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Abstract

Video diffusion models (VDMs) have advanced significantly
in recent years, enabling the generation of highly real-
istic videos and drawing the attention of the community
in their potential as world simulators. However, despite
their capabilities, VDMs often fail to produce physically
plausible videos due to an inherent lack of understanding
of physics, resulting in incorrect dynamics and event se-
quences. To address this limitation, we propose a novel
two-stage image-to-video generation framework that explic-
itly incorporates physics with vision and language informed
physical prior. In the first stage, we employ a Vision Lan-
guage Model (VLM) as a coarse-grained motion planner,
integrating chain-of-thought and physics-aware reasoning
to predict a rough motion trajectories/changes that ap-
proximate real-world physical dynamics while ensuring the
inter-frame consistency. In the second stage, we use the
predicted motion trajectories/changes to guide the video
generation of a VDM. As the predicted motion trajecto-
ries/changes are rough, noise is added during inference
to provide freedom to the VDM in generating motion with
more fine details. Extensive experimental results demon-
strate that our framework can produce physically plausi-
ble motion, and comparative evaluations highlight the no-
table superiority of our approach over existing methods.
More video results and code are available on our Project
Page: https://madaoer.github.io/projects/
physically plausible _video_generation/.

1. Introduction

Video diffusion models (VDMs) trained on large-scale video
datasets have made remarkable progress in terms of realism,
demonstrating significant potential for various content cre-
ation applications. Despite the absence of explicit geometric
modeling, the generated videos still exhibit coherent spatial
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Figure 1. Existing commercial closed-source VDMs fail to gen-
erate physically plausible motion, whereas our video generation
framework is able to achieve this by incorporating external physi-
cal prior knowledge.

relationships among objects, rich textured details, and re-
alistic lighting effects, including reflections and shadows.
Such qualities often make the generated videos nearly in-
distinguishable from real-world footages. This drives the
research community to explore the potential of VDMs as
world models. However, they still struggle with understand-
ing the physical laws of the real world and generating videos
that adhere to these principles.

Although existing VDMs can produce visually realistic
videos, they fail to mimic the real-dynamic physical mo-
tions. As shown in Fig 1, even the current commercial
closed-source VDMs struggle with the task of generating
videos that conform to physical laws. PhyT2V [58] re-
fines text prompts by incorporating detailed descriptions
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of physical processes to guide VDMs in generating physi-
cally plausible videos. However, despite being pretrained
on internet-scale real-world video—text pairs, VDMs do not
inherently understand physical laws. This limitation arises
from the gap and ambiguity between text descriptions and
the actual motion in the video[33]. Moreover, VDMs tend
to overfit the training data rather than developing a general
understanding of physical laws[21]. Inspired by the success
of graphics-based physical rendering, some methods have
guided VDMs to generate physically plausible videos us-
ing simulations from graphics engines[18, 29, 32, 56, 64];
however, these approaches rely on the physical effects that
graphics engines can simulate and incur high computational
costs.

The gap and ambiguity between text and real-world mo-
tion makes it difficult to enable physically plausible video
generation through detailed text descriptions alone. More-
over, it is challenging to gather scalable physical data for
training due to the abstractness and diversity of physical
phenomena. Consequently, a viable approach could be to
model abstract physical laws as conditions for diffusion mod-
els. However, it is less practical to explicitly model the
physics equation for every kind of motion. Instead, we
resort to current large foundation models for their ability
to “understand” basic physics[6] and reason about physical
phenomena based on the knowledge they extract. For exam-
ple, given two colliding balls, the Large Language Model
(LLM) can approximately predict the paths of the balls after
collision. Inspired by this observation, we propose a novel
video generation framework that employs a Vision Language
Model (VLM) to predict the path/change during a physics
event, described by a given image and a text prompt.

