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Abstract

We present PhET-Physics-VideoQA, a controlled benchmark for assessing physics
understanding in vision–language models (VLMs) from video. The corpus com-
prises 382 short clips sourced from PhET Interactive Simulations, covering 17
topics across four fields (Mechanics & Fluids, Optics, Electromagnetism & Cir-
cuits, and Quantum Mechanics). Each clip is paired with a triad of expert-validated
questions—conceptual, numerical, and error-detection—yielding 1,146 Q/A items.
The design emphasizes pixel-grounded reasoning: many clips display gauges and
sliders so that models must recover numeric values from frames rather than rely on
language priors.
Evaluation is reproducible and type-specific. Numerical items are graded deter-
ministically against gold values with absolute/relative tolerances and unit checks.
Conceptual and error-detection items are judged with a rubricized LLM that re-
turns strict JSON, supports dual-judge scoring, and is run at zero temperature with
cached transcripts.
We report results for three video-capable VLMs (GPT-4o-mini, Gemini-2.5-Flash-
Lite, Qwen-VL-Plus). Across domains, error-detection (“trap”) questions are
consistently the most difficult, typically scoring 0.5–1.3 points lower than con-
ceptual or numerical items on a 1–5 scale. Higher-concept physics, particularly
quantum content, remains challenging for all models. PhET-Physics-VideoQA
thus offers a rigorous, transparent, and cost-efficient testbed for measuring gen-
uine physics competence in video settings and a practical resource for advancing
research on multimodal world.4

∗Equal first authors.
†Equal second authors.
‡Equal third authors.
4Project: https://scenephys.github.io/ ; Dataset: https://huggingface.co/datasets/ScenePhys/ScenePhys ; Code:

https://github.com/ScenePhys/codebase.
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1 Introduction

World models aim to learn predictive, manipulable representations of environments that support
planning, control, and transfer across tasks [10–12, 27, 3, 39]. Yet mounting evidence suggests
that contemporary vision–language models (VLMs) often exploit superficial regularities rather
than forming physically meaningful abstractions: they can under-use shape structure and fail on
illusions that humans find trivial [13], degrade sharply under controlled distribution shifts [5], and
rely on language priors that inflate in-domain accuracy [2]. Behavioral test suites further expose
compositional and alignment gaps [37, 29], while video reasoning benchmarks surface limitations in
temporal and causal understanding [35]. These diagnostics collectively motivate benchmarks that (i)
control confounds, (ii) span diverse physics regimes, and (iii) separate genuine mechanistic reasoning
from pattern matching.

We present a controlled, video-based benchmark built from the widely used PhET Interactive
Simulations ecosystem of physics demonstrations. The dataset comprises 382 curated simulation
videos covering core domains (kinematics, dynamics, collisions, geometric optics, electricity and
magnetism, circuits, fluids specifically buoyancy, and quantum phenomena). Each video is paired
with a triad of questions that probe complementary facets of understanding: (i) Conceptual (laws,
invariants, qualitative trends), (ii) Numerical (parameter-grounded calculations with unit discipline),
and (iii) Error-detection (identifying idealizations, hidden losses, or setup inconsistencies). By design,
success requires reasoning over physical invariants and counterfactuals rather than exploiting spurious
visual or linguistic shortcuts.

In contrast to existing video reasoning datasets that emphasize synthetic collisions, goal satisfaction,
or open-domain narratives [35, 4, 6], and to education datasets centered on static diagrams [21], our
benchmark leverages high-quality PhET simulations to couple pixel-visible numeric panels with
curated, per-video triads of conceptual, numerical, and error-detection questions. This combination
enforces grounding in measured quantities, tests unit- and sign-discipline alongside qualitative
reasoning, and surfaces robustness to idealizations—providing a complementary, diagnostics-first
view of multimodal physics understanding.

Contributions. (1) A parameterized, physics-grounded video benchmark of 382 PhET simulations
spanning multiple domains. (2) A three-question evaluation schema (conceptual, numerical, error-
detection) that disentangles types of understanding and pressures models to rely on the right invariants.
(3) Comprehensive baselines and analyses across contemporary VLMs, surfacing systematic error
modes linked to abstraction gaps, unit handling, and hidden-assumption sensitivity [13, 5, 2, 37, 29,
35].

Alignment with workshop focus: Interactive scene generation and downstream tasks. Our
benchmark targets physically plausible, controllable video scenes and evaluates properties directly
relevant to downstream agents: temporal consistency and conservation laws (conceptual), actionable
predictiveness (numerical), and robustness to modeling choices and hidden assumptions (error
detection). As such, it provides an evaluation substrate for models that generate or condition on
interactive simulations, and a diagnostic lens on whether VLMs—and world-model pipelines built
atop them—encode abstractions suitable for planning and policy learning [10–12].

2 Related Work

Multimodal benchmarks for physical reasoning. A substantial body of work probes whether
models can reason about dynamics and causality from video. CLEVRER targets temporal and causal
reasoning in synthetic collisions with descriptive, explanatory, predictive, and counterfactual queries,
revealing that perception-only success does not translate to causal competence [35]. PHYSION moves
toward more realistic simulations (e.g., rolling, sliding, falling, collisions, deformation) and compares
machine predictions with human judgments, finding persistent gaps and advantages for object-centric
representations [6]. PHYRE frames physical reasoning as solving 2D puzzles with an emphasis on
generalization and sample efficiency [4]. Our benchmark differs in three ways: (i) we build on PHET
educational simulations to improve reproducibility and pedagogical fidelity; (ii) each video is paired
with a fixed triplet of questions (conceptual, numerical, error-detection) aligned to instructional goals;
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Dataset Mod. Lang. Task Size Open Numeric UI Diff./Trap Notes / Primary reference

PhET-Physics-
VideoQA (Ours)

Vid Eng VideoQA (conceptual /
numerical / error-det.)

382 vids,
1146 Q/A

51 51 51/ 51 Educational simulations;
parameterized clips (densities,
n, drag, etc.); three question
types.

CLEVRERa[35] Vid Eng VideoQA
(desc./expl./counterf.)

20k vids;
>300k Q

51 55 55/ 55 Synthetic collisions;
causal/temporal reasoning with
counterfactuals.

CRIPP-VQAb[26] Vid Eng VideoQA (template
queries over primitive
physical processes)

∼2.4k vids;
∼74k Q/A

51 55 55/ 55 Synthetic, short clips of
rudimentary processes;
template-style questions; not
an educational physics
benchmark; no numeric
readouts.

Physion [6] Vid Eng Physical prediction (no
QA)

∼1.2k clips
(8 scenarios)

51 55 55/ 55 Predict roll/slide/bounce
outcomes; human vs model
comparisons.

PHYRE [4] Sim Eng Goal achievement /
planning

2 tiers; 25
templates ×
100 tasks
each (∼5k)

51 55 51/ 55 Parameterized 2D physics
puzzles; generalization
within/across templates.

ScienceQA [21] Img+Txt Eng MCQA (explanations) ∼21k Q/A 51 55 55/ 55 K–12 science with
images/diagrams;
chain-of-thought supervision.

a Per-type CLEVRER counts: 126,304 descriptive, 122,461 explanatory, 41,021 predictive, 12,523 counterfactual.
b CRIPP-VQA focuses on primitive, compositional physical processes with template-based questions; it
is not designed for high-level, educational physics reasoning or numeric problem solving.

Table 1: Positioning our benchmark among nearby datasets. “Numeric UI” flags whether raw
on-screen numeric readouts (gauges/sliders) are part of the visual input. “Diff./Trap” indicates explicit
difficulty labels and the presence of trap/error-detection prompts (see Sec. 3.4.

and (iii) we evaluate multiple VLMs under standardized prompts. The reliability and broad adoption
of PHET as a learning tool motivate its use as a controlled yet authentic source of stimuli [33, 32].

Video QA and educational multimodal reasoning. General VideoQA benchmarks emphasize
everyday activities, temporal order, and causal relations in natural videos; for example, NEXT-QA
targets causal and temporal action reasoning with both multi-choice and open-ended formats, showing
that strong systems still struggle with explanatory questions [34]. Complementary educational
resources such as TQA and AI2D/AI2D-RST examine multimodal comprehension in K–12 science
and highlight the challenges of diagram-grounded reasoning [17, 15, 14], while SCIENCEQA scales
to ∼21k multimodal questions with lectures and explanations, demonstrating benefits from chain-of-
thought supervision [21]. Our benchmark sits alongside these efforts by focusing on canonical physics
phenomena with controllable conditions and numeric readouts, enabling quantitative assessment and
precise cross-model comparisons that complement natural-video and diagram/text settings.

Numerical visual reasoning, broad LMM evaluations, and video-capable models. Chart/plot
QA corpora probe perception-to-calculation pipelines via value extraction and tolerance-aware
grading—principles we adopt for our numerical items (units, error tolerances, robustness to reading
noise)—as exemplified by PLOTQA and CHARTQA [25, 24]. Broad, heterogeneous benchmarks such
as MMMU and MATHVISTA further reveal persistent gaps in mathematically grounded multimodal
reasoning despite rapid progress [36, 22]. In parallel, open efforts extend image-centric LMMs to
the video domain through instruction tuning and unified tokenization (e.g., VIDEO-LLAVA, VIDEO-
CHATGPT), typically optimizing for conversational understanding rather than parameter-grounded
consistency [19, 23]. Our physics-focused, numerically anchored evaluation bridges these lines of
work by testing whether video-capable models can maintain state tracking, read parameters reliably,
and respect physical constraints—capabilities that standard conversational video setups may not
directly assess.

Probing VLM robustness and abstraction. Recent diagnostic datasets show that vision–language
models (VLMs) often rely on superficial cues rather than true abstraction. Hemmat et al. demonstrate
failures on visual illusions due to under-use of shape structure [13], while ObjectNet reveals over-
reliance on context [5]. In VQA, VQA-CP exposes shortcut use of answer priors. Behavioral
test suites such as VL-CheckList and Winoground further probe object attributes, negation, and
compositional binding [37, 29]. For temporal and causal reasoning, CLEVRER reduces success via
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Figure 1: PhET-Physics-VideoQA overview. The central sunburst summarizes the four
fields—Mechanics & Fluids, Optics, Electromagnetism & Circuits, and Quantum Mechanics—and
their 17 topics covered by our 382 simulation clips.

superficial cues [35]. Together, these motivate our inclusion of error-detection prompts to better
separate physical reasoning from heuristic pattern matching.

