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ABSTRACT

Time series data are inherently functions of time, yet current transformers often
learn time series by modeling them as mere concatenations of time periods, over-
looking their functional properties. In this work, we propose a novel objective
for transformers that learn time series by re-interpreting them as temporal func-
tions. We build an alternative sequence of time series by constructing degradation
operators of different intensity in the functional space, creating augmented vari-
ants of the original sample that are abstracted or simplified to different degrees.
Based on the new set of generated sequence, we train an autoregressive trans-
former that progressively recovers the original sample from the most simplified
variant. Analogous to the next word prediction task in languages that learns narra-
tives by connecting different words, our autoregressive transformer aims to learn
the Narratives of Time Series (NoTS) by connecting different functions in time.
Theoretically, we justify the construction of the alternative sequence through its
advantages in approximating functions. When learning time series data with trans-
formers, constructing sequences of temporal functions allows for a broader class
of approximable functions (e.g., differentiation) compared to sequences of time
periods, leading to a 26% performance improvement in synthetic feature regres-
sion experiments. Experimentally, we validate NoTS in 3 different tasks across
22 real-world datasets, where we show that NoTS significantly outperforms other
pre-training methods by up to 6%. Additionally, combining NoTS on top of ex-
isting transformer architectures can consistently boost the performance. Our pre-
liminary experimental results demonstrate the potential of NoTS as a viable, the-
oretically justified alternative for building foundation models for time series.

Figure 1: Overview. (A) Given a sample of time series, one can build different sequences from the original
sample by treating it as either concatenation of time periods, or composition of temporal functions. (B) In
the former case, it is common to emulate the next word prediction task in language to predict the next time
period with an autoregressive (AR) transformer. (C) Alternatively, by applying degradation operators of varying
intensity, we can craft augmented variants of samples that are progressively simplified, allowing a next-function
prediction task. The AR transformer is trained on the alternative sequence to learn the relationship across the
sequence of functions to gradually recover the variance within original samples.
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1 INTRODUCTION

Recent advances in large language models (LLMs) demonstrate the advantage of large-scale pre-
training, providing a generalizable way for modeling complex systems (Radford et al., 2019). At
the core of state-of-the-art LLMs is the next-token prediction task (Achiam et al., 2023), where each
data sample (sentence) is segmented into tokens (words), and the next word is predicted based on
the previous words using the transformer architecture (Vaswani, 2017). By completing samples of
sentences based on partial information in an autoregressive (AR) way, LLMs build generalizable
data representations that can be rapidly adapted to new datasets and tasks (Brown, 2020).

Many transformer-based modeling approaches in time series analysis mimic the approaches in lan-
guage by building sequences from samples through segmenting time series into periods of time
points (Figure 1(A) (Nie et al., 2022; Liu et al., 2022; Zhang & Yan, 2023). An AR transformer
on top of it would predict the next time period based on the existing ones (Figure 1(B) (Garza &
Mergenthaler-Canseco, 2023). However, this approach has two issues: (1) slicing time series into
periods breaks nonlocal functional properties like trend or periodicity, and often requires special
remedies to compensate for the issues (Zhou et al., 2022); (2) the predicted time periods lack gen-
eralizability, as the prediction is sensitive to the length of chunks, the position of where the slicing
happens, and the characteristics of datasets. To compensate for the issues of patching and build
generalizability into transformer, recent works rely on the usage of operators like Fourier neural op-
erators or Koopman operators, but they either require specially engineered coding blocks (Liu et al.,
2023a), or a specific set of predetermined bases that may vary across datasets (Liu et al., 2024b).

Inspired by Tian et al. (2024) that replaces next-patch prediction with a next-resolution prediction
task in computer vision, in this work, we re-think alternative approaches to build a coarse-to-fine
sequence of time series by considering them as functions of time. Instead of slicing time series
into periods, we consider time series samples S as a sampled version of an underlying function
g(t) that can be structurally simplified in its functional form (Figure 1(A)). Instead of mapping the
sample onto fixed sets of basis like Taylor or Fourier series, we isolate functional components in a
data-dependent way by building degradation operators dk(·) of different intensity levels k and pro-
gressively applying them on the signals. By doing so, we generate an alternative sequence of sam-
ples consisting of augmented variants of the signal with increasing amount of information, offering
an interconnected yet simplified representation of the original signal. We train an autoregressive
transformer to learn the connection of the different set of functionals, building a knowledge map
of different functional components 1. Analogous to the next word prediction task that learns narra-
tive in languages by completing sentences, we denote our method as the Narratives of Time Series
(NoTS) because it learns the functional narrative of temporal signals (Figure 1(C)).