In this paper, we propose VLIPP, a two-stage approach to
incorporate physics as conditions into VDM, enabling the
generation of physically plausible motion. In the first stage,
the VLM serves as a coarse-level motion planner, while a
VDM serves as a fine-level motion synthesizer. The idea of
stage one is to utilize the chain-of-thought and the physics-
aware reasoning of VLM planning to ensure that coarse-level
motion trajectories approximately follow real-world physics
dynamics. In stage two, we can generate fine-level motion
using an image-to-video diffusion model conditioned by the
approximated path/change planned by VLM from stage one.
Note that the approximated path/changes are not in the level
to tell the speed or acceleration of the motion. We choose an
existing image-to-video model [7] to accept our coarse-level
path/change, by injecting noise to the motion path during
both the training and inference phases. Notably, during the
VLM planning stage, generating entire physically plausible
motion trajectories is not required. Instead, we leverage the
generative priors of VDM to produce fine-level physically
plausible videos based on coarse-level motion trajectories
provided by the VLM. So that the detail-level motion such

as speed, acceleration, and vibration are left to the VDM to
synthesize.

We evaluate our physically plausible video generation
framework with two major video physics benchmarks and
achieved satisfactory results. Furthermore, we discuss and
analyze multiple insightful design choices in our video gen-
eration framework, such as employing a motion planner
tailored for different physics categories, and enhancing the
robustness of diffusion model to noisy trajectories. Our
contributions are summarized as follows:

1. We introduce a novel image-to-video generation frame-
work for generating physically plausible videos by lever-
aging the VLM and VDM priors, significantly outper-
forming the contemporary competitors.

2. We propose a novel chain-of-thought and physics-aware
reasoning approach in VLM, along with random noise
injection in the latent space during video generation,
which effectively improves both the generation quality
and physical plausibility.

3. We conduct a comprehensive experiments and user stud-
ies to demonstrate the effectiveness and generalization of
our framework in physically plausible videos generation.

2. Related Work

2.1. Physically Plausible Visual Content Generation

Generating physically plausible videos offers substan-
tial value to real-world applications such as scientific
simulations[43], robotics [4, 59], and autonomous driv-
ing [10, 48]. Traditional graphics pipelines rely on sim-
ulation systems to model physical phenomena [36, 42]. In-
spired by these approaches, recent studies [18, 29] have
performed dynamic simulations in image space based on
physical engines. Furthermore, some methods [56, 64] in-
corporate physical priors into 3D representations to enable
the synthesis of physically plausible motions. However,
these rule-based or solver-based simulators face limitations
in expressiveness, efficiency, generalizability, and parame-
ter tuning. Furthermore, these simulators require significant
expertise, rendering them inaccessible and unfriendly for
users.

In addition, Some studies have explored VDMs for gen-
erating physically plausible videos. Li ef al. [24] models
natural oscillations and swaying in frequency-domain. A
downstream rendering module then animates static images
based on the generated motion information. PhysDiff [62]
introduces physical simulator as constrain into the diffusion
process by projecting denoised motion of a diffusion step
into a physically plausible motion. These methods mainly
focus only on specific types of physical motion and do not
establish a generalizable approach for generating physically
plausible videos.
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Figure 2. The illustration of our physically plausible image-to-video generation pipeline. Our pipeline consists of two stages. In the first
stage, the VLM generates a coarse-grained, physically plausible motion trajectory based on the provided input conditions. In the second
stage, We simulate a draft video using the predicted trajectory to provide the motion condition. We then extract the optical flow from

this video and convert it into structured noise. These conditions
ultimately generates a physically plausible video.

2.2. Motion Controllable Video Generation

Existing studies commonly provide one of the following
three types of motion control: bounding box control [19,
23, 30, 46, 52], point trajectory control [34, 37, 40, 50, 54]
and camera control [2, 15, 47, 61]. Bounding box control
provides object motion guidance by generating a sequence
of bounding boxes that track the object’s position over time.
Point-trajectory control offers motion cues through point-
based trajectories, enabling drag-style manipulation. Cam-
era motion control guides video generation using explicit 3D
camera parameters, ensuring consistency and realistic view-
point changes. However, these approaches prioritize motion
control but often overlook physical plausibility. To address
the limitation, we propose a novel framework for physically
plausible video generation that incorporates physics as con-
ditions into video diffusion models.

