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Abstract

Since the debut of DPO, it has been shown that
aligning a target LLM with human preferences via
the KL-constrained RLHF loss is mathematically
equivalent to a special kind of reward modeling
task. Concretely, the task requires: 1) using the
target LLM to parameterize the reward model,
and 2) tuning the reward model so that it has a
1:1 linear relationship with the true reward. How-
ever, we identify a significant issue: the DPO loss
might have multiple minimizers, of which only
one satisfies the required linearity condition. The
problem arises from a well-known issue of the un-
derlying Bradley-Terry preference model: it does
not always have a unique maximum likelihood es-
timator (MLE). Consequently, the minimizer of
the RLHF loss might be unattainable because
it is merely one among many minimizers of
the DPO loss. As a better alternative, we pro-
pose an energy-based preference model (EBM)
that always has a unique MLE, inherently satis-
fying the linearity requirement. To showcase the
practical utility of replacing BTM with our EBM
in the context of offline alignment, we adapt a
simple yet scalable objective function from the
recent literature on fitting EBM and name it as
Energy Preference Alignment (EPA). Empirically,
we demonstrate that EPA consistently delivers bet-
ter performance on open benchmarks compared
to DPO, thereby validating the theoretical superi-
ority of our EBM.
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Table 1. The intrinsic evaluation based on the average Pearson
coefficient ∈ [−1, 1]) and the average slope-1 linear regression
error ϵ̂ shows that EPA renders a closer approximation to the
slope-1 linearity than DPO. This is consistent with the extrinsic
evaluation based on the Alpaca Eval 2.0 benchmark.

METHOD
PEARSON (↑) ϵ̂ (↓)

AE2.0 (%, ↑)SLOPE-1: NA SLOPE-1: ✓
LINEARITY: ✓ LINEARITY: ✓

DPO 0.4693 5.78 17.43 / 15.24

EPA (1:1:2) 0.5808 5.26 19.20 / 19.26
EPA (1:3:2) 0.5754 5.01 21.31 / 20.13

1. Introduction
Reinforcement Learning with Human Feedback (RLHF)
(Christiano et al., 2017) has been widely used to align a
large language model (LLM) with human preference. The
canonical RLHF objective (Ziegler et al., 2019; Stiennon
et al., 2020; Ouyang et al., 2022; Perez et al., 2022) is
defined as follows (given x):

LRLHF =

− E
πθ(y|x)

[rtrue(x, y)] + βKL[πθ(y|x)||πref(y|x)] (1)

where πθ(y|x) is the target LLM (i.e., the policy) to tune,
πref(y|x) a frozen LLM initialized identically as the target
LLM and rtrue(x, y) a reward to maximize.

The LRLHF as defined above is not differentiable w.r.t θ
(Ziegler et al., 2019; Rafailov et al., 2023), hence not SGD-
friendly. Luckily, it has been shown that the unique mini-
mizer of LRLHF can be analytically expressed (Korbak et al.,
2022a). Then, Rafailov et al. (2023) further reformulate the
analytical minimizer as the unique solution to the following
set of equations:




rθ(x, y)= β log

πθ(y|x)
πref(y|x)

rθ(x, y)= rtrue(x, y) + C(x)

(2)

(3)

Eq.(2) defines rθ as the log ratio reward and Eq.(3) states
that there holds a slope-1 linearity between the log ratio
reward and the true reward. This formulation implies that as
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− log(·)

p(yw, yl|x) & p(yw ≻ yl|x)

1
Figure 1. An illustration of the contributions of the paper. Our core argument is that an Energy-Based model (EBM) is a better alternative
to the Bradley-Terry model (BTM) due to its guaranteed unique existence of maximum likelihood estimator (MLE) (which is identical to
the minimizer of the RLHF loss). The advantage of our EBM comes from its intrinsic consideration of the infinity in the size of the space
of y|x, whereas BTM ignores issues caused by the pair sampling distribution (p(yw, yl|x)) in such infinite space. Hence we name our
EBM the Infinite Preference Model. Although approximating the MLE with our proposed EPA loss introduces inevitable error in practice,
we find that it is still empirically better performing than its counterpart – DPO, with or without loss modification techniques presented in
previous offline alignment literatures.

long as we can find a differentiable objective function L(rθ)
to achieve Eq.(3) and rθ is parameterized by Eq.(2), we can
convert the RLHF problem into an offline supervised task.
This is the approach of interest in this paper, a drastically
different one from classical online RL methods such as PPO.

The poster child example of this offline approach is DPO
(Rafailov et al., 2023):

Lideal
DPO(rθ) =

− E
p(yw,yl|x)

E
p(yw≻yl|x)

[log σ(rθ(x, yw)− rθ(x, yl))]
(4)

where yw and yl are two responses and yw ≻ yl means yw
is prefered to yl given the prompt x. The ideal1 DPO loss
is essentially the maximum likelihood estimation loss of
the Bradley-Terry model (BTM) who posits a sigmoidal
relationship between p(yw ≻ yl|x) and rtrue(x, yw) −
rtrue(x, yl). If the maximum likelihood estimator (MLE)
uniquely exists, Rafailov et al. (2023) show that the MLE
will make the slope-1 linearity hold.

However, as alluded to by our framing, we argue that it
is false to conclude that the slope-1 linearity (i.e., the
minimizer of the RLHF loss) is guaranteed to be reached

1“ideal” in the sense that the expectations in its loss function are
accurately computed. In practice, they can only be approximated,
which can introduce an additional error.

with DPO. The reason is that the unique existence of BTM’s
MLE (i.e., the minimizer of LDPO) is not guaranteed without
some non-trivial constraints on the structure of p(yw, yl|x),
a well-known issue of BTM given an infinite candidate space
(i.e., that of y|x) in the literature on learning to rank (Ford,
1957; Simons & Yao, 1999; Han et al., 2020; Hendrickx
et al., 2020; Bong & Rinaldo, 2022; Wu et al., 2022). It is
also related to the theoretical issues around dataset coverage
in the RL literature (Kakade & Langford, 2002; Munos
& Szepesvári, 2008; Zhan et al., 2022). Moreover, Tang
et al. (2024) have shown that when offline data are drawn
from πref (a usual practice), any pair-wise loss will cease
to correlate with LRLHF when πθ deviates enough from πref
due to reward maximization.

These theoretical facts motivate us to find an alternative
model that always has a unique MLE that guarantees the
slope-1 linearity. As illustrated in Figure 1 and showcased
by the results of a proof-of-concept experiment in Table
1, we argue that an Energy-Based model (EBM) called
the Infinite Preference Model (IPM) is such an alternative.
Also, even though its MLE can only be estimated far from
perfectly, we observe a closer approximation to the slope-1
linearity and better overall alignment with human preference
than DPO. In summary, our contributions are as follows:

• theoretically, we show BTM does not and IPM does
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have guaranteed unique existence of its MLE, equiva-
lent to the minimizer of the RLHF loss;

• empirically, by only loosely estimating the MLE using
a contrastive loss called EPA, we achieve a new state
of the art of offline alignment on open benchmarks in
various settings.

2. Related Work
2.1. DPO and its Recent Improvements

The first approach to avoid DPO’s theoretical issue is to
use non-BTMs to model data distributions. Rafailov et al.
(2023) suggest the DPO’s counterpart for the Plackett-Luce
Model (we refer to it as DPO-PL), which is a generalized
version of BTM for K-wise comparison. IPO (Azar et al.,
2023) uses a different pair-wise preference model than BTM.
The loss derived from that model can be interpreted as: the
difference of log ratio rewards of the yw and yl regresses to
a constant. However, Tang et al. (2024) show that IPO is still
incapable of optimizing LRLHF, similar to DPO. Ethayarajh
et al. (2024) (KTO) point out some limitations of modeling
human preference with a pair-wise model. Instead, they
independently model a data distribution for desirable sam-
ples and another one for undesirable samples. However,
such data distributions do not reflect how most benchmark
datasets are sampled. This could be the reason why some
empirically driven studies find that KTO underperforms
DPO on these benchmarks (Meng et al., 2024; Zhou et al.,
2024).