Positioning among physics and multimodal QA benchmarks Prior work probes video phys-
ical reasoning via synthetic collisions and counterfactual queries (CLEVRER; 35), goal-driven
puzzle solving that stresses template generalization (PHYRE; 4), and predictive judgments about
real/simulated dynamics (PHYSION; 6); other resources target physics QA directly over videos
(e.g., CRIPP-VQA, ∼2.4k videos/∼74k Q/A) or focus on diagram/image-based education QA
(SCIENCEQA; 21). Our benchmark (Table 1) fills a complementary, under-served niche by (i)
using controlled educational simulations (PhET) with visible numeric UI (gauges/sliders/readouts)
so answers can be grounded in pixel-level measurements; (ii) evaluating three orthogonal skills
via per-video triads—conceptual, numerical (unit-checked with explicit tolerances), and error-
detection—that target known VLM failure modes; and (iii) covering a broad syllabus (fluids, mechan-
ics, optics, E&M, circuits, quantum mechanics) to enable disaggregated domain analysis. Unlike
prior video datasets that avoid numeric UI [35, 6] or center static diagrams [21], our setting requires
consistency between language, on-frame measurements, and physical constraints, yielding a sharper
diagnostic of physics competence beyond language priors.

3 Dataset

3.1 Design Goals & Scope

Our benchmark targets video understanding of canonical physics under controlled, measurable, and
repeatable conditions. We construct short clips from the PhET Interactive Simulations ecosystem
[33, 32], where on–screen gauges and sliders expose parameters and outcomes. The dataset comprises
382 curated clips spanning four fields— Mechanics & Fluids, Optics, Electromagnetism & Circuits,
and Quantum Mechanics—across 17 topics (e.g., buoyancy, collisions, lenses/mirrors, Coulomb’s
law, generator, RC time constant, projectile motion, quantum tunneling). Each clip pairs with three
complementary questions that probe (i) conceptual knowledge (laws, invariants, qualitative trends),
(ii) numerical competence (parameter-grounded calculations with unit checks and tolerances), and
(iii) error detection (identifying idealizations, hidden losses, or setup inconsistencies). Because the
governing variables are visible in the pixels (readouts, sliders), correct answers must be simultaneously
consistent with the visual evidence and with the underlying physics, making it difficult to rely on
language priors alone.

Intended uses beyond evaluation. While the primary purpose is a standardized diagnostic for
video-language models’ physics understanding, the dataset and answer schema are designed to
support additional research uses:
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• Supervised fine-tuning (SFT). The question–answer pairs (with tolerance-aware numeric targets)
can supervise models to (a) read on-screen numeric UI, (b) apply unit and sign discipline, and (c)
map qualitative video cues to the correct physical regime (e.g., float/sink, real vs. virtual images).

• Preference optimization/reward modeling. The three question types furnish natural comparison
signals (e.g., correct reasoning but wrong arithmetic vs. spurious guess with right number), enabling
preference datasets for DPO/RLHF-style training of physics-aware responses.

• Auxiliary tasks for grounding. The same clips admit multi-task objectives such as OCR-of-
readouts, unit tagging, dimensional analysis checks, or equation selection, which can be attached
as auxiliary losses to improve numeric grounding in video LMMs.

• Curriculum and generalization studies. The coverage across fields and topics allows curric-
ular schedules (easy→hard, single-parameter→multi-parameter) and systematic generalization
protocols (e.g., train on water/oil densities, test on mercury; train on concave mirrors, test on
convex).

• World-model stress tests. Because scenarios expose controllable parameters and predictable
outcomes, the benchmark can serve as a held-out probe for video world models: models that claim
to encode dynamics should exhibit consistent performance across parameter sweeps (e.g., Fb ∝ ρV ,
1/f scaling in optics, exponential RC time constants).

• Instruction following and tool use. The explicit numeric targets and unit tolerances make the
dataset suitable for instruction-tuning models to follow physics-specific directives (“compute,”
“estimate,” “explain assumption”) and for evaluating tool-augmented reasoning (e.g., calculator
use) under visual grounding.

These secondary uses are optional and orthogonal to the core benchmark; they are included to
facilitate research on how video models internalize and operationalize sophisticated physics rules, not
merely whether they can answer in-domain prompts.

3.2 Data Compilation

All clips are recorded from PhET Interactive Simulations [33, 32] and were designed by a small
team of physics practitioners (three co-authors with Electrical Engineering/Physics training). For
each module the team specified (i) visible instruments (sliders, gauges, readouts), (ii) controllable
parameters and ranges (e.g., object volume/density, index of refraction, spring constant, charges,
area and distance of plates, gravity, drag model, width of the wave fuction), and (iii) a short scripted
interaction (initial conditions, parameter sweep/perturbation, expected qualitative outcome). Each
finalized clip is paired with three questions—conceptual, numerical, and error-detection—initially
drafted by GPT-5 Thinking from a structured scenario card (simulation, parameters, difficulty,
intended concept) and then fully vetted by experts for scientific correctness. During validation, the
team calibrated numerical targets (units, significant figures, a priori absolute/relative tolerances)
and bound error-detection prompts to the clip’s idealizations (e.g., zero drag, no frictional losses,
paraxial approximation). Gold answers include a concise rationale, the canonical formulas used,
and a final numeric result with unit and tolerance. Prior to release we ran automated consistency
checks (unit sanity, sign conventions, recomputation from metadata) and a two-pass human audit
to remove duplicates/near-duplicates. Each datum ships with (1) the standardized video frames, (2)
a machine-readable metadata JSON (module, parameters, UI elements, difficulty), and (3) the QA
triplet with gold answers and grading rubric (including tolerance rules), enabling turnkey evaluation
and secondary uses such as SFT, preference modeling, and curriculum/generalization studies.

3.3 Metadata summary

Our corpus contains 382 clips paired with 1146 Q/A items (three per clip), covering 17 topics grouped
into four fields: Mechanics and Fluids (79 clips: buoyancy, projectile motion, collisions, masses
and springs, simple pendulum); Optics (50: convex/concave lenses, convex/concave/flat mirrors);
Electromagnetism and Circuits (130: capacitance, Coulomb’s law, generators, RC time constant);
and Quantum Mechanics (123: hydrogen-atom/spectral behavior, photon polarization, quantum
tunneling). The most represented topics are hydrogen atom models (55), quantum tunneling (54),
capacitance (40), Coulomb law (35), RC time constant (30), generator (25), projectile motion (25),
and buoyancy (24). Each clip is annotated with three complementary question types—conceptual,
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numerical, and error-detection—anchored to the same video instance (cf. App. A.2 for extended
metadata details).

3.4 Question Generation & Types

Overview. Each video instance is paired with three orthogonal item families designed to probe
complementary facets of physics understanding: (i) Conceptual (principles, invariants, qualitative
monotonicities), (ii) Numerical (parameter–grounded calculation with unit discipline), and (iii)
Error–detection (recognition of idealizations, hidden losses, and setup inconsistencies). Items are
authored from a scenario–metadata binding (visible readouts, controlled parameters, units) to ensure
the question is video–specific, unambiguous, and reproducible.

Item specifications.

Conceptual. Scope: laws and qualitative trends (e.g., Archimedes, Snell, energy conservation,
momentum, Faraday’s law, RC dynamics). Form: “If parameter X increases while Y is held fixed,
what is the effect on Z? Justify by naming the governing principle.” Evidence required: correct
directionality and an explicit citation of the relevant law or invariant; reference to features visible
in the clip (gauges/sliders).

Numerical. Scope: single– or few–step calculations bound to the video’s numeric UI (e.g., read ρ,
V , R, C, n, v0, angles). Form: “Using the on–screen values (A,B, . . .), compute Q and report
with units.” Constraints: unit correctness, appropriate rounding/significant figures, and a tolerance
window (absolute/relative) predeclared per item to account for display precision.

Error–detection. Scope: identification of simplifying assumptions (zero drag/friction, perfectly
rigid bodies, lossless components), hidden confounders (misread units, occluded scales), or
inconsistent setups. Form: “Identify the dominant idealization in the clip and predict the qualitative
change in the outcome if it is violated.” Evidence required: naming the assumption and a correct
counterfactual (directionally and mechanistically).

Difficulty. We tag each item with one of three difficulty levels—easy, moderate, or hard—based on
combined cognitive load (recall vs. multi–step reasoning), numeric complexity (single vs. chained
formulas/conditionals), and perceptual burden (reading small/fast UI changes). Labels are assigned
during expert review and are used only for analysis/stratification, not for prompting.

Trap concept (implicit, not flagged). Although we analyze common failure modes—(i) units/scale
(unit consistency, order-of-magnitude checks), (ii) sign/direction (conventions, image vs. object side,
current/field orientation), (iii) parameter readout (misreading sliders/gauges), and (iv) idealization
violations (zero drag/friction, perfect rigidity, lossless elements)—we do not store an explicit “trap
flag” in the metadata. Instead, these aspects are implicitly probed by the dedicated error-detection
question type and enforced by the grading rubric (unit checks, tolerance windows, and counterfactual
reasoning). Aggregated diagnostics may reference these categories in analysis, but no per-item trap
annotation is included in the released data.

4 Experiments and Results

4.1 Experimental Configuration

Corpus and tasks. We evaluate on 382 video scenarios (17 physics labs), each paired with a triad of
Conceptual, Numerical, and Error–Detection items for a total of 1146 Q/A.

Model suite and rationale. We select three video–capable VLMs balancing capability, cost, and
ecosystem coverage: GPT-4O-MINI (OpenAI; strong small model in the GPT-4o family), GEMINI-
2.5-FLASH-LITE (Google; fast multimodal variant), and QWEN-VL-PLUS (Alibaba; widely used
open(-ish) stack). This set spans two strong proprietary baselines with robust video APIs and one
popular, cost–efficient open family—useful for the community to replicate/extend.5

5We cite family reports for context: GPT-4o system overview [1], Gemini technical reports [8], and Qwen2-
VL [31].
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Category Question Type gpt-4o-mini gemini-2.5
flash-lite qwen-vl-plus Type Avg.