We first justify the construction of the alternative sequence using an intuitive function approximation
analysis in Section 4. When learning time series with transformers, under the universal approxima-
tion framework (Yun et al., 2019), we show that learning time series as sequences of periods of time
points would cause approximation issues, as performing sampling operation on commonly encoun-
tered time series signal processing operators (e.g., differentiation) creates discontinuous sequence-
to-sequence functions. Instead, such limitations can be bypassed by forming and learning from the
alternative function sequences, as long as either (1) the constructed sequence is expressive, or (2)
an expressive tokenizer (Ismailov, 2023) is used before learning with transformers. The analytical
result is validated experimentally through a feature regression task on synthetic datasets. We show
that NoTS significantly outperforms other pre-training methods when approximating features with
real-world characteristics, showing its superior expressiveness both theoretically and experimentally.

We further validate NoTS in real-world time series datasets in a multitask setting, where we consider
performance across 22 real-world datasets consisting of classification, imputation, and anomaly de-
tection tasks. Across the board, NoTS improves the average performance of other pre-training meth-
ods by up to 6%, significantly outperforming the state-of-the-arts including next-period prediction
(Garza & Mergenthaler-Canseco, 2023), masked autoencoder (MAE) (Dong et al., 2024), and MAE
with Fourier neural operators (Liu et al., 2023a). Moreover, we show that NoTS can improve the
performance of existing transformer architectures (Nie et al., 2022; Liu et al., 2023b), giving a con-
sistent performance boost when performing dataset-specific pre-training. Interestingly, we present

1For example, in brain decoding tasks, signals often contain cross-frequency coupling where low-frequency
components drive the high-frequency components (Klimesch, 2018; Donoghue et al., 2020).
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a synthetically pre-trained lightweight model NoTS-lw, which can be efficiently adapted to real-
world tasks and achieve 82% average performance with only <1% parameters trained, showing the
potential of NoTS on learning dynamics that can be transferred across datasets and tasks.

The main contributions of this paper are summarized as follows:
• An alternative approach to form sequences from time series data by considering them as functions

of time and isolating functional components with constructed degradation operators.
• Analytical results studying transformers under the universal approximation framework, showing

that learning time series from the functional perspective allows the approximation of a broader
class of functions when compared to learning across periods of time.

• A novel transformer-based pre-training framework NoTS that progressively reconstruct time series
from their degraded variants, and thus learn the interrelationships across functions.

• Experimental results on 2 synthetic and 22 real-world datasets, including 4 different classes of
tasks, showing that NoTS significantly outperforms other pre-training methods from next-period
predictors to Fourier-informed masked autoencoders, giving a stable performance boost on top of
existing architectures. Preliminarily demonstrating NoTS as a viable pre-training alternative.

• A synthetically pre-trained lightweight model NoTS-lw that can be efficiently adapted on new
datasets and tasks with <1% parameters trained while maintaining 82% average performance.

2 PRELIMINARIES AND RELATED WORKS

2.1 PRELIMINARIES

Autoregressive (AR) transformers AR transformers have revolutionized natural language pro-
cessing by building next-token prediction-based language models (Ray, 2023). The trans-
former architectures learn the interactions across different elements (tokens) in a sequence X =
[x1,x2, ...,xN ], and the AR objective is defined as follows: The probability of obtaining the next
token xi can be deduced from the observed subsequence [x1,x2, ...,xi→1]. Thus, the probability of
obtaining the whole sample is the product of a sequence of unidirectional conditional probabilities:

p (x1,x2, . . . ,xN ) =
N∏

i=1

p (xi | x1,x2, . . . ,xi→1) (1)

where the AR relationship is learned by a transformer model pω parameterized by ω. In the language
domain, xi → V is typically a discrete token of a word from a given vocabulary, which forms next-
word predictors with impressive in-context generalization capabilities (Brown, 2020).

Notations for time series Time series samples are sequences of data points from multiple chan-
nels. A multivariate time series sample of C channels and a length of T is represented as
S = [v1,v2, ...,vT ] → RC↑T . Typically, each dataset has its unique channel-wise relationships.

To apply transformers on time series, one needs to form sequences from the given signal S. A
naive approach is to directly treat vi as tokens and then apply transformers (Zerveas et al., 2021).
The drawback is that the token representation space is dependent only on vi, which varies across
datasets, making it less generalizable. Recently, many time series framework produce tokens
through cutting time series into different periods of time with a length of L, which creates tokens
xi = Tokenizer([viL, ...,v(i+1)L]) that contain more dynamics (Ren et al., 2022). To further elim-
inate the negative impact of channel-wise relationships on generalizability, Nie et al. (2022); Liu
et al. (2022) considers the channel-independent design, which processes each channel (row) of S
independently, producing tokens based on individual channels for transformers. While the approach
demonstrated more generalizability, it is computationally expensive in high-density settings, which
was later discussed by other works (Zhang & Yan, 2023).

