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ABSTRACT

Leveraging multimodal information from biosignals is vital for building a com-
prehensive representation of people’s physical and mental states. However, multi-
modal biosignals often exhibit substantial distributional shifts between pretraining
and inference datasets, stemming from changes in task specification or variations
in modality compositions. To achieve effective pretraining in the presence of po-
tential distributional shifts, we propose a frequency-aware masked autoencoder
(bioFAME) that learns to parameterize the representation of biosignals in the
frequency space. bioFAME incorporates a frequency-aware transformer, which
leverages a fixed-size Fourier-based operator for global token mixing, independent
of the length and sampling rate of inputs. To maintain the frequency components
within each input channel, we further employ a frequency-maintain pretraining
strategy that performs masked autoencoding in the latent space. The resulting ar-
chitecture effectively utilizes multimodal information during pretraining, and can
be seamlessly adapted to diverse tasks and modalities at test time, regardless of
input size and order. We evaluated our approach on a diverse set of transfer exper-
iments on unimodal time series, achieving an average of 15.5% improvement in
classification accuracy over the previous state-of-the-art. Furthermore, we demon-
strated that our architecture is robust in modality mismatch scenarios, including
unpredicted modality dropout or substitution, proving its practical utility in real-
world applications. Code will be available soon.

1 INTRODUCTION

Physical and mental states of an individual are manifested by a variety of physiological responses or
biosignals. For example, electroencephalography (EEG) can decode human emotions by monitoring
their brain activities (Liu et al.| 2010), electromyography (EMG) can detect facial expressions such
as smiling by recording muscle contractions (Canento et al) [2011), and a combination of these
modalities can help decode a person’s affective states. The effective use of multimodal information
can not only build better and more resilient representations of the human body and mental states
(Bachmann et al., [2022; [Smith & Gasser, |2005; [De Sa & Ballard| [1998)), but also help researchers
understand how each biosignal contributes to each physiological state and how their information
overlaps (Bird et al., [2020).

Recently, in language-vision domains, large-scale multimodal pretraining has demonstrated remark-
able generalization and zero-shot capabilities (Huang et al.,|2021; Bachmann et al., 2022} |Radford
et al.| [2021)), outperforming small-scale models that are trained on specific downstream tasks (Kirk-
patrick et al.l [2017; [Radford et al.| 2019). In light of these advancements, we investigate whether
similar pretraining can be applied to the biosignal domain. However, performing multimodal pre-
training on biosignals is particularly challenging due to the significant distributional shifts between
the pretraining and downstream datasets. This challenge can be categorized in two ways: (i) For
biosignals, there are substantial distributional shifts within each modality, wherein data varies
across tasks, subjects, and even recording sessions within subjects due to slight changes in sensor
placement and recording conditions (Cheng et al.| [2020). Additionally, (ii) multimodal biosignals
might encounter strong distributional shifts across modalities, meaning that the connection between
different modalities can be altered. These crossmodal domain shifts can arise from unimodal shifts,
as a change in a single modality can disrupt its relationship to a different modality. Moreover, mul-
timodal biosignals often face modality mismatch scenarios, where modalities may be unavailable at
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Figure 1: Motivation of our approach. (A) In multimodal biosignal systems, there exists substantial distri-
butional shifts between the pretraining and inference datasets. (B) The distributional shifts often cause the
shifts of representation in time-space, which can affect the model’s generalization ability within modality and
across modalities. (C) In the meantime, the representation in frequency-space typically would contain similar
frequency components within modality, leading to more stable combinations in multimodal scenarios.

test time, and thus are removed or replaced with new modalities that provide relevant information to
the detected physiological response (McKinzie et al., 2023). Addressing these distributional shifts
is crucial to effectively leverage multimodal pretraining on biosignals.

In this work, we propose to incorporate frequency information in time series to mitigate distribu-
tional shifts and enable multimodal pretraining on biosignals. Frequency-domain analysis is advan-
tageous for biosignals not only due to its invariance to common causes of distributional shifts such
as temporal shifts and scaling, but also because the extracted frequency components are character-
istic representations for physiological activities (see Figure [T). While previous works have shown
the effectiveness of using frequency domain information to address generalization issues, they have
either relied on encoders from both the time and frequency domains (Zhang et al., [2022b), or com-
plicated sampling and combining modules (Zhou et al.| [2022b)) to utilize the frequency information.
Here, we propose a simple, yet effective, multi-head frequency filter layer with fixed-size Fourier-
based operator that directly parameterizes the representation of biosignals in the frequency space.
The proposed layer can be easily incorporated into the transformer, giving a frequency-aware (FA)
encoder that is both expressive and computationally efficient.

