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Abstract

Large language models (LLMs) have performed well on several reasoning benchmarks, in-
cluding ones that test analogical reasoning abilities. However, there is debate on the extent
to which they are performing general abstract reasoning versus employing shortcuts or other
non-robust processes, such as ones that overly rely on similarity to what has been seen in
their training data. Here we investigate the robustness of analogy-making abilities previ-
ously claimed for LLMs on three of four domains studied by Webb et al. (2023): letter-string
analogies, digit matrices, and story analogies. For each of these domains we test humans
and GPT models on robustness to variants of the original analogy problems—versions that
test the same abstract reasoning abilities but that are likely dissimilar from tasks in the
pre-training data. The performance of a system that uses robust abstract reasoning should
not decline substantially on these variants.
On simple letter-string analogies, we find that while the performance of humans remains
high for two types of variants we tested, the GPT models’ performance declines sharply.
This pattern is less pronounced as the complexity of these analogy problems is increased, as
both humans and GPT models perform poorly on both the original and variant problems
requiring more complex analogies. On digit-matrix problems, we find a similar pattern but
only on one out of the two types of variants we tested. Lastly, we assess the robustness of
humans and GPT models on story-based analogy problems, finding that, unlike humans, the
performance of GPT models are susceptible to answer-order effects, and that GPT models
also may be more sensitive than humans to paraphrasing.
This work provides evidence that, despite previously reported successes of LLMs on zero-shot
analogical reasoning, these models often lack the robustness of zero-shot human analogy-
making, exhibiting brittleness on most of the variations we tested. More generally, this work
points to the importance of carefully evaluating AI systems not only for accuracy but also
robustness when testing their cognitive capabilities.
Code, data, and results for all experiments is available at [link redacted for anonymity].
Keywords: Analogy; Reasoning; Large Language Models; Evaluation; Robustness; Coun-
terfactual Tasks

1 Introduction

The degree to which pre-trained large language models (LLMs) can reason—deductively, inductively, ana-
logically, or otherwise—remains a subject of debate in the AI community. Many studies have shown that
LLMs perform well on certain reasoning benchmarks (Huang & Chang, 2022; Wei et al., 2022a;b). However,
other studies have questioned the extent to which these systems are able to reason abstractly, as opposed
to relying on shortcuts Branco et al. (2021); Taghanaki et al. (2024) or other heuristics, including “approxi-
mate retrieval” from encoded training data (Kambhampati, 2023). Several groups have shown that LLMs’
performance on reasoning tasks degrades, in some cases quite dramatically, on versions of the tasks that
vary from standard benchmarks or that are likely to be rare in the LLMs’ training data (Dziri et al., 2023;
McCoy et al., 2024a;b; Mirzadeh et al., 2024; Razeghi et al., 2022; Srivastava et al., 2024; Wu et al., 2023).
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The lack of robustness to variations on tasks means that the performance of LLMs on real-world tasks might
not be well-predicted from their performance on standard benchmarks.

In this paper, we evaluate the robustness of analogical reasoning in three of OpenAI’s GPT models. In
particular, we evaluate the robustness of results reported by Webb, Holyoak, and Lu (2023) (hereafter referred
to as WHL), who carried out experiments to assess GPT-3’s zero-shot ability to solve analogy problems in
four domains: four-term verbal analogies, digit matrices, letter-string analogies, and story analogies. They
found that on several types of problems GPT-3 matched or exceeded human performance, and concluded
that “GPT-3 appears to display a [zero shot] emergent ability to reason by analogy.”

After repeating the experiments of WHL on letter-string analogies, digit-matrix problems, and story analo-
gies, we assess the robustness of analogical reasoning in both humans and GPT models by testing on variants
of the original tasks that are unlikely to be similar to reasoning tasks seen in the models’ training data. If
an LLM (or human solver) is using robust abstract reasoning procedures, it should perform comparably on
both the original tasks and and variants; if it is using procedures that rely on shortcuts or similarity to
training data, the performance should drop substantially on the variants.1

For letter-string problems we tested two types of variants using “fictional alphabets”(1) in which the positions
of some letters are perturbed; and (2) in which letters are replaced by non-letter symbols. On simple problems
we find that while human performance remains high across variants, the GPT models’ performance declines
sharply. This pattern is less pronounced as the complexity of these analogy problems is increased, as both
humans and GPT models perform poorly on both original and variant problems requiring more complex
analogies.