2.2 PRETRAINING METHODS FOR TIME SERIES

Pre-training on large-scale datasets has proven effective in helping models learn generalizable pat-
terns, which is particularly advantageous in the time series domain where downstream datasets are
often small-scale (Liu et al., 2021; Zhang et al., 2022; Woo et al., 2022). There are two prominent
approaches for reconstruction-based pre-training in transformers: masked modeling and next-period
prediction. Masked modeling trains transformers by randomly masking elements, and predicting the
masked values with the remaining sequence. Representative works include SimMTM (Dong et al.,
2024), which implements masked modeling through aggregating neighboring points, and bioFAME
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(Liu et al., 2023a), which employs Fourier-based kernels to achieve the same objective. However,
these methods suffer from the loss of nonlocal information. Several approaches are proposed to miti-
gate this issue, such as leveraging multi-resolution patches (Das et al., 2023; Woo et al., 2024). More
recently, the next-period prediction approach has gained attention for pre-training, particularly in
the development of foundation models. For instance, Time-GPT1 (Garza & Mergenthaler-Canseco,
2023) implements next-period prediction in a straightforward manner, while Chronos (Ansari et al.,
2024) applies scaling and quantization techniques to tokenize time series data and model the cat-
egorical distributions. Despite their success, these models also suffer from the challenge of losing
nonlocal information, which is partially addressed through the use of lagged features and temporal
covariates in Lag-Llama (Rasul et al., 2023). Based upon previous works, our work aims to funda-
mentally address the issue through building and learning sequences from the function perspective.

An alternative line of research seeks to adapt language models directly for time series applications.
Some approaches transfer pre-trained weights from LLMs and retrain the tokenization layers to han-
dle time-series-specific tasks (Zhou et al., 2023; Cao et al., 2023; Liu et al., 2024c). Another line of
work focuses on reprogramming time series data into text, and applying LLMs to process the textual
inputs with time series prompts (Jin et al., 2023; Xue & Salim, 2023). While these works primarily
aim to bridge the modality gap between LLMs and time series applications, NoTS is specifically
designed for time series to capture the subtle variations and dynamics inherent in temporal signals.

2.3 LEARNING TIME SERIES FROM THE FUNCTIONAL PERSPECTIVE

A line of traditional time series modeling methods focus on learning samples from the functional
perspective (Chapados & Bengio, 2007), using statistical approaches (Holt, 2004), or their advanced
variations like the Theta method (Assimakopoulos & Nikolopoulos, 2000) or ARIMA models (Hyn-
dman & Khandakar, 2008). These methods have been extended to deep learning through basis ex-
pansion approaches, with N-BEATS (Oreshkin et al., 2019) being a prominent example. N-BEATS
uses fully connected layers to perform hierarchical time series decomposition by generating coeffi-
cients for predefined or learnable neural bases. N-HiTS (Challu et al., 2023) builds on N-BEATS by
incorporating subsampling layers, enabling multifrequency data sampling and multi-scale interpola-
tion for improved predictions. Our work differs from prior approaches by focusing on the advantages
of building sequences with functional awareness through the transformer architecture.

3 METHODS

Alternative to modeling time series as sequences of fragmented time periods, our framework is built
on the idea to model time series as sequences of constructed temporal functions with transformers.
We begin by introducing the high-level objective in Section 3.1, and then introduce the pre-training
method NoTS in Section 3.2 as well as how to adapt it in real-world tasks in Section 3.2.

3.1 THE NEXT-FUNCTION PREDICTION TASK

We assume that each signal S = [v1,v2, ...,vT ] → RC↑T is intrinsically controlled by a temporal
function g(t) : R ↑ RC , where vi = g(i) is the product of a sampling process in time. To train
a transformer with awareness of the functional perspective, we build sequences of functions, where
each element is a simplified version of the original sample. Practically, we ask two questions:

• How to build meaningful functional elements, as they tend to change across different datasets?
• How to form a meaningful sequence for the transformer, so that we can enforce the transformer to

learn generalizable representation from the constructed sequences of functional components?

In this work, we propose to construct degradation functions dk(·) of intensity k, that generate aug-
mentations of the original function g(t) with varying levels of partial information. Applying degra-
dation functions dk(·) on signals generates data-dependent functions as tokens for transformer, re-
moving the need for a fixed set of bases. By controlling the intensity of degradation, we create
gk(t) = (dk ↓ g)(t), where gk+1(t) contains strictly more or an equal amount of information than
gk(t) about the original sample g(t), establishing a progressive relationship for the transformer to
learn. Based on the constructed sequence, the new modeling approach becomes the following:

p (g1(t), g2(t), . . . , gK(t)) =
K∏

k=1

p (gk(t) | g1(t), g2(t), . . . , gk→1(t)) , (2)

where K ↑ ↔, vi = g↓(i) forms the actual time series S under the sampling operation.
4
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Figure 2: Narrative of Time Series (NoTS). (A) To perform autoregressive pre-training of NoTS, we first
generate a sequence of time series from the raw signal that progressively simplifies the sample. The generated
signals are passed into an encoder, added with position and resolution embeddings before fed into the AR
transformer, which is trained with a decoder to reconstruct the signal of the next resolution. The raw signal
was passed into a latent consistency loss directly. (B) To apply a pre-trained model on real-world dataset, we
construct channel adaptor and task adaptor that handles unseen channel graphs and new tasks, respectively. The
channel adaptor consists of a multi layer perceptron that pre-process channel maps and new additive channel
embeddings. The task adaptor is newly initialized tokens that are prompted into the transformer following
Jia et al. (2022). The produced task tokens and reconstructed samples are later used in multitask applications
through this context-aware adaptation pipeline.

