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Abstract

We present PhET-Physics-VideoQA, a controlled benchmark for assessing physics1

understanding in vision–language models (VLMs) from video. The corpus com-2

prises 382 short clips sourced from PhET Interactive Simulations, covering 173

topics across four fields (Mechanics & Fluids, Optics, Electromagnetism & Cir-4

cuits, and Quantum Mechanics). Each clip is paired with a triad of expert-validated5

questions—conceptual, numerical, and error-detection—yielding 1,146 Q/A items.6

The design emphasizes pixel-grounded reasoning: many clips display gauges and7

sliders so that models must recover numeric values from frames rather than rely on8

language priors.9

Evaluation is reproducible and type-specific. Numerical items are graded deter-10

ministically against gold values with absolute/relative tolerances and unit checks.11

Conceptual and error-detection items are judged with a rubricized LLM that re-12

turns strict JSON, supports dual-judge scoring, and is run at zero temperature with13

cached transcripts.14

We report results for three video-capable VLMs (GPT-4o-mini, Gemini-2.5-Flash-15

Lite, Qwen-VL-Plus). Across domains, error-detection (“trap”) questions are16

consistently the most difficult, typically scoring 0.5–1.3 points lower than con-17

ceptual or numerical items on a 1–5 scale. Higher-concept physics, particularly18

quantum content, remains challenging for all models. PhET-Physics-VideoQA19

thus offers a rigorous, transparent, and cost-efficient testbed for measuring gen-20

uine physics competence in video settings and a practical resource for advancing21

research on multimodal world.122

1 Introduction23

World models aim to learn predictive, manipulable representations of environments that support24

planning, control, and transfer across tasks [Ha and Schmidhuber, 2018, Hafner et al., 2019, 2020,25

Reed et al., 2022, Ahn et al., 2023, Zitkovich et al., 2024]. Yet mounting evidence suggests that26

contemporary vision–language models (VLMs) often exploit superficial regularities rather than27

forming physically meaningful abstractions: they can under-use shape structure and fail on illusions28

that humans find trivial [Hemmat et al., 2024], degrade sharply under controlled distribution shifts29

[Barbu et al., 2019], and rely on language priors that inflate in-domain accuracy [Agrawal et al.,30

2018]. Behavioral test suites further expose compositional and alignment gaps [Zhao et al., 2022,31

Thrush et al., 2022], while video reasoning benchmarks surface limitations in temporal and causal32

understanding [Yi et al., 2020]. These diagnostics collectively motivate benchmarks that (i) control33

1Project: https://scenephys.github.io/ ; Dataset: https://huggingface.co/datasets/ScenePhys/ScenePhys ; Code:
https://github.com/ScenePhys/codebase.
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confounds, (ii) span diverse physics regimes, and (iii) separate genuine mechanistic reasoning from34

pattern matching.35

We present a controlled, video-based benchmark built from the widely used PhET Interactive36

Simulations ecosystem of physics demonstrations. The dataset comprises 382 curated simulation37

videos covering core domains (kinematics, dynamics, collisions, geometric optics, electricity and38

magnetism, circuits, fluids specifically buoyancy, and quantum phenomena). Each video is paired39

with a triad of questions that probe complementary facets of understanding: (i) Conceptual (laws,40

invariants, qualitative trends), (ii) Numerical (parameter-grounded calculations with unit discipline),41

and (iii) Error-detection (identifying idealizations, hidden losses, or setup inconsistencies). By design,42

success requires reasoning over physical invariants and counterfactuals rather than exploiting spurious43

visual or linguistic shortcuts.44

In contrast to existing video reasoning datasets that emphasize synthetic collisions, goal satisfac-45

tion, or open-domain narratives [Yi et al., 2020, Bakhtin et al., 2019, Bear et al., 2021], and to46

education datasets centered on static diagrams [Lu et al., 2022], our benchmark leverages high-47

quality PhET simulations to couple pixel-visible numeric panels with curated, per-video triads48

of conceptual, numerical, and error-detection questions. This combination enforces grounding in49

measured quantities, tests unit- and sign-discipline alongside qualitative reasoning, and surfaces50

robustness to idealizations—providing a complementary, diagnostics-first view of multimodal physics51

understanding.52

Contributions. (1) A parameterized, physics-grounded video benchmark of 382 PhET simulations53

spanning multiple domains. (2) A three-question evaluation schema (conceptual, numerical, error-54

detection) that disentangles types of understanding and pressures models to rely on the right invariants.55

(3) Comprehensive baselines and analyses across contemporary VLMs, surfacing systematic error56

modes linked to abstraction gaps, unit handling, and hidden-assumption sensitivity [Hemmat et al.,57

2024, Barbu et al., 2019, Agrawal et al., 2018, Zhao et al., 2022, Thrush et al., 2022, Yi et al., 2020].58

Alignment with workshop focus: Interactive scene generation and downstream tasks. Our59

benchmark targets physically plausible, controllable video scenes and evaluates properties directly60

relevant to downstream agents: temporal consistency and conservation laws (conceptual), actionable61

predictiveness (numerical), and robustness to modeling choices and hidden assumptions (error62

detection). As such, it provides an evaluation substrate for models that generate or condition on63

interactive simulations, and a diagnostic lens on whether VLMs—and world-model pipelines built64

atop them—encode abstractions suitable for planning and policy learning [Ha and Schmidhuber,65

2018, Hafner et al., 2019, 2020].66

2 Related Work67

Multimodal benchmarks for physical reasoning. A substantial body of work probes whether68

models can reason about dynamics and causality from video. CLEVRER targets temporal and69

causal reasoning in synthetic collisions with descriptive, explanatory, predictive, and counterfactual70

queries, revealing that perception-only success does not translate to causal competence [Yi et al.,71

2020]. PHYSION moves toward more realistic simulations (e.g., rolling, sliding, falling, collisions,72

deformation) and compares machine predictions with human judgments, finding persistent gaps and73

advantages for object-centric representations [Bear et al., 2021]. PHYRE frames physical reasoning74

as solving 2D puzzles with an emphasis on generalization and sample efficiency [Bakhtin et al., 2019].75

Our benchmark differs in three ways: (i) we build on PHET educational simulations to improve76

reproducibility and pedagogical fidelity; (ii) each video is paired with a fixed triplet of questions77

(conceptual, numerical, error-detection) aligned to instructional goals; and (iii) we evaluate multiple78

VLMs under standardized prompts. The reliability and broad adoption of PHET as a learning tool79

motivate its use as a controlled yet authentic source of stimuli [Wieman et al., 2008, 2010].80

Video QA and educational multimodal reasoning. General VideoQA benchmarks emphasize81

everyday activities, temporal order, and causal relations in natural videos; for example, NEXT-QA82

targets causal and temporal action reasoning with both multi-choice and open-ended formats, showing83

that strong systems still struggle with explanatory questions [Xiao et al., 2021]. Complementary84

educational resources such as TQA and AI2D/AI2D-RST examine multimodal comprehension in85
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Dataset Mod. Lang. Task Size Open Numeric UI Diff./Trap Notes / Primary reference

PhET-Physics-
VideoQA (Ours)

Vid Eng VideoQA (conceptual /
numerical / error-det.)

382 vids,
1146 Q/A

✓ ✓ ✓/ ✓ Educational simulations;
parameterized clips (densities,
n, drag, etc.); three question
types.

CLEVRERa[Yi et al.,
2020]

Vid Eng VideoQA
(desc./expl./counterf.)

20k vids;
>300k Q

✓ ✗ ✗/ ✗ Synthetic collisions;
causal/temporal reasoning with
counterfactuals.

CRIPP-VQAb[Patel
et al., 2022]

Vid Eng VideoQA (template
queries over primitive
physical processes)

∼2.4k vids;
∼74k Q/A

✓ ✗ ✗/ ✗ Synthetic, short clips of
rudimentary processes;
template-style questions; not
an educational physics
benchmark; no numeric
readouts.

Physion [Bear et al.,
2021]

Vid Eng Physical prediction (no
QA)

∼1.2k clips
(8 scenarios)

✓ ✗ ✗/ ✗ Predict roll/slide/bounce
outcomes; human vs model
comparisons.

PHYRE [Bakhtin et al.,
2019]

Sim Eng Goal achievement /
planning

2 tiers; 25
templates ×
100 tasks
each (∼5k)

✓ ✗ ✓/ ✗ Parameterized 2D physics
puzzles; generalization
within/across templates.

ScienceQA [Lu et al.,
2022]

Img+Txt Eng MCQA (explanations) ∼21k Q/A ✓ ✗ ✗/ ✗ K–12 science with
images/diagrams;
chain-of-thought supervision.

a Per-type CLEVRER counts: 126,304 descriptive, 122,461 explanatory, 41,021 predictive, 12,523 counterfactual.
b CRIPP-VQA focuses on primitive, compositional physical processes with template-based questions; it
is not designed for high-level, educational physics reasoning or numeric problem solving.

Table 1: Positioning our benchmark among nearby datasets. “Numeric UI” flags whether raw
on-screen numeric readouts (gauges/sliders) are part of the visual input. “Diff./Trap” indicates explicit
difficulty labels and the presence of trap/error-detection prompts (see Sec. 3.4.

K–12 science and highlight the challenges of diagram-grounded reasoning [Li et al., 2018, Kembhavi86

et al., 2016, Hiippala et al., 2021], while SCIENCEQA scales to ∼21k multimodal questions with87

lectures and explanations, demonstrating benefits from chain-of-thought supervision [Lu et al.,88

2022]. Our benchmark sits alongside these efforts by focusing on canonical physics phenomena89

with controllable conditions and numeric readouts, enabling quantitative assessment and precise90

cross-model comparisons that complement natural-video and diagram/text settings.91

Numerical visual reasoning, broad LMM evaluations, and video-capable models. Chart/plot92

QA corpora probe perception-to-calculation pipelines via value extraction and tolerance-aware93

grading—principles we adopt for our numerical items (units, error tolerances, robustness to reading94

noise)—as exemplified by PLOTQA and CHARTQA [Methani et al., 2020, Masry et al., 2022].95

Broad, heterogeneous benchmarks such as MMMU and MATHVISTA further reveal persistent gaps96

in mathematically grounded multimodal reasoning despite rapid progress [Yue et al., 2024, Lu et al.,97

2023]. In parallel, open efforts extend image-centric LMMs to the video domain through instruction98

tuning and unified tokenization (e.g., VIDEO-LLAVA, VIDEO-CHATGPT), typically optimizing for99

conversational understanding rather than parameter-grounded consistency [Lin et al., 2023, Maaz100

et al., 2023]. Our physics-focused, numerically anchored evaluation bridges these lines of work101

by testing whether video-capable models can maintain state tracking, read parameters reliably, and102

respect physical constraints—capabilities that standard conversational video setups may not directly103

assess.104

Probing VLM robustness and abstraction. Recent diagnostic datasets show that vision–language105

models (VLMs) often rely on superficial cues rather than true abstraction. Hemmat et al. demonstrate106

failures on visual illusions due to under-use of shape structure [Hemmat et al., 2024], while ObjectNet107

reveals over-reliance on context [Barbu et al., 2019]. In VQA, VQA-CP exposes shortcut use of108

answer priors. Behavioral test suites such as VL-CheckList and Winoground further probe object109

attributes, negation, and compositional binding [Zhao et al., 2022, Thrush et al., 2022]. For temporal110

and causal reasoning, CLEVRER reduces success via superficial cues [Yi et al., 2020]. Together,111

these motivate our inclusion of error-detection prompts to better separate physical reasoning from112

heuristic pattern matching.113

Positioning among physics and multimodal QA benchmarks Prior work probes video physical114

reasoning via synthetic collisions and counterfactual queries (CLEVRER; Yi et al., 2020), goal-115
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Figure 1: PhET-Physics-VideoQA overview. The central sunburst summarizes the four
fields—Mechanics & Fluids, Optics, Electromagnetism & Circuits, and Quantum Mechanics—and
their 17 topics covered by our 382 simulation clips.