For digit-matrix problems we also tested two types of variants: (1) versions in which the position of the
“blank” (missing answer) in the matrix was randomly chosen rather than always being the bottom-right
entry; and (2) versions in which digits were replaced by non-digit symbols. For variants of type 1 we found
that while human accuracy did not change from that on the original problems, the GPT models’ performance
again declines sharply. For variants of type 2 we found that neither the performance of humans or GPT
models changed substantially from that on the original problems.

Finally, we evaluate the robustness of humans and GPT models on story-analogy problems in two ways:
we examine (1) the effects of different ordering of the answer candidates and (2) the effects of paraphrased
versions of stories. We find that, unlike humans, the performance of GPT models show strong answer-order
effects, and that these models seem more sensitive than humans to paraphrasing effects.

Because the purpose of this paper is to evaluate the robustness of published claims of zero-shot analogical
reasoning with simple prompts, we do not experiment with other prompting formats, such as non-zero-shot
or chain-of-thought prompting, or with models specifically trained for reasoning capabilities (e.g., OpenAI
(2024)), but rather leave such evaluations for future work. However, the zero-shot, simple prompt case is
arguably the most interesting one, as noted by WHL: “Of particular interest is the ability of these models
to reason about novel problems zero-shot, without any direct training. In human cognition, this capacity is
closely tied to an ability to reason by analogy.”

Contributions: This work provides evidence that, despite previously reported successes of LLMs on ana-
logical reasoning, these models often lack the zero-shot robustness of human analogy-making, exhibiting
brittleness on most of the variations we tested. More generally, this work points to the importance of care-
fully evaluating AI systems not only for accuracy but also robustness when testing their cognitive capabilities.

Data Availability: Code, data, and results for all experiments are available at [link redacted for anonymity].

1We did not experiment on WHL’s four-term verbal analogies; the ability to solve such “proportional analogies” based on
single words comes easily to LLMs likely due to properties of the word embeddings they learn Chiang et al. (2020).
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2 Letter-String Analogies

2.1 Background

Letter-string analogies were proposed by Hofstadter (1985) as an idealized domain in which processes un-
derlying human analogy-making could be investigated. The following is a sample problem:

a b c d → a b c e ; i j k l → ?

Here, a b c d → a b c e is called the source transformation and i j k l is called the target. The solver’s task
is to generate a new string that transforms the target analogously to the source transformation. There is
no single correct answer to such problems, but there is typically general agreement in how humans answer
them. For example, for the problem above, most people answer i j k m, and answers that deviate from this
tend to do so in particular ways (Mitchell, 1993).

In addition to the work of Hofstadter & Mitchell (1994) on creating computer models of analogy-making
using this domain, letter-string analogies have been used to isolate the neural correlates of analogy formation
(Long et al., 2015; Geake & Hansen, 2010), and to model higher-order analogy retrieval (Dekel et al., 2023).

WHL compared the ability of GPT-3 with that of humans on a dataset of letter-string analogies, finding
that, in most cases, GPT-3’s performance exceeded the average performance of the human participants.
Here, performance is measured as fraction of correct answers on a given set of letter-string problems, where
WHL used their intuitions to decide which answer displays abstract analogical reasoning and thus should be
considered “correct.” In this paper we will use their definition of correctness.

WHL’s dataset consists of a set of problem types involving different kinds of transformations and levels of
generalization. The following are the six transformation types with sample transformations:

1. Extend Sequence: a b c d → a b c d e

2. Successor: a b c d → a b c e

3. Predecessor: b c d e → a c d e

4. Remove Redundant Letter: a b b c d → a b c d

5. Fix Alphabetic Sequence: a b c w e → a b c d e

6. Sort: a d c b e → a b c d e

Each type of transformation can be paired with a “zero-generalization” target (e.g., i j k l) or with between
one and three of the following types of generalizations:

1. Letter-To-Number: a b c d → a b c e ; 1 2 3 4 → ?

2. Grouping: a b c d → a b c e ; i i j j k k l l → ?

3. Longer Target: a b c d → a b c e ; i j k l m n o p → ?

4. Reversed Order: a b c d → a b c e ; l k j i → ?

5. Interleaved Distractor: a b c d → a b c e ; i x j x k x l x → ?

6. Larger Interval: a b c d → a b c e ; i k m o → ?

The following are examples of (1) a 1-generalization problem (Extend Sequence paired with Longer Target);
(2) a 2-generalization problem (Remove Redundant Letter paired with Letter-To-Number and Grouping);
and (3) a 3-generalization problem (Successor paired with Grouping, Reversed Order, and Interleaved Dis-
tractors).
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1. a b c → a b c d ; i j k l m n → ?.