3.2 NOTS: A NOVEL PRE-TRAINING OBJECTIVE FOR TRANSFORMERS

Based on the framework, the pre-training objective NoTS consists of the following components.

Local and global degradation functions Practically, we construct degraded signals with convo-
lution operators: Sk = dk(S) = (S ↗wk)[n], where ↗ represents discrete convolution between rows
of signal S and a kernel wk. We use two different kernels as defined below:

• Local smoothing: A simple averaging kernel of different lengths pk is used for local smoothing.
Specifically, wk[n] = 1/pk for ↘0.5pk ≃ n ≃ 0.5pk and wk[n] = 0 elsewhere. The set of even
numbers {pk} is selected as hyperparameters with descending order as k increases.

• Global smoothing: A low-pass filter with different frequency cutoff values is used for global
smoothing. Specifically, we build wk[n] = sinc(pkn), where {pk} is a set of values that control
the frequency cutoff of 0.5pk as hyperparameters with descending order as k increases.

By constructing both local and global smoothing degradation functions, the proposed method can si-
multaneously model autoregressive relationships across different smoothness and frequencies, cov-
ering a prevalent range of tasks in both time and frequency.

Autoregressive modeling of groups of tokens in the latent space We build tokenizers to convert
the constructed signals Sk into recognizable embeddings for transformers. Ideally, we want to use
one token for each function, yet this is computationally infeasible as the length of signals increases.
Instead, we rely on existing encoder/decoder architectures as tokenizers to convert signals into group
of tokens in the latent space to perform AR modeling. Specifically, the encoder produces groups of
tokens from each signal Rk = E(Sk) and the decoder reconstructs signals from groups of tokens
S↔

k = D(R↔

k), where each Rk and R↔

k consists of multiple tokens for the transformer. The AR
modeling is enforced by applying group-wise masking to the transformer attention map, where:

[R↔

2, ...,R
↔

K ] = Transformer([R1, ...,RK→1]), with mask[!k] =

{
0,

⋃k
m=1 !m

↘↔, elsewhere
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and !k represents the set of sequence positions corresponding to Rk. While E and D can be any
encoder/decoder architectures, we implement a lightweight model NoTS-lw with a simple channel-
independent 1D-ResNet encoder/decoder block to maintain fidelity in the token space. We also
report results with different encoder/decoder architectures in Table 2.

Positional embeddings Since transformers are inherently invariant to the order of sequences, it
is critical to embed sufficient information about the raw position into the transformer to ensure Rk

includes sufficient information about samples. Thus, we add the following embeddings:
• Group embeddings. To help transformers learn sufficient information about each function embed-

ded by Rk, we apply rotary positional embedding (Su et al., 2024) on each group of tokens to
encode the relative sequence position within each group or cohort of tokens.

• Degradation embeddings. We add learnable absolute positional embeddings that encode the rela-
tive degree of degradation of each augmented variant of signals. In other words, the degradation
embeddings encode information k of the degradation function dk(·).

• Channel embeddings (optional). When applying channel-independent architectures as the en-
coder, we add an additional set of learnable absolute positional embeddings along with the group
embeddings to help encode channel-wise relationship within each group of tokens.

Training objective We perform a self-supervised autoregressive reconstruction task to learn
meaningful representations of time series using the proposed framework. To achieve this, we mini-
mize the differences between Sk and the reconstructed S↔

k+1 for every k < K. If only the AR loss
is considered, the latent of the raw data RK would remain unused by encoder/decoder throughout
the training process. To avoid the resulting distributional shift, we add a latent consistency term, that
regularizes the consistency between the latent of the raw data to be able to be reconstructed back.
Thus, for each input signal matrix S → RC↑T , the training optimizes the following loss:

L =
K→1∑

k=1

Lrecon(S
↔

k+1,Sk)︸ ︷︷ ︸
AR reconstruction

+Lrecon(D(E(SK)),SK)︸ ︷︷ ︸
latent consistency term

(3)

where Lrecon is the reconstruction loss (mean absolute error is used throughout the paper).

3.3 MODEL DEPLOYMENT PIPELINE AND CONTEXT-AWARE ADAPTATION

As a pre-training strategy, NoTS considers a pre-training dataset DPT and a downstream dataset DFT
with sample dimensions CPT ⇐ TPT and CFT ⇐ TFT, respectively, allowing for differing channel and
temporal dimensions between these two phases (Liu et al., 2023a; Dong et al., 2024). To deploy
the model, we first pre-train it by performing the autoregressive reconstruction task, guided by the
training objective as detailed in Equation 3. The pre-trained model is later fine-tuned on the training
split of the downstream dataset DFT, and is finally evaluated on the testing split of DFT. In this work,
we are primarily interested in adapting a pre-trained NoTS model in a context-aware way with the
help of the following two adaptors on new channel maps and tasks:

Channel adaptors To learn new channel-wise relationship at test time, we build channel adaptors
as follows: (1) To encourage information exchange across channels, we add a data embedding layer
before applying the encoder E . The data embedding layer is a simple linear layer that encodes on
the channel dimension RC

↑ RC→
to mix channel-wise information at an early stage. (2) We also

re-initialize and re-train additive channel tokens for each dataset when applicable.