Furthermore, to extend the frequency awareness into a multimodal pretraining setting, we couple
the FA encoder with a frequency-maintain (FM) pretraining strategy. To prevent the statistical
consistency within the data from being disrupted by conventional masked autoencoding strategies
(Ryali et al., 2023), our method performs masked autoencoding in the latent space to maintain the
frequency awareness during reconstruction. Coupled with a channel-independent design (Nie et al.,
2022; Liu et al., 2022b), our model presents a pure reconstruction-based multimodal pretraining
architecture that can effectively combine and utilize information across modalities, with robustness
towards distributional shifts within and across modalities.

To systematically evaluate our proposed approach, we first examine the transferability of our ar-
chitecture on a publicly available one-to-many transfer learning benchmark (Zhang et al., 2022b)).
Our architecture achieves state-of-the-art performance, giving an average of 15.5% improvements
in classification accuracy over the previous state-of-the-art, showing consistency across datasets of
different input lengths, sampling rates, and diverse sources of modalities. Next, we demonstrate
that our architecture is robust to a variety of modality mismatch scenarios commonly encountered
in real-world cases, showing that our architecture can effectively integrate and leverage information
across multiple modalities during pretraining.

‘We summarize our main contributions as follows:

* We propose bioFAME, a frequency-aware masked autoencoder for biosignals compris-
ing: (i) a frequency-aware (FA) transformer encoder that can learn biosignals in a robust
and computationally efficient way; (ii) a frequency-maintain (FM) pretraining strategy that
retains the frequency awareness during reconstruction.

* By constructing a fixed-size Fourier-based operator in the architecture, bi oFAME can be
pretrained on multimodal biosignals and adapted to new modalities of varying lengths and
frequency components, exhibiting resilience to distributional shifts even when the modali-
ties differ between training and testing.
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* bioFAME achieves consistently robust performance on a diverse set of transfer experi-
ments, outperforming the previous state-of-the-art by an average improvement of 15.5%,
demonstrating how utilizing multimodal information at the pretraining stage can benefit the
generalization ability of the model.

2 BACKGROUND

Multimodal Pretraining Methods Pretraining large-scale models that can effectively use multi-
modal information has gathered a lot of research attention due to its strong capability of generaliza-
tion (Huang et al.| [2021}; |[Liang et al.| 2022; Reed et al., 2022} |Chai & Wang|, 2022)). Multimodal
pretraining methods can be roughly categorized as (i) those that train separate encoders for each
modality, as seen with contrastive methods that design novel objectives to align or fuse represen-
tations from different modalities (Li et al., [2021a; Radford et al.| 2021} [Jia et al.| [2021)), and (ii)
those that design one unified architecture for many modalities, with completely shared encoders
per-modality or a few layers shared for decoding (Reed et al., 2022} |/Akbari et al., 2021; Wang et al.|
2022). The benefit of using one unified architecture is that we can build a joint representation space
that connects different modalities, as well as share weights to reduce additional computational over-
head (Bachmann et al} 2022} [Lu et al.| 2022)). Inspired by the latter, our work aims to train a single
unified architecture for multimodal biosignals with an effective frequency-awareness design.

Pretraining on Biosignals and Time Series Biosignals are multivariate time series that capture
various physiological processes within the human body (Giannakakis et al.l 2019; (Cheng et al.,
2020). While biosignals are crucial for diverse applications such as human-computer interaction,
acquiring an ample amount of labeled biosignals is a labor-intensive process that requires the in-
volvement of domain experts (Ericsson et al.l [2022). To alleviate the need for labeled data, re-
searchers proposed various self-supervised methods to pretrain the model with large-scale unlabeled
datasets. This includes (i) contrastive methods that build latent representation based on similarity
across samples of different augmentation (Cheng et al.| [2020; |[Kiyasseh et al.l [2021; |Zhang et al.,
2022b), (ii) reconstruction-based methods that perform either feature reconstruction or data recon-
struction (Kostas et al., 2021} (Chien et al., [2022), or (iii) a hybrid of both (Dong et al., |2023).
While previous works demonstrate that pretraining on large-scale data can benefit downstream task
performance, however, most of the existing works only explored unimodal pretraining without in-
vestigating how to effectively utilize the multimodal information present at training time. Existing
work even shows that pretraining on multimodal information could cause performance degradation
due to the large variation across modalities (Zhang et al.|[2022b)). To the best of our knowledge, this
is the first work that explores how to effectively perform multimodal pretraining on biosignals that
gives robust performance towards distributional shifts within and across modalities.