2. a b b c → a b c ; 1 1 2 2 3 3 3 3 4 4 → ?.

3. a b c → a b d ; l l x k k x j j x i i x → ?.

Finally, WHL included a number of problems involving “real-world” concepts, such as,

a b c → a b d ; cold cool warm → ?

In this paper we do not include the “real-world” concepts in our studies, focusing instead on non-linguistic
inputs.

WHL generated numerous problems for each problem type and presented these to GPT-3 (text-davinci-003)
as well as 57 UCLA undergraduates. The human participants exhibited a large variance in accuracy, but on
average, WHL found that GPT-3 outperformed the average human performance on most problem types.

2.2 Variants of Letter-String Analogies

To assess the robustness of WHL’s results on letter-string analogies, we created variants of the same letter-
string analogy problem types, and evaluated both humans and three GPT models on these versions.

Fictional Alphabets We created two types of variants using “fictional” alphabets: problems using per-
muted alphabets and problems using “alphabets” of symbols rather than letters. To create a permuted
alphabet, we reorder n letters, where n can be 2, 5, 10, or 20. For each of the four values of n, we generated
seven distinct alphabets αn(i), i ∈ {1, ..., 7}, with n randomly chosen letters reordered, yielding 4 × 7 = 28
distinct permuted alphabets. We also generated two symbol alphabets, ψ10(1) and ψ10(2), each consisting
of 10 non-letter symbols in a given order, and seven symbol alphabets ψ15(i), i ∈ {1, ..., 7} each consisting
of 15 non-letter symbols in a given order.

Creating Zero-Generalization Letter-String Problem Variants For the zero-generalization case, for
each αn(i), we created 10 different letter-string problems for each of WHL’s six transformation types. This
results in 7 × 10 × 6 = 420 zero-generalization analogy problems for each value of n. We added to this 420
letter-string problems using the non-permuted (n = 0) alphabet, spread evenly over the six transformation
types. Figure 1a gives an example of a Fix Alphabetic Sequence problem using an alphabet with two letters
(e and m) reordered.

For each of the symbol alphabets ψ10(1) and ψ10(2) we created 10 problems each for the Successor and
Predecessor problem types, for a total of 40 distinct non-letter symbol problems. Figure 1b gives an example
of a Predecessor problem using a symbol alphabet.

Creating Letter-String Problem Variants With Generalizations To create variants of letter-string
problems with generalizations, we used the same alphabets αn(i), as well as the seven longer symbol alpha-
bets, ψ15(i).

Recall that WHL created problems that paired each transformation type with either one, two, or three
generalization types.

To generate 1-generalization problems with permuted alphabets, for each αn(i), i ∈ {1, ..., 7}, and for each of
the six generalization types, we created 10 problems, each with a randomly chosen transformation type. This
yields 7 × 6 × 10 = 420 distinct 1-generalization permuted-alphabet problems. We added to this 420 distinct
1-generalization problems for the original (n = 0) alphabet, spread evenly over the six transformation types.

To generate 1-generalization problems with symbol alphabets, for each ψ15(i), i ∈ {1, ..., 7}, and for each of
the six generalization types, we created 10 problems, each with a randomly chosen transformation type, for
a total of 7 × 6 × 10 = 420 distinct 1-generalization symbol-alphabet problems.

For two- (three-) generalization problems, for each number of letters permuted and each alphabet, we create
70 problems with two (three) randomly selected generalization types and a randomly selected task. We thus
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create 7 × 70 = 490 unique two-generalization problems and the same number of unique three-generalization
problems. Due to the difficulty of two- and three-generalization symbol problems for both humans and
GPT models, we limited our human and GPT experiments to symbol problems only with zero- and one-
generalizations.

2.3 Methods For Experiments On Letter-String Analogies and Variants

Human Study Methods For all human studies, we collected data on Prolific Academic.2 Participants
were screened to have English as a first language, to currently be living in the UK, the USA, Australia, New
Zealand, Canada, or Ireland, and to have a 100% approval rate on Prolific.

