+2.73  74.38+5.36  7.23+0.16
KNN-UE (Ngp = 64) | 7.57+044  16.384+2.66 74.35+549  8.90+0.18

Table 12: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3pasg model when applied PQ in differ-
ent Ngyp.

F Each Result of Product Quantization,
Clustering, and Dimension Reduction

F.1 Product Quantization

We evaluated UE performance and inference time
when the number of clusters in the codebook was
fixed at 32, and the number of subvectors was
changed to Ny, € {16,32,64}.

Table 12 shows the UE performance and infer-
ence time results in different Ng,,. In ECE and
E-AURGC, there are almost no degradation in UE
performance due to PQ. On the other hand, in MCE
in ID setting, the UE performance consistently de-
grades. Furthermore, compared to kNN-UE among
different Ny, the larger Ngyp, the better the UE
performance tends to improve, but the inference
time increases.

The larger N is, the more time is required
for inference but the UE performance improves.
We assumed that these results are derived from
the decrease in quantization error over the vector
with PQ with larger N, because each subvector is
divided into smaller subspaces and the quantization
is performed for each subspace. On the other hand,
an increase in Ny requires additional distance
computations etc., then more inference time.

F.2 Clustering

In this study, we evaluate the UE performance
and inference speed when the number of clusters
Niise = 100 and applying PQ with Ny, = 32 are
fixed and the number of cluster centroids to search
changes N probe € {8,16,32,64}.

Table 13 shows the performance of UE when
changing Nppe in ID and OOD settings using
OntoNotes 5.0. In ECE, scores are slightly reduced



Methods ECE () MCE (}) E-AURC (1) time [s] Methods ECE (1) MCE (]) E-AURC ({) time [s]
OntoNotes 5.0 bn (In-domain) OntoNotes 5.0 bn (In-domain)
SR 7.79+£0.53  50.074+24.15 21.90+£1.31  2.49+0.08 SR 7.7940.53  50.07+24.15 21.90£1.31  2.49+0.08
kNN-UE (w/o label) 3.37+£0.71  33.154£3.65  17.63+£0.66  4.94+0.10 kNN-UE (w/o label) 3374071 33.15+£3.65  17.63+£0.66  4.94+0.10
kNN-UE 1784032 26.02+13.72  20.14+1.27  4.9940.07 kNN-UE 1.7840.32  26.02+13.72  20.14+£1.27  4.9940.07
KkNN-UE (N probe = 8) 1.82+0.28  30.18£16.77 20.14+1.21  2.8440.08 kNN-UE (Djca = 64) 1.89+£0.37 31.01£14.35 20.06+1.25  3.24+0.08
kNN-UE (Nprobe = 16) | 1.86+£0.25  29.48+16.91 20.13+1.21  3.1140.03 kNN-UE (Dpca = 128) | 1.80+£0.36  27.85+13.80 20.13+1.29  3.41+0.10
kNN-UE (Nprobe = 32) | 1.9240.31  28.55+11.24 20.13+£1.22  3.31+0.06 kNN-UE (Dpey = 256) | 1.80+0.40 26.23+12.61 20.13+£1.28  3.85+0.06
ANN-UE (Nprobe = 64) | 1.83£0.28  27.00+9.43  20.14+1.21  3.714+0.06 OntoNotes 5.0 nw (Out-of-domain)
OntoNotes 5.0 nw (Out-of-domain) SR 17.05+0.69  37.06+3.13  81.49+4.17 5.75+0.27
SR 17.05+0.69  37.06£3.13  81.49+4.17  5.75£0.27 KkNN-UE (w/o label) 8.78+£0.62  24.91£1.81  70.10+£4.03 10.36+0.21
KkNN-UE (w/o label) 8.78+£0.62  24.91+1.81  70.10+4.03 10.36+0.21 kNN-UE 7.50+0.42  16.53+2.61 74.27+£543 10.48+0.12
kNN-UE 7.50+£0.42  16.53+2.61  74.27+5.43 10.4840.12 kNN-UE (Djc, = 64) 7.48+0.41 16.204+2.75  74.33+5.49  7.374+0.26
kNN-UE (N probe = 8) 7.5240.41 16.01£1.92  74.33+£5.37  6.09+0.28 kNN-UE (Dpca = 128) | 7.54£0.45  16.4242.73 74304544  7.75+0.24
KNN-UE (Nprobe = 16) | 7.56+£0.36  16.93+3.38  74.31+£539  6.65+0.17 KNN-UE (Dpca = 256) | 7.56+£0.43  16.1342.59 74264540 8.51+0.46
KNN-UE (N probe = 32) | 7.6040.41 17.1242.35 74344535  7.33+£0.21
ANN-UE (Nprobe = 64) | 7.53+£0.40  17.2842.45 74334537  7.8940.12