The second approach is to tweak the DPO loss. Some loss-
tweaking tricks can be effective on their own. For example,
Park et al. (2024) (R-DPO) introduce a length penalty on
the log ratio reward to make DPO less prone to the verbosity
bias. Amini et al. (2024) (ODPO) add a dynamic margin
between yw and yl based on the intuition that some pairs
have stronger or weaker desirability gaps than others. The
most effective one discovered so far is on-policy weighting
(WPO) (Zhou et al., 2024). Its idea is to approximate the
on-policy training scenario by assigning larger weights to
the loss of samples closer the current policy at each step
and smaller weights to that of less closer ones. Other tricks
come in combinations. For example, CPO (Xu et al., 2024)
removes the reference model in the log ratio reward and add
an SFT loss at the same time. ORPO (Hong et al., 2024)
is an improvement over CPO by adding yet another set of
tricks: normalizing the policy to the token level (length
normalization) and then contrasting the policy distribution
with one minus itself. To separate the wheat from the chaff,
Meng et al. (2024) find the most simple and effective recipe:
removing the reference model, adding a margin and apply-
ing length normalization, which gives rise to SimPO. The
problem with applying tricks is that there is usually a lack

of theoretical justification on how they are related to the
minimizer of the RLHF loss.

2.2. Fitting Discrete EBMs

To provide a theoretical background for our proposal, we
give a concise review of the most related work on fitting
discrete EBMs.

Energy-based models (EBM) (LeCun et al., 2006) are gen-
erative models that posit a Boltzmann distribution of data,
i.e., p(x) ∝ exp (−E(x)) where E(x) (called the energy
function) is a real-valued function to learn. An EBM is
called discrete when the data point x is defined on a discrete
space. To fit p(x) with maximum likelihood estimation re-
quires the computation of the normalizer Σ∞

x′ exp (−E(x
′
))

(called the partition function), which is intractable. There-
fore, EBMs are usually learned with a tractable approxima-
tion.

The classical approach is to approximate the gradient of
maximum likelihood estimation by online sampling from
parameterized pθ(x) with MCMC (Song & Kingma, 2021).
Although they are ideally effective, it is usually difficult
or expensive to do such sampling, which harms practical
results. Therefore, there are also many MCMC-free meth-
ods (Meng et al., 2022; Hyvärinen, 2007; Dai et al., 2020;
Lazaro-Gredilla et al., 2021; Eikema et al., 2022). Recently,
Schröder et al. (2023) have introduced the notion of energy
discrepancy, whose unique global minimizer is identical to
the MLE of the EMB in question. Hence, to find the MLE,
one can simply minimize the energy discrepancy, which is
feasible with SGD on offline data. For its simplicity, we
derive EPA based on their theoretical framework.

2.3. EBMs for RLHF

EBMs are not rare in the RLHF research. One of the re-
search directions is to formulate RLHF as a Distribution
Matching problem. The typical example for this approach
is Distributional Policy Gradients (DPG) (Parshakova et al.,
2019; Khalifa et al., 2021). However, we would like to point
out that our EBM is different and used for a different pur-
pose. The EBM in DPG is a non-parametric one predefined
as the learning signal. Our EBM is a parametric one to fit the
distribution of data. The only connection between the two
EBMs is that they are used to find the same optimal policy
(Korbak et al., 2022a). Deng et al. (2020) uses an EBM for
language modeling. Their work essentially solves the self-
play-like RLHF problem (Chen et al., 2024b). Although
their EBM is also parametric, it fits the optimal policy dis-
tribution. Our EBM instead fits the preference distribution.
Chen et al. (2024a) proposes two methods – infoNCA and
NCA, based on the same EBM as that of Deng et al. (2020).
The NCA loss follows the same derivation of the loss pro-
posed by Deng et al. (2020) except that they parameterize
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their energy function differently. The infoNCA loss exhibits
similarity to our loss. However, we will show that infoNCA
is just a worse-performing ablation version of EPA.

3. IPM: Our EBM for Preference Modelling
In the first subsection, we show that an energy-based model
(EBM) is guaranteed to have a unique MLE which is equiv-
alent to the minimizer of the RLHF objective. In the second
subsection, based on a framework by Schröder et al. (2023),
we describe a general strategy to approximate the MLE us-
ing offline data. Using it will provide the theoretical account
for our proposal in section 4.

3.1. Theoretical Guarantee

Given any x, it is obvious that the space of y|x is infinitely
large because y can be any token sequence of unlimited
length no matter how likely or unlikely it is a response to
x. This infinity is problematic for BTM. For example, if
there is a single y that is never sampled, it is easy to refute
the unique existence of BTM’s MLE (see Proposition B.5).
However, EBM can naturally take the infinity into account
to avoid the issue. Specifically, we model a one-to-infinite
preference (v.s. BTM and the more general Plackett-Luce
model only model a one-to-finite-number preference) as
follows:

p(y|x) := p(∀y′ ̸= y : y ≻ y′|x) (5)

Namely, p(y|x)2 is the probability that candidate y is pre-
ferred over all other candidates. Under mild assumptions
(Assumptions B.1 and B.2) that make an EBM applicable,
we define the Infinite Preference Model (IPM) to be the one
that posits that p(y|x) is a Boltzmann distribution induced
by the corresponding true reward (i.e., using −rtrue(x, y) as
the energy function):

p(y|x) = exp[rtrue(x, y)]

Σ∞
y′ exp[rtrue(x, y

′)]
(6)

IPM is a better alternative to BTM because of the following
theorem (see Appendix B for proof).
Theorem 3.1. when we parameterize the IPM as follows,
the unique existence of the IPM’s MLE is guaranteed and
it will be reached if and only if the slope-1 linearity (i.e.,
Eq.(3)) holds between the log ratio reward and the true
reward.

qθ(y|x) =
exp[rθ(x, y)]

Σ∞
y′ exp[rθ(x, y

′)]
(7)

where rθ is defined as in Eq.(2).

2One should not confuse p(y|x) with π(y|x) although both of
them are distributions over y given x. p(y|x) is how likely humans
would rate a y as the best whereas π(y|x) measures how likely y
is to be generated.

Therefore, as long as we can find the MLE of the IPM pa-
rameterized as so, we are guaranteed to reach the minimizer
of LRLHF since it is the unique solution to Eq.(2) and Eq.(3).

On a side note, the IPM has been previously introduced by
other studies on RLHF for a different purpose: to theoreti-
cally equate the maximization of −LRLHF to the variational
inference of the optimal policy with πref as the prior (Korbak
et al., 2022b; Yang et al., 2024). However, to the best of our
knowledge, we are the first one to introduce IPM not just as
a theoretical toy, but as a tool (when parameterized by the
log ratio reward) to do proper RL-free RLHF.

3.2. Offline Approximation of MLE

Despite the powerfulness of IPM, finding its MLE is a non-
trivial task. Directly finding it with the minimization of the
negative log likelihood − log qθ(y|x) is intractable because
of the infinity in the denominator.

There are good tractable approximations but usually with
complex online training algorithms. For simplicity and
scalability purposes, we choose to follow Schröder et al.
(2023), who provide a general strategy that finds the optimal
EBM by simple SGD with offline training data. The strategy
is based on two theorems formally adapted for our purpose
as follows.

Theorem 3.2. For any random variable Z with the condi-
tional variance Var[Y |Z] being positive, the global unique
minimizer r∗(x, y) of the functional Energy Discrepancy
(ED) defined as follows is the optimal IPM (i.e., p(y|x) ∝
exp [r∗(x, y)]).

EDx,p(y|x),p(z|y)[r] :=

E
p(y|x)

E
p(z|y)

[log Σy′p(z|y′) exp [r(x, y′)− r(x, y)]] (8)

Theorem 3.3. For any random variable Z whose back-
ward and forward transition probabilities from Y solve the
equation Σyp(z|y)f(y) = Σyp(y|z)f(y) for an arbitrary
f , the estimation error of the following statistic estimate of
EDx,p(y|x),p(z|y)[r] vanishes almost surely when N −→ ∞
and M −→ ∞.

L[θ|x] :=
1

N
ΣN

i log(1 + ΣM
j exp [rθ(x, y

i,j
− )− rθ(x, y

i)])

− log(M)

(9)

where {yi}N are samples from p(y|x), {yi,j− }M from
p(y|z0), and z0 a single sample from p(z|yi).