Task adaptors To apply the pre-trained models on a diverse set of tasks, we build task adaptors as
follows: (1) We initialize and append prompt tokens to the transformer architecture along with data
tokens following the deep visual prompt tuning plan as detailed in Jia et al. (2022); (2) We also add
task-specific linear layers at the end of the transformer for inference purpose.

Given the two adaptors, we can perform context-aware adaptation of NoTS on new channel maps
and tasks, allowing the transfer of general-purpose dynamics that are learned at the pre-training
stage. Interestingly, the adaptation pipeline is also parameter-efficient: The adaptors add <1% new
parameters in comparison to the original model consists of encoder, transformer, and decoder.

Beyond context-aware adaptation, in this work, we comprehensively evaluate NoTS in both cross-
domain and within-domain settings (Appendix C.1.2), compare the models’ performance using full-
scale model fine-tuning and prompt tuning schemes (Appendix C.1.3), and apply NoTS on various
downstream tasks (Appendix C.3). We refer the readers to Appendix for technical details.
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4 AN INTUITIVE EXAMPLE: APPROXIMATING FUNCTIONS
To justify the construction of functional sequences, we provide an intuitive example to investigate
the expressive power of transformers under the context of time series domain. Following Yun et al.
(2019); Luo et al. (2022), we consider the standard transformer architectures:

T
h,m,r :=

{
f : Rd↑n

↑ Rd↑n
| f consists of Transformer blocks th,m,r

}
.

where th,m,r consists of one self-attention layer of h heads of size m and one feed-forward layer with
r hidden dimensions (see definitions in Appendix Eq. 6). To remove the restriction of permutation
equivariance, we consider adding absolute positional embedding2 to the transformer that creates
T

h,m,r
P := {fP(X) = f(X+E)} where f → T

h,m,r and X,E → Rd↑n. Detailed in Appendix A,
our analysis is an extension of previous results in Yun et al. (2019); Ismailov (2023).

4.1 TIME SERIES IN THE FUNCTION SPACE

This work assumes time series data as functions in time g(t), which forms function space Fg(R).
An operator on the function space maps the original function g(t) to a target function h(t), creating
a mapping across function spaces A : Fg(R) ↑ Fh(R). Assume that the signal is produced with a
sampling plan {ti}Ti=1, the sampling operation on top of the functions discretizes the mapping into
a set of output {A[g(ti)]}Ti=1, which forms a sequence-to-sequence function f(A) : Rd↑T

↑ Rd↑T .
When breaking time series into concatenations of time periods, S is directly treated as inputs to the
transformer X, where one aims to find a transformer network fP → T

h,m,r
P to approximate f(A).

Example: The differential operator It is intuitive that one can easily construct a linear but dis-
continuous mapping A, which is not necessarily approximable by transformers. See below:

Theorem 1. Given T > 2, and D ⇒ Rd↑T . Consider the differential operator A that forms
a sequence-to-sequence function f(A) under sampling plans {ti}Ti=1 with its initial starting point
t1 → R and fixed intervals. There exists a X → Rd↑T , such that:

sup
X↗D

∥∥fP (X)↘ f(A)(X)
∥∥2
2
⇑ T (4)

holds for any transformer network fP → T
h,m,r
P .

Proof. We construct a negative example with d = 1. Consider a set of input functions gM (t) =
sin(Mt)/M , the target functions under the differential operator are hM (t) = cos(Mt). As M
increases, the input function converges uniformly to a constant zero function, which gives a sampled
input matrix X ↑ 0 → D. At limit, the studied transformer network fP (X) converges to a fixed
matrix B (see Appendix A.2). Thus, given a sampling plan of interval ti+1 ↘ ti = ε/M and two
initial starting points t(1)1 = 0 and t(2)1 = ε, we form X1 and X2 that give:

lim
M↘↓

∥∥fP (X1)↘ f(A,M)(X1)
∥∥+

∥∥fP (X2)↘ f(A,M)(X2)
∥∥ ⇑

T∑

i=1

2 = 2T (5)

where f(A,M) denotes the function formed from {A[gM (ti)]}Ti=1, which leads to Eq. 4.

4.2 TWO SUFFICIENT CONDITIONS TO APPROXIMATE THE DIFFERENTIAL OPERATOR

When considering signals as functions in time, sampling from simple signal processing operators
may create discontinuous sequence-to-sequence functions, causing approximation issues of trans-
former if one directly considers S as inputs X to the transformer. Instead, by constructing signals
sequences of length T using Sk = dk(S), and performing dimensionality reduction with an encoder
E , we create two sufficient conditions to address the approximation issue as follows:
Proposition 1. Given a signal S → Rd↑T and an encoder E : Rd↑T

↑ Rd, there exists two sufficient
conditions to approximate {A[g(ti)]}Ti=1 with the construction of X = [E(S1), E(S2), ..., E(ST )]:
• The constructed Si is expressive such that there exists a continuous mapping between a fixed

element of Si and the i-th element of the target output A[g(ti)];
• Given any distinguishable Si, there exists an expressive tokenizer E that preprocess Si to create a

continuous mapping between E(Si) to the target.
Proof and examples. See Appendix A.3 for proof and an example solution for differential operator.