Mechanics & Fluids
Conceptual 4.6 4.5 2.3 3.80
Error Detection 3.0 3.2 2.5 2.90
Numerical 4.0 4.2 2.1 3.43

Quantum Mechanics
Conceptual 3.7 3.8 1.6 3.03
Error Detection 2.4 2.5 1.5 2.13
Numerical 3.3 3.5 1.6 2.80

Electromagnetism & Circuits
Conceptual 4.7 4.6 3.3 4.20
Error Detection 3.8 3.4 3.1 3.43
Numerical 4.2 4.0 3.2 3.80

Optics
Conceptual 4.2 4.2 3.7 4.03
Error Detection 2.6 3.3 2.3 2.73
Numerical 4.6 4.3 3.9 4.27

Table 2: LLM-as-a-judge scores (scale 1–5) by category and question type; rightmost column is the
mean across models. Error Detection rows are consistently lower than Conceptual/Numerical.

Video preprocessing. Clips are standardized to fps= 3.0, max_frames= 40, jpg_quality=
95, then base64–encoded for API transmission. This budget preserves salient state changes (e.g.,
gauge/slider motion, collisions) while controlling cost and latency.

Prompting and decoding. Unless otherwise noted: temperature = 0, single response per item (no
self-consistency), and frame stacks passed as ordered images with a fixed instruction template (per
question type).

Scoring protocol (summary). Numerical items use deterministic, unit–aware grading against a gold
key with absolute/relative tolerances (Sec. 4.2).Conceptual and Error–Detection items are judged by
an LLM-as-a-judge rubric on a [1..5] scale with a justification string and flags; we report normalized
scores and confidence–aware variants (Sec. 4.2). This mixed protocol yields objective scoring where
ground truth is numeric, and calibrated rubric assessment where open-text explanations are required.

4.2 Evaluation Protocol

Setup and notation. Let V be the set of videos; each v ∈ V is paired with a triad of ques-
tions Q(v) = {q(C), q(N), q(E)} covering conceptual (C), numerical (N ), and error–detection (E)
skills. For a model M , let â(q) denote its answer to question q. We score each question with a
type–appropriate function s(q, â) ∈ [0, 1], then aggregate across videos, types, and physics domains
[9, 16].

Deterministic scoring for numerical items. Each numerical question q has a gold value y⋆, a unit
u⋆, an absolute tolerance τabs and a relative tolerance τrel specified in the metadata. From the model’s
response we parse a numeric ŷ and unit û (unit synonyms normalized to SI). Define the admissible
error

τ(q) = max
(
τabs, τrel · |y⋆|

)
, δ = |ŷ − y⋆|, ⊮unit = ⊮[û ≡ u⋆].

The numerical score is

sN (q, â) = ⊮unit ·


1, δ ≤ τ(q),

γ, τ(q) < δ ≤ κ τ(q),

0, otherwise,

with fixed hyperparameters γ = 0.5 (partial credit) and κ = 2 (grace band).6 This rubric is objective,
unit–aware, and invariant to trivial rephrasings, consistent with recommendations to avoid free-form
LLM judging for numeric items [20, 9].

6We report γ, κ and the per–question tolerances in the release to ensure exact reproducibility.
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LLM-as-a-judge for conceptual and error–detection items. For C and E types we use a
rubricized judge J instructed to output strict JSON: {score ∈ {1, . . . , 5}, confidence ∈
[0, 1], flags}, where flags captures checklist criteria (e.g., law_invoked, units_issue,
missing_assumption). We map the 5-point rating to [0, 1] via

r =
score− 1

4
, sC/E(q, â) =

r (1 + α confidence)
1 + α

,

with α = 1 to softly incorporate judge self-confidence. To improve reliability, we optionally use
two independent judges J1, J2 and average their scores, reporting agreement (e.g., Cohen’s κ) on
a held-out calibration set, following common practice in rubricized LLM-as-a-judge evaluations
[20, 38, 7, 9, 16]; we also monitor known biases and robustness concerns [18, 28, 30].

Aggregation and uncertainty. Per-type means:

At(M) = |Qt|−1
∑

q∈Qt
s(q, â), t ∈ {C,N,E}.

Per-video triad score:
Sv(M) = 1

3

∑
q∈Q(v)

s(q, â).

We compute domain-wise macro averages (mechanics/fluids, optics, Electromagnetism/circuits,
quantum mechanics) and an overall macro across domains to avoid topic-size bias. We attach
95% confidence intervals via stratified bootstrap over videos (10,000 resamples) and assess model
differences with paired bootstraps on Sv , as recommended in recent evaluations of LLM judges and
open-ended benchmarking [38, 7, 9].

Note. For completeness, we also ran an earlier “critical judge” variant (single pass, free-text rubric);
its specification and outputs are documented in App. B. All reported numbers in this paper use the
Standard Judge described above.

4.3 Results

Overall. Across all categories and types (Table 2), GEMINI-2.5-FLASH-LITE and GPT-4O-MINI are
essentially tied: macro–averages of 3.79 vs. 3.76 (on a 1–5 scale), both well above QWEN-VL-PLUS
(2.59). By domain, Electromagnetism/Circuits is the easiest overall (3.81 mean), followed by Optics
(3.68), Mechanics/Fluids (3.38), and Quantum Mechanics as the hardest (2.66). The best single cell
is GPT-4O-MINI on Electromagnetism/Circuits–Conceptual (4.7); the weakest is QWEN-VL-PLUS on
Quantum Mechanics–Error Detection (1.5).

By question type. Error Detection is consistently the bottleneck: averaged over all models and
domains it scores 2.80, trailing Conceptual (3.77) by ∼0.97 and Numerical (3.58) by ∼0.78. The
gap holds per–model: GPT-4O-MINI Conceptual vs. Error Detection is 4.30 → 2.95 (∆ ≈1.35),
GEMINI-2.5-FLASH-LITE 4.28 → 3.10 (∆≈1.18), and QWEN-VL-PLUS 2.73 → 2.35 (∆≈0.38).
This validates the difficulty of our “trap” prompts that require spotting idealizations and making
counterfactual predictions.

By domain (higher–concept physics). Quantum Mechanics depresses all models across types (e.g.,
Conceptual means: 3.70/3.80/1.60; Numerical: 3.30/3.50/1.60 for GPT-4O-MINI/GEMINI-2.5-FLASH-
LITE/QWEN-VL-PLUS). In contrast, Electromagnetism/Circuits and Optics have strong Numerical
rows (domain means 4.13 and 4.27). These patterns suggest a valuable “higher–concept physics”
regime—particularly quantum mechanical topics—where present VLMs lag, and where our dataset
can pressure–test both closed and open–source video–capable models on real physics understanding
rather than surface cues, underscoring the importance of our benchmark to the video–physics
community.

Open models and practical impact. Because our protocol is model-agnostic and uses frame-
sparse video inputs (§4.2), the benchmark directly tests video-capable open(-source) models as
well as proprietary systems. In our runs (Table 2), the more lightweight/opensource-friendly model
underperforms the proprietary models—especially on Error Detection—indicating that the benchmark
cleanly separates surface pattern matching from real physics understanding. This makes the dataset
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a practical gate for researchers aiming to advance open models that must operate on educational
simulations, lab videos, or embodied settings. More broadly, the combination of numeric grounding,
trap-style prompts, and higher-concept physics (e.g., quantum mechanics) makes our work an
important and timely contribution: it supplies a rigorous, reproducible way to measure whether
video-language models truly reason about physical systems rather than rely on language priors.

Takeaways for the community. (1) Trap/error-detection questions expose robustness gaps that are
invisible to aggregate accuracy; (2) higher-concept physics substantially increases difficulty even for
strong models; and (3) jointly evaluating conceptual, numerical, and error-detection skills on the same
clips yields sharper diagnostics of physics understanding. These findings position our benchmark
as a useful stress test for video-capable VLMs and motivate research on models that can ground
explanations in pixel-level measurements while reasoning about non-classical abstractions.

5 Conclusion

We introduced PHET-PHYSICS-VIDEOQA, a controlled, video-based benchmark built from educa-
tional simulations that makes pixel-grounded physics reasoning measurable. Each clip is paired with
a triad of complementary questions—conceptual, numerical, and error-detection—while on-screen
gauges and sliders expose the governing variables. A transparent evaluation protocol combines
deterministic, unit-aware grading for numerical items with a rubricized LLM-as-judge for open
responses, and fixes all preprocessing and scoring hyperparameters to enable exact reproducibility.

Our study with three representative video-capable VLMs shows clear, actionable gaps. First, error-
detection (“trap”) questions—requiring recognition of idealizations and correct counterfactuals—are
consistently the hardest across all four physics fields, trailing conceptual and numerical items in
every category (Table 2). Second, higher-concept content, especially Quantum Mechanics, depresses
performance in both conceptual and numerical settings, indicating that non-classical reasoning
remains a major bottleneck. Third, even when numeric readouts are visible, models still suffer from
unit discipline and tolerance-boundary mistakes. Together, these findings suggest that current VLMs
rely heavily on language priors and shallow pattern matching rather than robust, state-consistent
physical reasoning.

We release videos, metadata, scoring scripts, and judge prompts to serve as a reproducible yardstick
for the community. Beyond benchmarking, the corpus is immediately useful for training and
analysis: e.g., physics-aware pretraining, unit/measurement tool-use, uncertainty-aware reasoning,
and temporal state tracking. Looking ahead, we see three promising directions: (i) expanding high-
concept domains (quantum mechanical topics) and adversarial traps to stress causal consistency; (ii)
adding interactive control tasks to test closed-loop reasoning; and (iii) deeper human–AI agreement
studies with multi-rater annotations. We hope PHET-PHYSICS-VIDEOQA will become a standard,
cost-efficient testbed for both proprietary and open-source video models, accelerating progress toward
genuinely physics-aware multimodal systems.