A one-sentence interpretation of the above theorems is: if
we have a particular kind of negative sampling strategy by
perturbing observed preferred samples, we will learn the
optimal IPM by minimizing a contrastive loss between the
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negatives and observed positives. Therefore, when the IPM
is parameterized by the log ratio reward, we will find the
exact minimizer of LRLHF with this loss function.

Note that the property of the negative sampling source Z
as described in Theorem 3.3 is just a sufficient condition as
opposed to a necessary one. This leaves room for empirical
discovery of better negative sampling strategies. A rule of
thumb as suggested by Schröder et al. (2023) is that Z has to
be informative of Y and of high conditional variance at
the same time. This provides the intuition of our proposal
in section 4.

4. EPA: A Practical Approximation
To introduce our loss, we first write the ideal loss in Eq.(9)
in an equivalent form by removing the constant log(M) and
moving a minus sign out of the logarithm:

L̃[θ|x] :=
1

N
ΣN

i − log
exp[rθ(x, y

i)]

exp[rθ(x, yi)] + ΣM
j exp[rθ(x, y

i,j
− )]

(10)

Now we propose our loss function in this negative log soft-
max form with a specific negative sampling strategy in mind.

4.1. Narrow Definition

For the most classical setup, we assume we only have access
to pair-wise preference data. In this setting, our loss for
each mini-batch of B samples ({(xi, yiw, y

i
l)}B) is defined

as follows:

LEPA =

1

B

B∑
i

− log
exp[rθ(x

i, yi
w)]∑

j∈{i}∪Iwk

(
exp[rθ(xi, yj

w)] + exp[rθ(xi, yj
l )]

) (11)

where Iwk is a non-empty random subset of {1, 2, . . . , i−
1, i + 1, . . . , B}, introducing negative samples that are
mismatched responses originally sampled for other prompts.
Its size |Iwk| = N−

weak/2 ∈ (0, B − 1] is a hyperparameter.
Note that our loss without Iwk reduces to the DPO loss.
We justify our choice of positives and negatives in EPA as
follows:

1. Why is yw a good approximation of a positive sam-
ple from p(y|x)? For a yw in the dataset, it may not
be the best y, but there is only a finite number of po-
tentially possible better ones according to Assumption
B.1. Also, since we know it is preferred over yl and
infinitely many other arbitrary token sequences, it is
a good approximation of a y that is preferred over all
other samples up to a small error.

2. Why use both yl and mismatched responses as neg-
atives? As stated at the end of section 3, we want to

draw the negatives from a perturbation source that is
both informative of the positives and of high variance
at the same time. For the informativeness, we consider
strong negatives yl because they are semantically close
to yw. For the high variance, we consider weak nega-
tives such as mismatched responses. We will show the
effectiveness of such choice with ablation experiments
in section 5.

4.2. General Definition

Note that the number of strong negatives in Eq.(11) is lim-
ited to 1 because of the given pair-wise data. This is not ideal
for the approximation of IPM’s MLE because the number
of negatives should be large enough to reduce the approxi-
mation error (Theorem 3.3). Therefore, we generalize our
definition of EPA to circumstances where we can have ac-
cess to more strong negatives (i.e., each yw is accompanied
by {yl1 , yl2 , . . . } instead of just one yl). This is practi-
cally feasible because we can always sample less desirable
responses from some LLM.

Hence, we define our loss in a more general form as follows:

Lgeneral
EPA =

1

B

B∑
i

− log
exp[rθ(x

i, yi
w)]

exp[rθ(x
i, yi

w)] +
∑

k∈Ist
exp[rθ(x

i, yi
lk

)] +
∑

j∈Iwk

exp[rθ(x
i, y

j
∗)]

(12)

where Ist contains N−
strong indices of available strong neg-

atives; Iwk contains N−
weak indices of weak negatives; yj∗

can be either yjw or some yjlk (j ̸= i).

4.3. Gradient Analysis

Using the chain rule, one can easily find the gradient of the
EPA loss (the general one) as follows:

∇θLgeneral
EPA =

− β

B

B∑
i

(∑
k∈Ist

silk
(
∇θ log πθ(y

i
w|xi)−∇θ log πθ(y

i
lk |x

i)
)

︸ ︷︷ ︸
strong contrast

+
∑
j∈Iwk

sj
(
∇θ log πθ(y

i
w|xi)−∇θ log πθ(y

j
∗|xi)

)
︸ ︷︷ ︸

weak contrast

)(13)

where silk and sj are the softmax-ed values of the strong
negative log ratio rewards and the weak negative log ratio
rewards, respectively. They control the magnitude of the
strong and weak contrast. When there is no weak contrast,
the gradient reduces to that of the DPO loss if there is only
one strong negative. Therefore, one can interpret the weak
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contrast as a regularization term added to DPO to prevent
θ from moving to a direction that undesirably increases the
likelihood of weak negatives.

5. Experiments
5.1. Experimental Setup

5.1.1. TRAINING DATA

We consider the dataset of Ultrafeedback (Cui et al., 2024)
(denoted as ‘UF-all’) and a widely used pair-wise version
of it (Tunstall et al., 2023) (UF-binarized). The two datasets
are ideal for our purpose besides their popularity. Firstly, in
UF-all, there are 4 responses sampled from multiple sources
for each prompt. This will allow training with our general
version of EPA which can utilize multiple strong negatives.
Secondly, in both UF-all and UF-binarized, the positive
sample yw for each x is the best one out of the 4 responses.
This is an arguably close approximation to our assumption
that positives are sampled from p(∀y′ ̸= y : y ≻ y′|x).

5.1.2. EVALUATION

Although Ultrafeedback is intended to reflect human pref-
erence, it is labeled by GPT-4 in reality. Consequently, we
consider MT-Bench (Zheng et al., 2024) which also uses
GPT-4 to score a response on a scale of 1-10. The metric is
the average score for 80 single-turn conversations and 80
multi-turn conversations. We also consider Alpaca-Eval 2.0
(Dubois et al., 2024) because of its high correlation with
human preference, the ultimate concern for RLHF. Its met-
rics are win-rates (with or without length control) against
GPT-4-turbo across 805 test samples with the judge being
GPT-4-turbo itself. We report them in the format of “length
controlled win-rate / win-rate” in the experiment results.
For evaluation on Alpaca Eval 2.0, we use the default de-
coding parameters in the Huggingface implementation. For
MT-Bench, we use the ones specifically required by the
benchmark.

5.1.3. BASELINES & LOSS MODIFICATION TRICKS

For fair comparison, we only consider methods from the ap-
proach that explicitly aims to minimize LRLHF with specific
probabilistic models about data distributions. Therefore,
we consider DPO, IPO, KTO and NCA for the classical
pair-wise data setting. We consider DPO-PL, NCA, and
infoNCA for the general setting where there are multiple
responses for each prompt in the dataset.

Loss modification tricks are not considered as baselines
because they are orthogonal to our proposal. Comparing
BTM+tricks to EBM would be comparing apples to oranges.
Instead, we consider applying the tricks to both EPA (the
narrow one for fair comparison) and DPO to further verify

our core argument about EBM’s superiority over BTM. The
tricks in consideration are those used in SimPO, R-DPO,
CPO and WPO (Details in Table 7 in the Appendix C).

5.1.4. IMPLEMENTATION

We use mistral-7b-sft-beta3 as the reference model and for
the initialization of policy in our paper. We train all models
in this paper for 3 epochs with LoRA (r = 16, α = 16,
dropout = 0.05). Whenever comparing among different
methods, we pick the one out of the three checkpoints with
the best MT-Bench score for each method. For fair compar-
ison of baseline models, we fix β to 0.01. It is more of a
control variable than a hyperparameter because it is a given
component of the RLHF objective which all baselines are
aimed to optimize. We only vary β for them when probing
their KL-Reward frontiers. For comparison of loss modifi-
cation tricks, since the RLHF objective is not necessarily
the purpose, we use the best β and other hyperparameters
specific to each method as reported in previous work (e.g.,
the tricks used in SimPO are only competitive when β = 2.0
for the Mistral model). Learning rate is grid-searched for
each method among {1e− 5, 5e− 6, 1e− 6}.