Table 13: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3pasg model when applied IVF in dif-
ferent IV probe.-

for ID, but only slightly worse for OOD; MCE also
shows degradation for ID but little for OOD, and
even improves when NV pohe = 8; E-AURC shows
almost no change in scores when N b i changed
for both ID and OOD. In terms of inference time,
the larger Npobe, the longer it takes. We derive
the improvement in MCE when increasing IV probe
in ID setting from the fact that more clusters are
targeted, making it possible to cover ground-truth
nearest neighbor examples. On the other hand, the
tendency of slight decrease when increasing N probe
in OOD setting may comes from the reliability of
the vector, similar to the discussion in Section 6.3.

In addition, Taken together with the results in
Table 8 in Section 7, we can see that the degrada-
tion of the UE performance can be mitigated with
improvement latency when applying PQ and IVF
with lower N pope, compared to applying PQ, IVF
and PCA simultaneously.

F.3 Dimension Reduction

As shown in Table 14, the UE performance depends
on the number of target dimension, and the perfor-
mance degrades when Dpe, = 64 or Dpe, = 128.
On the other hand, the performance in D, = 256
is almost the same as default KNN-UE. This sug-
gest that excessive dimension reduction in distance
computation to extract nearest examples by kNN
search could have a negative impact on the UE
performance.

G Distance Recomputation for ANN-UE

When using efficient kNN search techniques in
Section 7, we use approximate distances to com-
pute Eq. 4. Although we can get raw vectors by
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Table 14: ECE, MCE, E-AURC and inference
time results about NER on OntoNotes 5.0 bn (In-
domain) and OntoNotes 5.0 nw (Out-of-domain) for
mDeBERTaV3pasg model when applied PCA in dif-
ferent Dipc,.

Methods ECE (1) MCE (]) E-AURC () time [s]
OntoNotes 5.0 bn (In-domain)
kNN-UE 1784032 26.024+13.72  20.14+1.27  4.99+0.07
ENN-UE (Approx.) | 2.14£0.37 33.52+10.84 20.12+1.26  2.8740.04
kNN-UE (Recomp.) | 2.35+£0.44 3047+7.50 20.16+1.17 16.24+0.77
OntoNotes 5.0 nw (Out-of-domain)
kNN-UE 7.50+0.42  16.53+£2.61  74.27+543 10.48+0.12
kNN-UE (Approx.) | 8.08+0.53 24.03+£5.46  74.50+5.42  6.20+0.20
ENN-UE (Recomp.) | 8.30£0.51 25.67+5.26 74.58+5.53 34.224+0.78

Table 15: ECE, MCE, E-AURC and inference time
results about NER on OntoNotes 5.0 bn (In-domain)
and OntoNotes 5.0 nw (Out-of-domain) when applying
distance recomputation in KNN-UE. "Approx." indi-
cates using approximate distances, and "Recomp." indi-
cates using exact distances by distance recomputation.
Both "Approx." and "Recomp." are applied PQ with
N = 32, clustering with Npope = 32 and dimension
reduction with D¢, = 128.

using the example indices obtained from approxi-
mate nearest neighbor search and compute accurate
distance, in kNN-LM this has been shown to lead
to performance gains and latency degradation (He
et al., 2021a). We measure the UE performance
and inference speed when PQ, clustering, and di-
mension reduction are applied simultaneously and
re-computing accurate distances, reported in Ta-
ble 15. These results show that the UE performance
does not improve except for MCE in the ID setting,
and the latency is about 5-7x slower when reading
raw vectors from the datastore and re-computing
distances. Moreover, these results suggest that ex-
act distance computation for examples that are not
actually nearest neighbors are not very effective in
kNN-UE.