2Refer to Luo et al. (2022) for a case study of relative positional embedding under the UA framework.
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Table 1: Feature approximation results on synthetic datasets. We compare the function approximation ability
of different pre-training methods given the same architecture and pre-training pipeline. All presented numbers
are averaged across three runs and scaled by 100 for better readability. Lower numbers are better.

Fractional Brownian motion (fBm) Autocorrelated sinusoids

Regression (⇓) H-index (1D) SSC (32D) WAMP (32D) SSC (32D) WAMP (32D) b. power (96D)
VQVAE 3.78 ± 0.45 38.93 ± 0.70 65.77 ± 3.72 26.24 ± 0.61 29.13 ± 0.90 14.37 ± 0.03

MAE 2.01 ± 0.61 25.78 ± 0.11 26.34 ± 0.03 25.29 ± 0.31 28.81 ± 2.86 14.90 ± 0.02
FAMAE 1.99 ± 0.24 33.85 ± 0.53 45.76 ± 0.24 28.26 ± 0.57 24.82 ± 0.84 13.92 ± 0.02

Next-period pred. 1.75 ± 0.11 27.38 ± 0.12 26.66 ± 0.19 24.44 ± 0.11 28.97 ± 1.37 13.96 ± 0.04
NoTS (Ours) 1.27 ± 0.16 23.78 ± 0.34 20.04 ± 0.12 23.13 ± 0.19 24.58 ± 0.48 13.62 ± 0.05
Improvement ⇔ 37.80% ⇔ 8.41% ⇔ 31.44% ⇔ 5.66% ⇔ 0.98% ⇔ 2.20%

5 EXPERIMENTAL RESULTS

While the approximation analysis posts strong assumptions on the solution including the minimal
length T of the constructed sequence and the use of specific encoder E . In this section, we show that,
experimentally, NoTS works in both synthetic and real-world applications with relaxed assumptions.

5.1 SYNTHETIC EXPERIMENTS: A FEATURE REGRESSION TASK

Datasets We build two synthetic datasets with AR components in time and frequency spaces.

(1) Fractional Brownian motion (fBm). fBm is a generalized Gaussian process with special covari-
ance structure that was found to be similar to many types of time series datasets such as traffic, stock
prices, and biosignals (Rivero et al., 2016). Unlike the classic Brownian motion, fBm has interde-
pendent increments across time that are controlled by the Hurst index H → (0, 1), which creates
autoregressive components in time that exhibit long-range (H > 0.5) or short-range (H < 0.5)
dependencies. We simulate the fBm process 20,000 times to create signals of length 1024 using the
Cholesky’s Method (Dieker & Mandjes, 2003) with O(l3) complexity, and remove the generated
signals with abnormal values due to simulation instability (around 0.5% of all data).

(2) Superposition of autocorrelated sinusoids. We extend previous synthetic datasets based on sinu-
soids (Yoon et al., 2019; Das et al., 2023), and build a new synthetic dataset of sinusoids with AR
components in the frequency space. Specifically, we sample the set of {fi}Bi=1 based on five ran-
dom AR(B/2) processes, where we set B = {20, 16, 10, 8, 4}. We generate amplitude following the
ai = 1/fi frequency distribution, uniformly sample the phase pi → (0, 2ε], and add Gaussian noise
0.05 ↗N (0, 1) to the signal. We randomly initialize each process 10,000 times, creating a dataset of
50,000 samples where each sample is of length 1024.

Results on feature regression We estimate different pre-training methods’ capability of approx-
imating functions with the feature regression task. The ground truth of features are built based on
common signal processing analysis methods Slope Sign Change (SSC, 32D) and Willison Ampli-
tude (WAMP, 32D), and we also include the Hurst index (H-index, 1D) for the fBM dataset and the
band power (b. power, 96D) for the sinusoids (Appendix B.1). Note that SSC and WAMP are both
implemented with global thresholding, making them discontinuous sequence-to-sequence functions.
Following Section 3.2, we train a VQVAE (Van Den Oord et al., 2017), masked autoencoder (MAE)
(Dong et al., 2024), frequency-aware MAE (FAMAE) (Liu et al., 2023a), next-period prediction
transformer (Garza & Mergenthaler-Canseco, 2023), and NoTS-lw on the synthetic datasets by ap-
pending them with a regression task adaptor to validate the performance of our proposed method.

As shown in Table 1, across the board, NoTS-lw significantly outperforms all other pre-training
methods given the same architecture and training pipeline. The relative improvement is especially
pronounced in the fBm dataset, where data has complicated covariance architecture that was found
relevant in many real-world applications, where we have 26% improvements across the features.