3  MOTIVATION OF OUR APPROACH

Parameterizing representations in the frequency space is shown to be effective in many domains.
Frequency-based approaches are particularly effective in solving partial differential equations and
modeling long sequences (Li et al.,|2020b; |Gu et al., [2021} L1 et al.,|2022b; |Zhou et al., [2022a)), as it
can effectively capture long-range dependencies. Frequency-aware approaches are also widely used
in computer vision, as it can improve image fidelity and can effectively mix tokens when used in the
transformer architecture (Rao et al., 20215 |(Guibas et al.| 2021} | Xie et al., [2022; |Liu et al., [2022a; L1
et al.,|2022a)). Akin to physiological signal processing, frequency-based approaches are employed to
effectively extract discriminative patterns within sensory signals (Yao et al., 20195 |L1 et al., 2021Db)).
The robustness of frequency-based operations can be partially attributed to the connection between
Fourier transform and global circular convolution (Zhi et al., 2016} |Li et al.,2020a).

Recently, many works suggest that the periodic oscillations and analogous patterns in the frequency
space exhibit rich information for electrophysiological signals (Donoghue et al.| [2020; Bird et al.,
2020; [Subha et al.l [2010; [Demanuele et al., 2007). Thus, several frequency-aware approaches are
proposed to study biosignals. For example, Zhang et al.|(2022b) used the consistency between time
and frequency spaces to guide the learning on biosignals, demonstrating improved transferability
and generalizability on downstream tasks. Other works perform cross-domain reconstruction across
the time and spectral domains (Zhang et al.||2022a; Yang & Hong| [2022).
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Figure 2: Overview. (A) Previous approaches perform masking in the time domain, which causes shifts in
the frequency components. Also, the encoders are unaware of the frequency information in time series. (B) To
address the issues, we propose bioFAME, which (i) builds frequency awareness by directly learning frequency
filters in the representation space, and (ii) performs masked autoencoding in the latent space to maintain fre-
quency information during pretraining. (C) We implement bioFAME in the multimodal pretraining scheme,
where the frequency-aware encoder (FA-Enc(-)) processes signals in a channel-independent manner, and ex-
tracts representations with multi-head filter layer with fixed-size Fourier operators. The frequency-maintain
pretraining strategy further performs masked autoencoding in the latent space with separate reconstruction to
guide the effective mixing of multimodal information.

Contrary to prior studies, bioFAME emphasizes transferability and efficient adaptation to down-
stream tasks across many physiological modalities, by leveraging frequency-space information dur-
ing pretraining on multimodal data to forge a universal representation of biosignals. We design
novel mechanism and architecture to build a fully transferable and computation-efficient approach
for frequency-aware representation extraction, setting bi oFAME apart from conventional methods
that are constrained by frequency-space encoders or decoding components tailored to specific input
sizes (Wu et al.| [2022). These conventional methods often struggle with modality transfer due to
varying frequency components and introduce unnecessary computational burdens and overparame-
terization. Our approach, in contrast, ensures flexibility and efficiency, free from such limitations.

4 METHOD

Preliminaries: Discrete Fourier Transform (DFT) for Token Mixing DFT is widely used in
traditional methods for processing biosignals and images (Pitas, [2000). For a time space representa-
tion x € RY with NV elements x,,, n € [0, N — 1], its corresponding frequency space representation
z € C with elements z;, is produced by DFT (F(z) = z), which can be inversed through the
Inverse Discrete Fourier Transform (IDFT) (F~! (z) = @) as below:

N-1 N-1
—i(27 n 1 (27 n
DFT: 2, = nz:% Tpe {CT/NER IDFT: g, = ¥ ;O zpe (2N 1)

where 7 is the imaginary unit. The computational complexity of DFT can be reduced from quadratic
to O(N log N) when leveraging the fast Fourier transform (FFT) algorithm (Brigham, |1988).