driven puzzle solving that stresses template generalization (PHYRE; Bakhtin et al., 2019), and116

predictive judgments about real/simulated dynamics (PHYSION; Bear et al., 2021); other resources117

target physics QA directly over videos (e.g., CRIPP-VQA, ∼2.4k videos/∼74k Q/A) or focus on118

diagram/image-based education QA (SCIENCEQA; Lu et al., 2022). Our benchmark (Table 1) fills119

a complementary, under-served niche by (i) using controlled educational simulations (PhET) with120

visible numeric UI (gauges/sliders/readouts) so answers can be grounded in pixel-level measurements;121

(ii) evaluating three orthogonal skills via per-video triads—conceptual, numerical (unit-checked with122

explicit tolerances), and error-detection—that target known VLM failure modes; and (iii) covering a123

broad syllabus (fluids, mechanics, optics, E&M, circuits, quantum mechanics) to enable disaggregated124

domain analysis. Unlike prior video datasets that avoid numeric UI [Yi et al., 2020, Bear et al., 2021]125

or center static diagrams [Lu et al., 2022], our setting requires consistency between language, on-126

frame measurements, and physical constraints, yielding a sharper diagnostic of physics competence127

beyond language priors.128

3 Dataset129

3.1 Design Goals & Scope130

Our benchmark targets video understanding of canonical physics under controlled, measurable, and131

repeatable conditions. We construct short clips from the PhET Interactive Simulations ecosystem132

[Wieman et al., 2008, 2010], where on–screen gauges and sliders expose parameters and outcomes.133

The dataset comprises 382 curated clips spanning four fields— Mechanics & Fluids, Optics, Elec-134

tromagnetism & Circuits, and Quantum Mechanics—across 17 topics (e.g., buoyancy, collisions,135

lenses/mirrors, Coulomb’s law, generator, RC time constant, projectile motion, quantum tunneling).136

Each clip pairs with three complementary questions that probe (i) conceptual knowledge (laws,137

invariants, qualitative trends), (ii) numerical competence (parameter-grounded calculations with unit138

checks and tolerances), and (iii) error detection (identifying idealizations, hidden losses, or setup139

inconsistencies). Because the governing variables are visible in the pixels (readouts, sliders), correct140

answers must be simultaneously consistent with the visual evidence and with the underlying physics,141

making it difficult to rely on language priors alone.142

Intended uses beyond evaluation. While the primary purpose is a standardized diagnostic for143

video-language models’ physics understanding, the dataset and answer schema are designed to144

support additional research uses:145

• Supervised fine-tuning (SFT). The question–answer pairs (with tolerance-aware numeric146

targets) can supervise models to (a) read on-screen numeric UI, (b) apply unit and sign147

discipline, and (c) map qualitative video cues to the correct physical regime (e.g., float/sink,148

real vs. virtual images).149
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• Preference optimization/reward modeling. The three question types furnish natural150

comparison signals (e.g., correct reasoning but wrong arithmetic vs. spurious guess with151

right number), enabling preference datasets for DPO/RLHF-style training of physics-aware152

responses.153

• Auxiliary tasks for grounding. The same clips admit multi-task objectives such as OCR-154

of-readouts, unit tagging, dimensional analysis checks, or equation selection, which can be155

attached as auxiliary losses to improve numeric grounding in video LMMs.156

• Curriculum and generalization studies. The coverage across fields and topics allows157

curricular schedules (easy→hard, single-parameter→multi-parameter) and systematic gen-158

eralization protocols (e.g., train on water/oil densities, test on mercury; train on concave159

mirrors, test on convex).160

• World-model stress tests. Because scenarios expose controllable parameters and predictable161

outcomes, the benchmark can serve as a held-out probe for video world models: models that162

claim to encode dynamics should exhibit consistent performance across parameter sweeps163

(e.g., Fb ∝ ρV , 1/f scaling in optics, exponential RC time constants).164

• Instruction following and tool use. The explicit numeric targets and unit tolerances165

make the dataset suitable for instruction-tuning models to follow physics-specific directives166

(“compute,” “estimate,” “explain assumption”) and for evaluating tool-augmented reasoning167

(e.g., calculator use) under visual grounding.168

These secondary uses are optional and orthogonal to the core benchmark; they are included to169

facilitate research on how video models internalize and operationalize sophisticated physics rules, not170

merely whether they can answer in-domain prompts.171

3.2 Data Compilation172

All clips are recorded from PhET Interactive Simulations [Wieman et al., 2008, 2010] and were de-173

signed by a small team of physics practitioners (three co-authors with Electrical Engineering/Physics174

training). For each module the team specified (i) visible instruments (sliders, gauges, readouts),175

(ii) controllable parameters and ranges (e.g., object volume/density, index of refraction, spring con-176

stant, charges, area and distance of plates, gravity, drag model, width of the wave fuction), and177

(iii) a short scripted interaction (initial conditions, parameter sweep/perturbation, expected quali-178

tative outcome). Each finalized clip is paired with three questions—conceptual, numerical, and179

error-detection—initially drafted by GPT-5 Thinking from a structured scenario card (simulation,180

parameters, difficulty, intended concept) and then fully vetted by experts for scientific correctness.181

During validation, the team calibrated numerical targets (units, significant figures, a priori abso-182

lute/relative tolerances) and bound error-detection prompts to the clip’s idealizations (e.g., zero drag,183

no frictional losses, paraxial approximation). Gold answers include a concise rationale, the canonical184

formulas used, and a final numeric result with unit and tolerance. Prior to release we ran automated185

consistency checks (unit sanity, sign conventions, recomputation from metadata) and a two-pass186

human audit to remove duplicates/near-duplicates. Each datum ships with (1) the standardized video187

frames, (2) a machine-readable metadata JSON (module, parameters, UI elements, difficulty), and (3)188

the QA triplet with gold answers and grading rubric (including tolerance rules), enabling turnkey189

evaluation and secondary uses such as SFT, preference modeling, and curriculum/generalization190

studies.191

3.3 Metadata summary192

Our corpus contains 382 clips paired with 1146 Q/A items (three per clip), covering 17 topics grouped193

into four fields: Mechanics and Fluids (79 clips: buoyancy, projectile motion, collisions, masses194

and springs, simple pendulum); Optics (50: convex/concave lenses, convex/concave/flat mirrors);195

Electromagnetism and Circuits (130: capacitance, Coulomb’s law, generators, RC time constant);196

and Quantum Mechanics (123: hydrogen-atom/spectral behavior, photon polarization, quantum197

tunneling). The most represented topics are hydrogen atom models (55), quantum tunneling (54),198

capacitance (40), Coulomb law (35), RC time constant (30), generator (25), projectile motion (25),199

and buoyancy (24). Each clip is annotated with three complementary question types—conceptual,200

numerical, and error-detection—anchored to the same video instance (cf. App. A.2 for extended201

metadata details).202
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3.4 Question Generation & Types203

Overview. Each video instance is paired with three orthogonal item families designed to probe204

complementary facets of physics understanding: (i) Conceptual (principles, invariants, qualitative205

monotonicities), (ii) Numerical (parameter–grounded calculation with unit discipline), and (iii)206

Error–detection (recognition of idealizations, hidden losses, and setup inconsistencies). Items are207

authored from a scenario–metadata binding (visible readouts, controlled parameters, units) to ensure208

the question is video–specific, unambiguous, and reproducible.209

Item specifications.210

Conceptual. Scope: laws and qualitative trends (e.g., Archimedes, Snell, energy conservation,211

momentum, Faraday’s law, RC dynamics). Form: “If parameter X increases while Y is held fixed,212

what is the effect on Z? Justify by naming the governing principle.” Evidence required: correct213

directionality and an explicit citation of the relevant law or invariant; reference to features visible214

in the clip (gauges/sliders).215

Numerical. Scope: single– or few–step calculations bound to the video’s numeric UI (e.g., read ρ,216

V , R, C, n, v0, angles). Form: “Using the on–screen values (A,B, . . .), compute Q and report217

with units.” Constraints: unit correctness, appropriate rounding/significant figures, and a tolerance218

window (absolute/relative) predeclared per item to account for display precision.219

Error–detection. Scope: identification of simplifying assumptions (zero drag/friction, perfectly220

rigid bodies, lossless components), hidden confounders (misread units, occluded scales), or221

inconsistent setups. Form: “Identify the dominant idealization in the clip and predict the qualitative222

change in the outcome if it is violated.” Evidence required: naming the assumption and a correct223

counterfactual (directionally and mechanistically).224

Difficulty. We tag each item with one of three difficulty levels—easy, moderate, or hard—based on225

combined cognitive load (recall vs. multi–step reasoning), numeric complexity (single vs. chained226

formulas/conditionals), and perceptual burden (reading small/fast UI changes). Labels are assigned227

during expert review and are used only for analysis/stratification, not for prompting.228

Trap concept (implicit, not flagged). Although we analyze common failure modes—(i) units/scale229

(unit consistency, order-of-magnitude checks), (ii) sign/direction (conventions, image vs. object side,230

current/field orientation), (iii) parameter readout (misreading sliders/gauges), and (iv) idealization231

violations (zero drag/friction, perfect rigidity, lossless elements)—we do not store an explicit “trap232

flag” in the metadata. Instead, these aspects are implicitly probed by the dedicated error-detection233

question type and enforced by the grading rubric (unit checks, tolerance windows, and counterfactual234

reasoning). Aggregated diagnostics may reference these categories in analysis, but no per-item trap235

annotation is included in the released data.236

4 Experiments and Results237

4.1 Experimental Configuration238

Corpus and tasks. We evaluate on 382 video scenarios (17 physics labs), each paired with a triad of239

Conceptual, Numerical, and Error–Detection items for a total of 1146 Q/A.240

Model suite and rationale. We select three video–capable VLMs balancing capability, cost, and241

ecosystem coverage: GPT-4O-MINI (OpenAI; strong small model in the GPT-4o family), GEMINI-242

2.5-FLASH-LITE (Google; fast multimodal variant), and QWEN-VL-PLUS (Alibaba; widely used243

open(-ish) stack). This set spans two strong proprietary baselines with robust video APIs and one244

popular, cost–efficient open family—useful for the community to replicate/extend.2245

Video preprocessing. Clips are standardized to fps= 3.0, max_frames= 40, jpg_quality=246

95, then base64–encoded for API transmission. This budget preserves salient state changes (e.g.,247

gauge/slider motion, collisions) while controlling cost and latency.248

2We cite family reports for context: GPT-4o system overview [ope, 2024], Gemini technical reports [Comanici
et al., 2025], and Qwen2-VL [Wang, 2024].
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Category Question Type gpt-4o-mini gemini-2.5
flash-lite qwen-vl-plus Type Avg.

Mechanics & Fluids
Conceptual 4.6 4.5 2.3 3.80
Error Detection 3.0 3.2 2.5 2.90
Numerical 4.0 4.2 2.1 3.43

Quantum Mechanics
Conceptual 3.7 3.8 1.6 3.03
Error Detection 2.4 2.5 1.5 2.13
Numerical 3.3 3.5 1.6 2.80

Electromagnetism & Circuits
Conceptual 4.7 4.6 3.3 4.20
Error Detection 3.8 3.4 3.1 3.43
Numerical 4.2 4.0 3.2 3.80

Optics
Conceptual 4.2 4.2 3.7 4.03
Error Detection 2.6 3.3 2.3 2.73
Numerical 4.6 4.3 3.9 4.27

Table 2: LLM-as-a-judge scores (scale 1–5) by category and question type; rightmost column is the
mean across models. Error Detection rows are consistently lower than Conceptual/Numerical.

Prompting and decoding. Unless otherwise noted: temperature = 0, single response per item (no249

self-consistency), and frame stacks passed as ordered images with a fixed instruction template (per250

question type).251

Scoring protocol (summary). Numerical items use deterministic, unit–aware grading against a gold252

key with absolute/relative tolerances (Sec. 4.2).Conceptual and Error–Detection items are judged by253

an LLM-as-a-judge rubric on a [1..5] scale with a justification string and flags; we report normalized254

scores and confidence–aware variants (Sec. 4.2). This mixed protocol yields objective scoring where255

ground truth is numeric, and calibrated rubric assessment where open-text explanations are required.256

4.2 Evaluation Protocol257

Setup and notation. Let V be the set of videos; each v ∈ V is paired with a triad of ques-258

tions Q(v) = {q(C), q(N), q(E)} covering conceptual (C), numerical (N ), and error–detection (E)259

skills. For a model M , let â(q) denote its answer to question q. We score each question with a260

type–appropriate function s(q, â) ∈ [0, 1], then aggregate across videos, types, and physics domains261

[Gu et al., 2024, Li et al., 2024].262

Deterministic scoring for numerical items. Each numerical question q has a gold value y⋆, a unit263

u⋆, an absolute tolerance τabs and a relative tolerance τrel specified in the metadata. From the model’s264

response we parse a numeric ŷ and unit û (unit synonyms normalized to SI). Define the admissible265

error266

τ(q) = max
(
τabs, τrel · |y⋆|

)
, δ = |ŷ − y⋆|, ⊮unit = ⊮[û ≡ u⋆].