Visualizing the next-function prediction process We present the data and latent visualizations
in Figure 3. In Figure 3(A), we show the original data sequence {Si}

K
i=1 and the reconstructed data

sequence {S↔

i}
K
i=2. Note that the original signal SK was not passed into the transformer. We can

see that the predicted sequence has information that is not presented in previous signals, showing
the function prediction capacity of the transformer. In Figure 3(B), we plot the token space before
or after the AR transformer using the PCA reduction on {Ri}

K
i=1 and {R↔

i}
K
i=2, respectively. When

coloring the tokens differently based on their degradation parameter i, we observe that: (1) In origi-
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Table 2: Comparisons between NoTS and other pre-training methods on real-world datasets. We categorize
the results based on (a) if adaptors are used, and (b) if the weights of the pre-trained models are frozen. We
compute an average error rate (→) to compare the final performance of different methods in each condition.

Classification (⇔) Anom. Det. (⇔) Imputation (⇓) Avg. (⇓)

Methods (a) (b) UCR-9 UEA-5 SMD MSL SWaT PSM ETTm1 ETTm2 ETTh1 ETTh2 error rate

SimMTM ✁ ✁ 68.70 55.36 84.06 83.90 91.20 96.07 0.164 0.126 0.264 0.183 19.43
bioFAME ✁ ✁ 62.63 60.32 83.09 84.28 91.21 95.94 0.203 0.122 0.258 0.178 19.87
Next-pred ✁ ✁ 65.95 58.30 82.96 83.75 90.47 96.54 0.306 0.178 0.465 0.270 24.39

NoTS-lw (Ours) ✁ ✁ 71.88 62.78 83.63 84.28 93.26 96.27 0.164 0.126 0.286 0.196 18.51

SimMTM ✁ ✂ 81.65 61.23 83.48 84.11 91.35 96.36 0.123 0.107 0.201 0.166 16.14
bioFAME ✁ ✂ 81.53 63.57 83.59 83.98 91.46 96.88 0.129 0.107 0.202 0.178 16.05
Next-pred ✁ ✂ 80.62 62.76 83.00 84.09 91.00 96.87 0.130 0.119 0.228 0.188 16.82

NoTS-lw (Ours) ✁ ✂ 88.08 66.38 84.19 84.15 91.26 96.88 0.122 0.116 0.218 0.163 15.10

PatchTST ✂ ✂ 83.57 63.31 78.96 78.81 83.75 78.07 0.181 0.126 0.347 0.187 21.78
+NoTS (Ours) ✂ ✂ ⇔1.71 ⇔1.65 ⇔2.20 ⇔3.96 ⇔5.97 ⇔11.25 ⇓.003 ⇓.003 ⇓.064 ⇓.006 18.33

iTransformer ✂ ✂ 82.67 67.62 85.18 83.04 91.88 97.07 0.162 0.111 0.240 0.168 16.07
+NoTS (Ours) ✂ ✂ ⇔1.26 ⇔0.65 ⇔0.17 ⇔0.11 ⇔0.05 ⇔0.01 ⇔.005 ⇓.002 ⇓.013 ⇓.004 15.70

nal token space {Ri}
K
i=1, severely degraded signals generates more clustered tokens, and the tokens

would gradually disperse as signals become more realistic; (2) The predicted tokens {R↔

i}
K
i=2 would

generate a token space with similar behaviour without seeing the original set of tokens RK . This
behaviour demonstrates the autoregressive capacity of the transformer.

5.2 REAL-WORLD EXPERIMENTS: CONTEXT-AWARE GENERALIZATION

Experimental setups To examine the performance of NoTS in real-world applications, we per-
form multi-task validation following the setups in Wu et al. (2022). Specifically, we perform the
classification task on the UCR subset (Dau et al., 2019) and UEA subset (Bagnall et al., 2018);
the imputation task on the ETDataset (Zhou et al., 2021), and the anomaly detection task on MSL
(Hundman et al., 2018), PSM (Abdulaal et al., 2021), SWaT (Mathur & Tippenhauer, 2016), and
SMD (Su et al., 2019) datasets. We follow Wu et al. (2022) for standard data pre-processing and task
deployment pipeline, except for the imputation task where we tested a more challenging variant of
channel-wise imputation (see Appendix B.2.2 and B.2.3 for details and original imputation results).

To validate that NoTS is a superior pre-training method, we perform two sets of experiments: First,
we compare the performance of NoTS-lw against the next-period AR transformer, a MAE (Dong
et al., 2024), and a frequency-aware MAE (Liu et al., 2023a) by pre-training them on synthetic
datasets and deploying the prompt tuning pipeline for all pre-trained base models. Second, we
append the pre-training pipeline NoTS on top of existing architectures PatchTST (Nie et al., 2022)
and iTransformer (Liu et al., 2023b), and compute the performance benefits from adding NoTS.