Table 2. EPA beats all other baselines either for pair-wise data or
for data with > 2 responses for each prompt.

TRAINING DATA METHOD AE 2.0 (%) MT-BENCH

SFT 8.16 / 5.47 6.44

UF-BINARIZED

+DPO 17.43 / 15.24 7.55
+IPO 12.97 / 10.13 7.31
+KTO 12.62 / 11.29 7.21
+NCA 14.64 / 11.27 7.39

+EPA 19.20 / 19.26 7.71

UF-ALL

+DPO-PL 15.95 / 14.68 7.57
+NCA 15.08 / 11.85 7.28

+INFONCA 17.30 / 16.25 7.50

+EPA 22.03 / 21.44 7.58

5.2. Results and Analysis

5.2.1. EPA PERFORMS BETTER THAN BASELINES

As shown in Table 2, we can see EPA consistently achieves
the highest scores and hence a new state of the art. Note
that other baselines generally perform even less well than
DPO. This makes BTM the strongest baseline for IPM.

To compare IPM with its most competitive baseline BTM
in detail, we come back to the starting point – optimizing
LRLHF. We study from two perspectives of the optimization
problem. Both perspectives involve multiple checkpoints

3https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
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Figure 2. DPO vs. EPA (1:1:2) from the perspective of (a) KL-Reward frontier and (b) training dynamics.

beyond the single best one for each method (e.g., Table 2),
offering a more comprehensive comparison.

First, we study how well each method balances the KL
term and the reward term in LRLHF with varying β ∈
{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.5}. Both terms are com-
puted on the 80 single-turn prompts in the MT-Bench dataset.
We estimate KL with 20 response samples per prompt from
each policy distribution. We use the GPT-4 score produced
by MT-Bench as an alias for the true reward. As shown in
Figure 2.(a), in the high-KL region, EPA generally achieves
higher reward than DPO. The two become indistinguishable
only in the low-KL region.

Second, to understand how EPA differs from DPO in terms
of the dynamics during the optimization process, we test the
MT-Bench score of the checkpoint at every 20% of an epoch.
As shown in Figure 2.(b), EPA is less prone to overfitting
and fits to the reward signal more steadily than DPO. The
performance of DPO starts to degenerate rapidly after the
first epoch. However, EPA reaches its peak performance
at the end of the second epoch and overfits more slowly
afterward. This is consistent with our gradient analysis in
Section 4 that EPA is more regularized than DPO.

5.2.2. COMBINING STRONG AND WEAK NEGATIVES IS
EFFECTIVE

We also run ablation and variants of EPA for different num-
bers of strong and weak negatives (ie., two hyperparameters
of EPA). As shown in Table 5.2.2, we can observe the pat-
tern that strong negatives and weak negatives should be
roughly balanced to achieve the best overall performance.
The absence or excessiveness of either kind of the negatives
will lead to poorer performance. This is consistent with
the intuition that the negative distribution should be both
informative and of high variation.

Table 3. Ablation and variants of EPA with varying number of
strong negatives (N−

strong) and that of weak negatives (N−
weak) in

addition to the 1 positive (N+ = 1) in the denominator of Lgeneral
EPA .

METHOD N+ :N−
strong :N−

weak
AE 2.0 (%) MT-BENCH

ABLATION
1:1:0 (DPO) 17.43 / 15.24 7.55
1:0:2 9.37 / 6.74 6.57

EPA
1:1:1 21.14 / 20.55 7.29
1:1:2 19.20 / 19.26 7.71
1:1:6 16.63 / 15.78 7.57

ABLATION 1:3:0 (INFONCA) 17.30 / 16.25 7.50

EPA

1:3:2 22.03 / 21.44 7.58
1:3:4 21.31 / 20.13 7.58
1:3:6 24.01 / 23.44 7.35
1:3:8 24.54 / 23.75 7.19
1:3:10 23.58 / 22.78 7.43

Table 4. Adding the same number of weak negatives to the data
for DPO (as additional yl to be paired with the original yw) or
DPO-PL (as additional negatives ranked after the yw and yl) does
not show any advantage over EPA. +UF-weak×1 means to add
a set of random weak negatives that is of the same quantity of
prompts in UF-binarized. +UF-weak×2 means to add 2 such sets.

TRAINING DATA METHOD AE 2.0 (%) MT-BENCH

UF-BINARIZED
DPO 17.43 / 15.24 7.55

EPA (1:1:1) 21.14 / 20.55 7.29
EPA (1:1:2) 19.20 / 19.26 7.71

+ UF-WEAK×1 DPO 18.99 / 17.00 7.37
DPO-PL 15.78 / 15.17 7.54

+ UF-WEAK×2 DPO 18.49 / 18.72 7.42
DPO-PL 15.59 / 14.79 7.44
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Table 5. BTM vs. IPM with empirically effective loss modification
tricks.

PREF LOSS AE 2.0 (%) MT-
MODEL MODIFICATION BENCH

BTM

N/A (DPO) 17.43 / 15.24 7.55

−ref + Lsft (CPO) 13.63 / 10.34 7.11

+lenp (R-DPO) 19.10 / 16.71 7.70

−ref + lenn +mc (SIMPO) 20.57 / 20.19 7.61

+wop (WPO) 21.90 / 21.04 7.56

+mc 22.33 / 20.61 7.67

IPM
N/A (EPA) 19.20 / 19.26 7.71

+wop 22.80 / 22.26 7.61

+mc 23.00 / 22.47 7.68

5.2.3. COMPUTATION COST-EFFECTIVENESS
COMPARED TO ALTERNATIVES

There might be a concern that EPA’s effectiveness merely
comes from more computations induced by the additional
weak negatives. Therefore, we also experiment with the
introduction of weak negatives to BTM and the more gen-
eral Placket-Luce Model. As shown in Table 4, we can
see that EPA still performs better than DPO and DPO-PL
in the setting where the total number of computations is
strictly controlled. This indicates that the effectiveness is
not based on the additional computations alone, but essen-
tially a consequence of the superior theoretical property of
IPM, an EBM that has a unique MLE. Nevertheless, one can
still argue that it is a somewhat shortcoming that EPA has a
computation complexity linearly related to the number of
contrasting samples. However, when there is an additional
computation budget available in practice, EPA is indeed
so far the most cost-effective method to fully exploit the
resource. In addition, we want to emphasize that the compu-
tation cost is not an intrinsic attribute of replacing BTM with
IPM (the core contribution/purpose of this paper), but only
an attribute of EPA (a not-so-perfect way to estimate the
IPM’s MLE). As the studies of EBM continue to progress,
it is reasonable to expect IPM to outrun BTM even more.

5.2.4. IPM+TRICKS >= BTM+TRICKS

Since most loss modification tricks presented in the re-
cent offline alignment literature are originally intended for
BTM/DPO and do not necessarily make sense to IPM/EPA,
we only consider two of them when applying to EPA. The
first one is a constant margin mc added to the logit of yl.
The trick can be viewed as a loose numerical approxima-
tion to the general EPA where there are multiple ylk . For
example, if mc = 1.4, we have exp [rθ(x, yl) +mc] =
exp [mc] × exp [rθ(x, yl)] ≈ 4 × exp [rθ(x, yl)]. The sec-
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Figure 3. Performance of modified DPO (N−
weak = 0) and modi-

fied EPA (N−
weak > 0) with a margin mc added to rθ(yl|x). Solid

lines represent the length-controlled win-rates, and dotted lines
represent the raw win-rates.

ond one is the on-policy weight proposed by Zhou et al.
(2024). It can be viewed as a curriculum learning technique
which prioritizes samples that closely relate to the current
policy distribution at each step.

As shown in Table 5, we find that both +wop and +mc

produce similar performance boost on EPA to DPO. Al-
though the marginal boost on EPA is generally smaller than
DPO, EPA with tricks is still better than DPO with tricks.
However, the fact these tricks can still work on EPA also
implies that there is still room for improvement. This may
come from EPA not necessarily being the best algorithm to
approximate IPM’s MLE.