In order to assess humans’ abilities on the original and variants of letter-string problems, we collected data
from 263 participants. Each participant was asked to solve 14 letter-string analogy problems drawn from
original, permuted, and symbol alphabets, with different numbers of generalizations. The 14 problems given
to each participant were sampled from different transformation types.

In addition to the 14 problems, participants were also given two attention-check questions at random points
during the experiment, with a warning that if the attention checks were failed, then payment ($7 for the
experiment, which was expected to take about 20–30 minutes) would be withheld. Figure 1c gives an example
of an attention check. Four of the 263 participants’ submissions were rejected due to failed attention checks.
As in WHL’s studies, as part of the initial instructions, participants were given a simple example problem
to complete and then were shown the solution.

(a) Example analogy problem with
permuted alphabet.

(b) Example analogy problem with
symbol alphabet.

(c) Example attention check.

Figure 1: Example items in human study.

GPT Study Methods We evaluated the performance of three GPT models—GPT-3 (text-davinci-003,
which was the model tested by WHL), GPT-3.5 (gpt-3.5-turbo-0613), and GPT-4 (gpt-4-turbo-0613)—on
the same problems given to humans. Following WHL, all GPT experiments were done with temperature set
to zero. GPT-3 takes in a single prompt, whereas GPT-3.5 and GPT-4 take in a list of messages that define
the role of the system, input from a “user” role, and optionally some dialogue with simulated responses from
the model given under the role “assistant.”

For our experiments on the original letter-string problems used by WHL, our system and user prompts for
GPT-3.5 and GPT-4, have the following format:

System: You are able to solve letter-string analogies.
User: Let’s try to complete the pattern:\n\n[a b c d] [a b c e]\n[i j k l] [

2https://www.prolific.com/academic-researchers
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The user prompt is identical to the prompt WHL gave to GPT-3; the \n character signifies a line break to
the model.

For our experiments on letter-string analogy variants, we tested three different prompt formats, including
one similar to instructions given in our human study. The best performance across models was achieved
with the prompt format used in Hodel & West (2023):

System: You are able to solve letter-string analogies.
User: Use this fictional alphabet: [a u c d e f g h i j k l m n o p q r s t b v w x y z]. \nLet’s
try to complete the pattern:\n[a u c d] [a u c e]\n[i j k l] [

Appendix A.1 gives the other prompt variants we tested.

Note that in our studies, the “fictional alphabet” part of the prompt and the alphabet listing was included
even for problems using the non-permuted (n = 0) alphabet.

In this and all other experiments, we tested GPT-3 with a concatenation of the system and user prompts.
Following WHL, in our experiments all GPT model responses were truncated at the point where a closing
bracket was generated.

2.4 Replication of WHL’s Studies

Our first set of experiments attempted a replication of WHL’s experiments testing humans and GPT-3 on
letter-string analogies.

Replication: Human Study Results Figure 2 compares the results of our human study with that
of WHL on the original letter-string problems, averaged across transformation types for different numbers
of generalizations. The participants in our study achieved higher average accuracy than those of WHL
(abbreviated as “Webb” in the figure) on zero-generalization problems, and similar accuracy on problems
with one or more generalizations. The differences on zero-generalization problems may be due to differences
in experimental protocols or in the participant pools.

0 1 2 3
Num. Generalizations
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Ours

Figure 2: Human results on WHL’s original letter-string task for problems with zero to three generalizations.
“Webb” refers to the results of WHL’s original human studies, and “Ours” refers to the results of our
human studies. Data points give mean accuracy across all transformation types, and bars indicate 95%
binomial confidence intervals. Numbers of samples for Webb are 342 for each number of generalizations.
Numbers of samples for our data are 276 for zero generalizations, 138 for one, and 92 each for two and three
generalizations.
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Replication: GPT Study Results Figure 3 shows GPT-3 data from WHL (“GPT-3_Webb”) compared
with data from our computational experiments with GPT-3, GPT-3.5 and GPT-4, averaged across trans-
formation types for different numbers of generalizations. In all cases our GPT-3 results are similar to those
of WHL. GPT-3.5 and GPT-4 show slightly lower accuracy than GPT-3, possibly due to their fine-tuning
beyond a strict prompt-completion objective.
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Figure 3: GPT results on WHL’s original letter-string task for problems with zero to three generalizations.
“GPT-3_Webb” refers to WHL’s results on GPT-3. “GPT-3”, “GPT-3.5”, and “GPT-4” refer to our results
with those models. Data points give mean accuracy across all task types, and bars indicate 95% binomial
confidence intervals. Numbers of samples for GPT-3_Webb are 300 for each number of generalizations.
Numbers of samples for our data are 420 for zero and one generalization, and 490 for each of two and three
generalizations.