Limitations

Our benchmark is built from idealized PhET simulations, which simplifies sensing and dynamics
and thus creates a sim–to–real gap: occlusions, noise, and unmodeled losses in physical labs are
only approximated here. Reliance on visible gauges/sliders—needed for numerically grounded
prompts—can incentivize “read-off & plug-in” strategies and makes results sensitive to OCR/legibil-
ity; the fixed subsampling policy (e.g., 3 FPS, ≤40 frames) may miss fast transients. Coverage, while
spanning 17 topics across four fields, is still modest (382 clips) and may be exposed to pretraining
contamination due to PhET’s ubiquity.

Evaluation also carries assumptions: an LLM-as-judge rubric is prompt- and decoding-sensitive,
partial-credit introduces ambiguity, and expert-edited (GPT-assisted) questions may encode stylistic
bias; prompts/answers are English-only with strict unit formatting. Practically, video tokenization
and automated judging incur non-trivial compute, and redistribution is constrained by PhET licensing.
Mitigations: future releases will add real-lab captures, noise/occlusion/higher-FPS variants, broader
topical scope, and held-out scripted interactions; we will publish prompts/seeds, report inter-annotator
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agreement, explore multilingual/unit-normalized judging, and release cached frames, lightweight
graders, and reproducible generation scripts under appropriate licenses.
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A Dataset

A.1 Licensing & Ethics

We respect the PhET license and cite Wieman et al. [33, 32]. The dataset contains no personal data
and is intended for research and education. We release metadata and questions under a CC BY-NC
license; videos follow redistribution terms consistent with PhET usage.

A.2 Metadata Details

Clip schema (per entry). { video_filename, scenario_id, field, topic,
difficulty, fps, num_frames, duration_s, resolution_w, resolution_h,
parameters, seed, capture_version }
parameters is a typed, unit–bearing map (examples):
{ mass_kg, density_kg_m3, diameter_m, index_n, g_mps2, R_ohm, C_F, V_V,
charge_uC, drag_model, focal_length_cm, radius_cm, ...}

Question schema (per entry). { q_id, scenario_id, type ∈ [conceptual, numerical,
error_detection], question_text, answer, units, tol_abs, tol_rel, rubric_id,
rationale, tags }

The corpus is grouped into four high-level fields with seventeen topic categories (paraphrased to
avoid simulator-specific names): Mechanics & Fluids, Optics, Electromagnetism & Circuits, and
Quantum Mechanics.

A.3 Trap Items and Difficulty Annotation

Motivation. Physics proficiency in real settings depends not only on recalling laws but also on (i)
recognizing when simplifying idealizations fail and (ii) coping with tasks of uneven cognitive/mea-
surement load. To reflect this, our benchmark tags questions with trap indicators and graded difficulty
levels. These signals complement raw accuracy and provide a more faithful picture of video–based
physical reasoning, where hidden losses, unit discipline, and visual ambiguity routinely matter.

Trap design (error–detection focus). Trap–flagged items are principled checks that the model
grounds its answer in the frames and the governing physics rather than language priors. We use four
families:

• Hidden idealizations: zero drag/friction, lossless circuits, perfectly rigid bodies,
thin–lens/paraxial limits; the task is to name the assumption and predict the direction of change
when relaxed.

• Measurement & units: unit conversions (cm vs. m), sign conventions (e.g., virtual image distance,
charge signs), and reading the correct scale on on–screen gauges.

• UI confounds: disambiguating coincident slider moves, occlusions, or background animations
that are visually salient but physically irrelevant.

• Counterfactual consistency: checking that the explanation remains correct under a specified
perturbation (e.g., slightly increasing refractive index, narrowing an aperture, thickening a barrier).

Typical instantiations include: in optics, distinguishing virtual (q < 0) from real images when the
focal marker is visible; in Electromagnetism/circuits, noting internal resistance or coil loading that
explains a nonzero drop; in mechanics/fluids, recognizing buoyant force tracks displaced volume; in
quantum mechanics, separating evanescent decay from true transmission.

Difficulty rubric. Each question receives one of four levels, assigned by two physics authors with
reconciliation on disagreement. Levels reflect the minimum skill needed to answer from the video,
not from general memory:

• Easy: one law/qualitative trend; single readout; minimal computation (e.g., image orientation;
compare C when d doubles).

• Moderate: two–step reasoning or a proportionality; multiple readouts; simple numeric substitution
with unit check (e.g., lens equation with a sign convention; V (t) at t = τ in RC).
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• Hard: composition of laws or temporally extended evidence (track state across frames); sensitivity
to signs/frames of reference; tolerance-aware computation (e.g., Coulomb’s law with changing r;
generator V ∝ NABRPM).

Annotation protocol and quality controls. Authors draft trap candidates alongside the three
question types; a second annotator audits that (i) the trap has a single physically correct resolution
visible in the clip, (ii) distractors are plausible but refutable from the frames, and (iii) wording avoids
“gotcha” phrasing. Difficulty is calibrated by the number of required video cues, algebraic steps,
and brittleness to sign/units. Numerical items include explicit units and absolute/relative tolerances;
conceptual/error-detection items use discrete rubrics with brief rationales.

Benefit for ecological validity. Trap flags and difficulty labels encourage evaluations that reward
grounded reasoning over pattern matching, mirroring authentic lab contexts where instruments have
units, approximations break, and causal attribution matters. We therefore report scores disaggregated
by {conceptual, numerical, error–detection} × {difficulty} and separately for trap vs. non-trap items,
yielding a more informative summary of real-world physics capability.

A.4 Dataset Composition

ScenePhys covers four major areas of physics:

• Mechanics & Fluids: Linear and rotational motion, collisions, buoyancy, drag.
• Optics: Reflection, refraction, lenses, mirrors, wave interference.
• Electromagnetism & Circuits: Coulomb’s law, electric fields, RC circuits, generators.
• Quantum Mechanics: Quantum tunneling, wave packets, energy quantization.

A.5 Dataset diagnostics and sanity checks

Let V be all clips, and let R denote the set of topic labels (17 rules). For a clip v∈V we store its
topic r(v)∈R, duration tv (s), frame rate fpsv , and spatial resolution (wv, hv). The corpus statistics
below (Figs. 2–7) are computed with simple, reproducible aggregations.

Counts and duration per topic. Per–topic counts and total screen time are

nr =
∑
v∈V

⊮[ r(v) = r ], Tr =
∑
v∈V

⊮[ r(v) = r ] tv, r ∈ R.

Figure 2 shows nr; Figure 3 shows Tr. Topics with the largest footprint are hydrogen atom models,
quantum tunneling, capacitance, and RC time constant.

Frame-rate and resolution distributions. We summarize temporal and spatial variability to inform
preprocessing. The empirical fps multiset

Dfps = {fpsv : v ∈ V}
is concentrated near ≈ 30 fps (Fig. 4). For spatial resolution, we bucket unique (w, h) modes with
counts (Fig. 5); a small set of resolutions covers most clips.

Physics–consistency score (rule checks). For topics with closed–form relations we implement
label–free checks. Each such topic r has a mapping

ŷv = fr(θv)

from metadata θv (e.g., R,C for RC, plate area/spacing for capacitance) to a predicted observable ŷv .
From the clip we extract an observed value yv. Using the same absolute/relative tolerances as the
main scorer,

τv = max{τabs, τrel ·|yv|}, ρv =
|ŷv − yv|

τv
,

we define a per–video consistency score

s(ϕ)v = 100
(
1−min{1, ρv}

)
∈ [0, 100],

and a per–topic summary Sϕ(r) = medianv:r(v)=r s
(ϕ)
v (Fig. 6).
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Figure 2: Counts per topic nr.

Figure 3: Total duration per topic Tr (seconds).

Topic separability (baseline classifier). As a sanity check that categories are not degenerate,
we train a weak multi–class classifier on non–semantic features (simple frame statistics, motion
magnitude, OCR token counts, and metadata toggles). With 5-fold stratified CV, the confusion matrix
M ∈ N|R|×|R|,

Mij = #{ v : r(v) = i, r̂(v) = j },

is shown in Fig. 7. Diagonal dominance with intuitive off–diagonal mixes (e.g., among lens/mirror
variants) supports label quality and diversity. This classifier is not used for evaluation.

A.6 Dataset Anatomy

This dataset consists of 382 simulation videos sourced from the PhET Interactive Simulations platform,
spanning across four major fields of physics: Mechanics & Fluids, Optics, Electromagnetism &
Circuits, and Quantum Mechanics. These videos are paired with three different types of questions:
conceptual, numerical, and error-detection. These questions are designed to assess a learner’s ability
to reason, calculate, and identify errors in physical setups, ensuring that both qualitative understanding
and quantitative skills are rigorously tested.

A.7 Storylines of the Experiments and Notations

Each of the following experiments represents a fundamental concept in physics, necessary for
comprehensive physical reasoning. Below is a detailed explanation of each experiment in the dataset:
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Figure 4: Frame-rate histogram Dfps (peaked near 30 fps).

Figure 5: Top resolution modes (w × h) with counts.

A.7.1 Mechanics & Fluids

Projectile Motion (75 clips, 225 Q/A): This experiment involves the motion of an object that is
launched into the air. The experiment tests how the initial velocity, launch angle, and gravitational
force affect the distance and height traveled by the object. The primary notations here are initial
velocity (m/s), launch angle (degrees), and gravitational acceleration (m/s²). Understanding
projectile motion is key to applications like sports, engineering, and space science, where the motion
of objects is governed by these principles.

Masses and Springs (30 clips, 90 Q/A): In this experiment, learners study harmonic motion using
a mass attached to a spring. Key parameters include mass (kg) and spring constant (N/m). The
experiment challenges learners to understand Hooke’s Law and the period of oscillation. These
concepts are crucial for applications like mechanical systems, clocks, and even understanding sound
waves in acoustics.
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Figure 6: Physics–consistency score Sϕ(r) by topic (higher is better).

Figure 7: Confusion matrix M of the weak topic classifier (5-fold CV).