2.3. Generation based on VLMs Planning

VLMs have exhibited robust capabilities in visual under-
standing and planning [27, 39, 65]. Their strong perfor-
mance in domains such as robot path planning and video
understanding shows their ability in understanding the real
physical world. Prior work has successfully leveraged LLMs
to guide the layout of images or videos, yielding promising
results [25, 53]. VideoDirectorGPT [26] leverages LLMs for
fine-grained scene-by-scene planning, explicitly controlling
spatial layout to generate temporally consistent long videos.
Pandora [55] utilizes LLMs for real-time control through
free-text action commands, achieving domain generality,

are fed into a motion controllable image-to-video diffusion model, and

video consistency, and controllability. However, these ef-
forts have yet to address interactions with real-world physical
phenomena, such as collision, fall, and melting.

Moreover, the absence of visual information can cause
severe hallucination issues in language models for spatial
planning tasks, leading to problems like overlapping object
boundaries, disproportionate scaling, and incorrect plan-
ning [20, 57]. In this paper, we propose utilizing VLMs
as coarse-level motion planners within the image space and
incorporate physics-aware reasoning and Chain of Thought
(CoT) [51] into the inference process.

3. Method

Task Fomulation. In this paper, our goal is to enable an
image-to-video diffusion model to generate physically plau-
sible videos. Since VDMs rely more on memory and case-
based imitation and struggle to understand general physical
rules[21], the key challenge is how to incorporate physical
laws into the models. To achieve this, we need to identify
a method to incorporate physical principles into the video
diffusion framework. Given an image I € RF*XWXC(H is
height, W is width and C is the number of channels) and a
text description d of possible events based on image 1, our
framework should infer a physics-compliant guidance as the
input condition and synthesize a video that adheres to both
physical laws and real-world dynamics.

Overall Pipeline. Overall pipeline of VLIPP is illustrated
in Figure 2. In the first stage, the VLM conducts semantic
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analysis and physical attribute analysis on the given image
I and a description d to obtain the bounding boxes of the
objects in the scene, denoted as by, by, ..., b,, along with the
applicable physical laws /. Next, the VLM infers possible
future physical scenarios in the current scene to derive the
coarse-level motion trajectories of py, pa, ..., p; in the image
space. Finally, we utilize an image-to-video diffusion model
to synthesize the detailed dynamics in the video.

3.1. VLM as a Coarse-Level Motion Planner

Our motivation is to incorporate physical laws as constraints
into a video diffusion model to enhance the physical plau-
sibility of the generated videos. To achieve this, we must
identify a method to inject physical laws into the video dif-
fusion model. Given a video description and the first frame,
the task at this stage is to generate coarse-level motion tra-
jectory aligned with physical laws.

Scene Understanding. In the real world, most physical
phenomena arise from interactions among objects and their
motion trajectories. We first initiate the process by iden-
tifying and locating objects within a scene. Inspired by
the recent studies [1, 9, 28] in VLMs for scene understand-
ing, we employ GPT-40 [38] to recognize all objects that
could be involved in physical phenomena as described in
the text description d. These objects are subsequently de-
tected and segmented using Grounded-SAM?2 [41], yielding
their bounding boxes. By leveraging the pretrained knowl-
edge and common-sense reasoning capabilities of founda-
tion models, we effectively determine the relevant objects in
the scene.

Physical-Aware Recognition. To perform more effective
reasoning in predicting the motion, it is necessary to de-
termine what specific physical principle to apply in the
given context. We utilize the pretrained prior of the LLM
to determine the physical laws applicable to the current
scene. Following the configuration in the physical bench-
mark [3, 31, 33], we currently classify common physical
phenomena in videos into six categories: gravity, momen-
tum conservation, optics, thermodynamics, magnetism, and
fluid mechanics. Note that such list can be easily extended
within our framework. Given a video description d, the LLM
infers the physical law [ that governs the current scene. We
provide the specific physical context information for VLM
to enhance its understanding of physical laws [11]. Detailed
context design is presented in the Appendix.