In summary, our human and GPT-model replication results are generally consistent with those of WHL,
although our human study yields higher human performance on zero-generalization problems.

2.5 Results on Variants of Letter-String Problems

Counterfactual Comprehension Check On Fictional Alphabets For problems involving permuted
alphabets, we follow Wu et al. (2023) by providing counterfactual comprehension checks (CCCs) to test if
the models grasp the basics of the task proposed. We use two CCCs: firstly, given an alphabet and a sample
letter (or symbol) from that alphabet, give the successor of that letter. Secondly, we use the same format
but ask for the predecessor of the letter. We ensure that we do not ask for the successor of the last letter in
the alphabet or the predecessor of the first. Details of our CCCs are given in Appendix A.3. In summary,
we find that the CCC accuracy is generally quite high, indicating that the models generally grasp what
“successor” and “predecessor” mean in each fictional alphabet.

Results On Human and GPT Experiments on Variants of Letter-String Analogy Problems
Table 1 gives the mean accuracy and 95% binomial confidence intervals for humans and GPT models across
all alphabets and problem types. In all cases the average human performance on these problems is higher
than that of any of the GPT models, and in the case of zero generalizations it is substantially higher. Note
that GPT-3 was not available for our experiments on symbol alphabets with one generalization. Note also
that due to funding limitations, we did not test humans on two- and three-generalization problems for symbol
alphabets, so for both humans and GPT models, we only report results on two- and three-generalization
problems for permuted alphabets. Given the very low accuracies on one-generalization problems with symbol
alphabets, we expect that the two- and three-generalization accuracies would be equally low or lower.

Figure 4 shows the performance of human participants and GPT models, averaged across problem types for
problems with different alphabets and numbers of generalizations.
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Table 1: Accuracies and binomial confidence intervals across all alphabets and problem types for humans
and GPT models in our studies, by number of generalizations. Number of samples for GPT models for zero
generalizations is 2,140, for humans 1,876. Number of samples for GPT-3 for one generalization is 2,100,
for GPT-3.5 and GPT-4 is 2560, and for humans is 1,062. Number of samples for GPT models for two and
three generalizations is 2,450, and for humans is 504. Note that figures for 2 and 3 generalizations do not
include symbol alphabets, and figures for GPT-3 1-generalization also do not include symbol alphabets.

Model Num. Generalizations
0 1 2 3

Humans 0.754 [0.734, 0.773] 0.358 [0.329, 0.386] 0.317 [0.277, 0.358] 0.260 [0.222, 0.298]
GPT-3 0.488 [0.467, 0.509] 0.333 [0.313, 0.353] 0.194 [0.179, 0.210] 0.160 [0.145, 0.174]

GPT-3.5 0.350 [0.330, 0.370] 0.175 [0.161, 0.190] 0.131 [0.117, 0.144] 0.078 [0.067, 0.088]
GPT-4 0.452 [0.431, 0.473] 0.271 [0.253, 0.288] 0.219 [0.202, 0.235] 0.195 [0.179, 0.210]
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Figure 4: Accuracy on different alphabet types, across different numbers of generalizations, for human
participants and GPT models. Data points indicate mean accuracy across all transformation types for
different alphabets, and bars indicate 95% binomial confidence intervals. The number of samples for each
human data point is given in Table 2. The number of samples for GPT-model data point is as follows. For
zero or one generalizations, and 0-20 letters permuted, each data point corresponds to 420 samples. For two
or three generalizations, 0-20 letters permuted, each data point corresponds to 490 samples. For the symbol
alphabets, zero-generalization data points correspond to 40 samples and one-generalization correspond to
420 samples.

Table 2: Number of human samples per data point in Figure 4.