Simple Pendulum (30 clips, 90 Q/A): This experiment explores the periodic motion of a simple
pendulum. It requires understanding how the length of the pendulum and gravitational acceleration
influence the period of oscillation. Notations include length of the pendulum (m) and gravitational
acceleration (m/s²). Pendulums have applications in timekeeping and in understanding oscillatory
motion in general.

Collision (30 clips, 90 Q/A): This experiment simulates elastic and inelastic collisions between
objects. Key parameters include mass (kg) and velocity (m/s) of the colliding objects. It tests the
principles of momentum conservation and the effects of collisions, which are critical in vehicle
crash analysis, sports, and even particle physics.

18



Buoyancy (72 clips, 216 Q/A): The buoyancy experiment tests how objects behave when placed in
different fluids. The key parameters involved are mass (kg), fluid density (kg/m³), and object density
(kg/m³). The fundamental principle being tested here is Archimedes’ Principle, which explains why
objects float or sink depending on their density relative to the fluid. Understanding this experiment is
important because it applies to many practical scenarios like ships floating on water or the behavior
of balloons in the air.

A.7.2 Optics

Flat Mirror (9 clips, 27 Q/A): This experiment tests how light behaves when reflected from a flat
mirror. The main parameters here are object distance (cm) and image distance (cm). Understanding
image formation by flat mirrors is essential in optical devices such as periscopes, microscopes, and
cameras.

Concave Mirror (27 clips, 81 Q/A): This experiment studies light reflection from concave mirrors.
Parameters such as radius (cm) and focal length (cm) are used to predict the nature of the image
formed (real or virtual). This experiment helps learners understand how concave mirrors focus light,
a principle crucial in telescopes and other optical systems.

Convex Mirror (27 clips, 81 Q/A): Similar to the concave mirror, this experiment tests the
properties of convex mirrors. It requires understanding how light diverges after reflection. Key
parameters include radius (cm) and focal length (cm). Convex mirrors are used in rear-view mirrors
and security cameras due to their ability to form wider fields of view.

Convex Lens (30 clips, 90 Q/A): The convex lens experiment explores how light converges after
passing through a lens. Key notations include focal length (cm) and refractive index (n). This
experiment is crucial for understanding magnification in devices like glasses, microscopes, and
cameras.

Concave Lens (30 clips, 90 Q/A): This experiment involves concave lenses, which cause light to
diverge. The parameters include focal length (cm) and refractive index (n). Concave lenses are used
in applications where diverging light is needed, such as in laser systems or vision correction.

A.7.3 Electromagnetism & Circuits

Coulomb’s Law (35 clips, 105 Q/A). Coulomb’s law quantifies the electrostatic force between
two point charges. Relevant parameters include charge (µC) and distance (cm). These clips test the
ability to compute forces between charged bodies and reason about attraction/repulsion in canonical
setups relevant to electromagnetism and electrostatic devices.

Capacitance (40 clips, 120 Q/A). This set examines energy storage in capacitors and how ge-
ometry/materials govern capacitance. Key parameters include capacitance (F), voltage (V), and
resistance (Ω). Tasks emphasize reading on-screen values, applying C = εA/d or circuit rela-
tions, and interpreting how changes in dielectric, plate area, and separation affect stored energy and
measured C.

RC Time Constant (30 clips, 90 Q/A). These clips probe the charging/discharging dynamics
of first-order RC circuits. Primary parameters are resistance (Ω) and capacitance (F), with ques-
tions targeting τ = RC, exponential transient behavior, and unit-consistent numerical predictions
(V (t), I(t)) under specified tolerances.

Generator (75 clips, 225 Q/A): The generator experiment explores electromagnetic induction,
demonstrating how a changing magnetic field generates electricity. Key parameters include magnetic
field strength (T) and coil turns (N). This experiment is essential for understanding how electric
generators and motors work, which are used in power generation and electrical machinery.
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Field Example parameter keys (units)

Mechanics & Fluids mass_kg, density_kg_m3, diameter_m, g_mps2, drag_model
Optics index_n, radius_cm, focal_length_cm, aperture_cm
EM & Circuits charge_uC, distance_cm, R_ohm, C_F, V_V, rpm
Quantum Mechanics barrier_V, width_nm, E_V, packet_sigma_nm

Table 3: Illustrative metadata keys per field (non–exhaustive).

A.7.4 Quantum Mechanics

Hydrogen Atom Models (165 clips, 495 Q/A): This experiment simulates the hydrogen atom and
its emission and absorption spectra. Important parameters include energy levels (eV) and electron
transitions. Understanding atomic models and spectra is key in fields such as spectroscopy, quantum
mechanics, and astrophysics.

Photon Polarization (42 clips, 126 Q/A): This experiment tests the interaction of photons with
various polarizers and measures their polarization. Key parameters include photon energy (eV)
and polarization angle (degrees). This is fundamental for understanding quantum measurement
processes, quantum cryptography, and communication technologies.

Quantum Tunneling (162 clips, 486 Q/A): This experiment explores quantum tunneling, where
particles pass through barriers that are classically impenetrable. The key parameters include barrier
width (nm) and energy (eV). This phenomenon is critical in technologies like semiconductors,
nuclear fusion, and scanning tunneling microscopy.

A.8 Difficulty Classification

Questions in the dataset are classified as easy, moderate, or hard based on cognitive load, numerical
complexity, and perceptual burden.

Easy Questions: These questions typically involve recalling basic principles or performing simple
calculations. For example, they may ask how a specific parameter change affects the outcome of an
experiment, requiring minimal reasoning or computation.

Moderate Questions: These questions require multi-step reasoning and involve moderate compu-
tation or algebraic manipulation. They might require the learner to apply multiple principles to solve
a problem, such as using multiple parameters from a video to calculate a physical quantity.

Hard Questions: These questions involve complex problem-solving, requiring multi-step calcula-
tions and a deep understanding of physical concepts. They may include tolerance-aware computations,
reasoning across different time frames, or error detection, such as predicting outcomes if certain
idealizations in the experiment are violated.

B LLM-as-a-Judge Systems (Full Specification)

Only the Standard Judge below is used for the paper’s official metrics; the Critical Judge is reported
for ablations only.

B.1 Standard Judge (Primary; used in main results)
System prompt.
You are a strict, consistent physics grader. Output only JSON.

User prompt — Conceptual questions.
You will grade a conceptual physics answer on a 0-5 integer scale using this

checklist:
- States correct qualitative relationship and directionality.
- Names and applies the governing law/principle correctly.
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Field Topic (paraphrased) Clips Q/A

Mechanics & Fluids (79)
Buoyancy 24 72
Collision 10 30
Masses & Springs 10 30
Simple Pendulum 10 30
Projectile Motion 25 75

Optics (50)
Concave Lens 9 27
Concave Mirror 19 57
Convex Lens 10 30
Convex Mirror 9 27
Plane Mirror 3 9

Electromagnetism & Circuits (130)
Capacitance 40 120
Coulomb’s Law 35 105
Generator 25 75
RC Time Response 30 90

Quantum Mechanics (123)
Hydrogen Atom Models 55 165
Quantum Tunneling 54 162
Photon Polarization 14 42

Total 382 1146
Table 4: Counts by field and topic. Each clip has three Q/A items (conceptual, numerical, error-
detection). Topic names are paraphrased; simulator identifiers appear in the metadata file.

- Addresses conditions/assumptions; no major physics errors.
- Grounds answer in the clip (mentions on-screen values/objects) when relevant.
- Clear, concise explanation.

Scoring guide:
5 = all checklist items satisfied;
4 = one minor miss;
3 = some correct but with gaps;
2 = mostly incorrect;
1 = off-topic/wrong.

Return STRICT JSON ONLY (no prose) with fields:
{

"score": <int 1-5>,
"reason": "<one-sentence justification>",
"flags": ["units_issue" | "law_missing" | "direction_error" |

"no_visual_grounding" | "other"]
}

Question: {question}
Answer: {response}

User prompt — Error-detection questions.
You will grade an error_detection physics answer on a 0-5 integer scale using this

checklist:
- Identifies the most impactful idealization/limitation in the clip.
- Explains the physical consequence if violated (correct direction of change).
- No major physics errors; considers confounders if relevant.
- Grounds critique in visual evidence (gauges/sliders/geometry) when relevant.
- Clear, concise explanation.

Scoring guide:
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5 = all checklist items satisfied;
4 = one minor miss;
3 = some correct but with gaps;
2 = mostly incorrect;
1 = off-topic/wrong.

Return STRICT JSON ONLY (no prose) with fields:
{

"score": <int 1-5>,
"reason": "<one-sentence justification>",
"flags": ["units_issue" | "law_missing" | "direction_error" |

"no_visual_grounding" | "other"]
}

Question: {question}
Answer: {response}

Notes. We run two independent passes (temperature=0, different seeds), parse JSON strictly
with a single retry on failure, and average the two integer scores. Numerical items are graded
deterministically as defined in Section 4.2.

B.2 Critical Judge (Supplementary; not used in main results)
Conceptual prompt.
Evaluate this physics conceptual question response CRITICALLY:

Question: {question}
Response: {response}

Rate the response on a scale of 1-5 where:
1 = Completely incorrect, irrelevant, or nonsensical
2 = Mostly incorrect with only 1-2 relevant points
3 = Partially correct but missing key concepts or has significant errors
4 = Mostly correct but missing important details or has minor conceptual errors
5 = Completely correct, comprehensive, and well-explained (RARE - only for

exceptional responses)

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly
excellent responses.

Look for: missing key concepts, oversimplifications, incorrect physics, lack of
depth.

Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.
Format: Score: X, Confidence: Y, Reasoning: Z

Numerical prompt.
Evaluate this physics numerical question response CRITICALLY:

Question: {question}
Response: {response}

Rate the response on a scale of 1-5 where:
1 = Completely incorrect calculation, wrong units, or nonsensical math
2 = Mostly incorrect with only basic numerical elements present
3 = Partially correct but has calculation errors, wrong units, or missing steps
4 = Mostly correct but has minor numerical errors or incomplete calculations
5 = Completely correct calculation, proper units, and complete solution (RARE -

only for perfect responses)

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly
perfect numerical work.