Consider a sequence X = [z1,...,zn]T € RV*P of N tokens of D-dimensions, transformers aim
to learn the interactions across tokens, typically through the self attention operation. Recently, mix-
ing tokens with frequency-based operations through DFT and IDFT is shown to be a computationally
efficient alternative (Rao et al.| 2021}, |Guibas et al,|2021), as it considers global-wise information
mixing. The token mixing process is theoretically grounded by the Fourier Neural Operators (L1
et al.| 2020b), which is often implemented in its discrete form (denote as K) as such:

(K(X))(@;) = FH(R - F(X))(:), Vi € [1,N] 2)

Ideally, R should be the Fourier transform of a periodic function which admits a Fourier series
expansion. For the sake of simplicity, it is often implemented as learnable weights of shape CV <.
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4.1 FREQUENCY-AWARE TRANSFORMER WITH MULTI-HEAD FREQUENCY FILTERS

In this work, we seek to understand two questions: (i) If parameterizing biosignals in the frequency
space would provide better empirical performance, as frequency information is shown to be vital for
many physiological activities; (ii) How to design a frequency-aware architecture that is transferrable
and generalizable across different types of biosignals with varying input lengths and sampling rates.
To address those two questions, we propose a multi-head frequency filter layer to build a frequency-
aware transformer encoder FA-Enc(-).

Multi-head Frequency Filter Layer We propose to manipulate the frequency representation with
a multi-head frequency filters K € CH*P where H is the total number of heads. Given a sequence
of tokens X € RV*P we first perform DFT along the sequence dimension to obtain its represen-
tation in the frequency space as Z € CV*P_ To obtain the manipulated features in frequency space
7 € CNXD we first compute queries Q = ZW, where W & RP*H jg 3 learnable matrix that
is used to combine processed information across different filters. The resulting queries are used to
re-weight the kernels to obtain Z through the below operations:

7=706(QK)=206(ZWK) (3)

where © is the Hadamard product. We show in Appendix [C] that the operation is equivalent to a
weighted summation between each modulated frequency representation matrix, where the weights
are self-generated through the queries. We note that our proposed operation, different from (Rao
et al.| [2021; Guibas et al.,[2021)), is applicable on time series with dramatic changes in input lengths
and sampling rates, as we use a flexible fixed-sized multi-head filters K that enables the transfer-
ability of the model. Intuitively, the querying process has similarity to hypernetworks (David et al.,
2016), which generates weights based on data itself to fully exploit the structure of the data.

Having successfully incorporated a fix-sized multi-head filter K into the frequency space, we further

explored to build nonlinearity into the operation through an alternative maxpooling operation Z =
MaxPool(Z, K):

Zi,§) = max| Z[i, 1Kk, )| )
where the max-pooling is performed based on the absolute value of the complex features.

The resulting modulated frequency representation Z is later recovered in time space through
X = FYZ) with IDFT (see Figure [2(C)). We denote the whole process as Freq-L(-), which
is computationally efficient, transferrable across different input lengths and sampling rates, and can

be easily implemented in a few lines of code.

Add Freq-L(-) into the Transformer The transformer architecture has revolutionized many do-
mains, including natural language processing (Devlin et al., [2018), computer vision (Dosovitskiy
et al.| 2020), and recently time series processing (Nie et al., 2022)). Following Nie et al.| (2022), we
first patchify the biosignals by dividing them into chunks, compute representations for each patch,
and then feed the resulting patches into a transformer. Specifically, for a signal s € R” where L is
the total length of the sequence, we divide them into sequences of S = [sq, ...s ], where each patch
s; € R” has a size of P. An initial MLP is used to compute representation x; = MLP(s;) € RPD,
and the sequence is later stacked into X € RV*P,

We replace the multi-head self-attention with our proposed multi-head frequency filter layer
Freq-L(+) to mix the information across the sequence of tokens, which gives the FA transformer
encoder layer as below:

Xo41 = X¢ + Freq-L (X,) + FF (X; + Freq-L (X)), ¢ ={0,...,L — 1} %)

where the representation is passed into the proposed Freq-L(-) layer and projection layers FF(-)
with residual connections, as shown in Figure EKC).