Num. Generalizations Alphabets
0 2 5 10 20 Symb

0 276 342 336 384 270 268
1 138 153 156 150 159 300
2 92 102 104 100 106 –
3 92 102 104 100 106 –
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For zero-generalization problems, human performance is significantly above the performance of each GPT
model, across all types of alphabets, and, most notably, stays relatively constant across alphabet variants.
In contrast, the GPT models show a more dramatic drop for the alphabet variants, especially in the case of
symbol alphabets. This shows that for these simpler problems, humans are robust to variants whereas GPT
models are not. This pattern is also present, to a lesser degree, for one- and two-generalization problems,
except that human accuracy drops substantially on one-generalization symbol problems. For the most
difficult—three-generalization—problems, humans and GPT-models maintain a relatively constant (poor)
accuracy across alphabet variants.

3 Digit Matrices

3.1 Background

WHL proposed digit matrices as a novel analogy-making domain inspired by Raven’s Progressive Matrices
(RPM)(Raven, 1938). The following is a sample digit-matrix problem:

[2] [3] [4]
[3] [4] [5]
[4] [5] [ ]

As in RPMs, the challenge is to recognize patterns across the rows and columns, and to fill in the blank
([ ]) cell.

The original RPM problems were created manually, and only a small number (108) were in the original
formulation. Matzen et al. (2010) identified a number of rules used in creating these problems; WHL used
these rules to programmatically generate digit-matrix problems of different problem types:

• Constant: the same digit occurs across each row or column. Example:

[2] [2] [2]
[5] [5] [5]
[6] [6] [ ]

• Distribution of 3: a set of 3 digits is permuted across rows and columns. Example:

[2] [5] [6]
[5] [6] [2]
[6] [2] [ ]

• Progression: digits increase or decrease by 1 or 2 across rows or column. Example:

[2] [3] [4]
[3] [4] [5]
[4] [5] [ ]

• Logic: digits in a particular row or column are a logical combination of digits in the other rows or
columns. The logical operators used are AND, OR, and XOR. Example (OR—the last column is
the union of the two previous columns):

[1] [3] [1 3]
[5] [6] [5 6]

[1 5] [6 3] [ ]

WHL tested humans and GPT-3 on digit matrices with up to three rules combined (logic problems were
tested only with a single rule). The tests were done in two ways: (1) solvers were asked to select an answer
from a list of candidate answers; and (2) solvers were asked to generate an answer. Our tests included only
the “generate answer” format.
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3.2 Variants of Digit-Matrix Problems

To assess the robustness of WHL’s results on digit matrices, we created two types of variants on the digit-
matrix task: one in which we randomly assign the matrix position of the “blank” (answer element), and the
other in which we replace digits with non-numeric symbols. As in our letter-string problems, these variants
rely on the same abstract reasoning processes needed to solve the original digit matrices.

Alternate Blank Position Using WHL’s generation process, we generated digit matrices similar to those
of WHL, but with the position of the blank element chosen randomly, instead of always being in the bottom-
right position. Figure 5a gives an example.

Symbol Matrices We replaced the digits by non-numerical symbols in each of the digit-matrix problems
used by WHL in their experiments (excepting the “progression”-type problems, since the symbols have no
inherent ordering). Figure 5b gives an example.

3.3 Methods for Experiments on Digit Matrices

Human Study Methods We collected data on Prolific Academic. Participants were screened to have
English as a first language, to currently be living in the UK, the USA, Australia, New Zealand, Canada, or
Ireland, and to have a 100% approval rate on Prolific with five or more studies approved.

In order to assess humans’ abilities on the original and variants of digit-matrix problems, we collected data
from 301 participants. Each participant was asked to solve 10 matrix problems, all of which were either
original digit-matrix problems, problems with alternative blank positions, or problems with symbols in place
of digits. The 10 problems given to each participant were sampled from different problem types.

In addition to the 10 problems, participants were also given two attention-check questions at random points
during the experiment, with a warning that if the attention checks were failed, then payment ($6 for the
experiment, which was expected to take less than 20 minutes) would be withheld. Figure 5c gives an example
of an attention check. Only one of the 301 participants’ submissions was rejected due to failed attention
checks. As in WHL, as part of the initial instructions participants were given a simple example problem to
complete and then were shown the solution.

(a) Problem with alternative blank
position.

(b) Problem with symbols insted of
digits.

(c) Example attention check.

Figure 5: Example items in human study.