Look for: calculation errors, wrong units, missing steps, incomplete solutions,
incorrect formulas.
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Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.
Format: Score: X, Confidence: Y, Reasoning: Z

Error-detection prompt.
Evaluate this physics error detection response CRITICALLY:

Question: {question}
Response: {response}

Rate the response on a scale of 1-5 where:
1 = No errors identified, completely wrong, or irrelevant response
2 = Few errors identified with major mistakes or missing key limitations
3 = Some errors identified but missing important ones or has inaccuracies
4 = Most errors identified correctly but may miss subtle limitations
5 = All relevant errors identified accurately and comprehensively (RARE - only for

exceptional analysis)

IMPORTANT: Be very critical. Most responses should get 2-3. Only give 4-5 for truly
comprehensive error analysis.

Look for: missing key limitations, oversimplified analysis, incorrect physics, lack
of depth in error identification.

Provide your score (1-5), confidence level (0.0-1.0), and brief reasoning.
Format: Score: X, Confidence: Y, Reasoning: Z

Decoding and usage. Single pass, temperature=0.3; free-text outputs are parsed via regex. Because
of variability and lack of strict JSON, this judge is reserved for ablations only.

Scope. We report Critical-Judge outcomes only in the appendix; they do not affect the official tables
or figures in the main paper.

B.3 Side-by-side summary

Standard Judge (Primary) Critical Judge (Supplementary)

Purpose Reproducible, structured scoring Ablations / sensitivity only
Passes 2 (independent) 1
Temperature 0 (deterministic) 0.3 (variable)
Output Strict JSON (score, reason, flags) Free text (Score, Confidence, Reasoning)
Parsing Fail-closed on non-JSON Regex; may fail-open
Use in main results Yes No

Table 5: Comparison of the two judge systems. Only the Standard Judge contributes to the main
results.

C Evaluation Protocol (Extended)

C.1 Models Evaluated

GPT-4O-MINI (OpenAI). A compact member of the GPT-4o family designed for low-latency
multimodal use. We use it in video mode by supplying ordered frame stacks and task-specific
instructions. Strengths include strong language grounding and stable tool APIs; limitations include
proprietary weights and potential judge/model coupling when also used as a grader. See the GPT-4o
system documentation for architectural background and capabilities [1].

GEMINI-2.5-FLASH-LITE (Google). A fast, cost-efficient Gemini variant intended for high-
throughput multimodal workloads (images/video+text). We use identical frame budgets and prompts
to ensure comparability. Gemini’s family reports detail training data mixture, instruction tuning, and
long-context multimodality [8].
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QWEN-VL-PLUS (Alibaba/Qwen). A widely adopted vision–language family with strong open
ecosystem support (weights, inference stacks, and community tooling in many cases). We use
the production “Plus” variant with image sequence inputs to emulate video. Qwen2-VL provides
technical details on vision encoders, instruction tuning, and evaluation [31].

Implementation parity. All models receive the same frame stacks, prompts, and decoding settings
(temperature = 0) and are scored with the same protocol. We log per-item prompts, raw answers,
judge JSON (for C/E), and numeric scorer traces (for N) to enable exact replication.

C.2 JSON outputs used for reporting

Standard view (metrics_standard). For C/E items, we store:

• judge_avg (mean of the two 1–5 scores),
• judge{ judge1:{ score, reason, flags, raw}, judge2:{. . . }, avg_score, flags}.

No confidence values are present in metrics_standard. For numerical items we additionally store
numeric_score ∈ {0, γ, 1}, numeric_pass (boolean), and numeric_notes.

Strict view (metrics). Optionally includes a confidence–aware judge_score (mapped to [0, 1]) and
judge_confidence per item. This block is kept separate to clearly distinguish confidence–weighted
analyses from the standard dual–judge mean.

C.3 Judge flags

The judge emits lightweight diagnostics used for error taxonomy (not for inflating scores):

• law_invoked / law_missing (named the governing principle or not),
• direction_error (qualitative trend reversed or inconsistent),
• units_issue (units missing/mismatched in reasoning),
• no_visual_grounding (ignores on–screen measurements),
• parse_error (malformed output caught by parser).

C.4 Numerical scoring rubric

Given y⋆, u⋆, τabs, τrel, we compute τ(q) = max(τabs, τrel|y⋆|) and δ = |ŷ − y⋆|, and apply

sN (q, â) = ⊮unit


1, δ ≤ τ(q),

γ, τ(q) < δ ≤ κ τ(q),

0, otherwise,

with γ = 0.5 and κ = 2 (released with the artifact), and strict SI–unit normalization.

C.5 Aggregation and uncertainty

We compute per–type means At(M), per–video triad scores Sv(M), domain–wise macros, and an
overall macro. Uncertainty is reported via stratified bootstrap over videos (10,000 resamples) with
paired bootstraps on Sv for between–model tests. We also report rater agreement (e.g., Cohen’s κ) on
a calibration subset.

Strength and validity of the evaluation. Our protocol combines (i) deterministic, unit-checked
grading for all numerical items with explicit absolute/relative tolerances, (ii) structured LLM judging
for conceptual and error-detection items that produces parseable JSON and rubric flags, (iii) triad-level
aggregation that evaluates complementary skills on the same visual evidence, (iv) domain-stratified
reporting with uncertainty estimates, and (v) reproducibility controls: zero-temperature, version-
pinned judges, stored judge transcripts, and fixed video preprocessing (fps, frame budget, JPEG
quality). Because many clips expose on-screen numeric readouts (gauges/sliders), answers must
be consistent with pixel-level measurements, which reduces the chance of succeeding via language
priors alone and yields a sharper, more diagnostic signal of physics competence [20, 38, 7, 9, 16, 18].
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C.6 Reproducibility checklist

Judges run at temperature 0 with strict JSON parsing (fail–closed). We release scorer settings
(γ, κ, τabs, τrel), cache judge I/O, and publish bootstrap seeds. Video preprocessing is fixed at fps= 4,
max_frames= 32, jpg_quality= 85. We provide both metrics_standard (dual–judge mean,
no confidence) and metrics (strict, confidence–aware) in the artifact.

D Experiments and Results

D.1 Compute Resources (Reproducibility)

Due to budget and infrastructure constraints, we executed all experiments via hosted
inference APIs—OpenAI gpt-4o-mini, Google gemini-2.5-flash-lite, and Alibaba
qwen-vl-plus—rather than provisioning our own GPU/CPU workers. Consequently, we did
not control or log hardware specifications (worker type, memory, storage) or end-to-end wall-clock
runtimes for each run, nor can we estimate total compute across the full project (including prelimi-
nary/failed runs). While we document prompts, temperature settings (= 0), JSON-only outputs, and
single/dual-judge protocols, this falls short of the checklist requirement to specify compute workers
and resource budgets.

D.2 Scoring variants and interpretation

We report three scoring variants that serve complementary purposes:

• Critical_Score — a deliberately strict, single-pass judge configured to be conservative; it uses the
same 1–5 rubric but numerically compresses toward ≈1–2 under harsh prompting. Use for relative
comparisons.

• Judge_Score — our standardized dual-judge (two independent passes, JSON-only, temperature
= 0) on the same 1–5 rubric; recommended for headline comparisons.

• Standard_Score — the higher-level roll-up exported by our evaluation scripts (same rubric,
identical protocol) and used in the main tables.

Cells with “–” indicate that no items of that difficulty existed for the class.

D.3 Visual summaries
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(a) Category × Difficulty (Critical).

(b) Category × Difficulty (Judge).

(c) Category × Difficulty (Standard).

Figure 8: Category–Difficulty heatmaps across scoring variants. Critical is most conservative
(darker only at the very top), Judge and Standard broaden dynamic range; all show Circuits >
Mechanics/Optics > Quantum Mechanics.
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(a) Class × Difficulty (Critical).

(b) Class × Difficulty (Judge).

(c) Class × Difficulty (Standard).

Figure 9: Per-class difficulty trends. Class-level patterns are stable across scoring variants; “Quan-
tum Tunneling” and “Hydrogen Atom Models” are notably harder.

27



(a) Category × Question Type (Critical).

(b) Category × Question Type (Judge).

(c) Category × Question Type (Standard).

Figure 10: Category–Question Type heatmaps across scoring variants. Critical is most conserva-
tive, Judge and Standard broaden dynamic range; all show Circuits/Electromagnetics > Mechanic-
s/Optics > Quantum Mechanics, with Conceptual, Error Detection, and Numerical questions showing
distinct patterns. 28



(a) Class × Question Type (Critical).

(b) Class × Question Type (Judge).

(c) Class × Question Type (Standard).

Figure 11: Per-class question-type breakdown. Error-detection remains the limiting factor even
when classes are easy numerically (e.g., mirrors/lenses).
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E Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim to present a new benchmark, PhET-Physics-
VideoQA, for evaluating physics understanding in VLMs. The paper’s content, including the
dataset description, experimental setup, and results, aligns with these claims.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated "Limitations" section (Section 5) that discusses
several limitations, including the sim-to-real gap, potential for superficial strategies, dataset size,
and evaluation protocol assumptions.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
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Justification: This paper introduces a new dataset and presents an empirical evaluation of existing
models. It does not propose new theoretical results, theorems, or proofs.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides significant detail on the experimental setup in Section 4 (specifi-
cally Sections 4.1 and 4.2), including the models used, video preprocessing parameters, decoding
settings (temperature=0), and the full scoring protocol.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
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Justification: The paper states its intention to release the necessary assets for reproduction,
including prompts, seeds, cached frames, lightweight graders, and generation scripts, under
appropriate licenses (Section 5).
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/Code

SubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/
CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The paper is evaluating pre-trained models, so no training details are applicable. It
clearly specifies all test details in Section 4.1, including the full dataset used, the models evaluated,
and the decoding settings.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper describes its method for ensuring statistical robustness in Section 4.2, stat-
ing, "We attach 95% confidence intervals via stratified bootstrap over videos (10,000 resamples)".
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We have put the experiments’ details regarding the compute resources in Appendix
D.1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research introduces a benchmark for AI evaluation using publicly available
educational software. A "Licensing & Ethics" section in Appendix A.1 confirms that no personal
data is used and all licenses are respected.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The paper’s focus is on the creation and technical evaluation of a research benchmark;
it does not contain a dedicated section on its broader societal impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative

33

https://neurips.cc/public/EthicsGuidelines


applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The dataset is derived from educational physics simulations and does not pose a high
risk for misuse. Therefore, safeguards in this context are not applicable.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: The paper explicitly credits PhET Interactive Simulations and cites the creators
(Wieman et al.) in Appendix A.1. It also states that the new assets will be released under a
CC-BY-NC license, respecting the source’s usage terms.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some
datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The new dataset is documented extensively in Section 3 and Appendix A, including
details on design goals, compilation, metadata schemas, and topic distribution.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The research did not involve crowdsourcing or human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The research did not involve human subjects, so IRB approval was not required.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper declares in Section 3.2 that question drafts were initially generated by
"GPT-5 Thinking" before being fully vetted by human experts. This constitutes a non-standard
component of the data creation methodology.
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Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or

should not be described.
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Class Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Easy 1.51 1.55 1.46
Moderate 1.63 1.54 1.35
Hard 1.53 0.95 1.40

Capacitance
Easy - - -
Moderate 1.70 1.74 1.69
Hard 1.79 1.61 1.72

Collision
Easy 1.47 1.52 1.45
Moderate 1.42 1.50 1.57
Hard 1.53 1.48 1.28

Concave Lens
Easy 1.19 1.22 1.37
Moderate 1.35 1.34 1.58
Hard 1.36 1.32 1.44

Concave Mirror
Easy 1.65 1.53 1.66
Moderate 1.63 1.74 1.35
Hard 1.39 1.41 1.48

Convex Lens
Easy 1.67 1.68 1.47
Moderate 1.60 1.64 1.50
Hard 1.67 1.65 1.56

Convex Mirror
Easy 1.70 1.75 1.63
Moderate 1.73 1.84 1.59
Hard 1.62 1.62 1.63

Coulomb’s Law
Easy 1.71 1.66 1.66
Moderate 1.69 1.64 1.64
Hard 1.71 1.67 1.62

Flat Mirror
Easy 1.92 1.96 1.68
Moderate 1.68 1.66 1.68
Hard - - -

Generator
Easy 1.67 1.65 1.61
Moderate 1.64 1.70 1.60
Hard 1.68 1.73 1.60

Hydrogen Atom Models
Easy 1.66 1.61 1.62
Moderate 1.63 1.58 1.56
Hard 1.59 1.62 1.54

Masses and Spring
Easy 1.61 1.51 1.40
Moderate 1.58 1.51 1.42
Hard 1.61 1.52 1.40

Simple Pendulum
Easy 1.51 1.55 1.40
Moderate 1.52 1.51 1.42
Hard 1.52 1.51 1.40

Photon Polarization
Easy 1.60 1.57 1.40
Moderate 1.61 1.53 1.40
Hard 1.60 1.57 1.40

Projectile Motion
Easy 1.55 1.51 1.40
Moderate 1.57 1.52 1.40
Hard 1.53 1.53 1.40

Quantum Tunneling
Easy 1.55 1.57 1.40
Moderate 1.55 1.55 1.40
Hard 1.54 1.53 1.40

RC Time Constant
Easy 1.48 1.45 1.40
Moderate 1.54 1.54 1.40
Hard 1.57 1.56 1.40

Table 6: Class × Difficulty under Critical_Score (strict single-judge; 1–5 rubric numerically
concentrated near 1–2 due to conservative prompting). Higher is better. “–” denotes no items.
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Class Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Numerical 1.65 1.52 1.41
Error Detection 1.40 1.53 1.29
Conceptual 1.59 1.44 1.56

Capacitance
Numerical 2.06 1.92 1.83
Error Detection 1.41 1.65 1.60
Conceptual 1.65 1.64 1.66

Collision
Numerical 1.61 1.64 1.32
Error Detection 1.40 1.56 1.40
Conceptual 1.40 1.31 1.61

Concave Lens
Numerical 1.13 1.28 1.66
Error Detection 1.20 1.23 1.33
Conceptual 1.63 1.41 1.42

Concave Mirror
Numerical 1.67 1.72 1.80
Error Detection 1.27 1.32 1.28
Conceptual 1.63 1.55 1.39

Convex Lens
Numerical 1.71 1.68 1.56
Error Detection 1.50 1.52 1.29
Conceptual 1.74 1.77 1.71

Convex Mirror
Numerical 1.77 1.87 1.69
Error Detection 1.49 1.55 1.47
Conceptual 1.76 1.75 1.69

Coulomb’s Law
Numerical 1.76 1.70 1.69
Error Detection 1.61 1.55 1.48
Conceptual 1.74 1.73 1.74

Flat Mirror
Numerical 1.96 2.00 1.71
Error Detection 1.57 1.47 1.57
Conceptual 1.75 1.82 1.75

Generator
Numerical 1.61 1.58 1.50
Error Detection 1.57 1.81 1.57
Conceptual 1.73 1.74 1.62

Hydrogen Atom Models
Numerical 1.48 1.21 1.20
Error Detection 1.50 1.50 1.50
Conceptual 1.50 1.82 1.52

Masses and Springs
Numerical 1.82 1.27 1.20
Error Detection 1.26 1.50 1.50
Conceptual 1.47 1.82 1.52

Simple Pendulum
Numerical 1.82 1.48 1.52
Error Detection 1.50 1.50 1.50
Conceptual 1.50 1.81 1.51

Photon Polarization
Numerical 1.81 1.48 1.20
Error Detection 1.31 1.50 1.50
Conceptual 1.50 1.82 1.50

Projectile Motion
Numerical 1.81 1.37 1.20
Error Detection 1.33 1.50 1.50
Conceptual 1.50 1.75 1.51

Quantum Tunneling
Numerical 1.50 1.50 1.20
Error Detection 1.36 1.32 1.50
Conceptual 1.50 1.75 1.51

RC Time Constant
Numerical 1.76 1.50 1.50
Error Detection 1.50 1.79 1.50
Conceptual 1.76 1.79 1.50

Table 7: Class × Question Type under Critical_Score. Error-detection (trap) rows are consistently
lower than conceptual/numerical, reflecting difficulty with idealizations and counterfactuals.
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Category Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Easy 1.52 1.54 1.43
Moderate 1.56 1.52 1.42
Hard 1.54 1.48 1.39

Quantum Mechanics
Easy 1.63 1.60 1.54
Moderate 1.59 1.56 1.48
Hard 1.57 1.56 1.45

Electromagnetic & Circuits
Easy 1.67 1.64 1.61
Moderate 1.64 1.67 1.59
Hard 1.69 1.67 1.59

Optics
Easy 1.61 1.58 1.57
Moderate 1.60 1.66 1.51
Hard 1.49 1.49 1.52

Table 8: Category × Difficulty under Critical_Score. Electromagnetism & Circuits tends to rank
highest; Quantum Mechanics content is harder across difficulty tiers.

Category Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Conceptual 1.69 1.64 1.54
Error Detection 1.45 1.52 1.42
Numerical 1.47 1.38 1.28

Quantum Mechanics
Conceptual 1.77 1.73 1.56
Error Detection 1.52 1.54 1.53
Numerical 1.46 1.43 1.34

Electromagnetic & Circuits
Conceptual 1.73 1.73 1.66
Error Detection 1.52 1.57 1.53
Numerical 1.73 1.68 1.58

Optics
Conceptual 1.68 1.62 1.54
Error Detection 1.36 1.39 1.34
Numerical 1.62 1.68 1.70

Table 9: Category × Question Type under Critical_Score. Error-detection remains the hardest type
in all categories; Optics shows comparatively strong numerical scores.
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Class Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Easy 2.1 2.1 2.1
Moderate 2.2 2.1 2
Hard 2.1 1.8 2

Capacitance
Easy - - -
Moderate 2.3 2.2 2.2
Hard 2.3 2.2 2.2

Collision
Easy 2.1 2.1 2.1
Moderate 2.1 2.1 2.1
Hard 2.1 2.1 2.0

Concave Lens
Easy 1.9 1.9 2.0
Moderate 2.0 2.0 2.1
Hard 2.0 2.0 2.1

Concave Mirror
Easy 2.2 2.1 2.1
Moderate 2.1 2.2 2.0
Hard 2.0 2.1 2.1

Convex Lens
Easy 2.2 2.2 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.2 2.0

Convex Mirror
Easy 2.2 2.2 2.1
Moderate 2.2 2.3 2.0
Hard 2.1 2.1 2.1

Coulomb’s Law
Easy 2.1 2.1 2.1
Moderate 2.1 2.1 2.1
Hard 2.2 2.1 2.1

Flat Mirror
Easy 2.4 2.4 2.2
Moderate 2.2 2.1 2.2
Hard - - -

Generator
Easy 2.2 2.2 2.1
Moderate 2.2 2.2 2.1
Hard 2.2 2.2 2.1

Hydrogen Atom Models
Easy 2.2 2.1 2.1
Moderate 2.1 2 2.1
Hard 2.1 2.1 2.1

Masses and Springs
Easy 2.2 2.0 2.0
Moderate 2.1 2.0 2.0
Hard 2.1 2.0 2.0

Simple Pendulum
Easy 2.0 2.0 2.0
Moderate 2.0 2.0 2.0
Hard 2.0 2.0 2.0

Photon Polarization
Easy 2.2 2.1 2.0
Moderate 2.2 2.1 2.0
Hard 2.2 2.1 2.0

Projectile Motion
Easy 2.0 2.0 2.0
Moderate 2.1 2.0 2.0
Hard 2.1 2.1 2.0

Quantum Tunneling
Easy 2.2 2.1 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.1 2.0

RC Time Constant
Easy 2.0 2.0 2.0
Moderate 2.1 2.1 2.0
Hard 2.1 2.1 2.0

Table 10: Class × Difficulty under Judge_Score (dual-judge JSON, temperature = 0; 1–5 rubric).
Calibrated to be more stable and comparable across classes than Critical.
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Class Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Conceptual 2.1 2.0 2.1
Error_Detection 2.1 2.1 2.0
Numerical 2.2 2.1 2.0