Chain of Thought Reasoning in VLM. Given the physical
law [, an image / and a video description d for the scene,
we prompt the VLM to predict the future bounding box
positions of objects within the image-space. We choose to
predict in the image space for two primary reasons. Firstly,
motion in image space aligns more with our subsequent
video synthesizer. Secondly, image space dynamics can
effectively represent a wide range of real-world motions [29].

At a given time ¢, the predicted position of i-th object
bounding box b is denoted as [x!, yi, wi, hi], where (x£, yi)
represents its top-left coordinate; w} & h; denote its width
and height, respectively. Governed by the physical law,
the four values of the bounding box may change over time.
The VLM reasons the bounding box positions of N future
frames for every object 0; based on the condition. To help
VLM better understand physical laws, we adapt a chain-of-
thought [51] into its reasoning, to significantly enhance its
reasoning capabilities. As shown in Figure 3, we formulate
our analysis of physical phenomena in videos as step-by-
step reasoning: beginning with broad conceptual ideas and
progressing to a detailed and practical examination:

1. Given the physical law / and context information, the
VLM analysis video caption and detail the physical law.

2. The VLM analyzes the potential interactions and move-
ment of each object within the scene;

3. The VLM predicts the detailed changes in position and
shape of the bounding box corresponding to each object
over time.

Through the structured planning process, the VLM plans
coarse-level motion trajectories for the objects, approximat-
ing real-world physics dynamics. In particular, our VLM
infers the changes of object bounding boxes for next 12
frames, constrained by the token length limitation. To be
compatible with the generation process of the chosen VDM
in the next stage, these inferred 12 frames are further linearly
interpolated to produce a total of 49 frames.
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3.2. VDM Serves as a Fine-Level Motion Synthe-
sizer

In the previous stage, the motion trajectory planned by the
VLM is neither precise nor fully compliant with physical
laws. On the other hand, while VDM may not be able
to produce realistic global motion trajectories, it is able to
generate sound motion in finer scale. In this stage, our key
insight is that the VDM can refine the coarse-level motion
to produce physically plausible motion that aligns with real-
world dynamics with its powerful generative prior.

Motion Animation. To incorporate physical laws into the
video diffusion model, we use the inferred coarse motion
trajectory to guide the generation process of the diffusion
model. Optical flow provides a unified representation of
motion, and recent studies [7, 12, 13] have demonstrated its
effectiveness in guiding diffusion models. Accordingly, we
leverage the coarse-level motion trajectory to animate a draft
motion sequence and derive the corresponding optical flow.
Specifically, for each object o; , we extract its bounding box
from the first frame and move it to the bounding box location
b; specified by the draft motion trajectory. To animate the
change of shape (e.g., due to compression or expansion), we
resize object o; according to the difference between o; and
0;+1 during inpainting. The draft motion video is generated
as follows:

V(1) = Animation(B, rs (0, b?)...rs(ol, b1)) (1)

where V(¢) denotes the corresponding frame of inpainted
video at timestep ¢, B denotes the inpainted background with
the foreground object removed, o? denotes the i-th object at
timestep 0, b! represents the i-th bounding box at timestep
t, and rs denotes resize function.

Structured Noise from Draft Video. Optical flow is an
effective representation for guiding VDMs [12, 13]. Follow
prior work [7, 8], we employ RAFT[44] to extract optical
flow from the draft video and formulate it as structural noise,
which retains Gaussian properties. Given the draft video
V(1) € REXCXHXW 'we calculate its per-frame optical flow
to get a structured noise tensor Q € RFXCXHXW = The
structured noise enables the VDM to generate videos that
exhibit motion patterns closely aligned with those in the
optical flow, thereby improving the realism of the output.