GPT Study Methods We evaluated the performance of GPT-3.5 (0613) and GPT-4 (0613)3 on the same
digit matrices given to humans. At the time of our experiments, GPT-3 was not longer available for testing.

Following WHL, all GPT experiments were done with temperature set to zero.
3We also evaluated two more recent GPT-4 models, GPT-4-1106 and GPT4-0125, but neither surpassed the accuracy of

GPT-4 0613, so here we only report results for the 0613 version.
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We experimented with different prompt formats, and found that the following gave the best performance for
both models:

System: You are a genius at solving analogy problems.
User: Try to complete the pattern below. Give ONLY the answer as briefly as possible.
\n[6] [6] [6]\n[9] [9] [9]\n[8] [ ] [8]

We give the other prompts we tested in Appendix A.2.

3.4 Replication of WHL’s Studies
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Figure 6: Accuracy across problems with different numbers of rules for human participants on original
digit-matrix problems. WHL’s results are labeled “Webb” and our results are labeled “Ours.” Data points
indicate mean accuracy across all task types for each number of rules and bars indicate 95% binomial
confidence intervals. The number of samples for Webb one- and two-rule problems is 258, and for three- and
four-rule problems 430. The number of samples for our data are 306 for one-rule problems, 297 for two-rule
problems, 502 for three-rule problems, and 445 for logic problems.

Replication: Human Study Results Figure 6 gives the accuracy on the original digit-matrix task for
humans in WHL’s study (“Webb”) and our replication (“Ours”). The participants in our study had higher
performance than those in WHL’s study, but generally followed the same trend across problems with different
numbers of rules.

Replication: GPT Study Results Figure 7 gives the accuracy of on the original digit-matrix task for
GPT models in WHL’s study (“GPT-3 Webb”) and in our study (“GPT-3.5 (0613)” and “GPT-4 (0613)”).
Our results very closely match those of WHL for problems with each number of rules.

3.5 Results on Human and GPT Experiments on Variants of Digit-Matrix Problems

Counterfactual Comprehension Check On Alternative Blank Positions For the digit-matrix prob-
lems with alternate blank positions, we tested GPT-3.5 and GPT-4 to make sure they comprehended the
format of the task. For the simple digit-matrix problem

[2] [2] [2]
[5] [5] [5]
[6] [6] [ ]

we tested each each model nine times, where on each (independent, zero-temperature) run the blank was in
a different position. The prompt we used was as follows:
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Figure 7: Accuracy across different numbers of generalizations for GPT models on original digit-matrix
problems. WHL’s results are labeled “GPT-3 Webb” and our results are labeled “GPT-3.5” and “GPT-4”.
Data points indicate mean accuracy across all task types for each number of rules and bars indicate 95%
binomial confidence intervals. The number of samples for WHL’s one-rule problems is 176, for two-rule 240,
for three-rule 400 and for logic problems 400. For our results on GPT-3.5 and GPT-4, the number of samples
for one-rule problems is 416, for two-rule 600, for 3-rule 1,000, and for logic 900.

System: You are a genius at solving analogy problems.
User: The pattern below is incomplete. What is the position of the missing element? \n[6]
[6] [6]\n[9] [9] [9]\n[8] [ ] [8]

GPT-3.5 correctly identified the location of the blank in 6 out of 9 cases, and GPT-4 correctly identified the
location of the blank in 9 out of 9 cases. This suggests that when asked to complete the pattern, GPT-4 will
comprehend what the task is, while GPT-3.5 might have some problems comprehending it.

Results Oon the Two Types of Variant Problems Table 3 gives mean accuracy (across all problem
types and numbers of generalizations) for humans, GPT-3.5, and GPT-4 on the original digit matrices and
the two types of variations we tested. Human accuracy stays roughly constant between the original problems
and both variations. Like humans, the accuracy of the GPT models we tested was not sensitive to the symbol
variants, but unlike humans, the GPT models’ accuracy drops dramatically on the problems with alternate
blank positions, showing a lack of robustness to this simple variation on the original task.

Table 3: Mean accuracy and 95% binomial confidence intervals averaged over all matrix problem types for
humans, GPT-3.5, and GPT-4. Numbers of samples for humans are 1,550 for Digits and 1,000 for each of
Alt. Blank and Symbols. Numbers of samples for GPT models are 2916 for Digits, 1,466 for Alt. Blank,
and 2100 for Symbols.