4.2 FREQUENCY-MAINTAIN PRETRAINING WITH LATENT MASKING AND CHANNEL
INDEPENDENCE

Masked Autoencoding in the Latent Space Masked autoencoder (MAE) is a self-supervised
pretraining framework, which masks out input patches and predicts the missing patches using the



Under review as a conference paper at ICLR 2024

rest present patches. The architecture typically contains an transformer encoder that processes non-
masked patches, follows by a decoder, usually a lightweight transformer, that reconstructs the orig-
inal patches (He et al.| 2022).

To preserve the frequency information while being able to perform pretraining based on the masked
autoencoding strategy, we perform masked autoencoding in the latent space. Specifically, denote our
frequency-aware transformer encoder as FA-Enc(-), full sequence of biosignals S is learnt through
FA-Enc(-) to obtain X, = [zl L, ..., 2% ]. We sample a random set of patches based on a fixed
masking ratio without replacement, and then process the resulting sequence with a lightweight trans-
former (second) encoder. We later pad the masked patches with mask tokens, and pass the resulting
sequence into a lightweight transformer decoder to reconstruct the original signal, where the ¢-th re-
constructed patch corresponds to s;. Denote the masked autoencoder as MAE(+), bi oFAME aims
to optimize the below objective:

1
L=y Z I(s;, MAE(FA-Enc(S))[i]) (6)
1€Q
where 7 is the token index, €2 is the set of masked tokens, and [ is an error term which is set as mean
squared error (MSE) in this work. We show in Section[5that the performance is robust if we remove
MAE(-) and only keep FA-Enc(-) at test time. We note that this is the first work that finds using

the masked autoencoding objective itself, without any contrastive terms, is effective on biosignals
(Zhang et al.| [2022b).

Channel and Modality Independence Biosignals are multivariate time series that often face
channel-wise and modality-wise mismatch at test time. To obtain robust transfer performance, we
follow previous works to use channel-independent design before the second encoder to model mul-
timodal biosignals (Liu et al., [2022b; [Nie et al.| [2022).

Given a multi-channel biosignal [S7, Ss, ..., Sc|, where C denotes the total amount of channels.
We perform the channel independence learning such that each S¢ are passed into FA-Enc(-) and
MAE(+) as below:

L= %Z I(s;, MAE([FA-Enc(S,), ..., FA-Enc(S¢)])[i]) (7)
i€Q

where (2 is the union of masked tokens for each channels, which is independently determined based
on a fixed masking ratio for each channel. The parameter weights of the frequency-aware trans-
former encoder FA-Enc(+) are shared across channels, creating representations that are fed into the
MAE(-), which combines information from different pretraining modalities. By combining the
channel independence design into our multimodal masked autoencoding objective, our architecture
can process input signals of any channel size and order, making it robust to multimodal distributional
shifts when modalities are unavailable at test time.

5 EXPERIMENTS

5.1 TRANSFER EXPERIMENTS ON UNIMODAL TIME SERIES

Datasets We first evaluate the model’s generalization ability by transferring it on a diverse set of
unimodal time series downstream tasks, following |[Zhang et al.| (2022b). The transfer experiments
include a set of four downstream tasks: Epilepsy (Andrzejak et al.,|[2001)) (EEG measurement of dis-
ordered brain activity, sampling rate 174Hz with length 178); SleepEOG (Kemp et al., | 2000) (EOG
measurement of each sleep stage, sampling rate 100Hz with length 3000); ExpEMG (Goldberger
et al., 2000) (EMG measurement of muscular disorders, sampling rate 4000Hz with length 1500);
FD-B (Lessmeier et al., [2016) (Electromechanical measurement of motor disorder, sampling rate
64000Hz with length 5120). We performed data pre-processing following the same protocol and
data split as in [Zhang et al|(2022b), more details are in Appendix [B.I] For model pretraining, we
used the SleepEDF dataset (Kemp et al.,|2000) as in (Eldele et al.,|2021;[Zhang et al., 2022b), where
the single-channel EEG (channel Fpz-Cz) is commonly used for unimodal pretraining. In this work,
we also used an additional EEG channel (Pz-Oz) and an additional modality (EOG) from SleepEDF
to perform multimodal pretraining with the same train/test split as in |Eldele et al.|(2021)).
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L. Generalization with modality or task association.