Experimental results As shown in Table 2, with or without parameters frozen, NoTS-lw signifi-
cantly outperforms all other pre-training methods. Specifically, given the same pre-training pipeline
and architecture, NoTS-lw outperforms other method across all tasks by up to 6% average. Interest-
ingly, we note that NoTS-lw show comparable performance on imputation tasks, where MAE-like
architectures are trained to perform the task. Additionally, when attaching NoTS on existing archi-
tectures PatchTST (Nie et al., 2022) and iTransformer (Liu et al., 2023b), NoTS improves their per-
formance without specific backbone or adaptors, showing the versatility of the pre-training method.

Interestingly, we should like to emphasize on the context-aware generalization ability of NoTS. With
the architecture frozen (first 4 rows of Table 2), we only train <1% of the parameters, yet it performs
82% performance, potentially demonstrating the context-aware generalization.

5.3 ABLATION EXPERIMENTS AND MODEL ANALYSIS

Ablation of effective components in NoTS In Table 3, we perform ablations of NoTS by isolating
the effective components of NoTS-lw in the feature regression task (the H-index). Specifically, we
train three variants of NoTS-lw by (1) removing the latent consistency term in training loss, (2)
removing the autoregressive masking within transformer, creating a transformer that merely bridges
tokens of the augmented samples, (3) removing the connections among constructed augmentations,
and using degradation operator only as augmentations. As expected, removing the latent consistency
term would cause distributional shift as the model never sees raw data, and would result in severe
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Figure 3: Visualizations of AR performance and loss. (A) We visualize the autoregressive inference process
of NoTS on the synthetic dataset. From bottom to top, the signal variance is gradually recovered through
the prediction of the AR transformer. (B) The token space is visualized through principal component analysis,
where tokens of the simplified signals gradually disperse to a larger region when colored in different degradation
degrees. When colored with relative group positions, the distribution does not shift as much on the direction
of another principal component. (C) A pilot study shows that training larger NoTS models leads to lower
reconstruction loss on the test set, potentially following the power law behaviour of AR models.

performance degradation. Interestingly, training a transformer that connects augmented samples can
also provide improved performance, as observed in other works (Hou et al., 2022; Liu et al., 2024a).

Table 3: Ablation experiments. Columns
denote: If the model sees original sig-
nal (orig.), if the model uses autoregres-
sive modeling (AR), if the signal variants
are connected (conn.), and if a Gaussian-
based degradation operator is used (d(N )

k ).

orig. AR conn. d(N )
k error (⇓)

(1) ✂ ✁ ✁ ✂ 1.75
(2) ✁ ✂ ✁ ✂ 1.48
(3) ✁ ✂ ✂ ✂ 1.82
(4) ✁ ✁ ✁ ✁ 1.69

NoTS ✁ ✁ ✁ ✂ 1.27

Connection to diffusion models One might relate our
work with diffusion models (Ho et al., 2020) by using a
stochastic additive Gaussian noise of varying degrees as
a degradation operator. We attempted this as model vari-
ant (4) in Table 3, yet the performance is inferior to the
convolution-based degradation operators. One hypothe-
sis is that time series data is inherently noisy, and adding
Gaussian noise instead of performing smoothing or filtering
can be less effective, as observed in audio signals (Diele-
man, 2024). Building connections between NoTS and cold
diffusion models with deterministic degradation operators
(Bansal et al., 2024), or more recent diffusion models (Chen
et al., 2023) can be an exciting future research direction.

Scalability analysis While this work aims only to provide an initial experimental exploration of
the proposed pre-training methodology NoTS, we attempted a pilot study to increase the size of
NoTS-lw to demonstrate its potential given more parameters. We trained four models with 127k,
243k (used in all previous experiments), 641k, 2.1M parameters to observe their performance. As
shown in Figure 3(C), when fixing the amount of training data, training the models to convergence
with increased parameters leads to increased performance, potentially following a power law curve
of AR frameworks in language and computer vision (Kaplan et al., 2020; El-Nouby et al., 2024).

6 CONCLUSION

In this paper, we propose a novel autoregressive pre-training method NoTS for time series. Our work
aims to provide an alternative view of time series by considering them as functions of time instead of
concatenations of time periods. This novel perspective allows us to construct degradation operators,
which build an alternative sequence as inputs to the transformer. The transformer is pre-trained with
an autoregressive loss to encourage the learning of cross-function relationship, building a model
that can recover signal variability from their simplified variants. We validated the performance
of NoTS with experimental results on 2 synthetic and 22 real-world datasets, demonstrating its
superiority among existing pre-training methods across multiple tasks, showing a viable alternative
for developing foundation models for time series analysis in the future.

Limitations Future works may extend the existing results through: (1) Expanding our initial ex-
perimental efforts to larger models, larger-scale datasets, and more challenging tasks. (2) Build-
ing in-depth theoretical connection to diffusion-based models, connecting NoTS with recent works
(Dieleman, 2024) from the audio and computer vision domain. (3) Understanding how NoTS per-
forms in stochastic events as detailed in (Kidger et al., 2020) based on rough path theory.
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