Capacitance
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.2 2.2
Numerical 2.5 2.4 2.3

Collision
Conceptual 2.0 2.0 2.2
Error_Detection 2.1 2.1 2.1
Numerical 2.2 2.2 2.0

Concave Lens
Conceptual 2.2 2.0 2.1
Error_Detection 1.9 1.9 2.0
Numerical 1.9 2.0 2.1

Concave Mirror
Conceptual 2.2 2.1 2.0
Error_Detection 1.9 2.0 2.0
Numerical 2.2 2.3 2.2

Convex Lens
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.1 1.9
Numerical 2.2 2.2 2.0

Convex Mirror
Conceptual 2.2 2.2 2.1
Error_Detection 2.1 2.1 2.0
Numerical 2.2 2.3 2.1

Coulomb’s Law
Conceptual 2.2 2.2 2.2
Error_Detection 2.1 2.0 2.2
Numerical 2.2 2.1 2.2

Flat Mirror
Conceptual 2.2 2.3 2.2
Error_Detection 2.1 2.0 2.1
Numerical 2.4 2.2 2.2

Generator
Conceptual 2.3 2.3 2.2
Error_Detection 2.1 2.1 2.1
Numerical 2.1 2.2 2.1

Hydrogen Atom Models
Conceptual 2.2 2.2 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.0 1.9 2.0

Masses and Springs
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.0 1.7 1.7

Simple Pendulum
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 1.7 1.7

Photon Polarization
Conceptual 2.3 2.1 2.1
Error_Detection 2.1 2.1 2.1
Numerical 2.1 2.1 1.7

Projectile Motion
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 1.7 1.7

Quantum Tunneling
Conceptual 2.3 2.2 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.8 2.0 1.7

RC Time Constant
Conceptual 2.3 2.3 2.1
Error_Detection 2.1 2.1 2.1
Numerical 1.9 1.9 1.7

Table 11: Class × Question Type under Judge_Score. Maintains the error-detection gap while
reducing variance, enabling more reliable cross-model comparisons.
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Category Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Easy 2.1 2.1 2
Moderate 2.1 2.1 2
Hard 2.1 2 2

Quantum Mechanics
Easy 2.2 2.1 2.1
Moderate 2.1 2.1 2
Hard 2.1 2.1 2

Electromagnetic & Circuits
Easy 2.1 2.1 2.1
Moderate 2.2 2.2 2.1
Hard 2.2 2.2 2.1

Optics
Easy 2.2 2.1 2.1
Moderate 2.1 2.2 2.1
Hard 2.1 2.1 2.1

Table 12: Category × Difficulty under Judge_Score. Trends mirror Critical_Score but with less
compression; Circuits leads, Quantum Mechanics lags.

Category Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Conceptual 2.20 2.17 2.14
Numerical 1.98 1.90 1.84
Error Detection 2.10 2.14 2.09

Quantum Mechanics
Conceptual 2.24 2.20 2.14
Numerical 1.96 1.95 1.85
Error Detection 2.13 2.14 2.13

Electromagnetic & Circuits
Conceptual 2.22 2.21 2.17
Numerical 2.21 2.17 2.09
Error Detection 2.10 2.11 2.09

Optics
Conceptual 2.18 2.16 2.08
Numerical 2.17 2.21 2.15
Error Detection 2.01 2.02 1.99

Table 13: Category × Question Type under Judge_Score. Numerical scoring is strongest in Optics
and Circuits; error-detection is uniformly lower.
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Class Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Easy 4.1 4.1 4

Moderate 4.2 3.9 4.4
Hard 3.9 3.7 2.5

Capacitance
Easy - - -

Moderate 4.7 4.4 4.5
Hard 4.8 4.4 4.7

Collision
Easy 3.2 4.3 3.1

Moderate 3.5 4.2 3.2
Hard 3.2 4.1 3.6

Concave Lens
Easy 3.8 4.1 3.1

Moderate 3.7 3.4 3.1
Hard 3.5 3.4 3

Concave Mirror
Easy 4.3 4.3 3.7

Moderate 3.6 3.9 3.6
Hard 4 4.3 3.5

Convex Lens
Easy 3.9 4.2 3.6

Moderate 3.6 3.4 3.1
Hard 3.3 3.7 2.5

Convex Mirror
Easy 3.5 4.4 3.7

Moderate 4.1 4 3.1
Hard 3.7 3.2 3.3

Coulomb’s Law
Easy 4.1 3.6 3.4

Moderate 4.4 3.6 3.5
Hard 4.3 3.6 3

Flat Mirror
Easy 3.7 4.3 3.3

Moderate 4.1 4.2 4
Hard - - -

Generator
Easy 4.2 4.3 3.6

Moderate 4.3 4.3 3.3
Hard 4.6 4.3 3.7

Hydrogen Atom Models
Easy 3.5 3.6 2.6

Moderate 3 3.2 2
Hard 3.2 3.4 2.2

Masses and Springs
Easy 4.1 4.3 1

Moderate 4.2 4.1 1
Hard 4 3.8 1

Simple Pendulum
Easy 3.8 3.8 1.3

Moderate 3.6 3.6 1.3
Hard 3.8 3.9 1.3

Photon Polarization
Easy 3.9 3 1.2

Moderate 3.7 3.3 1.3
Hard 4.2 3.4 1.1

Projectile Motion
Easy 3.8 3.8 1.2

Moderate 3.9 4.1 1.2
Hard 3.8 3.9 1.2

Quantum Tunneling
Easy 3 3.7 1

Moderate 2.9 3.3 1.1
Hard 3 3.2 1

RC Time Constant
Easy 2.7 3 1.3

Moderate 3.5 3.7 1.3
Hard 3.3 3.6 1.3

Table 14: Class × Difficulty under Standard_Score (same protocol as Judge_Score; exported view
used in the main text). Absolute values are on the 1–5 scale.
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Class Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Buoyancy
Conceptual 4.6 3.9 4.5
Error Detection 3.5 3.7 3.6
Numerical 4.3 4.4 3.8

Capacitance
Conceptual 4.9 4.7 4.6
Error Detection 4.4 4.4 4.0
Numerical 4.9 4.2 4.8

Collision
Conceptual 3.7 4.9 3.0
Error Detection 3.5 4.0 3.9
Numerical 2.8 3.8 3.0

Concave Lens
Conceptual 4.1 3.4 3.8
Error Detection 2.7 3.2 1.8
Numerical 4.2 4.1 3.6

Concave Mirror
Conceptual 4.6 4.6 3.9
Error Detection 2.5 3.6 2.6
Numerical 4.8 4.5 4.3

Convex Lens
Conceptual 3.7 4.2 3.7
Error Detection 2.6 3.2 1.8
Numerical 4.4 4.1 3.2

Convex Mirror
Conceptual 3.8 3.9 3.1
Error Detection 2.6 2.9 2.8
Numerical 5.0 4.3 4.1

Coulomb’s Law
Conceptual 4.8 4.4 3.3
Error Detection 4.3 2.8 2.9
Numerical 3.6 3.6 3.6

Flat Mirror
Conceptual 4.7 5.0 4.3
Error Detection 3.3 3.3 3.0
Numerical 3.8 4.3 4.0

Generator
Conceptual 5.0 4.8 4.2
Error Detection 4.0 3.7 3.5
Numerical 4.3 4.5 2.8

Hydrogen Atom Models
Conceptual 3.5 3.9 2.3
Error Detection 2.7 2.7 2.0
Numerical 3.3 3.4 2.3

Masses and Springs
Conceptual 4.9 4.8 1.0
Error Detection 2.8 3.0 1.0
Numerical 4.5 4.3 1.0

Simple Pendulum
Conceptual 4.6 4.7 1.0
Error Detection 2.8 2.3 2.0
Numerical 3.8 4.2 1.0

Photon Polarization
Conceptual 4.8 3.9 1.0
Error Detection 2.9 2.3 1.6
Numerical 4.4 3.6 1.0

Projectile Motion
Conceptual 4.8 4.7 1.0
Error Detection 2.4 2.8 1.6
Numerical 4.2 4.2 1.0

Quantum Tunneling
Conceptual 3.6 3.7 1.0
Error Detection 2.1 2.5 1.0
Numerical 3.1 3.5 1.0

RC Time Constant
Conceptual 4.2 4.4 1.0
Error Detection 2.2 2.5 1.9
Numerical 3.7 3.9 1.0

Table 15: Class × Question Type under Standard_Score. Clear gap between error-detection and
the other two types across most classes.
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Category Difficulty Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Easy 3.9 4.0 2.9
Moderate 3.9 4.0 2.7
Hard 3.8 3.9 1.5

Quantum Mechanics
Easy 3.5 3.4 2.1
Moderate 2.9 3.2 1.5
Hard 3.2 3.3 1.5

Electromagnetic & Circuits
Easy 4.0 3.7 3.3
Moderate 4.3 4.1 3.3
Hard 4.3 3.9 3.2

Optics
Easy 4.0 4.3 3.6
Moderate 3.8 3.8 3.4
Hard 3.7 3.8 3.2

Table 16: Category × Difficulty under Standard_Score. Consistent ordering across difficulties;
Quantum Mechanics remains the most challenging.

Category Question Type Model

gpt-4o-mini gemini-2.5-flash-lite qwen-vl-plus

Mechanics & Fluids
Conceptual 4.6 4.5 2.3
Error Detection 3.0 3.2 2.5
Numerical 4.0 4.2 2.1

Quantum Mechanics
Conceptual 3.7 3.8 1.6
Error Detection 2.4 2.5 1.5
Numerical 3.3 3.5 1.6

Electromagnetic & Circuits
Conceptual 4.7 4.6 3.3
Error Detection 3.8 3.4 3.1
Numerical 4.2 4.0 3.2

Optics
Conceptual 4.2 4.2 3.7
Error Detection 2.6 3.3 2.3
Numerical 4.6 4.3 3.9

Table 17: Category × Question Type under Standard_Score. Optics and Electromagnetism lead
on numerical; error-detection is the hardest across all categories.
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