The numerical score is267

sN (q, â) = ⊮unit ·


1, δ ≤ τ(q),

γ, τ(q) < δ ≤ κ τ(q),

0, otherwise,

with fixed hyperparameters γ = 0.5 (partial credit) and κ = 2 (grace band).3 This rubric is objective,268

unit–aware, and invariant to trivial rephrasings, consistent with recommendations to avoid free-form269

LLM judging for numeric items [Liu et al., 2023, Gu et al., 2024].270

LLM-as-a-judge for conceptual and error–detection items. For C and E types we use a271

rubricized judge J instructed to output strict JSON: {score ∈ {1, . . . , 5}, confidence ∈272

[0, 1], flags}, where flags captures checklist criteria (e.g., law_invoked, units_issue,273

3We report γ, κ and the per–question tolerances in the release to ensure exact reproducibility.
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missing_assumption). We map the 5-point rating to [0, 1] via274

r =
score− 1

4
, sC/E(q, â) =

r (1 + α confidence)
1 + α

,

with α = 1 to softly incorporate judge self-confidence. To improve reliability, we optionally use275

two independent judges J1, J2 and average their scores, reporting agreement (e.g., Cohen’s κ) on a276

held-out calibration set, following common practice in rubricized LLM-as-a-judge evaluations [Liu277

et al., 2023, Zheng et al., 2023, Chiang et al., 2024, Gu et al., 2024, Li et al., 2024]; we also monitor278

known biases and robustness concerns [Li and Others, 2025, Shi et al., 2024, Vyas and Others, 2024].279

Aggregation and uncertainty. Per-type means:280

At(M) = |Qt|−1
∑

q∈Qt
s(q, â), t ∈ {C,N,E}.

Per-video triad score:281

Sv(M) = 1
3

∑
q∈Q(v)

s(q, â).

We compute domain-wise macro averages (mechanics/fluids, optics, Electromagnetism/circuits,282

quantum mechanics) and an overall macro across domains to avoid topic-size bias. We attach283

95% confidence intervals via stratified bootstrap over videos (10,000 resamples) and assess model284

differences with paired bootstraps on Sv , as recommended in recent evaluations of LLM judges and285

open-ended benchmarking [Zheng et al., 2023, Chiang et al., 2024, Gu et al., 2024].286

Note. For completeness, we also ran an earlier “critical judge” variant (single pass, free-text rubric);287

its specification and outputs are documented in App. B. All reported numbers in this paper use the288

Standard Judge described above.289

4.3 Results290

Overall. Across all categories and types (Table 2), GEMINI-2.5-FLASH-LITE and GPT-4O-MINI are291

essentially tied: macro–averages of 3.79 vs. 3.76 (on a 1–5 scale), both well above QWEN-VL-PLUS292

(2.59). By domain, Electromagnetism/Circuits is the easiest overall (3.81 mean), followed by Optics293

(3.68), Mechanics/Fluids (3.38), and Quantum Mechanics as the hardest (2.66). The best single cell294

is GPT-4O-MINI on Electromagnetism/Circuits–Conceptual (4.7); the weakest is QWEN-VL-PLUS on295

Quantum Mechanics–Error Detection (1.5).296

By question type. Error Detection is consistently the bottleneck: averaged over all models and297

domains it scores 2.80, trailing Conceptual (3.77) by ∼0.97 and Numerical (3.58) by ∼0.78. The298

gap holds per–model: GPT-4O-MINI Conceptual vs. Error Detection is 4.30 → 2.95 (∆ ≈1.35),299

GEMINI-2.5-FLASH-LITE 4.28 → 3.10 (∆≈1.18), and QWEN-VL-PLUS 2.73 → 2.35 (∆≈0.38).300

This validates the difficulty of our “trap” prompts that require spotting idealizations and making301

counterfactual predictions.302

By domain (higher–concept physics). Quantum Mechanics depresses all models across types (e.g.,303

Conceptual means: 3.70/3.80/1.60; Numerical: 3.30/3.50/1.60 for GPT-4O-MINI/GEMINI-2.5-FLASH-304

LITE/QWEN-VL-PLUS). In contrast, Electromagnetism/Circuits and Optics have strong Numerical305

rows (domain means 4.13 and 4.27). These patterns suggest a valuable “higher–concept physics”306

regime—particularly quantum mechanical topics—where present VLMs lag, and where our dataset307

can pressure–test both closed and open–source video–capable models on real physics understanding308

rather than surface cues, underscoring the importance of our benchmark to the video–physics309

community.310

Open models and practical impact. Because our protocol is model-agnostic and uses frame-311

sparse video inputs (§4.2), the benchmark directly tests video-capable open(-source) models as312

well as proprietary systems. In our runs (Table 2), the more lightweight/opensource-friendly model313

underperforms the proprietary models—especially on Error Detection—indicating that the benchmark314

cleanly separates surface pattern matching from real physics understanding. This makes the dataset315

a practical gate for researchers aiming to advance open models that must operate on educational316

simulations, lab videos, or embodied settings. More broadly, the combination of numeric grounding,317
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trap-style prompts, and higher-concept physics (e.g., quantum mechanics) makes our work an318

important and timely contribution: it supplies a rigorous, reproducible way to measure whether319

video-language models truly reason about physical systems rather than rely on language priors.320

Takeaways for the community. (1) Trap/error-detection questions expose robustness gaps that are321

invisible to aggregate accuracy; (2) higher-concept physics substantially increases difficulty even for322

strong models; and (3) jointly evaluating conceptual, numerical, and error-detection skills on the same323

clips yields sharper diagnostics of physics understanding. These findings position our benchmark324

as a useful stress test for video-capable VLMs and motivate research on models that can ground325

explanations in pixel-level measurements while reasoning about non-classical abstractions.326

5 Conclusion327

We introduced PHET-PHYSICS-VIDEOQA, a controlled, video-based benchmark built from educa-328

tional simulations that makes pixel-grounded physics reasoning measurable. Each clip is paired with329

a triad of complementary questions—conceptual, numerical, and error-detection—while on-screen330

gauges and sliders expose the governing variables. A transparent evaluation protocol combines331

deterministic, unit-aware grading for numerical items with a rubricized LLM-as-judge for open332

responses, and fixes all preprocessing and scoring hyperparameters to enable exact reproducibility.333

Our study with three representative video-capable VLMs shows clear, actionable gaps. First, error-334

detection (“trap”) questions—requiring recognition of idealizations and correct counterfactuals—are335

consistently the hardest across all four physics fields, trailing conceptual and numerical items in336

every category (Table 2). Second, higher-concept content, especially Quantum Mechanics, depresses337

performance in both conceptual and numerical settings, indicating that non-classical reasoning338

remains a major bottleneck. Third, even when numeric readouts are visible, models still suffer from339

unit discipline and tolerance-boundary mistakes. Together, these findings suggest that current VLMs340

rely heavily on language priors and shallow pattern matching rather than robust, state-consistent341

physical reasoning.342

We release videos, metadata, scoring scripts, and judge prompts to serve as a reproducible yardstick343

for the community. Beyond benchmarking, the corpus is immediately useful for training and344

analysis: e.g., physics-aware pretraining, unit/measurement tool-use, uncertainty-aware reasoning,345

and temporal state tracking. Looking ahead, we see three promising directions: (i) expanding high-346

concept domains (quantum mechanical topics) and adversarial traps to stress causal consistency; (ii)347

adding interactive control tasks to test closed-loop reasoning; and (iii) deeper human–AI agreement348

studies with multi-rater annotations. We hope PHET-PHYSICS-VIDEOQA will become a standard,349

cost-efficient testbed for both proprietary and open-source video models, accelerating progress toward350

genuinely physics-aware multimodal systems.351

Limitations352

Our benchmark is built from idealized PhET simulations, which simplifies sensing and dynamics353

and thus creates a sim–to–real gap: occlusions, noise, and unmodeled losses in physical labs are354

only approximated here. Reliance on visible gauges/sliders—needed for numerically grounded355

prompts—can incentivize “read-off & plug-in” strategies and makes results sensitive to OCR/legibil-356

ity; the fixed subsampling policy (e.g., 3 FPS, ≤40 frames) may miss fast transients. Coverage, while357

spanning 17 topics across four fields, is still modest (382 clips) and may be exposed to pretraining358

contamination due to PhET’s ubiquity.359

Evaluation also carries assumptions: an LLM-as-judge rubric is prompt- and decoding-sensitive,360

partial-credit introduces ambiguity, and expert-edited (GPT-assisted) questions may encode stylistic361

bias; prompts/answers are English-only with strict unit formatting. Practically, video tokenization362

and automated judging incur non-trivial compute, and redistribution is constrained by PhET licensing.363

Mitigations: future releases will add real-lab captures, noise/occlusion/higher-FPS variants, broader364

topical scope, and held-out scripted interactions; we will publish prompts/seeds, report inter-annotator365

agreement, explore multilingual/unit-normalized judging, and release cached frames, lightweight366

graders, and reproducible generation scripts under appropriate licenses.367
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A Dataset505

A.1 Licensing & Ethics506

We respect the PhET license and cite Wieman et al. [2008, 2010]. The dataset contains no personal507

data and is intended for research and education. We release metadata and questions under a CC508

BY-NC license; videos follow redistribution terms consistent with PhET usage.509

A.2 Metadata Details510

Clip schema (per entry). { video_filename, scenario_id, field, topic,511

difficulty, fps, num_frames, duration_s, resolution_w, resolution_h,512

parameters, seed, capture_version }513

parameters is a typed, unit–bearing map (examples):514

{ mass_kg, density_kg_m3, diameter_m, index_n, g_mps2, R_ohm, C_F, V_V,515

charge_uC, drag_model, focal_length_cm, radius_cm, ...}516

Question schema (per entry). { q_id, scenario_id, type ∈ [conceptual, numerical,517

error_detection], question_text, answer, units, tol_abs, tol_rel, rubric_id,518

rationale, tags }519

The corpus is grouped into four high-level fields with seventeen topic categories (paraphrased to520

avoid simulator-specific names): Mechanics & Fluids, Optics, Electromagnetism & Circuits, and521

Quantum Mechanics.522

A.3 Trap Items and Difficulty Annotation523

Motivation. Physics proficiency in real settings depends not only on recalling laws but also on (i)524

recognizing when simplifying idealizations fail and (ii) coping with tasks of uneven cognitive/mea-525

surement load. To reflect this, our benchmark tags questions with trap indicators and graded difficulty526

levels. These signals complement raw accuracy and provide a more faithful picture of video–based527

physical reasoning, where hidden losses, unit discipline, and visual ambiguity routinely matter.528

Trap design (error–detection focus). Trap–flagged items are principled checks that the model529

grounds its answer in the frames and the governing physics rather than language priors. We use four530

families:531

• Hidden idealizations: zero drag/friction, lossless circuits, perfectly rigid bodies,532

thin–lens/paraxial limits; the task is to name the assumption and predict the direction of change533

when relaxed.534

• Measurement & units: unit conversions (cm vs. m), sign conventions (e.g., virtual image distance,535

charge signs), and reading the correct scale on on–screen gauges.536

• UI confounds: disambiguating coincident slider moves, occlusions, or background animations537

that are visually salient but physically irrelevant.538

• Counterfactual consistency: checking that the explanation remains correct under a specified539

perturbation (e.g., slightly increasing refractive index, narrowing an aperture, thickening a barrier).540

