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Abstract

Deep learning methods can detect correlations in data but they cannot determine under-
lying causal relationships. Understanding causality, however, is essential because spurious
correlations can obscure the true relationships in the data. In many large studies, imaging
data is accompanied by additional tabular (non-imaging) clinical data. Our aim is to use
the non-imaging information to learn a multi-modal feature representation that can make
predictions based on learned causal dependencies while avoiding spurious correlations. This
work presents our first preliminary results and outlines our future investigations.
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1. Introduction

Deep learning (DL) has the potential to fundamentally transform clinical workflows. How-
ever, DL methods can only detect correlations in data but are incapable of determining
their causal meaning.(Marcus, 2018) Relying solely on learned correlations could lead to
incorrect or biased conclusions, as these models do not capture the true causal relationship
between input and output.(Veitch et al., 2021) In medical imaging, various factors, such as
the type of scanner or acquisition conditions, can influence the acquired image. Therefore,
DL models trained on this data tend to learn spurious correlations instead of task-specific
features. Since many medical imaging databases are accompanied by non-imaging clinical
tabular information, we attempt to leverage the additional non-imaging data to learn a
feature space that reduces the influence of spurious correlations and enforces predictions
based on causal relationships. Hence, by effectively utilizing non-imaging information, we
aim to improve the accuracy and reliability of DL models in medical imaging.

Our methodology adapts the previous idea of CLIP (Contrastive Language-Image Pre-
Training) (Radford et al., 2021), which learns a multi-modal feature space based on self-
supervised contrastive learning between image-text pairs. The CLIP model uses image
captions as text modality. Our idea is to automatically generate causal directed acyclic
graphs (DAG) between the available tabular features to enrich the feature space not only
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with tabular information but also with information about causal relationships. By differen-
tiating between causal features and spuriously correlated feature-based information gained
by the causal DAG - the aim is to create a new contrastive loss-term for the pre-training of
the feature space that pulls causally related non-imaging features to the imaging features
while pushing spuriously correlated non-imaging features apart.

In this work, we present our preliminary results, which form the foundation to achieve our
outlined objectives. These preliminary results include the following novel contributions:
(1) Training a multi-modal feature space based on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (ADN) database, comprising of 3,402 brain MRI and non-imaging tabu-
lar data. In this preliminary work, the tabular data is not yet represented as causal DAG,
but a novel approach is applied by transforming the tabular data into a natural language
string. (2) Pre-training the feature space on three different sets of tabular features which
demonstrates performance improvements on uni-modal downstream task prediction using
the pre-trained multi-modal feature space. (3) Demonstrating first steps towards reduction
of spuriously correlated predictions by randomly selecting non-imaging features.

2. Methods

Model: Our proposed multi-modal pre-training model (Fig.1A) is based on an image
encoder and a text encoder. The image encoder is a ResNet-50 that encodes the brain
MRI volume into an image embedding vector z; € R?%%. The text encoder consists of a
pre-trained DistilBERT tokenizer and model. (Sanh et al., 2019) Input to the text encoder
is a string which is generated from tabular data containing each feature as column name:
cell value and encoded into a vector of t; € R?. Subsequently, the similarity between
all N embedding vectors X = x1,...,zxy and T = t1,...,ty is computed using the cross
entropy loss. During pre-training, the model with the highest mean accuracy of sex and
Alzheimer’s Disease (AD) classification is saved. This model is used for the initialization of
the image encoder in the downstream task. Fine-tuning for uni-modal image classification is
performed in a supervised manner. Thus, the final layer of the pre-trained image encoder is
switched to a classification head sized according to the number of classes of the downstream
task.

Settings: All pre-trainings are performed three times for 40 epochs (batch size: 64) using
ADAMW optimizer with a learning rate of 1.77 x 10~* and 5.68 x 107°, respectively.
Data: All used data belongs to the ADNI database (ADN). Pre-training is performed on
4536 samples (training: 3402, validation: 1134) (Fig.1B). Downstream tasks are tested on
1134 additional samples. Each sample includes both modalities, the image (T1-weighted
3D brain MRI with resolution 1 x 1 x 1mm?) and 29 tabular features.