H Additional Inference Time Results

We show additional inference time results on In-
domain test sets in Table 16, apart from the out-of-
domain test sets presented in Table 7.



Methods MNLI OntoNotes 5.0 bn
SR 8.41£0.03 2.494+0.08
TS 8.42+0.07 2.514+0.08
LS 8.44+0.06 2.53+0.03
MC Dropout 157.52+0.51 39.814+0.39
SNGP 10.58+2.09 -

PN 9.114+0.07

MDSN 9.65+1.36 -
E-NER - 2.514+0.12
Density Softmax 8.5740.06 2.5940.05
DAC 785.15+6.72 183.46+0.76
kNN-UE (w/o label) | 9.0540.07 4.944+0.10
kNN-UE 9.08+0.10 4.99+0.07

Table 16: Inference time [s] on MNLI test set and
OntoNotes 5.0 bn test set.
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Figure 3: Changes in ECE and E-AURC in SA when
changing the number of neighbors of KNN-UE.

I TImpact of Top-K

To understand the behavior of kXNN-UE, we eval-
uated the performance in UE when changing the
number of neighbors K € {8,16, 32, 64,128} dur-
ing kNN execution.

Figure 3 shows the results for SA, and Figure
4 shows the results for NER. As is noticeable in
NER, the smaller K, the better UE tends to be.
Since our method averages the distance to the top
K examples, logits are scaled to be more limited to
neighbors by reducing K. It is assumed that the UE
performance is slightly improved as the kNN-UE
scoring becomes more dependent on neighbor data
if K is small.

J Licenses of Datasets, Tools and Models

Datasets IMDb movie dataset can
be wused for research purpose as de-
scribed in https://developer.imdb.
com/non-commercial-datasets/. Yelp
Polarity dataset can be wused for aca-
demic purpose as described in https:

//s3-media@.fl.yelpcdn.com/assets/srve/
engineering_pages/f64ch2d3efcc/assets/
vendor/Dataset_User_Agreement.pdf. MNLI
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Figure 4: Changes in ECE and E-AURC in NER when
changing the number of neighbors of KNN-UE.

dataset is licensed for research purpose as described
in Williams et al. (2018). SNLI dataset can be used
for research purpose as described in https:
//nlp.stanford.edu/projects/snli/.
OntoNotes 5.0 dataset can be wused for
research purpose as described in https:
//catalog.ldc.upenn.edu/LDC2013T19.

Tools transformers is licensed by Apache-2.0.
faiss is MIT-licensed.

Models DeBERTaV3gasgk and
mDeBERTaV3pasg from Huggingface model
checkpoints are MIT-licensed.


https://developer.imdb.com/non-commercial-datasets/
https://developer.imdb.com/non-commercial-datasets/
https://developer.imdb.com/non-commercial-datasets/
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19

	Introduction
	Related Work
	Preliminary
	Definitions
	Density Softmax
	Density Aware Calibration (DAC)

	Proposed Method: k-Nearest Neighbor Uncertainty Estimation (kNN-UE)
	Experimental Settings
	Tasks and Datasets
	Existing Methods
	Training Setting
	Evaluation Metrics

	Results
	Sentiment Analysis
	Confidence Calibration and Selective Prediction
	Out-of-Distribution Detection

	Natural Language Inference
	Named Entity Recognition
	Case Study: Effects of the Label Term in kNN-UE for a Misclassified Example

	Analysis: Impact of Efficient Nearest Neighbor Search Techniques
	Conclusion
	Limitations
	Training Settings for Density Estimator in Density Softmax
	Details of Baselines
	Detailed Settings on the Density-based Methods
	Details of Evaluation Metrics
	Additional Results on the Brier score
	Each Result of Product Quantization, Clustering, and Dimension Reduction
	Product Quantization
	Clustering
	Dimension Reduction

	Distance Recomputation for kNN-UE
	Additional Inference Time Results
	Impact of Top-K
	Licenses of Datasets, Tools and Models