Typical instantiations include: in optics, distinguishing virtual (q < 0) from real images when the541

focal marker is visible; in Electromagnetism/circuits, noting internal resistance or coil loading that542

explains a nonzero drop; in mechanics/fluids, recognizing buoyant force tracks displaced volume; in543

quantum mechanics, separating evanescent decay from true transmission.544

Difficulty rubric. Each question receives one of four levels, assigned by two physics authors with545

reconciliation on disagreement. Levels reflect the minimum skill needed to answer from the video,546

not from general memory:547

• Easy: one law/qualitative trend; single readout; minimal computation (e.g., image orientation;548

compare C when d doubles).549
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• Moderate: two–step reasoning or a proportionality; multiple readouts; simple numeric substitution550

with unit check (e.g., lens equation with a sign convention; V (t) at t = τ in RC).551

• Hard: composition of laws or temporally extended evidence (track state across frames); sensitivity552

to signs/frames of reference; tolerance-aware computation (e.g., Coulomb’s law with changing r;553

generator V ∝ NABRPM).554

Annotation protocol and quality controls. Authors draft trap candidates alongside the three555

question types; a second annotator audits that (i) the trap has a single physically correct resolution556

visible in the clip, (ii) distractors are plausible but refutable from the frames, and (iii) wording avoids557

“gotcha” phrasing. Difficulty is calibrated by the number of required video cues, algebraic steps,558

and brittleness to sign/units. Numerical items include explicit units and absolute/relative tolerances;559

conceptual/error-detection items use discrete rubrics with brief rationales.560

Benefit for ecological validity. Trap flags and difficulty labels encourage evaluations that reward561

grounded reasoning over pattern matching, mirroring authentic lab contexts where instruments have562

units, approximations break, and causal attribution matters. We therefore report scores disaggregated563

by {conceptual, numerical, error–detection} × {difficulty} and separately for trap vs. non-trap items,564

yielding a more informative summary of real-world physics capability.565

A.4 Dataset Composition566

ScenePhys covers four major areas of physics:567

• Mechanics & Fluids: Linear and rotational motion, collisions, buoyancy, drag.568

• Optics: Reflection, refraction, lenses, mirrors, wave interference.569

• Electromagnetism & Circuits: Coulomb’s law, electric fields, RC circuits, generators.570

• Quantum Mechanics: Quantum tunneling, wave packets, energy quantization.571

A.5 Dataset diagnostics and sanity checks572

Let V be all clips, and let R denote the set of topic labels (17 rules). For a clip v∈V we store its573

topic r(v)∈R, duration tv (s), frame rate fpsv , and spatial resolution (wv, hv). The corpus statistics574

below (Figs. 2–7) are computed with simple, reproducible aggregations.575

Counts and duration per topic. Per–topic counts and total screen time are576

nr =
∑
v∈V

⊮[ r(v) = r ], Tr =
∑
v∈V

⊮[ r(v) = r ] tv, r ∈ R.

Figure 2 shows nr; Figure 3 shows Tr. Topics with the largest footprint are hydrogen atom models,577

quantum tunneling, capacitance, and RC time constant.578

Frame-rate and resolution distributions. We summarize temporal and spatial variability to inform579

preprocessing. The empirical fps multiset580

Dfps = {fpsv : v ∈ V}

is concentrated near ≈ 30 fps (Fig. 4). For spatial resolution, we bucket unique (w, h) modes with581

counts (Fig. 5); a small set of resolutions covers most clips.582

Physics–consistency score (rule checks). For topics with closed–form relations we implement583

label–free checks. Each such topic r has a mapping584

ŷv = fr(θv)

from metadata θv (e.g., R,C for RC, plate area/spacing for capacitance) to a predicted observable ŷv .585

From the clip we extract an observed value yv. Using the same absolute/relative tolerances as the586

main scorer,587

τv = max{τabs, τrel ·|yv|}, ρv =
|ŷv − yv|

τv
,
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Figure 2: Counts per topic nr.

Figure 3: Total duration per topic Tr (seconds).

we define a per–video consistency score588

s(ϕ)v = 100
(
1−min{1, ρv}

)
∈ [0, 100],

and a per–topic summary Sϕ(r) = medianv:r(v)=r s
(ϕ)
v (Fig. 6).589

Topic separability (baseline classifier). As a sanity check that categories are not degenerate,590

we train a weak multi–class classifier on non–semantic features (simple frame statistics, motion591

magnitude, OCR token counts, and metadata toggles). With 5-fold stratified CV, the confusion matrix592

M ∈ N|R|×|R|,593

Mij = #{ v : r(v) = i, r̂(v) = j },
is shown in Fig. 7. Diagonal dominance with intuitive off–diagonal mixes (e.g., among lens/mirror594

variants) supports label quality and diversity. This classifier is not used for evaluation.595

A.6 Dataset Anatomy596

This dataset consists of 382 simulation videos sourced from the PhET Interactive Simulations platform,597

spanning across four major fields of physics: Mechanics & Fluids, Optics, Electromagnetism &598

Circuits, and Quantum Mechanics. These videos are paired with three different types of questions:599

conceptual, numerical, and error-detection. These questions are designed to assess a learner’s ability600

to reason, calculate, and identify errors in physical setups, ensuring that both qualitative understanding601

and quantitative skills are rigorously tested.602
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Figure 4: Frame-rate histogram Dfps (peaked near 30 fps).

Figure 5: Top resolution modes (w × h) with counts.

A.7 Storylines of the Experiments and Notations603

Each of the following experiments represents a fundamental concept in physics, necessary for604

comprehensive physical reasoning. Below is a detailed explanation of each experiment in the dataset:605

A.7.1 Mechanics & Fluids606

Projectile Motion (75 clips, 225 Q/A): This experiment involves the motion of an object that is607

launched into the air. The experiment tests how the initial velocity, launch angle, and gravitational608

force affect the distance and height traveled by the object. The primary notations here are initial609

velocity (m/s), launch angle (degrees), and gravitational acceleration (m/s²). Understanding610

projectile motion is key to applications like sports, engineering, and space science, where the motion611

of objects is governed by these principles.612
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Figure 6: Physics–consistency score Sϕ(r) by topic (higher is better).

Figure 7: Confusion matrix M of the weak topic classifier (5-fold CV).

Masses and Springs (30 clips, 90 Q/A): In this experiment, learners study harmonic motion using613

a mass attached to a spring. Key parameters include mass (kg) and spring constant (N/m). The614

experiment challenges learners to understand Hooke’s Law and the period of oscillation. These615

concepts are crucial for applications like mechanical systems, clocks, and even understanding sound616

waves in acoustics.617

Simple Pendulum (30 clips, 90 Q/A): This experiment explores the periodic motion of a simple618

pendulum. It requires understanding how the length of the pendulum and gravitational acceleration619

influence the period of oscillation. Notations include length of the pendulum (m) and gravitational620

acceleration (m/s²). Pendulums have applications in timekeeping and in understanding oscillatory621

motion in general.622
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Collision (30 clips, 90 Q/A): This experiment simulates elastic and inelastic collisions between623

objects. Key parameters include mass (kg) and velocity (m/s) of the colliding objects. It tests the624

principles of momentum conservation and the effects of collisions, which are critical in vehicle625

crash analysis, sports, and even particle physics.626

Buoyancy (72 clips, 216 Q/A): The buoyancy experiment tests how objects behave when placed in627

different fluids. The key parameters involved are mass (kg), fluid density (kg/m³), and object density628

(kg/m³). The fundamental principle being tested here is Archimedes’ Principle, which explains why629

objects float or sink depending on their density relative to the fluid. Understanding this experiment is630

important because it applies to many practical scenarios like ships floating on water or the behavior631

of balloons in the air.632

A.7.2 Optics633

Flat Mirror (9 clips, 27 Q/A): This experiment tests how light behaves when reflected from a flat634

mirror. The main parameters here are object distance (cm) and image distance (cm). Understanding635

image formation by flat mirrors is essential in optical devices such as periscopes, microscopes, and636

cameras.637

Concave Mirror (27 clips, 81 Q/A): This experiment studies light reflection from concave mirrors.638

Parameters such as radius (cm) and focal length (cm) are used to predict the nature of the image639

formed (real or virtual). This experiment helps learners understand how concave mirrors focus light,640

a principle crucial in telescopes and other optical systems.641

Convex Mirror (27 clips, 81 Q/A): Similar to the concave mirror, this experiment tests the642

properties of convex mirrors. It requires understanding how light diverges after reflection. Key643

parameters include radius (cm) and focal length (cm). Convex mirrors are used in rear-view mirrors644

and security cameras due to their ability to form wider fields of view.645

Convex Lens (30 clips, 90 Q/A): The convex lens experiment explores how light converges after646

passing through a lens. Key notations include focal length (cm) and refractive index (n). This647

experiment is crucial for understanding magnification in devices like glasses, microscopes, and648

cameras.649

Concave Lens (30 clips, 90 Q/A): This experiment involves concave lenses, which cause light to650

diverge. The parameters include focal length (cm) and refractive index (n). Concave lenses are used651

in applications where diverging light is needed, such as in laser systems or vision correction.652

A.7.3 Electromagnetism & Circuits653

Coulomb’s Law (35 clips, 105 Q/A). Coulomb’s law quantifies the electrostatic force between654

two point charges. Relevant parameters include charge (µC) and distance (cm). These clips test the655

ability to compute forces between charged bodies and reason about attraction/repulsion in canonical656

setups relevant to electromagnetism and electrostatic devices.657

Capacitance (40 clips, 120 Q/A). This set examines energy storage in capacitors and how ge-658

ometry/materials govern capacitance. Key parameters include capacitance (F), voltage (V), and659

resistance (Ω). Tasks emphasize reading on-screen values, applying C = εA/d or circuit rela-660

tions, and interpreting how changes in dielectric, plate area, and separation affect stored energy and661

measured C.662

RC Time Constant (30 clips, 90 Q/A). These clips probe the charging/discharging dynamics663

of first-order RC circuits. Primary parameters are resistance (Ω) and capacitance (F), with ques-664

tions targeting τ = RC, exponential transient behavior, and unit-consistent numerical predictions665

(V (t), I(t)) under specified tolerances.666

Generator (75 clips, 225 Q/A): The generator experiment explores electromagnetic induction,667

demonstrating how a changing magnetic field generates electricity. Key parameters include magnetic668
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Field Example parameter keys (units)

Mechanics & Fluids mass_kg, density_kg_m3, diameter_m, g_mps2, drag_model
Optics index_n, radius_cm, focal_length_cm, aperture_cm
EM & Circuits charge_uC, distance_cm, R_ohm, C_F, V_V, rpm
Quantum Mechanics barrier_V, width_nm, E_V, packet_sigma_nm

Table 3: Illustrative metadata keys per field (non–exhaustive).

field strength (T) and coil turns (N). This experiment is essential for understanding how electric669

generators and motors work, which are used in power generation and electrical machinery.670

A.7.4 Quantum Mechanics671

Hydrogen Atom Models (165 clips, 495 Q/A): This experiment simulates the hydrogen atom and672

its emission and absorption spectra. Important parameters include energy levels (eV) and electron673

transitions. Understanding atomic models and spectra is key in fields such as spectroscopy, quantum674

mechanics, and astrophysics.675

Photon Polarization (42 clips, 126 Q/A): This experiment tests the interaction of photons with676

various polarizers and measures their polarization. Key parameters include photon energy (eV)677

and polarization angle (degrees). This is fundamental for understanding quantum measurement678

processes, quantum cryptography, and communication technologies.679

Quantum Tunneling (162 clips, 486 Q/A): This experiment explores quantum tunneling, where680

particles pass through barriers that are classically impenetrable. The key parameters include barrier681

width (nm) and energy (eV). This phenomenon is critical in technologies like semiconductors,682

nuclear fusion, and scanning tunneling microscopy.683

A.8 Difficulty Classification684

Questions in the dataset are classified as easy, moderate, or hard based on cognitive load, numerical685

complexity, and perceptual burden.686

Easy Questions: These questions typically involve recalling basic principles or performing simple687

calculations. For example, they may ask how a specific parameter change affects the outcome of an688

experiment, requiring minimal reasoning or computation.689

Moderate Questions: These questions require multi-step reasoning and involve moderate compu-690

tation or algebraic manipulation. They might require the learner to apply multiple principles to solve691

a problem, such as using multiple parameters from a video to calculate a physical quantity.692

Hard Questions: These questions involve complex problem-solving, requiring multi-step calcula-693

tions and a deep understanding of physical concepts. They may include tolerance-aware computations,694

reasoning across different time frames, or error detection, such as predicting outcomes if certain695

idealizations in the experiment are violated.696

B LLM-as-a-Judge Systems (Full Specification)697

Only the Standard Judge below is used for the paper’s official metrics; the Critical Judge is reported698

for ablations only.699

B.1 Standard Judge (Primary; used in main results)700

System prompt.701
You are a strict, consistent physics grader. Output only JSON.702703
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Field Topic (paraphrased) Clips Q/A

Mechanics & Fluids (79)
Buoyancy 24 72
Collision 10 30
Masses & Springs 10 30
Simple Pendulum 10 30
Projectile Motion 25 75

Optics (50)
Concave Lens 9 27
Concave Mirror 19 57
Convex Lens 10 30
Convex Mirror 9 27
Plane Mirror 3 9

Electromagnetism & Circuits (130)
Capacitance 40 120
Coulomb’s Law 35 105
Generator 25 75
RC Time Response 30 90

Quantum Mechanics (123)
Hydrogen Atom Models 55 165
Quantum Tunneling 54 162
Photon Polarization 14 42

Total 382 1146
Table 4: Counts by field and topic. Each clip has three Q/A items (conceptual, numerical, error-
detection). Topic names are paraphrased; simulator identifiers appear in the metadata file.