We also study in detail how the value of mc influences
DPO and EPA. As shown in Figure 3, we observe that
a combination of higher mc and higher N−

weak tends to
produce higher performance. A possible explanation for
this is that as mc scales up the logit of the strong negative
yl to loosely approximate the existence of multiple strong
negatives, we get closer to the performance of the general
EPA.

6. Conclusion
In this paper, we show both BTM and our EBM (IPM) have
the property that their MLE, if uniquely exists, is equivalent
to the minimizer of the RLHF loss. However, the unique ex-
istence of IPM’s MLE is guaranteed whereas that of BTM’s
MLE is not. This theoretical advantage implies that as long
as the IPM’s MLE is accurately found, we are bound to
minimize the RLHF loss. But, the same claim does not hold
for BTM. Although EPA is just an empirical attempt to ap-
proximate IPM’s MLE, it is already sufficient to outperform
its counterpart – DPO on open benchmarks, with or without
loss modification tricks presented in previous work.

However, EPA is far from perfect. For example, relatively
poorer computation and memory efficiency is a major handi-
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cap of EPA. Foreseeable future work includes finding better
ways to perturb data or adopting more efficient methods to
approximate the MLE. Loss modification tricks particularly
tailored for EPA also remain to be explored.
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B. Á., and Piot, B. Generalized preference optimization:
A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

Tikhonov, A. and Ryabinin, M. It’s all in the heads: Using
attention heads as a baseline for cross-lingual transfer in
commonsense reasoning. CoRR, abs/2106.12066, 2021.
URL https://arxiv.org/abs/2106.12066.

Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Ra-
sul, K., Belkada, Y., Huang, S., von Werra, L., Fourrier,
C., Habib, N., et al. Zephyr: Direct distillation of lm
alignment. arXiv preprint arXiv:2310.16944, 2023.

Wu, W., Junker, B. W., and Niezink, N. Asymptotic compar-
ison of identifying constraints for bradley-terry models.
arXiv preprint arXiv:2205.04341, 2022.

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Van Durme,
B., Murray, K., and Kim, Y. J. Contrastive preference
optimization: Pushing the boundaries of llm performance
in machine translation. arXiv preprint arXiv:2401.08417,
2024.

Yang, J. Q., Salamatian, S., Sun, Z., Suresh, A. T., and
Beirami, A. Asymptotics of language model alignment,
2024.

Yuan, H., Yuan, Z., Tan, C., Wang, W., Huang, S.,
and Huang, F. RRHF: Rank responses to align lan-
guage models with human feedback. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=EdIGMCHk4l.

Zhan, W., Huang, B., Huang, A., Jiang, N., and Lee, J. Of-
fline reinforcement learning with realizability and single-
policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Zhou, W., Agrawal, R., Zhang, S., Indurthi, S. R., Zhao,
S., Song, K., Xu, S., and Zhu, C. Wpo: Enhancing rlhf
with weighted preference optimization. arXiv preprint
arXiv:2406.11827, 2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.
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A. Proof of the Equivalence Between Slope-1
Linearity and Minimizer of the RLHF Loss

We do not claim any originality for the proofs given in this
section because they are largely just paraphrased versions of
the work by Korbak et al. (2022a); Rafailov et al. (2023) and
others. We include them just for reference and complete-
ness of the mathematical foundation shared by both DPO
and EPA. Throughout this paper, we make the same mild
assumption as by Rafailov et al. (2023) that πref is strictly
positive.

Lemma A.1. The minimizer of the RLHF objective uniquely
exists.

Proof. We show the minimizer πr can be analytically
expressed by 1

Z(x)πref(y|x) exp 1
β r(x, y) where Z(x) =

Σ∞
y πref(y|x) exp 1

β r(x, y) (i.e., a normalizer to make πr

a probabilistic distribution).

From the property of Gibb’s inequality, we know:

πr =
1

Z(x)
πref(y|x) exp [

1

β
r(x, y)]

⇔

πr = argmin
πθ

βKL[πθ(y|x)||
1

Z(x)
πref(y|x) exp

1

β
r(x, y)]

We will complete the proof by showing the βKL-Divergence
on the RHS of the above equation is the RLHF objective
itself plus a constant w.r.t θ:

βKL[πθ(y|x)||
1

Z(x)
πref(y|x) exp

1

β
r(x, y)]

= β E
πθ(y|x)

[log
πθ(y|x)

1
Z(x)πref(y|x) exp 1

β r(x, y)
]

= β E
πθ(y|x)

[log
Z(x)

exp[ 1β r(x, y)]
+ log

πθ(y|x)
πref(y|x)

]

= β E
πθ(y|x)

[logZ(x)− 1

β
r(x, y) + log

πθ(y|x)
πref(y|x)

]

= − E
πθ(y|x)

[r(x, y)] + βKL[πθ(y|x)||πref(y|x)]

+ β logZ(x)

= LRLHF (θ) + β logZ(x)

Definition A.2. We say a slope-1 linearity holds when:

rθ(x, y) = r(x, y) + C(x)

where rθ(x, y) = β log πθ(y|x)
πref(y|x) .

Theorem A.3 (Theorem of necessity). If πθ = πr, then
slope-1 linearity holds.

Proof. If πθ = πr, then according to Lemma A.1, we have:

πθ =
1

Z(x)
πref(y|x) exp

1

β
r(x, y)

Take the logarithm of both sides of this equation, we have:

log πθ = log πref +
1

β
r(x, y)− logZ(x)

After moving the two log terms to the same side, we get
slope-1 linearity:

β log
πθ

πref
= r(x, y)− β logZ(x)

Theorem A.4 (Theorem of sufficiency). If slope-1 linearity
holds, then πθ = πr.

Proof. From the Theorem of necessity, we know:

β log
πr

πref
= r(x, y)− β logZ(x)

Substracting the slope-1 linearity from this equation, we
get:

β log
πr

πref
− β log

πθ

πref
= −β logZ(x)− C(x)

Eliminating the non-zero β from both sides and taking the
exponential, we have:

πr

πθ
= f(x)

where f(x) = 1
Z(x) exp[ 1βC(x)]

. Moving πθ to the RHS, we
get:

πr = πθf(x)

Taking Σ∞
y for both sides, we can sum up both distributions

πr and πθ to one:
1 = f(x)

Therefore,
πr = πθf(x) = πθ

Note that from the above proof, we can easily get the follow-
ing corollary because f(x) = 1 ⇔ C(x) = −β logZ(x).

Corollary A.5. when a rθ satisfies slope-1 linearity, it is
unique.

B. Theoretical Aspect of the Infinite
Preference Model

We will first give our proof of the guaranteed unique exis-
tence of our IPM’s MLE. Then, we will discuss how BTM
is flawed for an infinite space of y|x.
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B.1. On IPM’s MLE

We make the following mild assumptions about the structure
of human preference:

Assumption B.1. D·|x = {y|p(y|x) > 0} is a finite set.

Assumption B.2. r(x, y) −→ −∞ for any y /∈ D·|x and
r(x, y) < +∞ for any y ∈ D·|x.

Note that the above two assumptions are just one of many
sufficient assumptions that make the partition function exist
as a finite real number. Also note that the finity of D·|x and
the infinity of the space of y|x are two different things that
can certainly co-exist. Namely, D·|x is a subset of the space
of y|x. The number of y outside of D·|x is still infinitely
large. The two assumptions in plain words are simply that
we assume humans will only possibly prefer a finite set of
responses. Note that this does not mean that the finite set
D·|x cannot be very large.

Definition B.3. The maximum likelihood estimation objec-
tive of IPM is the negative log-likelihood of preference data
computed as follows:

−Σ∞
y p(y|x) log qθ(y|x)

where p(y|x) = exp[r(x,y)]

Σ∞
y
′ exp[r(x,y′ )]

and qθ(y|x) =

exp[rθ(x,y)]

Σ∞
y
′ exp[rθ(x,y

′ )]
.

Given the uniqueness in Corollary A.5, we can argue the
following:

Theorem B.4 (Theorem 3.1 in the main content of the pa-
per). The rθ that satisfies the slope-1 linearity is the unique
minimizer of the IPM’s maximum likelihood estimation ob-
jective.