Experiments: Pre-trainings are carried out by using: (1) All 29 tabular features, (2) all
tabular features excluding downstream task labels, or (3) a set of 14 randomly selected
features. The downstream task predictions are uni-modal using only the image encoder to
predict either sex (male/female) or prevalence of AD (cognitive normal; CN, mild cognitive
impairment; MCI or AD) from brain MRI. Downstream tasks are evaluated for zero-shot
prediction and after fine-tuning for 1, 5, and 20 epochs. Comparisons were made to a
reference model with the same architecture as the image encoder initialized on pre-trained
ImageNet weights.
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3. Results and Discussion

Our proposed model achieved for both downstream tasks higher accuracy on the test dataset
than the ImageNet-pretrained reference model (Fig.1C). When applying only a selected set
of tabular features, zero-shot sex prediction achieved 96% accuracy, which the reference
model only achieves after 20 epochs of fine-tuning. We opted to further sharpen the focus
of the tabular information by selecting random features for pre-training. A selected feature
set with 14 features performed best. Interestingly, the AD prediction performance increased,
although age, which is known as a primary risk factor for AD, was excluded from the feature
set. This might indicate that the inclusion of the feature age in the other two settings may
have affected the pre-trained feature space by learning a spurious correlation between AD
and age instead of learning a representation based on causally linked features. However,
one of the selected features was APOE4, a genetic risk factor for AD. This information can
causally enrich the imaging data and improve the accuracy of AD prediction.

However, we acknowledge several limitations of this preliminary work. In particular, the
conclusions drawn need to be further validated. Thus, we will include other databases (UK
Biobank, German National Cohort) and compare the results with other methods (Hager
et al., 2023). In addition, we observed that more fine-tuning epochs improve the performance
of the reference model, bringing it closer to the performance of our best model. This may
be attributed to the well-known problem of catastrophic forgetting of pre-trained features,
which we will address by extending the learning process with a weight-ensembling method
(Marsden et al., 2024). Moreover, we will focus on incorporating causal dependencies into
the multi-modal pre-training to control the influence of learned spurious correlations. In
conclusion, we showed an efficient way to enhance downstream tasks performance with
multi-modal information. We leveraged self-supervised pre-training to take advantage of
tabular data that is merged with imaging data.

Multi-modal self-supervised contrastive pre-training Dataset ratio
Training Validation  Testing

Modality 1 Modality 2 Dataset ratio in [%] _ = -
Imaging data Non-imaging data N=3402 N=1134 N=1134
3D T1 MRI Sex Age .. APOE4 Sex
1 3 49 0 Male 59.47 57.41 59.79
2 M e 2 Female 40.53 42.59 40.21
R = P Alzheimer’s Disease
v o CN 37.27 36.86 38.27
T, Sex:F, Age:49,...,APOE:0
T, Sex:F Age:78,.. APOE:2 Ml 34.36 36.07 35.71
Ty Sex:M, Age: 68,... APOE:1 AD 27.07 27.76 26.01
AN
Toke\r:izer Results of downstream tasks - Accuracy [%]
Finetuning-epochs 0 1 5 20
Image Text Sex
Encoder Encoder Reference 57.67 86.13 89.09 98.53
All features 58.97 82.76 94.3 98.5
All w\o labels i1l 82.92 95.18 98.58
b LI Mmoo [T | 14 selected features ~ 96.83  96.91 97.88  98.94
1 1 0 i Alzheimer's Disease
T 1 T T Reference 26.01 39.92 51.23 65.52
All features 44.03 45.47 49.03 63.43

Multi-Modal Contrastive Language-Image
Pretraining Loss All w\o labels 36.21 44.65 50.57 63.61

APOE4: Geneticrisk factor for ap 14 S€lected features  44.75 49.41 52.91 66.43

Figure 1: (A) Our multi-modal pre-training model, (B) dataset information, (C) the results.
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