User prompt — Conceptual questions.704
You will grade a conceptual physics answer on a 0-5 integer scale using this705

checklist:706

- States correct qualitative relationship and directionality.707

- Names and applies the governing law/principle correctly.708

- Addresses conditions/assumptions; no major physics errors.709

- Grounds answer in the clip (mentions on-screen values/objects) when relevant.710

- Clear, concise explanation.711

712

Scoring guide:713

5 = all checklist items satisfied;714

4 = one minor miss;715

3 = some correct but with gaps;716

2 = mostly incorrect;717

1 = off-topic/wrong.718

719

Return STRICT JSON ONLY (no prose) with fields:720

{721

"score": <int 1-5>,722

"reason": "<one-sentence justification>",723

"flags": ["units_issue" | "law_missing" | "direction_error" |724

"no_visual_grounding" | "other"]725

}726

727

Question: {question}728

Answer: {response}729730

User prompt — Error-detection questions.731
You will grade an error_detection physics answer on a 0-5 integer scale using this732

checklist:733

- Identifies the most impactful idealization/limitation in the clip.734

- Explains the physical consequence if violated (correct direction of change).735

20



- No major physics errors; considers confounders if relevant.736

- Grounds critique in visual evidence (gauges/sliders/geometry) when relevant.737

- Clear, concise explanation.738

739

Scoring guide:740

5 = all checklist items satisfied;741

4 = one minor miss;742

3 = some correct but with gaps;743

2 = mostly incorrect;744

1 = off-topic/wrong.745

746

Return STRICT JSON ONLY (no prose) with fields:747

{748

"score": <int 1-5>,749

"reason": "<one-sentence justification>",750

"flags": ["units_issue" | "law_missing" | "direction_error" |751

"no_visual_grounding" | "other"]752

}753

754

Question: {question}755

Answer: {response}756757

Notes. We run two independent passes (temperature=0, different seeds), parse JSON strictly758

with a single retry on failure, and average the two integer scores. Numerical items are graded759

deterministically as defined in Section 4.2.760

B.2 Critical Judge (Supplementary; not used in main results)761

Conceptual prompt.762
Evaluate this physics conceptual question response CRITICALLY:763

764

Question: {question}765

Response: {response}766

767

Rate the response on a scale of 1-5 where:768

1 = Completely incorrect, irrelevant, or nonsensical769

2 = Mostly incorrect with only 1-2 relevant points770

3 = Partially correct but missing key concepts or has significant errors771

4 = Mostly correct but missing important details or has minor conceptual errors772

5 = Completely correct, comprehensive, and well-explained (RARE - only for773

exceptional responses)774

775

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly776

excellent responses.777

Look for: missing key concepts, oversimplifications, incorrect physics, lack of778

depth.779

780

Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.781

Format: Score: X, Confidence: Y, Reasoning: Z782783

Numerical prompt.784
Evaluate this physics numerical question response CRITICALLY:785

786

Question: {question}787

Response: {response}788

789

Rate the response on a scale of 1-5 where:790

1 = Completely incorrect calculation, wrong units, or nonsensical math791

2 = Mostly incorrect with only basic numerical elements present792

3 = Partially correct but has calculation errors, wrong units, or missing steps793

4 = Mostly correct but has minor numerical errors or incomplete calculations794

5 = Completely correct calculation, proper units, and complete solution (RARE -795

only for perfect responses)796
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797

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly798

perfect numerical work.799

Look for: calculation errors, wrong units, missing steps, incomplete solutions,800

incorrect formulas.801

802

Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.803

Format: Score: X, Confidence: Y, Reasoning: Z804805

Error-detection prompt.806
Evaluate this physics error detection response CRITICALLY:807

808

Question: {question}809

Response: {response}810

811

Rate the response on a scale of 1-5 where:812

1 = No errors identified, completely wrong, or irrelevant response813

2 = Few errors identified with major mistakes or missing key limitations814

3 = Some errors identified but missing important ones or has inaccuracies815

4 = Most errors identified correctly but may miss subtle limitations816

5 = All relevant errors identified accurately and comprehensively (RARE - only for817

exceptional analysis)818

819

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly820

comprehensive error analysis.821

Look for: missing key limitations, oversimplified analysis, incorrect physics, lack822

of depth in error identification.823

824

Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.825

Format: Score: X, Confidence: Y, Reasoning: Z826827

Decoding and usage. Single pass, temperature=0.3; free-text outputs are parsed via regex. Because828

of variability and lack of strict JSON, this judge is reserved for ablations only.829

Scope. We report Critical-Judge outcomes only in the appendix; they do not affect the official tables830

or figures in the main paper.831

B.3 Side-by-side summary832

Standard Judge (Primary) Critical Judge (Supplementary)

Purpose Reproducible, structured scoring Ablations / sensitivity only
Passes 2 (independent) 1
Temperature 0 (deterministic) 0.3 (variable)
Output Strict JSON (score, reason, flags) Free text (Score, Confidence, Reasoning)
Parsing Fail-closed on non-JSON Regex; may fail-open
Use in main results Yes No

Table 5: Comparison of the two judge systems. Only the Standard Judge contributes to the main
results.

C Evaluation Protocol (Extended)833

C.1 Models Evaluated834

GPT-4O-MINI (OpenAI). A compact member of the GPT-4o family designed for low-latency835

multimodal use. We use it in video mode by supplying ordered frame stacks and task-specific836

instructions. Strengths include strong language grounding and stable tool APIs; limitations include837

proprietary weights and potential judge/model coupling when also used as a grader. See the GPT-4o838

system documentation for architectural background and capabilities [ope, 2024].839
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GEMINI-2.5-FLASH-LITE (Google). A fast, cost-efficient Gemini variant intended for high-840

throughput multimodal workloads (images/video+text). We use identical frame budgets and prompts841

to ensure comparability. Gemini’s family reports detail training data mixture, instruction tuning, and842

long-context multimodality [Comanici et al., 2025].843

QWEN-VL-PLUS (Alibaba/Qwen). A widely adopted vision–language family with strong open844

ecosystem support (weights, inference stacks, and community tooling in many cases). We use845

the production “Plus” variant with image sequence inputs to emulate video. Qwen2-VL provides846

technical details on vision encoders, instruction tuning, and evaluation [Wang, 2024].847

Implementation parity. All models receive the same frame stacks, prompts, and decoding settings848

(temperature = 0) and are scored with the same protocol. We log per-item prompts, raw answers,849

judge JSON (for C/E), and numeric scorer traces (for N) to enable exact replication.850

C.2 JSON outputs used for reporting851

Standard view (metrics_standard). For C/E items, we store:852

• judge_avg (mean of the two 1–5 scores),853

• judge{ judge1:{ score, reason, flags, raw}, judge2:{. . . }, avg_score, flags}.854

No confidence values are present in metrics_standard. For numerical items we additionally store855

numeric_score ∈ {0, γ, 1}, numeric_pass (boolean), and numeric_notes.856

Strict view (metrics). Optionally includes a confidence–aware judge_score (mapped to [0, 1]) and857

judge_confidence per item. This block is kept separate to clearly distinguish confidence–weighted858

analyses from the standard dual–judge mean.859

C.3 Judge flags860

The judge emits lightweight diagnostics used for error taxonomy (not for inflating scores):861

• law_invoked / law_missing (named the governing principle or not),862

• direction_error (qualitative trend reversed or inconsistent),863

• units_issue (units missing/mismatched in reasoning),864

• no_visual_grounding (ignores on–screen measurements),865

• parse_error (malformed output caught by parser).866

C.4 Numerical scoring rubric867

Given y⋆, u⋆, τabs, τrel, we compute τ(q) = max(τabs, τrel|y⋆|) and δ = |ŷ − y⋆|, and apply868

sN (q, â) = ⊮unit


1, δ ≤ τ(q),

γ, τ(q) < δ ≤ κ τ(q),

0, otherwise,

with γ = 0.5 and κ = 2 (released with the artifact), and strict SI–unit normalization.869

C.5 Aggregation and uncertainty870

We compute per–type means At(M), per–video triad scores Sv(M), domain–wise macros, and an871

overall macro. Uncertainty is reported via stratified bootstrap over videos (10,000 resamples) with872

paired bootstraps on Sv for between–model tests. We also report rater agreement (e.g., Cohen’s κ) on873

a calibration subset.874

Strength and validity of the evaluation. Our protocol combines (i) deterministic, unit-checked875

grading for all numerical items with explicit absolute/relative tolerances, (ii) structured LLM judging876

for conceptual and error-detection items that produces parseable JSON and rubric flags, (iii) triad-level877
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aggregation that evaluates complementary skills on the same visual evidence, (iv) domain-stratified878

reporting with uncertainty estimates, and (v) reproducibility controls: zero-temperature, version-879

pinned judges, stored judge transcripts, and fixed video preprocessing (fps, frame budget, JPEG880

quality). Because many clips expose on-screen numeric readouts (gauges/sliders), answers must881

be consistent with pixel-level measurements, which reduces the chance of succeeding via language882

priors alone and yields a sharper, more diagnostic signal of physics competence [Liu et al., 2023,883

Zheng et al., 2023, Chiang et al., 2024, Gu et al., 2024, Li et al., 2024, Li and Others, 2025].884

C.6 Reproducibility checklist885

Judges run at temperature 0 with strict JSON parsing (fail–closed). We release scorer settings886

(γ, κ, τabs, τrel), cache judge I/O, and publish bootstrap seeds. Video preprocessing is fixed at fps= 4,887

max_frames= 32, jpg_quality= 85. We provide both metrics_standard (dual–judge mean,888

no confidence) and metrics (strict, confidence–aware) in the artifact.889

D Experiments and Results890

D.1 Compute Resources (Reproducibility)891

Due to budget and infrastructure constraints, we executed all experiments via hosted892

inference APIs—OpenAI gpt-4o-mini, Google gemini-2.5-flash-lite, and Alibaba893

qwen-vl-plus—rather than provisioning our own GPU/CPU workers. Consequently, we did894

not control or log hardware specifications (worker type, memory, storage) or end-to-end wall-clock895

runtimes for each run, nor can we estimate total compute across the full project (including prelimi-896

nary/failed runs). While we document prompts, temperature settings (= 0), JSON-only outputs, and897

single/dual-judge protocols, this falls short of the checklist requirement to specify compute workers898

and resource budgets.899

D.2 Scoring variants and interpretation900

We report three scoring variants that serve complementary purposes:901

• Critical_Score — a deliberately strict, single-pass judge configured to be conservative; it902

uses the same 1–5 rubric but numerically compresses toward ≈1–2 under harsh prompting.903

Use for relative comparisons.904

• Judge_Score — our standardized dual-judge (two independent passes, JSON-only, temper-905

ature = 0) on the same 1–5 rubric; recommended for headline comparisons.906

• Standard_Score — the higher-level roll-up exported by our evaluation scripts (same rubric,907

identical protocol) and used in the main tables.908

Cells with “–” indicate that no items of that difficulty existed for the class.909

D.3 Visual summaries910
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((a)) Category × Difficulty (Critical).