Proof. Again, from the property of Gibb’s inequality, we
know:

qθ(y|x) = p(y|x)
⇔
qθ(y|x) = argmin

q
KL[p(y|x)||q(y|x)]

For the equation on the right, since p(y|x) is a constant w.r.t
θ, we can find qθ is the minimizer of IPM’s objective:

qθ(y|x) = argmin
q

KL[p(y|x)||q(y|x)]

= argmin
q

H[p(y|x)]− Σ∞
y p(y|x) log q(y|x)

= argmin
q

−Σ∞
y p(y|x) log q(y|x)

We then show that qθ(y|x) = p(y|x) is equivalent to slope-1
linearity to complete the proof by taking the logarithm of

both sides:

rθ(x, y)− C1(x) = r(x, y)− C2(x)

⇔
rθ(x, y) = r(x, y) + C(x)

where C1(x) = logΣ∞
y′ exp[rθ(x, y

′
)], C2(x) =

log Σ∞
y′ exp[r(x, y

′
)] and C(x) = C1(x)− C2(x)

Note that similar proof does not apply to BTM. The fun-
damental reason is that the C1(x) and C2(x) only become
constants when there is an infinity in the sum to cancel out
all y.

B.2. On Bradley-Terry Model’s Flaw

We will show in Proposition B.5 that a very likely choice
of p(yw, yl|x) will lead to multiple minimizers for the max-
imum likelihood estimation of BTM. There are also many
other choices of p(yw, yl|x) are known to cause the exis-
tence of multiple minimizers (Ford, 1957; Bong & Rinaldo,
2022), such as when there is no full connectivity of the
graph made by pairs from p(yw, yl|x), and when all y candi-
dates can only be paired with a single shared winning ỹ, etc.
Therefore, there is no guarantee for the MLE’s uniqueness
without imposing additional constraints on p(yw, yl|x) (i.e,
how the pairs are sampled for DPO). For the loosest suffi-
cient constraints discovered so far to ensure the uniqueness,
one can refer to Bong & Rinaldo (2022). However, to the
best of our knowledge, how such constraints can be applied
to DPO has never been studied in the offline alignment liter-
ature, which is also out of the scope of this paper. Moreover,
in the infinite-candidate scenario, a constraint that is both
necessary and sufficient for the uniqueness of BTM’s
MLE remains unknown to this day. What makes BTM
even more theoretically troublesome in the case of RLHF
is that there is also an infinity for the space of x as well.
Therefore, strictly speaking, there is an infinite number of
BTMs used in DPO. And, the p(yw, yl|x) for every x should
ensure the uniqueness, in order to make DPO really work as
expected. Interestingly, although our EPA loss also needs
an infinite number of IPMs in the strict sense, Theorem B.4
(3.1) ensures the MLE uniqueness of all the IPMs.
Proposition B.5. If there exists a y∗ that will never be
sampled (i.e., p(y∗, ·|x) = 0 and p(·, y∗|x) = 0), then
whenever there is a minimizer for Bradley-Terry’s maximum
likelihood estimation, it is not unique.

Proof. Without losing generality, we set β = 1.

Given the log ratio reward parameterization, we have an
intrinsic constraint on rθ:

∞∑

y′

πref exp[rθ] =

∞∑

y′

πθ = 1

13



Energy-Based Preference Model Offers Better Offline Alignment

If we assume that there is a unique minimizer rθ̂ to BTM’s
maximum likelihood estimation, it certainly satisfies the
above constraint:

∞∑

y′

πref exp[rθ̂] = 1

We will then show that another reward also follows the
constraint (hence a valid log ratio reward) and shares the
same expected data likelihood as rθ̂, which contradicts the
uniqueness of rθ̂. We define the other reward as:

r̃θ̂(x, y) =

{
log(exp[rθ̂(x, y) +A(x)] + 1−exp[A(x)]

πref
), if y = y∗

rθ̂(x, y) +A(x), otherwise

where A(x) can be any negative constant w.r.t y. This
reward satisfies the constraint because:

∞∑

y′

πref exp[r̃θ̂(x, y
′)]

=

∞∑

y′ ̸=y∗

πref exp[r̃θ̂(x, y
′)] + πref exp[r̃θ̂(x, y

∗)]

=

∞∑

y′ ̸=y∗

πref exp[rθ̂(x, y
′) +A(x)]

+ πref exp[r̃θ̂(x, y
∗)]

= exp[A(x)]

∞∑

y′ ̸=y∗

πref exp[rθ̂(x, y
′)]

+ πref exp[r̃θ̂(x, y
∗)]

= exp[A(x)](1− πref exp[rθ̂(x, y
∗)])

+ πref exp[r̃θ̂(x, y
∗)]

= exp[A(x)](1− πref exp[rθ̂(x, y
∗)])

+ πref exp[rθ̂(x, y
∗) +A(x)] + (1− exp[A(x)])

= exp[A(x)](1− πref exp[rθ̂(x, y
∗)])

+ exp[A(x)](πref exp[rθ̂(x, y
∗)]− 1) + 1

= 1

Note that the constraint makes r̃θ̂ correspond to a valid
policy π̃θ̂ = πref exp[r̃θ̂] that sums up to 1. The policy is
also in the range of [0, 1] because:

1) for y = y∗:

π̃θ̂ = πref exp[r̃θ̂]

= πref exp[rθ̂ +A(x)] + 1− exp[A(x)]

= exp[A(x)]πref exp[rθ̂] + 1− exp[A(x)]

= exp[A(x)]πref
πθ̂

πref
+ 1− exp[A(x)]

= exp[A(x)](πθ̂ − 1) + 1

and since A(x) < 0 and πθ̂ ∈ [0, 1], we have:

1 ≥ exp[A(x)](πθ̂ − 1) + 1

≥ exp[0](πθ̂ − 1) + 1

= πθ̂ ≥ 0

hence π̃θ̂ ∈ [0, 1];

2) for y ̸= y∗:

π̃θ̂ = πref exp[r̃θ̂]

= πref exp[rθ̂ +A(x)]

= exp[A(x)]πref exp[rθ̂]

= exp[A(x)]πref
πθ̂

πref

= exp[A(x)]πθ̂

∈ [0, 1]

Then, we show that this valid log ratio reward is indeed
another minimizer because it leads to the same expected
likelihood of data as rθ̂.

E
p(yw,yl|x)

E
p(yw≻yl|x)

[log σ(r̃θ̂(x, yw)− r̃θ̂(x, yl))]

=

∞∑

yw,yl

p(yw, yl|x) E
p(yw≻yl|x)

[log σ(r̃θ̂(x, yw)− r̃θ̂(x, yl))]

=

∞∑

yw ̸=y∗,yl ̸=y∗

p(yw, yl|x)·

E
p(yw≻yl|x)

[log σ(r̃θ̂(x, yw)− r̃θ̂(x, yl))]

=

∞∑

yw ̸=y∗,yl ̸=y∗

p(yw, yl|x)·

E
p(yw≻yl|x)

[log σ(rθ̂(x, yw) +A(x)− rθ̂(x, yl)−A(x))]

=
∞∑

yw ̸=y∗,yl ̸=y∗

p(yw, yl|x)·

E
p(yw≻yl|x)

[log σ(rθ̂(x, yw)− rθ̂(x, yl))]

=

∞∑

yw,yl

p(yw, yl|x) E
p(yw≻yl|x)

[log σ(rθ̂(x, yw)− rθ̂(x, yl))]

= E
p(yw,yl|x)

E
p(yw≻yl|x)

[log σ(rθ̂(x, yw)− rθ̂(x, yl))]

Finally, because the possible choices of A(x) are infinite and
by assuming the full representation capacity of a large neural
network, π̃θ̂ can be represented by some other πθ̃.

Note that if we are given the p(yw, yl|x) defined in Proposi-
tion B.5, even if we have an infinite amount of data, we still
do not have a unique MLE. This refutes a popular claim that
DPO will work better given enough data.
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Also, if the rewards of appearing y are shifted by a constant,
note that the key intuition of the above proof is that the
finiteness of the number of candidates considered in the
maximum likelihood estimation loss makes itself invariant
as long as some y∗ outside of the finite set of candidates
never appears. This means a similar property as follows also
holds for the Plackett-Luce Model as it also just considers a
finite set of candidates.