Epilepsy (EEG) SleepEOG

Models Accuracy Precision Recall  Fl1 Accuracy Precision Recall  Fl1
TS-SD (shi et al. 2021] 80.18 76.47 89.52 77.67 48.90 28.59 2543  23.68

Mixing-up (Wickstrom et al. f2022] 80.21 40.11 50.00 44.51 - - - -
TS2vec {vue etal.2022) 93.95 90.59 90.39 9045 67.90 58.23 62.15 59.28
CLOCS (kiyassch etal.f2021) 95.07 93.01 91.27  92.06 66.86 56.67 58.99 57.34
TS-TCC {Eidcle et at. 2021) 92.53 94.51 81.81 86.33 69.65 61.56 61.49 61.16
TF-C (zhang et a1.|20220) 94.95 94.56 89.08 91.49 69.58 62.04 68.05 64.15
PatchTST (Nic etar.2022) 95.01 91.66 9296 9227 68.00 61.20 68.28 63.26
bioFAME (scratch) 90.41 84.64 86.29 85.33 68.29 60.03 66.10 61.81
bioFAME (unimodal) 95.51 94.02 91.57 92.72 70.03 63.37 68.00 65.05
bioFAME (multimodal) 95.71 93.57 92.82 93.18 71.55 64.80 68.70  66.62
A(uni, multi) 10.20 10.45 1125 1046 11.52 11.43 10.70  11.57

1. Generalization without explicit association.

ExpEMG FD-B (Electromechanics)

Models Accuracy Precision Recall F1 Accuracy Precision Recall F1
TS-SD (shi etat.f2021] 46.06 15.45 3333 21.11 55.66 57.10 60.54 57.03
MiXing-up (wickstrom ct al.[2022] 30.24 10.99 2583 1541 67.89 71.46 76.13 7273
TS2vec {vue etat f2022) 78.54 80.40 67.85 67.66 47.90 43.39 4842 43.89
CLOCS (kiyassch et al. 2021 69.85 53.06 5354 51.39 49.27 48.24 58.73  47.46
TS-TCC (eiete eralf2021) 78.89 58.51 63.10 59.04 54.99 52.79 63.96 54.18
TF-C (zhang et al. 20220) 81.71 72.65 81.59 76.83 69.38 75.59 72.02  74.87
PatchTST {nie et af2022) 92.68 90.87 94.51 92.07 67.03 71.96 75.57  70.09
bioFAME (scratch) 93.17 88.58 94.10 89.97 67.92 76.45 76.51  76.20
bioFAME (unimodal) 98.05 97.07 96.63 96.40 76.58 83.28 82.85 82.63
bioFAME (multimodal) 98.54 96.67 98.95 97.64 78.18 84.99 84.01 83.75
A(uni, multi) 10.49 1040 1232 1124 | 11.60 11.71 1116 11.12

Table 1: Transfer experiments on unimodal time series. All benchmark models are pretrained on
the same single-lead EEG. All variants of our model is based on the same architecture, where
bioFAME (scratch) is trained from scratch, bi ocFAME (unimodal) follows the same pretraining as
baselines, and bi oFAME (multimodal) is pretrained on the multimodal version of the data. Model
standard deviation are in Appendix

Experimental Details For bioFAME, we used a 4-layer encoder, 8-head filter with 64 dimen-
sions. The model was trained using an Adam optimizer with 5; = 0.9, 8 = 0.99, and a learning
rate of 0.001. We performed a grid search based on the validation set to select the model hyperpa-
rameters (see Appendix [B.4). Following prior works, we performed full model fine-tuning on all
tasks (see details in Appendix [B.2). In contrast to state-of-the-art contrastive architectures (Eldele
et al.,|2021;|Zhang et al., 2022b), we did not apply data augmentation in our architecture as we found
there was minimal impact on performance. We repeated experiments with five random seeds for ma-
jor results, and three random seeds for ablation experiments (see model variation in Appendix [A.3).
To benchmark our method, we selected an extensive set of existing state-of-the-art models, including
temporal-spatial methods (Shi et al.| |2021; [Yue et al.| 2022), contrastive methods (Kiyasseh et al.,
2021; |[Eldele et al., 2021), transformers and frequency-aware approaches (Nie et al., 2022; [Zhang
et al, 2022b). All benchmark models were pretrained on unimodal EEG under the same data split,
providing a conclusive list of models for fair comparison.