((b)) Category × Difficulty (Judge).

((c)) Category × Difficulty (Standard).

Figure 8: Category–Difficulty heatmaps across scoring variants. Critical is most conservative
(darker only at the very top), Judge and Standard broaden dynamic range; all show Circuits >
Mechanics/Optics > Quantum Mechanics.
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((a)) Class × Difficulty (Critical).

((b)) Class × Difficulty (Judge).

((c)) Class × Difficulty (Standard).

Figure 9: Per-class difficulty trends. Class-level patterns are stable across scoring variants; “Quan-
tum Tunneling” and “Hydrogen Atom Models” are notably harder.
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((a)) Category × Question Type (Critical).

((b)) Category × Question Type (Judge).

((c)) Category × Question Type (Standard).

Figure 10: Category–Question Type heatmaps across scoring variants. Critical is most conserva-
tive, Judge and Standard broaden dynamic range; all show Circuits/Electromagnetics > Mechanic-
s/Optics > Quantum Mechanics, with Conceptual, Error Detection, and Numerical questions showing
distinct patterns. 27



((a)) Class × Question Type (Critical).

((b)) Class × Question Type (Judge).

((c)) Class × Question Type (Standard).

Figure 11: Per-class question-type breakdown. Error-detection remains the limiting factor even
when classes are easy numerically (e.g., mirrors/lenses).
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Class Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Easy 1.51 1.55 1.46
Moderate 1.63 1.54 1.35
Hard 1.53 0.95 1.40

Capacitance
Easy - - -
Moderate 1.70 1.74 1.69
Hard 1.79 1.61 1.72

Collision
Easy 1.47 1.52 1.45
Moderate 1.42 1.50 1.57
Hard 1.53 1.48 1.28

Concave Lens
Easy 1.19 1.22 1.37
Moderate 1.35 1.34 1.58
Hard 1.36 1.32 1.44

Concave Mirror
Easy 1.65 1.53 1.66
Moderate 1.63 1.74 1.35
Hard 1.39 1.41 1.48

Convex Lens
Easy 1.67 1.68 1.47
Moderate 1.60 1.64 1.50
Hard 1.67 1.65 1.56

Convex Mirror
Easy 1.70 1.75 1.63
Moderate 1.73 1.84 1.59
Hard 1.62 1.62 1.63

Coulomb’s Law
Easy 1.71 1.66 1.66
Moderate 1.69 1.64 1.64
Hard 1.71 1.67 1.62

Flat Mirror
Easy 1.92 1.96 1.68
Moderate 1.68 1.66 1.68
Hard - - -

Generator
Easy 1.67 1.65 1.61
Moderate 1.64 1.70 1.60
Hard 1.68 1.73 1.60

Hydrogen Atom Models
Easy 1.66 1.61 1.62
Moderate 1.63 1.58 1.56
Hard 1.59 1.62 1.54

Masses and Spring
Easy 1.61 1.51 1.40
Moderate 1.58 1.51 1.42
Hard 1.61 1.52 1.40

Simple Pendulum
Easy 1.51 1.55 1.40
Moderate 1.52 1.51 1.42
Hard 1.52 1.51 1.40

Photon Polarization
Easy 1.60 1.57 1.40
Moderate 1.61 1.53 1.40
Hard 1.60 1.57 1.40

Projectile Motion
Easy 1.55 1.51 1.40
Moderate 1.57 1.52 1.40
Hard 1.53 1.53 1.40

Quantum Tunneling
Easy 1.55 1.57 1.40
Moderate 1.55 1.55 1.40
Hard 1.54 1.53 1.40

RC Time Constant
Easy 1.48 1.45 1.40
Moderate 1.54 1.54 1.40
Hard 1.57 1.56 1.40

Table 6: Class × Difficulty under Critical_Score (strict single-judge; 1–5 rubric numerically
concentrated near 1–2 due to conservative prompting). Higher is better. “–” denotes no items.
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Buoyancy
Numerical 1.65 1.52 1.41
Error Detection 1.40 1.53 1.29
Conceptual 1.59 1.44 1.56

Capacitance
Numerical 2.06 1.92 1.83
Error Detection 1.41 1.65 1.60
Conceptual 1.65 1.64 1.66

Collision
Numerical 1.61 1.64 1.32
Error Detection 1.40 1.56 1.40
Conceptual 1.40 1.31 1.61

Concave Lens
Numerical 1.13 1.28 1.66
Error Detection 1.20 1.23 1.33
Conceptual 1.63 1.41 1.42

Concave Mirror
Numerical 1.67 1.72 1.80
Error Detection 1.27 1.32 1.28
Conceptual 1.63 1.55 1.39

Convex Lens
Numerical 1.71 1.68 1.56
Error Detection 1.50 1.52 1.29
Conceptual 1.74 1.77 1.71

Convex Mirror
Numerical 1.77 1.87 1.69
Error Detection 1.49 1.55 1.47
Conceptual 1.76 1.75 1.69

Coulomb’s Law
Numerical 1.76 1.70 1.69
Error Detection 1.61 1.55 1.48
Conceptual 1.74 1.73 1.74

Flat Mirror
Numerical 1.96 2.00 1.71
Error Detection 1.57 1.47 1.57
Conceptual 1.75 1.82 1.75

Generator
Numerical 1.61 1.58 1.50
Error Detection 1.57 1.81 1.57
Conceptual 1.73 1.74 1.62

Hydrogen Atom Models
Numerical 1.48 1.21 1.20
Error Detection 1.50 1.50 1.50
Conceptual 1.50 1.82 1.52

Masses and Springs
Numerical 1.82 1.27 1.20
Error Detection 1.26 1.50 1.50
Conceptual 1.47 1.82 1.52

Simple Pendulum
Numerical 1.82 1.48 1.52
Error Detection 1.50 1.50 1.50
Conceptual 1.50 1.81 1.51

Photon Polarization
Numerical 1.81 1.48 1.20
Error Detection 1.31 1.50 1.50
Conceptual 1.50 1.82 1.50

Projectile Motion
Numerical 1.81 1.37 1.20
Error Detection 1.33 1.50 1.50
Conceptual 1.50 1.75 1.51

Quantum Tunneling
Numerical 1.50 1.50 1.20
Error Detection 1.36 1.32 1.50
Conceptual 1.50 1.75 1.51

RC Time Constant
Numerical 1.76 1.50 1.50
Error Detection 1.50 1.79 1.50
Conceptual 1.76 1.79 1.50

Table 7: Class × Question Type under Critical_Score. Error-detection (trap) rows are consistently
lower than conceptual/numerical, reflecting difficulty with idealizations and counterfactuals.
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Mechanics & Fluids
Easy 1.52 1.54 1.43
Moderate 1.56 1.52 1.42
Hard 1.54 1.48 1.39

Quantum Mechanics
Easy 1.63 1.60 1.54
Moderate 1.59 1.56 1.48
Hard 1.57 1.56 1.45

Electromagnetic & Circuits
Easy 1.67 1.64 1.61
Moderate 1.64 1.67 1.59
Hard 1.69 1.67 1.59

Optics
Easy 1.61 1.58 1.57
Moderate 1.60 1.66 1.51
Hard 1.49 1.49 1.52

Table 8: Category × Difficulty under Critical_Score. Electromagnetism & Circuits tends to rank
highest; Quantum Mechanics content is harder across difficulty tiers.

Category Question Type Model
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Mechanics & Fluids
Conceptual 1.69 1.64 1.54
Error Detection 1.45 1.52 1.42
Numerical 1.47 1.38 1.28

Quantum Mechanics
Conceptual 1.77 1.73 1.56
Error Detection 1.52 1.54 1.53
Numerical 1.46 1.43 1.34

Electromagnetic & Circuits
Conceptual 1.73 1.73 1.66
Error Detection 1.52 1.57 1.53
Numerical 1.73 1.68 1.58

Optics
Conceptual 1.68 1.62 1.54
Error Detection 1.36 1.39 1.34
Numerical 1.62 1.68 1.70

Table 9: Category × Question Type under Critical_Score. Error-detection remains the hardest type
in all categories; Optics shows comparatively strong numerical scores.
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Buoyancy
Easy 2.1 2.1 2.1
Moderate 2.2 2.1 2
Hard 2.1 1.8 2

Capacitance
Easy - - -
Moderate 2.3 2.2 2.2
Hard 2.3 2.2 2.2

Collision
Easy 2.1 2.1 2.1
Moderate 2.1 2.1 2.1
Hard 2.1 2.1 2.0

Concave Lens
Easy 1.9 1.9 2.0
Moderate 2.0 2.0 2.1
Hard 2.0 2.0 2.1

Concave Mirror
Easy 2.2 2.1 2.1
Moderate 2.1 2.2 2.0
Hard 2.0 2.1 2.1

Convex Lens
Easy 2.2 2.2 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.2 2.0

Convex Mirror
Easy 2.2 2.2 2.1
Moderate 2.2 2.3 2.0
Hard 2.1 2.1 2.1

Coulomb’s Law
Easy 2.1 2.1 2.1
Moderate 2.1 2.1 2.1
Hard 2.2 2.1 2.1

Flat Mirror
Easy 2.4 2.4 2.2
Moderate 2.2 2.1 2.2
Hard - - -

Generator
Easy 2.2 2.2 2.1
Moderate 2.2 2.2 2.1
Hard 2.2 2.2 2.1

Hydrogen Atom Models
Easy 2.2 2.1 2.1
Moderate 2.1 2 2.1
Hard 2.1 2.1 2.1

Masses and Springs
Easy 2.2 2.0 2.0
Moderate 2.1 2.0 2.0
Hard 2.1 2.0 2.0

Simple Pendulum
Easy 2.0 2.0 2.0
Moderate 2.0 2.0 2.0
Hard 2.0 2.0 2.0

Photon Polarization
Easy 2.2 2.1 2.0
Moderate 2.2 2.1 2.0
Hard 2.2 2.1 2.0

Projectile Motion
Easy 2.0 2.0 2.0
Moderate 2.1 2.0 2.0
Hard 2.1 2.1 2.0

Quantum Tunneling
Easy 2.2 2.1 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.1 2.0

RC Time Constant
Easy 2.0 2.0 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.1 2.0

Table 10: Class × Difficulty under Judge_Score (dual-judge JSON, temperature = 0; 1–5 rubric).
Calibrated to be more stable and comparable across classes than Critical.
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Buoyancy
Conceptual 2.1 2.0 2.1
Error_Detection 2.1 2.1 2.0
Numerical 2.2 2.1 2.0

Capacitance
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.2 2.2
Numerical 2.5 2.4 2.3

Collision
Conceptual 2.0 2.0 2.2
Error_Detection 2.1 2.1 2.1
Numerical 2.2 2.2 2.0

Concave Lens
Conceptual 2.2 2.0 2.1
Error_Detection 1.9 1.9 2.0
Numerical 1.9 2.0 2.1

Concave Mirror
Conceptual 2.2 2.1 2.0
Error_Detection 1.9 2.0 2.0
Numerical 2.2 2.3 2.2

Convex Lens
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.1 1.9
Numerical 2.2 2.2 2.0

Convex Mirror
Conceptual 2.2 2.2 2.1
Error_Detection 2.1 2.1 2.0
Numerical 2.2 2.3 2.1

Coulomb’s Law
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.0 2.2
Numerical 2.2 2.1 2.2

Flat Mirror
Conceptual 2.2 2.3 2.2
Error_Detection 2.1 2.0 2.1
Numerical 2.4 2.2 2.2

Generator
Conceptual 2.3 2.3 2.2
Error_Detection 2.1 2.1 2.1
Numerical 2.1 2.2 2.1

Hydrogen Atom Models
Conceptual 2.2 2.2 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.0 1.9 2.0

Masses and Springs
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.0 1.7 1.7

Simple Pendulum
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 1.7 1.7

Photon Polarization
Conceptual 2.3 2.1 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.1 2.1 1.7

Projectile Motion
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 1.7 1.7

Quantum Tunneling
Conceptual 2.3 2.2 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 2.0 1.7

RC Time Constant
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.9 1.9 1.7

Table 11: Class × Question Type under Judge_Score. Maintains the error-detection gap while
reducing variance, enabling more reliable cross-model comparisons.
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Mechanics & Fluids
Easy 2.1 2.1 2
Moderate 2.1 2.1 2
Hard 2.1 2 2

Quantum Mechanics
Easy 2.2 2.1 2.1
Moderate 2.1 2.1 2
Hard 2.1 2.1 2

Electromagnetic & Circuits
Easy 2.1 2.1 2.1
Moderate 2.2 2.2 2.1
Hard 2.2 2.2 2.1

Optics
Easy 2.2 2.1 2.1
Moderate 2.1 2.2 2.1
Hard 2.1 2.1 2.1

Table 12: Category × Difficulty under Judge_Score. Trends mirror Critical_Score but with less
compression; Circuits leads, Quantum Mechanics lags.