Noise Injection in Video Synthesis. We adopt Go-with-
the-Flow [7] as our video synthesis model, a fine-tuned
CogVideoX [60], which is designed to accept structured
noise Q as input and synthesize videos that adhere to the
implicit optical flow. The vanilla Go-with-the-Flow tends to
tightly follow the provided structured noise Q. However, our
Q is derived from a coarse-level motion trajectory and may
not be sufficiently accurate to follow the physical laws of the
real world. To address this limitation, we inject noise during
the inference phase to give more flexibility to the VDM to

generate detail-level motion changes as

(1-7)0;i+¢
0; = U ZYYiTey )
VL =y)2+y?
where Q; is structured noise at i-th frames, £ € REXHXW

is Gaussian noise and y € [0, 1]. We set y = 0.4 for even
frame index and y = 0.6 for odd frame index.

With this approach, the VDM is able to generate motion
deviate from the coarse-level motion trajectory whenever
necessary for producing high-quality fine-level motion.

4. Empirical Analysis and Disscusion

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our video generation framework
compared to existing methods. We evaluate our approach on
two established benchmarks for physically plausible video
generation. Our framework consistently achieves superior
performance across all benchmarks.

4.1. Implementation Details

We propose a two-stage physically plausible image-to-video
generation framework. In the first stage, we utilize ChatGPT-
40 as the coarse-level motion planner. In the second stage,
we utilize an open-source 12V model, Go-with-the-Flow [7],
as a fine-level motion synthesizer. Unless otherwise spec-
ified, in all experiments, we generate each video with a
resolution of 720 x 480 and 49 frames.

4.2. Benchmarks and Models

Traditional metrics in the visual domain, such as the Peak
Signal-to-Noise Ratio (PSNR)[17], the Structural Simi-
larity Index (SSIM)[49], the Learned Perceptual Image
Patch Similarity (LPIPS)[63], the Fréchet Inception Dis-
tance (FID)[16] and the Fréchet Video Distance (FVD)[45],
do not account for the physical realism of the generated
videos [31, 33]. Recent studies have begun to address this
limitation by developing benchmarks and metrics that evalu-
ate physical realism. In this work, we adopt two benchmarks,
described below.

PhyGenBench [3 1] categorizes physical properties into four
domains: mechanics, optics, thermal, and material. It
includes 27 physical phenomena, each governed by real
world physical laws, reflected in 160 carefully designed text
prompts. As PhyGenbench provides only text prompts, we
adapt it to our image-to-video setting by generating a corre-
sponding first frame for each prompt with FLUX[22]. We
adhere to the predefined benchmark evaluation protocol, i.e.,
employing GPT-4o to assess the physical realism of the gen-
erated videos.

Physics-1Q [33] comprises 396 real-world videos spanning
66 distinct physical scenarios. For each scenario, videos
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Figure 4. Visual comparisons of physically plausible video generation results from our framework, CogVideoX-12V-5B [60] LTX-Video-

12V [14] and SVD-XT [5].

Model Mechanics(T) Optics(T) Thermal(T) Material(T) Average(T)
CogvideoX-T2V-5B 0.43 0.55 0.40 0.42 0.45
LTX-Video-T2V 0.35 0.45 0.36 0.38 0.39
OpenSora 0.43 0.50 0.44 0.37 0.44
PhyT2V 0.49 0.61 0.49 0.47 0.52
LLM-Grounding Video Diffusion 0.32 0.41 0.26 0.24 0.31
CogvideoX-12V-5B 0.48 0.69 0.43 0.41 0.52
SVD-XT 0.46 0.68 0.48 0.41 0.52
LTX-Video-12V 0.47 0.65 0.46 0.37 0.50
SG-12V 0.52 0.69 0.51 0.39 0.54
Ours 0.55 0.71 0.60 0.53 0.60

Table 1. Quantitative results of VDMs on PhyGenBench.

are recorded from three different perspectives and filmed
twice under identical conditions to eliminate randomness.
This benchmark evaluates real-world physical phenomena,
including collisions, object continuity, occlusion, object per-
manence, and fluid dynamics. This benchmark assesses
physical realism from semantic and temporal perspectives,
using semantic metrics and visual metrics to compare gen-
erated videos against the real-world reference videos.