Corollary B.6. If there exists a y∗ that will never be sam-
pled, then whenever there is a minimizer for Plackett-Luce’s
maximum likelihood estimation, it is not unique.

In contrast, a similar proof will not work for our IPM as it
considers the entire infinite space of candidates.

B.3. Fitting IPM with Energy Discrepancy

In our paper, since we simply adapt the general theorems
given by Schröder et al. (2023) to fit the RLHF context, we
only provide proof sketches for quick reference and claim
no originality thereof. We encourage readers to refer to the
original full proof if more details are needed.

Proof sketch for Theorem 3.2. The first functional deriva-
tive of EDx,p(y|x),p(z|y)[E] (we use E = −r to conform to
the convention of EBMs) is given by:

d

dϵ
EDx,p(y|x),p(z|y)[E + ϵh]

= E
x,p(y|x)

[h(x, y)]− E
x,p(y|x),p(z|y)

E
pE,ϵ(y′|z)

[h(x, y′)]

where

pE,ϵ(y
′|z) = p(z|y′) · exp[−E(x, y′)− ϵh(x, y′)]

∞∑
y′′

p(z|y′′) · exp[−E(x, y′′)− ϵh(x, y′′)]

Then, setting ϵ = 0 and E = −rtrue, we get the first varia-
tion of ED at E = −rtrue to be 0 because the second term

in the derivative becomes identical to the first term:

E
x,p(y|x),p(z|y)

E
pE=−rtrue,ϵ=0(y′|z)

[h(x, y′)]

= E
x,p(y|x),p(z|y)

∞∑
y′

p(z|y′) · exp[rtrue(x, y
′)]

∞∑
y′′

p(z|y′′) · exp[rtrue(x, y′′)]
· h(x, y′)

= E
x,p(y|x),p(z|y)

∞∑

y′

p(z|y′)p(y′|x)
∞∑
y′′

p(z|y′′)p(y′′|x)
· h(x, y′)

= Ex

∞∑

y

∑

z

p(y|x)p(z|y)

∞∑
y′

p(z|y′)p(y′|x)h(x, y′)
∞∑
y′′

p(z|y′′)p(y′′|x)

= Ex

∞∑

y′

p(y′|x)h(x, y′)
∞∑

y

∑

z

p(y|x)p(z|y)p(z|y′)
∞∑
y′′

p(z|y′′)p(y′′|x)

= Ex

∞∑

y′

p(y′|x)h(x, y′)
∑

z

p(z|y′)

∞∑
y
p(z|y)p(y|x)

∞∑
y′′

p(z|y′′)p(y′′|x)

= Ex

∞∑

y′

p(y′|x)h(x, y′)
∑

z

p(z|y′)

= Ex

∞∑

y′

p(y′|x)h(x, y′)

= Ex,p(y|x)h(x, y)

With the first variation being 0, we will then only need
to show that the second variation of ED at E = −rtrue
is strictly positive to complete the proof that E = −rtrue
is the global unique minimizer of ED. This can be done
by showing that the second derivative becomes an expec-
tation of Varp(y|z)[h(y)] which cannot be negative or zero
because we assume Varp(y|z)[y] > 0 (i.e., Var[Y |Z] > 0).
Concretely, the second derivative of ED is given by:

d2

dϵ2
EDx,p(y|x),p(z|y)[E + ϵh]

=− E
x,p(y|x),p(z|y)

d2

dϵ2
E

pE,ϵ(y′|z)
[h(x, y′)]

= (see (Schröder et al., 2023)’s Lemma 2)

E
x,p(y|x),p(z|y)

[
E

pE,ϵ(y′|z)
[h2(x, y′)]−

(
E

pE,ϵ(y′|z)
[h(x, y′)]

)2
]

= E
x,p(y|x),p(z|y)

[VarpE,ϵ(y′|z)[h(x, y
′)]]

Setting ϵ = 0 and E = −rtrue, we will get the positive
second variation of ED at E = −rtrue.

Proof sketch for Theorem 3.3. Given the property that
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LRLHF[r]

LIPM’s MLE[r]

LEPA[r]

EDZ [r]

LBTM’s MLE[r]

LDPO[r]

The global minimizer r∗ (= rtrue + C) of LRLHF[r]

1

Figure 4. A simplified illustration of the topology of the function-
als mentioned in the paper’s theorems. The vertical axis represents
the value of each functional. The horizontal axis represents the
space of r.

Σyp(z|y)f(y) = Σyp(y|z)f(y), the Σy′p(z|y′) in the defi-
nition of ED becomes an expectation over y, i.e., Ep(y′|z).
This enables a statistic estimate using the normal and a mod-
ified Strong Law of Large Numbers (Majerek et al., 2005)
for the expectations outside and inside of the logarithm,
respectively.

B.4. The Perspective of Functional Analysis

An elegant way to understand the theoretical advantage of
EBM/EPA over BTM/DPO is through the lens of functional
analysis. As illustrated in Figure 4, our EBM’s maximum
likelihood estimation loss, the energy discrepancy, and the
RLHF loss can be regarded as three functionals sharing the
same unique global minimizer. The EPA loss, being a sta-
tistical estimate4 of the energy discrepancy, is yet another
functional. However, the Strong Law of Large Numbers
ensures that the error between it and the energy discrepancy
will almost surely vanish with enough amount of negatives
drawn from a properly designed data perturbing source Z.
Therefore, one can view the EPA loss as a locally fuzzy
approximation of the energy discrepancy. The maximum
likelihood estimation loss of BTM is a functional that may
have multiple minimizers. Therefore, without explicit con-
straints to prevent this from happening, chances are that
optimizing the DPO loss (which is strictly speaking also
just a statistical estimate of the maximum likelihood of data,
probably with less fuzziness) will lead to a different solu-

4Strictly speaking, there is also a constant shift logM , which
we removed from the energy discrepancy to derive Eq.(10) because
it has no topological impact in terms of optimization problems.

Table 6. Preliminary results on tuning β for IPO.

β MT-BENCH (EPOCH #1 / #2 / #3)

0.1 6.73 / 6.88 / 6.87

0.01 7.20 / 7.31 / 7.23

tion than the minimizer of the RLHF loss. Increasing the
amount of data for DPO can certainly mitigate the fuzziness
but can do nothing to avoid the undesirable structure of
BTM’s maximum likelihood estimation loss governed by
p(yw, yl|x).

C. More Experimental Details
C.1. Implementation Details

C.1.1. MORE HYPERPARAMETER DETAILS

We use 8 A100/A800 GPUs (80G Memory) with ZeRO3
parallelism to train each model in this paper. Global batch
size is fixed to 64. For experiments in Figure 2, we run
two rounds with different seeds (0 and 1) for each model
configuration. Other experiments are only conducted with
seed 0. The reason we set β to 0.01 in the main experiments
is two-fold.

• Firstly, results (see Figure 2.(a)) of tuning β for multi-
ple values ranging from 0.01 to 0.5 show that β close
to 0.01 (low-KL region) will make both EPA and DPO
achieve higher rewards.

• Secondly, β = 0.01 is also the default setting for NCA
and infoNCA (Chen et al., 2024a) and also a recom-
mended setting for Mistral-based DPO (Tunstall et al.,
2023) and KTO (Ethayarajh et al., 2024). For IPO’s
best β, we did preliminary experiments with 0.01 and
0.1, and found 0.01 works better (see Table 6).

C.1.2. LOSS MODIFICATIONS TRICKS

In Table 7, we list how the tricks are applied to the DPO
loss or the narrow EPA loss. For more detailed properties of
them, one can refer to the corresponding previous work. In
summary, length penalty (Park et al., 2024), length normal-
ization (Yuan et al., 2023; Hong et al., 2024; Meng et al.,
2024), constant or dynamic margins (Meng et al., 2024;
Amini et al., 2024), removal of the reference model (Xu
et al., 2024; Hong et al., 2024; Meng et al., 2024), on-policy
weighting (Zhou et al., 2024) and addition of SFT loss (Xu
et al., 2024; Hong et al., 2024), etc.
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Table 7. Notation and function of loss modification tricks proposed
in the offline alignment literature. We consider on-policy weighting
(+wop), length penalty (+lenp), length normalization (+lenn),
constant margin (+mc), removal of the reference model (−ref ),
and addition of a SFT loss (+Lsft).