Category Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Conceptual 2.20 2.17 2.14
Numerical 1.98 1.90 1.84
Error Detection 2.10 2.14 2.09

Quantum Mechanics
Conceptual 2.24 2.20 2.14
Numerical 1.96 1.95 1.85
Error Detection 2.13 2.14 2.13

Electromagnetic & Circuits
Conceptual 2.22 2.21 2.17
Numerical 2.21 2.17 2.09
Error Detection 2.10 2.11 2.09

Optics
Conceptual 2.18 2.16 2.08
Numerical 2.17 2.21 2.15
Error Detection 2.01 2.02 1.99

Table 13: Category × Question Type under Judge_Score. Numerical scoring is strongest in Optics
and Circuits; error-detection is uniformly lower.
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Buoyancy
Easy 4.1 4.1 4

Moderate 4.2 3.9 4.4
Hard 3.9 3.7 2.5

Capacitance
Easy - - -

Moderate 4.7 4.4 4.5
Hard 4.8 4.4 4.7

Collision
Easy 3.2 4.3 3.1

Moderate 3.5 4.2 3.2
Hard 3.2 4.1 3.6

Concave Lens
Easy 3.8 4.1 3.1

Moderate 3.7 3.4 3.1
Hard 3.5 3.4 3

Concave Mirror
Easy 4.3 4.3 3.7

Moderate 3.6 3.9 3.6
Hard 4 4.3 3.5

Convex Lens
Easy 3.9 4.2 3.6

Moderate 3.6 3.4 3.1
Hard 3.3 3.7 2.5

Convex Mirror
Easy 3.5 4.4 3.7

Moderate 4.1 4 3.1
Hard 3.7 3.2 3.3

Coulomb’s Law
Easy 4.1 3.6 3.4

Moderate 4.4 3.6 3.5
Hard 4.3 3.6 3

Flat Mirror
Easy 3.7 4.3 3.3

Moderate 4.1 4.2 4
Hard - - -

Generator
Easy 4.2 4.3 3.6

Moderate 4.3 4.3 3.3
Hard 4.6 4.3 3.7

Hydrogen Atom Models
Easy 3.5 3.6 2.6

Moderate 3 3.2 2
Hard 3.2 3.4 2.2

Masses and Springs
Easy 4.1 4.3 1

Moderate 4.2 4.1 1
Hard 4 3.8 1

Simple Pendulum
Easy 3.8 3.8 1.3

Moderate 3.6 3.6 1.3
Hard 3.8 3.9 1.3

Photon Polarization
Easy 3.9 3 1.2

Moderate 3.7 3.3 1.3
Hard 4.2 3.4 1.1

Projectile Motion
Easy 3.8 3.8 1.2

Moderate 3.9 4.1 1.2
Hard 3.8 3.9 1.2

Quantum Tunneling
Easy 3 3.7 1

Moderate 2.9 3.3 1.1
Hard 3 3.2 1

RC Time Constant
Easy 2.7 3 1.3

Moderate 3.5 3.7 1.3
Hard 3.3 3.6 1.3

Table 14: Class × Difficulty under Standard_Score (same protocol as Judge_Score; exported view
used in the main text). Absolute values are on the 1–5 scale.
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Buoyancy
Conceptual 4.6 3.9 4.5
Error Detection 3.5 3.7 3.6
Numerical 4.3 4.4 3.8

Capacitance
Conceptual 4.9 4.7 4.6
Error Detection 4.4 4.4 4.0
Numerical 4.9 4.2 4.8

Collision
Conceptual 3.7 4.9 3.0
Error Detection 3.5 4.0 3.9
Numerical 2.8 3.8 3.0

Concave Lens
Conceptual 4.1 3.4 3.8
Error Detection 2.7 3.2 1.8
Numerical 4.2 4.1 3.6

Concave Mirror
Conceptual 4.6 4.6 3.9
Error Detection 2.5 3.6 2.6
Numerical 4.8 4.5 4.3

Convex Lens
Conceptual 3.7 4.2 3.7
Error Detection 2.6 3.2 1.8
Numerical 4.4 4.1 3.2

Convex Mirror
Conceptual 3.8 3.9 3.1
Error Detection 2.6 2.9 2.8
Numerical 5.0 4.3 4.1

Coulomb’s Law
Conceptual 4.8 4.4 3.3
Error Detection 4.3 2.8 2.9
Numerical 3.6 3.6 3.6

Flat Mirror
Conceptual 4.7 5.0 4.3
Error Detection 3.3 3.3 3.0
Numerical 3.8 4.3 4.0

Generator
Conceptual 5.0 4.8 4.2
Error Detection 4.0 3.7 3.5
Numerical 4.3 4.5 2.8

Hydrogen Atom Models
Conceptual 3.5 3.9 2.3
Error Detection 2.7 2.7 2.0
Numerical 3.3 3.4 2.3

Masses and Springs
Conceptual 4.9 4.8 1.0
Error Detection 2.8 3.0 1.0
Numerical 4.5 4.3 1.0

Simple Pendulum
Conceptual 4.6 4.7 1.0
Error Detection 2.8 2.3 2.0
Numerical 3.8 4.2 1.0

Photon Polarization
Conceptual 4.8 3.9 1.0
Error Detection 2.9 2.3 1.6
Numerical 4.4 3.6 1.0

Projectile Motion
Conceptual 4.8 4.7 1.0
Error Detection 2.4 2.8 1.6
Numerical 4.2 4.2 1.0

Quantum Tunneling
Conceptual 3.6 3.7 1.0
Error Detection 2.1 2.5 1.0
Numerical 3.1 3.5 1.0

RC Time Constant
Conceptual 4.2 4.4 1.0
Error Detection 2.2 2.5 1.9
Numerical 3.7 3.9 1.0

Table 15: Class × Question Type under Standard_Score. Clear gap between error-detection and
the other two types across most classes.
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Mechanics & Fluids
Easy 3.9 4.0 2.9
Moderate 3.9 4.0 2.7
Hard 3.8 3.9 1.5

Quantum Mechanics
Easy 3.5 3.4 2.1
Moderate 2.9 3.2 1.5
Hard 3.2 3.3 1.5

Electromagnetic & Circuits
Easy 4.0 3.7 3.3
Moderate 4.3 4.1 3.3
Hard 4.3 3.9 3.2

Optics
Easy 4.0 4.3 3.6
Moderate 3.8 3.8 3.4
Hard 3.7 3.8 3.2

Table 16: Category × Difficulty under Standard_Score. Consistent ordering across difficulties;
Quantum Mechanics remains the most challenging.

Category Question Type Model
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Mechanics & Fluids
Conceptual 4.6 4.5 2.3
Error Detection 3.0 3.2 2.5
Numerical 4.0 4.2 2.1

Quantum Mechanics
Conceptual 3.7 3.8 1.6
Error Detection 2.4 2.5 1.5
Numerical 3.3 3.5 1.6

Electromagnetic & Circuits
Conceptual 4.7 4.6 3.3
Error Detection 3.8 3.4 3.1
Numerical 4.2 4.0 3.2

Optics
Conceptual 4.2 4.2 3.7
Error Detection 2.6 3.3 2.3
Numerical 4.6 4.3 3.9

Table 17: Category × Question Type under Standard_Score. Optics and Electromagnetism lead
on numerical; error-detection is the hardest across all categories.
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E Paper Checklist911

1. Claims912

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s913

contributions and scope?914

Answer: [Yes]915

Justification: The abstract and introduction claim to present a new benchmark, PhET-Physics-916

VideoQA, for evaluating physics understanding in VLMs. The paper’s content, including the917

dataset description, experimental setup, and results, aligns with these claims.918

Guidelines:919

• The answer NA means that the abstract and introduction do not include the claims made in920

the paper.921

• The abstract and/or introduction should clearly state the claims made, including the contribu-922

tions made in the paper and important assumptions and limitations. A No or NA answer to923

this question will not be perceived well by the reviewers.924

• The claims made should match theoretical and experimental results, and reflect how much925

the results can be expected to generalize to other settings.926

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are927

not attained by the paper.928

2. Limitations929

Question: Does the paper discuss the limitations of the work performed by the authors?930

Answer: [Yes]931

Justification: The paper includes a dedicated "Limitations" section (Section 5) that discusses932

several limitations, including the sim-to-real gap, potential for superficial strategies, dataset size,933

and evaluation protocol assumptions.934

Guidelines:935

• The answer NA means that the paper has no limitation while the answer No means that the936

paper has limitations, but those are not discussed in the paper.937

• The authors are encouraged to create a separate "Limitations" section in their paper.938

• The paper should point out any strong assumptions and how robust the results are to vi-939

olations of these assumptions (e.g., independence assumptions, noiseless settings, model940

well-specification, asymptotic approximations only holding locally). The authors should941

reflect on how these assumptions might be violated in practice and what the implications942

would be.943

• The authors should reflect on the scope of the claims made, e.g., if the approach was only944

tested on a few datasets or with a few runs. In general, empirical results often depend on945

implicit assumptions, which should be articulated.946

• The authors should reflect on the factors that influence the performance of the approach. For947

example, a facial recognition algorithm may perform poorly when image resolution is low or948

images are taken in low lighting. Or a speech-to-text system might not be used reliably to949

provide closed captions for online lectures because it fails to handle technical jargon.950

• The authors should discuss the computational efficiency of the proposed algorithms and how951

they scale with dataset size.952

• If applicable, the authors should discuss possible limitations of their approach to address953

problems of privacy and fairness.954

• While the authors might fear that complete honesty about limitations might be used by review-955

ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that956

aren’t acknowledged in the paper. The authors should use their best judgment and recognize957

that individual actions in favor of transparency play an important role in developing norms958

that preserve the integrity of the community. Reviewers will be specifically instructed to not959

penalize honesty concerning limitations.960

3. Theory assumptions and proofs961

Question: For each theoretical result, does the paper provide the full set of assumptions and a962

complete (and correct) proof?963
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Answer: [NA]964

Justification: This paper introduces a new dataset and presents an empirical evaluation of existing965

models. It does not propose new theoretical results, theorems, or proofs.966

Guidelines:967

• The answer NA means that the paper does not include theoretical results.968

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.969

• All assumptions should be clearly stated or referenced in the statement of any theorems.970

• The proofs can either appear in the main paper or the supplemental material, but if they971

appear in the supplemental material, the authors are encouraged to provide a short proof972

sketch to provide intuition.973

• Inversely, any informal proof provided in the core of the paper should be complemented by974

formal proofs provided in appendix or supplemental material.975

• Theorems and Lemmas that the proof relies upon should be properly referenced.976

4. Experimental result reproducibility977

Question: Does the paper fully disclose all the information needed to reproduce the main experi-978

mental results of the paper to the extent that it affects the main claims and/or conclusions of the979

paper (regardless of whether the code and data are provided or not)?980

Answer: [Yes]981

Justification: The paper provides significant detail on the experimental setup in Section 4 (specifi-982

cally Sections 4.1 and 4.2), including the models used, video preprocessing parameters, decoding983

settings (temperature=0), and the full scoring protocol.984

Guidelines:985

• The answer NA means that the paper does not include experiments.986

• If the paper includes experiments, a No answer to this question will not be perceived well by987

the reviewers: Making the paper reproducible is important, regardless of whether the code988

and data are provided or not.989

• If the contribution is a dataset and/or model, the authors should describe the steps taken to990

make their results reproducible or verifiable.991

• Depending on the contribution, reproducibility can be accomplished in various ways. For992

example, if the contribution is a novel architecture, describing the architecture fully might993