Compared Models. In the context of text-to-video gener-
ation, we compare our framework with CogVideoX-T2V-
5B [60], LTX-Video-T2V [14], and OpenSora [66]. More-
over, we evaluate our framework against PhyT2V [58],
which enhances physical realism by iteratively refining the
prompt. For the image-to-video generation scenario, our
framework is evaluated alongside CogVideoX-12V-5B [60],
SVD-XT [5], and LTX-Video-I2V [14]. Additionally, we
conducted experiments in the motion-controllable setting.

In this setting, we leverage the motion trajectory predicted
by the VLM as a condition to guide VDM generation.
We benchmark our approach against image-to-video motion
controllable model, SG-12V [35] and text-to-video motion
controllable model LLM-grounded Video Diffusion Mod-
els [25]. The experimental details are presented in the Ap-
pendix.

4.3. Quantitative Evaluation

We begin with an empirical study on PhyGenBench
and Physics-1Q, comparing our framework against widely
adopted open-source models in the research community.
Based on different physical properties, we categorize the
benchmark samples accordingly. Additionally, we classify
VDMs into text-to-video (T2V) diffusion models and image-
to-video (I2V) diffusion models based on the input condi-
tions.

In Table 1, we present our experimental results on Phy-
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Model SM.(T) ED.T) Optics(T) Magnetism(T) Thermodynamics(T) Average(T)
Cogvideo-12V-5B 30.4 29.8 16.7 13.3 8.5 27.1
SVD-XT 21.9 20.5 6.8 8.4 17.1 19.1
LTX-Video-I2V 30.2 29.8 15.9 13.2 8.4 26.8
SG-12V 34.6 31.2 15.9 13.1 8.4 29.7
Ours 42.3 34.1 16.9 134 8.8 34.6

Table 2. Quantitative results of physically plausible video generaion on Physics-1Q Benchmark. S.M. refers to Solid Mechanics, and F.D.

refers to Fluid Dynamics.

GenBench, evaluating different video generation models fol-
lowing its evaluation protocol. The results show that our
framework achieves state-of-the-art performance across four
different physical phenomena. Our framework outper-
forms the best T2V method by an average of 15.3% and
the best 12V method by 11.1%. Specifically, our frame-
work demonstrates significant advantages in the Mechanics,
Thermal, and Material domains, outperforming the best [2V
method by 5.7%, 17.6%, and 35.8%, respectively. These ad-
vantages are particularly evident in these three types of phys-
ical phenomena, which involve more substantial changes in
motion, volume, or shape. Our framework is better equipped
to understand and reason about bounding box sequences to
represent these changes effectively.

Similarly, for the Physics-IQ benchmark, we evaluate the
performance of different video generation models following
its evaluation protocol. Our framework achieves the best
results across four different physical phenomena, with
improvements of 22.2% in Solid Mechanics and 9.2%
in Fluid Dynamics compared to the second-best models.
These significant improvements demonstrate the effective-
ness of our framework in generating physically plausible
videos.

4.4. Qualitative Evaluation

Figures 4 and 5 demonstrate a qualitative comparison be-
tween our video generation framework and baseline meth-
ods. Among all evaluated approaches, our framework con-
sistently produces videos with the highest degree of phys-
ical realism. In the ball falling sample in Figure 4, while
CogVideoX shows a bouncing effect, artifacts are present
in the video; LTX-Video and SVD-XT exhibit motions that
do not adhere to the laws of physics. In Figure 5, we an-
alyze two examples from Physics-1Q. In the pouring water
example, the baseline methods fail to show the simultaneous
decrease in water level of the glass beverage dispenser and
the increase in water level of the glass below; in the ball
collision example, none of the baseline methods correctly
depict the collision of balls. More videos are provided in
the supplement.
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Figure 5. Visual comparisons of physically plausible video genera-
tion results from our framework, CogVideoX-12V-5B, LTX-Video-
12V, SVD-XT and SG-I2V [35] in the Physics-1Q dataset.

4.5. Ablation Study

We perform an ablation study to evaluate the contributions of
key components in our framework. We design four variants
to analyze the effectiveness of different components in our
framework.

1. Ours w/o VLM Planner: To assess the overall function-
ality of our framework, we replace the structured noise
input of the VDM with random noise to evaluate the
effectiveness of the VLM planner.