NOTATION TRICK FUNCTION

−ref log πθ(y|x)
πREF(y|x) −→ log πθ(y|x)

+Lsft L −→ L− log πθ(yw|x)

+lenp rθ(y|x) −→ rθ(y|x)− α|y|

+lenn rθ(y|x) −→ 1
|y|rθ(y|x)

+mc rθ(yl|x) −→ rθ(yl|x) +mc

+wop L −→ Π∗∈{w,l}(Πt
πθ(y

t
∗|y0:t−1

∗ ,x)

Σy′∈V ocπ
2
θ
(y

′ |y0:t−1
∗ ,x)

)
1

|y| · L

C.1.3. COMPARING EPA WITH OTHER
MULTI-RESPONSE LOSSES

It appears that EPA and two multi-response losses (InfoNCA
and DPO-PL) are very similar because they are all con-
trastive losses in the form of negative log softmax. However,
there is a clear distinction between EPA and the other losses
in terms of the required information in the training data
and the samples being contrasted (exemplified by Table 8).
This is a direct consequence of using different probabilis-
tic models. EPA comes from our IPM. DPO-PL comes
from the Plackett-Luce Model, and InfoNCA comes from
an energy-based model for the distribution of the optimal
policy.

C.2. DPO vs. EPA from More Perspectives

C.2.1. ALIGNMENT TAX

Preference alignment is usually associated with an align-
ment tax: forgetting certain capabilities (e.g., math problem
solving) while enhancing others (e.g., safety, truthfulness,
and helpfulness). We acknowledge that EPA might exhibit
a higher alignment tax than DPO due to the results in Table
9, where we report metrics on GSM8k (Cobbe et al., 2021),
MMLU (Hendrycks et al., 2020), and Winograd (Tikhonov
& Ryabinin, 2021). However, a more comprehensive future
work on this issue is still necessary for a reliable conclu-
sion. For example, although GSM8k and MMLU are of
relatively higher correlation with human preference than
other Exact-Match-based benchmarks, they have poorer cor-
relations than the ones used in the main paper (MT-Bench
and Alpaca-Eval 2.0) (Dubois et al., 2024). Therefore, a
more aggressive alignment method with human preference

could cause the lower scores on GSM8k and MMLU.

C.2.2. PROBING THE SLOPE-1 LINEARITY

Reward models in the classical sense only need to satisfy
ranking consistency with the corresponding true rewards.
However, for ideal offline optimization of the RLHF loss,
a learned log ratio reward and its corresponding true re-
ward have to satisfy the slope-1 linearity, a much stronger
requirement than ranking consistency. The reason is that,
to satisfy ranking consistency, the relationship between the
two rewards can be any monotonically increasing function,
including those that are non-linear or linear with the slope
being any positive number.

Therefore, metrics that are based on ranking consistency to
evaluate the log ratio reward (i.e., the learned reward model)
are not meaningful when it comes to offline alignment. In-
stead, we evaluate the log ratio reward by probing how well
the linearity is approximated. For this purpose, we need
multiple samples of y (responses) given an x (prompt) and
their true rewards. The test split of the Ultrafeedback data
(Tunstall et al., 2023) can fulfill this purpose because there
are four y for each x and they are scored using the same
scoring scheme used for our training data (i.e., UF-all and
UF-binarized). We randomly sample 500 prompts from the
test split to speed up evaluation while preserving the general
reliability.

Firstly, we consider only how linear the relationship between
the two rewards is, regardless of the slope. This is exactly
the essence of Pearson correlation analysis. We compute
the Pearson coefficient between the two rewards over the
four y for each prompt. Then, we compute the mean over
all 500 prompts as a metric. We report the results in the first
column of Table 1 (in the main content of the paper).

Secondly, we study both the “slope-1” and the “linearity”.
We do this via linear regression with the slope fixed to
1. Specifically, given a prompt, we need to fit a linear
regression model rlearned = 1 · rtrue + b to the 4 coordinates
of (rlearned, rtrue). With simple algebra, the optimal value
of b that minimize the linear regression error ϵ = Σ|rtrue −
rlearned + b|2 can be analytically expressed as b̂ = (1/4) ·
Σ(rlearned − rtrue). Thus, we use b̂ to compute the minimal
error for each given prompt, and then compute the average
minimal error ϵ̂ over all 500 prompts as the metric (see
the second column of Table 1). We can also shift the four
rlearned for each prompt by the constant −b̂, which should
move all regression lines for the slope-1 linearity to the
same location: the diagonal rlearned = 1 · rtrue. This allows
us to visualize the overall degree of how well the slope-1
linearity is approximated. As shown in Figure 5, we can see
that for the top 10% prompts with the best ϵ̂ (i.e., smallest
ϵ̂), the slope-1 linearity is well approximated for both EPA
and DPO. However, we can observe that DPO is slightly off
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Table 8. Comparing EPA, InfoNCA and DPO-PL in the setting of 3 responses per prompt (omitting x for clarity).
NAME DATA LOSS

EPA (yw, yl1 , yl2), (yw ≻ yl1), (yw ≻ yl2) − log exp(rθ(yw))
exp(rθ(yw))+exp(rθ(yl1 ))+exp(rθ(yl2 ))+exp(rθ(ywk1

))+exp(rθ(ywk2
))

DPO-PL (yw, yl1 , yl2), (yw ≻ yl1 ≻ yl2) − log exp(rθ(yw))
exp(rθ(yw))+exp(rθ(yl1 ))+exp(rθ(yl2 ))

− log
exp(rθ(yl1 ))

exp(rθ(yl1 ))+exp(rθ(yl2 ))

INFONCA (yw, yl1 , yl2), (yw ≻ yl1), (yw ≻ yl2) − log exp(rθ(yw))
exp(rθ(yw))+exp(rθ(yl1 ))+exp(rθ(yl2 ))

Table 9. EPA has slightly higher alignment tax than DPO.

METHOD GSM8K-5SHOT MMLU WINOGRAD

SFT 0.421 (0.014) 0.598 (0.004) 0.800 (0.006)

+DPO 0.463 (0.014) 0.593 (0.004) 0.790 (0.006)
+EPA 0.419 (0.014) 0.591 (0.004) 0.790 (0.006)

from the slope-1 linearity for the medium 10% and much
so for the worst 10%. On the other hand, for EPA, although
the points are also gradually spreading out when we move
towards the worst 10%, they are still distributed along the
direction of the diagonal. This phenomenon means that EPA
is closer to the slope-1 linearity than DPO, especially for
the worst group of prompts.

Table 10. EPA vs DPO applied to Llama3-8B based SFT model.

METHOD MT-BENCH (EPOCH #1 / #2 / #3)

DPO 6.94 / 6.83 / 6.71

EPA 6.84 / 6.98 / 7.04

Table 11. EPA vs DPO on Arena Hard.

TRAINING DATA METHOD ARENA HARD (%)

UF-BINARIZED
DPO 12.0
EPA 16.3

UF-ALL
DPO-PL 13.0

EPA 16.9

C.2.3. GENERALITY OF THE PROPOSAL

Although we believe the experimental configuration de-
scribed in the main content of the paper provides sufficient
support for our core theoretical argument, we present addi-
tional results here using a different base model and training
dataset. Specifically, we train a Llama3-8B based SFT
model5 on a cleansed version (Álvaro Bartolomé Del Canto

5https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT
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Figure 5. EPA vs DPO in terms of the slope-1 linearity. Each
average slope-1 linear regression error ϵ̂ is computed on 500 ×
10% = 50 prompts. Although the difference between EPA and
DPO only becomes noticeable for the “WORST 10%” group in
the visualization (i.e., how close the partially transparent red dots
are to the diagonal), the difference in ϵ̂ is conspicuous.

et al., 2024) of the widely used but small dataset: In-
tel/orca dpo pairs. As shown in Table 10, EPA is still better
performing than DPO. In addition, we also report the best
checkpoints for EPA and DPO/DPO-PL on Arena Hard (Li
et al., 2024), yet another benchmark that is considered more
difficult. The result is consistent with Alpaca Eval 2.0 and
MT-Bench as reported in Table 2, further validating the
superiority of EPA.
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