Pretraining on Unimodality Following previous works Zhang et al.| (2022b)), we first performed
pretraining on a single-channel EEG from the SleepEDF dataset, and then fine-tuning on a small
amount of data from the downstream tasks. The performance of our proposed architecture is shown
in Table I} We show that with the same unimodal pretraining setup on single-channel EEG, our
model consistently outperforms state-of-the-art benchmarks in most experiments, giving 14.2% im-
provments in accuracy. These results demonstrate that bi oFAME is effective in terms of transfer on
different tasks, with robustness to domain shifts across tasks, subjects, sampling rate, and sensors.
Surprisingly, our architecture, without any pretraining (scratch), also provides robust performance
on many datasets, different from previously reported results (Zhang et al.l 2022b). This further
demonstrates the robustness of our proposed architecture.
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FA FM Acc. Enc-2 Modality Acc. Masking ratio
X X 80.68 X Uni 85.04 0.3 0.5 0.7
v X 84.09 Multi 83.92 < 10 8386 84.05 82.70
X v 83.53 v Uni 85.05 § 20 84.11 85.04 83.86
v v 85.04 Multi 85.99 & 50 80.88 80.84 80.64

Table 2: Average accuracy Table 3: The effect of keeping the 2nd  Table 4: The effect of different mask-
without FA/FM modules. encoder for multimodal pretraining. ing ratios and patch sizes.

Extending Pretraining to Multimodality While the Fpz-Cz EEG channel is shown to be the most
informative channel for the pretraining task and typically provides robust prediction performance on
its own (Supratak et al.l 2017), in this work, we explore whether using additional multimodal in-
formation from the same task can further boost the pretraining performance. As shown in Table
for bioFAME, including multimodal information during pretraining provides better results than
unimodal pretraining in general, consistently outperforming unimodal pretraining. Training on mul-
timodal data also improves the model’s stability by giving a lower standard deviation, as shown in
Appendix Note that in previous work (Zhang et al., 2022b), including multimodal informa-
tion hurt performance rather than helped. This suggests that bi oFAME can effectively utilize and
combine information across modalities, resulting in better performance on downstream tasks. We
hypothesize that pretraining on multiple modalities exposes the model to a more diverse range of
frequency components, improving the model’s few-shot generalization.

Ablations Experiments on Transferability We performed a set of ablation experiments to under-
stand what makes b1 oFAME robust under the transfer experiments setting (more in Appendix [A.T).
In Table [2] we first studied the effect of the frequency-aware (FA) and frequency-maintain (FM)
modules by either replacing the FA module with a self-attention transformer; or by replacing the
FM module with a normal masking procedure. We found both approaches, when applied indepen-
dently, improve the performance of a baseline variant by a significant margin (~ 3%). Combining
both modules gives the best performance, further boosting the effect of each individual component
(= 5%). We also tested whether it is possible to discard the second encoder at test time, which
would indicate whether or not the FA encoder plays a major role in learning. Interestingly, we show
that discarding the second encoder at test time gives almost identical performance in the unimodal
setting. However, when multimodal information is used for pretraining, discarding the second en-
coder would give a performance that is lower than the unimodal result, while keeping the second
encoder increases the unimodal performance by ~ 1% instead (see Table [3). We hypothesize that
it is beneficial to retain the second encoder at test time under the multimodal setting because it is
responsible for merging the information present across the multimodal data. Finally, in Table 4] we
investigate how different patch sizes and masking ratios affect the performance of our model. We
show that bi oFAME gives stable performance when the patch size is relatively small, giving robust
performance under a range of masking ratios.