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary994

to either make it possible for others to replicate the model with the same dataset, or provide995

access to the model. In general. releasing code and data is often one good way to accomplish996

this, but reproducibility can also be provided via detailed instructions for how to replicate the997

results, access to a hosted model (e.g., in the case of a large language model), releasing of a998

model checkpoint, or other means that are appropriate to the research performed.999

• While NeurIPS does not require releasing code, the conference does require all submissions1000

to provide some reasonable avenue for reproducibility, which may depend on the nature of1001

the contribution. For example1002

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to1003

reproduce that algorithm.1004

(b) If the contribution is primarily a new model architecture, the paper should describe the1005

architecture clearly and fully.1006

(c) If the contribution is a new model (e.g., a large language model), then there should1007

either be a way to access this model for reproducing the results or a way to reproduce1008

the model (e.g., with an open-source dataset or instructions for how to construct the1009

dataset).1010

(d) We recognize that reproducibility may be tricky in some cases, in which case authors1011

are welcome to describe the particular way they provide for reproducibility. In the case1012

of closed-source models, it may be that access to the model is limited in some way (e.g.,1013

to registered users), but it should be possible for other researchers to have some path to1014

reproducing or verifying the results.1015

5. Open access to data and code1016
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Question: Does the paper provide open access to the data and code, with sufficient instructions to1017

faithfully reproduce the main experimental results, as described in supplemental material?1018

Answer: [Yes]1019

Justification: The paper states its intention to release the necessary assets for reproduction,1020

including prompts, seeds, cached frames, lightweight graders, and generation scripts, under1021

appropriate licenses (Section 5).1022

Guidelines:1023

• The answer NA means that paper does not include experiments requiring code.1024

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/1025

CodeSubmissionPolicy) for more details.1026

• While we encourage the release of code and data, we understand that this might not be1027

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including1028

code, unless this is central to the contribution (e.g., for a new open-source benchmark).1029

• The instructions should contain the exact command and environment needed to run to1030

reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/1031

public/guides/CodeSubmissionPolicy) for more details.1032

• The authors should provide instructions on data access and preparation, including how to1033

access the raw data, preprocessed data, intermediate data, and generated data, etc.1034

• The authors should provide scripts to reproduce all experimental results for the new proposed1035

method and baselines. If only a subset of experiments are reproducible, they should state1036

which ones are omitted from the script and why.1037

• At submission time, to preserve anonymity, the authors should release anonymized versions1038

(if applicable).1039

• Providing as much information as possible in supplemental material (appended to the paper)1040

is recommended, but including URLs to data and code is permitted.1041

6. Experimental setting/details1042

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,1043

how they were chosen, type of optimizer, etc.) necessary to understand the results?1044

Answer: [Yes]1045

Justification: The paper is evaluating pre-trained models, so no training details are applicable. It1046

clearly specifies all test details in Section 4.1, including the full dataset used, the models evaluated,1047

and the decoding settings.1048

Guidelines:1049

• The answer NA means that the paper does not include experiments.1050

• The experimental setting should be presented in the core of the paper to a level of detail that1051

is necessary to appreciate the results and make sense of them.1052

• The full details can be provided either with the code, in appendix, or as supplemental material.1053

7. Experiment statistical significance1054

Question: Does the paper report error bars suitably and correctly defined or other appropriate1055

information about the statistical significance of the experiments?1056

Answer: [Yes]1057

Justification: The paper describes its method for ensuring statistical robustness in Section 4.2, stat-1058

ing, "We attach 95% confidence intervals via stratified bootstrap over videos (10,000 resamples)".1059

Guidelines:1060

• The answer NA means that the paper does not include experiments.1061

• The authors should answer "Yes" if the results are accompanied by error bars, confidence1062

intervals, or statistical significance tests, at least for the experiments that support the main1063

claims of the paper.1064

• The factors of variability that the error bars are capturing should be clearly stated (for example,1065

train/test split, initialization, random drawing of some parameter, or overall run with given1066

experimental conditions).1067

• The method for calculating the error bars should be explained (closed form formula, call to a1068

library function, bootstrap, etc.)1069
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• The assumptions made should be given (e.g., Normally distributed errors).1070

• It should be clear whether the error bar is the standard deviation or the standard error of the1071

mean.1072

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably1073

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality1074

of errors is not verified.1075

• For asymmetric distributions, the authors should be careful not to show in tables or figures1076

symmetric error bars that would yield results that are out of range (e.g. negative error rates).1077

• If error bars are reported in tables or plots, The authors should explain in the text how they1078

were calculated and reference the corresponding figures or tables in the text.1079

8. Experiments compute resources1080

Question: For each experiment, does the paper provide sufficient information on the computer1081

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-1082

ments?1083

Answer: [Yes]1084

Justification: We have put the experiments’ details regarding the compute resources in Appendix1085

D.1.1086

Guidelines:1087

• The answer NA means that the paper does not include experiments.1088

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or1089

cloud provider, including relevant memory and storage.1090

• The paper should provide the amount of compute required for each of the individual experi-1091

mental runs as well as estimate the total compute.1092

• The paper should disclose whether the full research project required more compute than the1093

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it1094

into the paper).1095

9. Code of ethics1096

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS1097

Code of Ethics https://neurips.cc/public/EthicsGuidelines?1098

Answer: [Yes]1099

Justification: The research introduces a benchmark for AI evaluation using publicly available1100

educational software. A "Licensing & Ethics" section in Appendix A.1 confirms that no personal1101

data is used and all licenses are respected.1102

Guidelines:1103

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1104

• If the authors answer No, they should explain the special circumstances that require a1105

deviation from the Code of Ethics.1106

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration1107

due to laws or regulations in their jurisdiction).1108

10. Broader impacts1109

Question: Does the paper discuss both potential positive societal impacts and negative societal1110

impacts of the work performed?1111

Answer: [NA]1112

Justification: The paper’s focus is on the creation and technical evaluation of a research benchmark;1113

it does not contain a dedicated section on its broader societal impacts.1114

Guidelines:1115

• The answer NA means that there is no societal impact of the work performed.1116

• If the authors answer NA or No, they should explain why their work has no societal impact1117

or why the paper does not address societal impact.1118

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,1119

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-1120

ment of technologies that could make decisions that unfairly impact specific groups), privacy1121

considerations, and security considerations.1122
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• The conference expects that many papers will be foundational research and not tied to1123

particular applications, let alone deployments. However, if there is a direct path to any1124

negative applications, the authors should point it out. For example, it is legitimate to point out1125

that an improvement in the quality of generative models could be used to generate deepfakes1126

for disinformation. On the other hand, it is not needed to point out that a generic algorithm1127

for optimizing neural networks could enable people to train models that generate Deepfakes1128

faster.1129

• The authors should consider possible harms that could arise when the technology is being1130

used as intended and functioning correctly, harms that could arise when the technology is1131

being used as intended but gives incorrect results, and harms following from (intentional or1132

unintentional) misuse of the technology.1133

• If there are negative societal impacts, the authors could also discuss possible mitigation1134

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms1135

for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,1136

improving the efficiency and accessibility of ML).1137

11. Safeguards1138

Question: Does the paper describe safeguards that have been put in place for responsible release of1139

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,1140

or scraped datasets)?1141

Answer: [NA]1142

Justification: The dataset is derived from educational physics simulations and does not pose a high1143

risk for misuse. Therefore, safeguards in this context are not applicable.1144

Guidelines:1145

• The answer NA means that the paper poses no such risks.1146

• Released models that have a high risk for misuse or dual-use should be released with necessary1147

safeguards to allow for controlled use of the model, for example by requiring that users1148

adhere to usage guidelines or restrictions to access the model or implementing safety filters.1149

• Datasets that have been scraped from the Internet could pose safety risks. The authors should1150

describe how they avoided releasing unsafe images.1151

• We recognize that providing effective safeguards is challenging, and many papers do not1152

require this, but we encourage authors to take this into account and make a best faith effort.1153

12. Licenses for existing assets1154

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the1155

paper, properly credited and are the license and terms of use explicitly mentioned and properly1156

respected?1157

Answer: [Yes]1158

Justification: The paper explicitly credits PhET Interactive Simulations and cites the creators1159

(Wieman et al.) in Appendix A.1. It also states that the new assets will be released under a1160

CC-BY-NC license, respecting the source’s usage terms.1161

Guidelines:1162

• The answer NA means that the paper does not use existing assets.1163

• The authors should cite the original paper that produced the code package or dataset.1164

• The authors should state which version of the asset is used and, if possible, include a URL.1165

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1166

• For scraped data from a particular source (e.g., website), the copyright and terms of service1167

of that source should be provided.1168

• If assets are released, the license, copyright information, and terms of use in the package1169

should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses1170

for some datasets. Their licensing guide can help determine the license of a dataset.1171

• For existing datasets that are re-packaged, both the original license and the license of the1172

derived asset (if it has changed) should be provided.1173

• If this information is not available online, the authors are encouraged to reach out to the1174

asset’s creators.1175
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13. New assets1176

Question: Are new assets introduced in the paper well documented and is the documentation1177

provided alongside the assets?1178

Answer: [Yes]1179

Justification: The new dataset is documented extensively in Section 3 and Appendix A, including1180

details on design goals, compilation, metadata schemas, and topic distribution.1181

Guidelines:1182

• The answer NA means that the paper does not release new assets.1183

• Researchers should communicate the details of the dataset/code/model as part of their1184

submissions via structured templates. This includes details about training, license, limitations,1185

etc.1186

• The paper should discuss whether and how consent was obtained from people whose asset is1187

used.1188

• At submission time, remember to anonymize your assets (if applicable). You can either create1189

an anonymized URL or include an anonymized zip file.1190

14. Crowdsourcing and research with human subjects1191

Question: For crowdsourcing experiments and research with human subjects, does the paper1192

include the full text of instructions given to participants and screenshots, if applicable, as well as1193

details about compensation (if any)?1194

Answer: [NA]1195

Justification: The research did not involve crowdsourcing or human subjects.1196

Guidelines:1197

• The answer NA means that the paper does not involve crowdsourcing nor research with1198

human subjects.1199

• Including this information in the supplemental material is fine, but if the main contribution1200

of the paper involves human subjects, then as much detail as possible should be included in1201

the main paper.1202

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or1203

other labor should be paid at least the minimum wage in the country of the data collector.1204

15. Institutional review board (IRB) approvals or equivalent for research with human subjects1205

Question: Does the paper describe potential risks incurred by study participants, whether such1206

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals1207

(or an equivalent approval/review based on the requirements of your country or institution) were1208

obtained?1209

Answer: [NA]1210

Justification: The research did not involve human subjects, so IRB approval was not required.1211

Guidelines:1212

• The answer NA means that the paper does not involve crowdsourcing nor research with1213

human subjects.1214

• Depending on the country in which research is conducted, IRB approval (or equivalent) may1215

be required for any human subjects research. If you obtained IRB approval, you should1216

clearly state this in the paper.1217

• We recognize that the procedures for this may vary significantly between institutions and1218

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines1219

for their institution.1220

• For initial submissions, do not include any information that would break anonymity (if1221

applicable), such as the institution conducting the review.1222

16. Declaration of LLM usage1223

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1224

standard component of the core methods in this research? Note that if the LLM is used only for1225

writing, editing, or formatting purposes and does not impact the core methodology, scientific1226

rigorousness, or originality of the research, declaration is not required.1227
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Answer: [Yes]1228

Justification: The paper declares in Section 3.2 that question drafts were initially generated by1229

"GPT-5 Thinking" before being fully vetted by human experts. This constitutes a non-standard1230

component of the data creation methodology.1231

Guidelines:1232

• The answer NA means that the core method development in this research does not involve1233

LLMs as any important, original, or non-standard components.1234

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should1235

or should not be described.1236
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