2. Ours w/o CI: Keeping the overall structure unchanged,
we remove the in-context information from the VLM.

3. Ours w/o CoT: Similarly, while keeping other compo-
nents unchanged, we remove the Col reasoning process
from the VLM.

4. Ours w/o CC: Lastly, we remove both the in-context in-
formation and the CoT reasoning process from the VLM
planner while maintaining all other components.
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Model SM.(T) ED.(T) Optics(T) Magnetism(T) Thermodynamics(T) Average(T)
Ours 42.3 341 16.9 134 8.8 349
w/o VLM Planner. 16.3 20.8 13.4 5.8 5.6 16.2
w/o C.I 26.3 28.1 16.9 11.2 8.4 24.3
w/o CoT 21.4 26.9 16.1 8.6 6.9 21.0
w/o C.C 18.7 22.4 14.9 7.2 6.1 18.1

Table 3. Ablation study on VLM, in-context learning and COT. S.M. refers to Solid Mechanics, and F.D. refers to Fluid Dynamics.

A timelapse captures the gradual transformation of butter as the
temperature rises significantly.
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Figure 6. Visualization of generated video with bounding boxes.
Coarse motion cue can guide VDM to synthesis physically plausi-
ble video.

nding

The mug, made of yellow ceramic, fell at high speed and crashed onto the
table, breaking into several big pieces and many tiny splinters.
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Two rows of alternating black and white dominoes are set up on a wooden
table with a gap between the two rows. A wooden stick attached to a
platform rotates clockwise and knocks the first domino in the first row.
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Figure 7. Limitation of VLIPP. Our framework might produces
physically implausible videos because it lacks 3D spatial perception
and the optical-flow of small objects is prone to noise.

Table 3 presents a quantitative comparison between our
full method and these variants. Among all variants, Ours
w/o VLM Planner shows the most significant performance
drop, as removing the planner completely eliminates our
ability in understanding the physical laws, leading to nearly
random results. Notably, Ours w/o CoT exhibits a more
pronounced decline compared to Ours w/o CI, indicating
that the reasoning process in CoT enhances the understand-
ing of physics. While in-context information contributes to
the physical reasoning ability of VLM, compared to CoT it
is less effective in preventing errors caused by VLM hallu-
cination.

4.6. Limitations

Although VLIPP can generate physically plausible videos,
its performance remains constrained by the base model.

Firstly, we are unable to model physical events that can-
not be represented by image space bounding box trajectories.
For example, phenomena that involve intrinsic state changes
of objects such as gas solidification. We adopt 2D bounding
boxes because they can be naturally integrated with VDMs
and are effective in enhancing the physical plausibility to a
certain extent. In fact, they are more flexible than they might
appear. As shown in Figure 6, the VLM predicts coarse
2D bounding box trajectories(only four fragments), yet the
VDM still produces a realistic shattering pattern without
being rigidly constrained by those paths. Moreover, in the
butter melting example in Figure 6, the VLM offers only a
coarse cue of volumetric change, but the VDM successfully
generates the transition from solid to liquid. These abili-
ties significantly improve our flexibility in modeling various
physical phenomena.

Secondly, our pipeline lacks 3D spatial perception. It
is unable to understand the spatial relationships within the
scene, as shown in Figure 7 domino example.

Finally, the optical flow of small objects is prone to noise
interference. This will cause our framework to generate
ambiguous content, as shown in Figure 7 small ball colli-
sion example. With the recent progress in video generation
model, we anticipate that our framework will be further im-
proved in generating videos under more challenging physical
conditions.

5. Conclusion

Recently, VDMs have achieved great empirical success and
are receiving considerable attention in computer vision and
computer graphics. However, due to the lack of understand-
ing of physical laws, VDMs are unable to generate physically
plausible videos. In this paper, we introduce VLIPP, a novel
two-stage physically plausible video generation framework
that incorporates physical laws into video diffusion models
through vision and language informed physical prior. Our
experimental results demonstrate the effectiveness of our
method compared to existing approaches.
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