5.2 MULTI-MODAL EVALUATIONS AND VISUALIZATIONS

Datasets and Experimental Details After verifying the model’s generalization ability on transfer
tasks, we investigated how well the model performs when applied to real-world cases in which
multimodal information is available at test time. To understand this, we systematically studied
different combinations of the EEG Fpz-Cz, EEG Pz-Oz, EOG, EMG, and the respiration channels
of the SleepEDF dataset (Kemp et al., 2000), which are simultaneously recorded. We followed the
same train/val/test split as in|Eldele et al.[(2021) while attaching the multimodal information instead
of using only the unimodal information. We utilized the same model setup as in Section [5.1] aside
from that we follow Section ff.2]to expand the training and testing under multimodal designs with
weight sharing and channel independence. We also implemented two variants of multimodal latent
expansion methods as in Appendix [C]

Robustness for Modality Mismatch Scenarios We consider two modality mismatch scenarios as
shown in Figure[3[A): (i) Modality substitution, where one modality is replaced by another modality;
and (ii) Modality dropout, where only a subset of modalities is present at test time. We show
the model’s performance with modality substitution in Figure [3(B), where the model is pretrained
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Figure 3: Multimodal evaluation results. (A) Two modality mismatch scenarios are considered: Modality
substitution and modality dropout. (B) When a modality is swapped with another available one, or (C) when
modalities are dropped out at test time, our model gives lower performance degradation when comparing to a
robust baseline. (D) By visualizing the attention weights across modalities, we can understand how modalities
are associated with each other.

with { EEG Fpz-Cz; EOG; EMG }. Each of the pretraining modality is replaced with another
channel to examine the performance degradation (more details in Appendix [B.3). Our model gives
better performance than the robust baseline PatchTST (Nie et al., 2022), exhibiting less performance
degradation. In terms of modality dropout, we pretrained the model with { EEG Fpz-Cz; EEG
Pz-Oz; EOG; EMG }, and we dropped an increasing amount of modalities till there is only one
modality left (see Flgure BIC)). We see that bioFAME is more resistant to unexpected modalities
dropout in comparison to the baseline. Unlike many other baselines that contain spatial layers,
bioFAME can be applied at test time even when there are unexpected amount of channels while
exhibiting resilience towards modality mismatch scenarios. This study further demonstrated that
bioFAME presents a robust model when used in real-world scenarios.

Visualizing the Connections Across Modalities To understand how the information across dif-
ferent channels affects each other, we visualized the averaged attention matrix to examine the re-
lationship across modalities. As shown in Figure [3(D), for each channel (row), the intensity of its
attention or connection to the other channels can be visualized by the color (red means stronger
connections). Interestingly, we notice that while each channel would rely on its own information
the most, they tend to focus on the stronger modalities, which is the EEG Fpz-Cz channel in our
case. Moreover, interesting asymmetry is observed for EOG-EMG, as EOG correlates more to the
EMG while the opposite does not hold. We hypothesize that this is because facial movement would
produce moving artifacts for EOG on the temple, while the opposite connection does not hold. This
observation demonstrates that bi oFAME can be used by researchers to further understand the in-
formation overlap across modalities (Bird et al., 2020).

6 CONCLUSION

In this work, we proposed a frequency-aware masked autoencoder that performs pretraining on
multimodal biosignals. Our proposed method leverages a frequency-aware encoder with fixed-size
Fourier-based operator to extract representation on biosignals, and uses a frequency-maintain pre-
training module to perform pretraining. We performed extensive empirical experiments to show
that (i) our model achieves state-of-the-art performance on a set of transfer experiments, where the
models, both pretrained on unimodality and multimodality, can be adapted to effectively classify
time series with varying input lengths, sensors, and sampling rates; and (2) our model demonstrates
resilience to within-modal and across-modal distributional shifts, shows robust performance when
applied in modality mismatch scenarios that are common in real-world applications.

While our model provides a good balance between utilizing frequency-information and operating
on time domain, we note that, just like other frequency-aware architectures (Li et al. [2020b), it
remains underexplored how to interpret the specific band and type of frequency information that is
taking effect in each downstream task. Exploring how the learned frequency filters can be structured
and interpreted will be an exciting line of future research. Also, in our current formulation, we
only consider low-density biosignal recording systems due to the lack of publicly available high-
dimensional multimodal biosignal datasets. Given the constraints, our architecture relies on the
channel-independent design, which is known to suffer from capacity and robustness trade-off (Han
et al., 2023). Extending and scaling our approach to high-dimensional sensor inputs is another
exciting line of future research for modeling comprehensive human states.
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