Digits Alt. Blank Symbols
Humans 0.715 [0.693, 0.738] 0.771 [0.745, 0.797] 0.704 [0.676, 0.732]
GPT-3.5 0.813 [0.799, 0.827] 0.480 [0.455, 0.506] 0.790 [0.772, 0.808]
GPT-4 0.810 [0.796, 0.824] 0.477 [0.452, 0.503] 0.792 [0.774, 0.810]

More detailed results for our variant digit-matrix problems, including results for different numbers of rules
are given in Appendix A.4
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4 Story Analogies

4.1 Background

WHL tested humans, GPT-3, and GPT-4 on a set of 18 story-analogy problems from (Gentner et al., 1993).
These problems were designed to test how well humans can identify analogies involving causal relations
between story elements. For each problem, a participant or model is presented with a source story (Story 1),
paired with two other stories (Story A and Story B), one of which is analogous to the source story, meaning
that it has the same causal structure as the source story, although actors, objects, and events may differ.
The other story has the same actors, objects, and events as the correct-analogy story, but the causal relations
between the story elements differ from those in the source story. In WHL, these were termed, respectively,
“Far analogy—correct target story” and “Far analogy—incorrect target story.”4

WHL presented humans, GPT-3, and GPT-4 prompts that gave Story 1, Story A, and Story B, and asked,
“Which of Story A and Story B is a better analogy to Story 1? Is the best answer Story A, Story B, or both
are equally analogous?” To mitigate ordering biases, for each of the 18 story problems half of the human
participants received prompts in which Story A was the correct answer, and for the other half, Story B was
the correct answer. GPT-3 and GPT-4 were tested on two versions of each story problem, with opposite
ordering of the correct and incorrect answers.

WHL found that while humans perform better on average than GPT-3 and GPT-4 on these “far analogies,”
both GPT models perform well above the random-guessing baseline of 50% accuracy.

4.2 Robustness Tests for Story Analogies

Testing Ordering Biases In reviewing the detailed data collected by WHL, we noticed that in their
experiments, GPT-4’s accuracy on the 18 story-analogy problems was biased by the order of the candidate
answers: when Story A was the correct answer, GPT-4 was 89% accurate (16/18 correct), but when Story B
was correct, GPT-4’s accuracy decreased to 61% (11/18 correct).5 To further test the effects of answer order,
we performed experiments similar to those of WHL, testing both human participants and GPT-4 (0613) on
the same 18 story-analogy problems using both orderings for candidate answers. A human or machine
employing robust analogy-making abilities should not be affected by the order of candidate answers.

Testing With Paraphrased Stories One potential confounding factor in evaluating GPT models using
previously published tests such as Gentner et al.’s story-analogy problems is that these tests are likely to
have appeared in the models’ pre-training data. If so, it is not clear what effect this would have on the
model’s accuracy, but it does require caution in interpreting the results.

Another potential confounder is the possibility of “shortcuts” in the text—that is, features of the candidate
answers that can be used to predict the correct answer without requiring a robust analogy-making capability.
In reading the 18 story-problems, we noticed one possible source of shortcuts: in addition to sharing causal
structure with the source story, the correct-answer story often seems more similar to the source story at
the sentence level than the incorrect-answer story. For example, Figure 8 shows the source story (Story 1)
compared sentence-by-sentence with the correct target story (Story A); Figure 9 shows the same comparison
with the incorrect target story (Story B). Note that Story 1 and Story A share the same number of sentences
(except for a final irrelevant “distractor” sentence which was appended by Genter et al. to each source story),
and corresponding sentences tend to be structurally similar. These superficial similarities are not relevant
to the abstract causal analogy that is meant to link the two stories. However, in many of the 18 stories such
similarities with the source story are present in the correct answer and largely missing from the incorrect
answer.

To test this possible source of bias, for each story problem we wrote a paraphrased version of the correct
target story that lacked sentence-by-sentence similarity with the source story. For example, Figure 10 shows

4WHL also performed experiments on pairs of stories they called “near analogies,” in which the source and target were
simply paraphrases of one another with small inconsequential changes (or, as termed in (Gentner et al., 1993), “literally similar
stories”). Here we discuss results only on the “far analogy” stories.

5WHL did not provide data with respect to answer ordering for humans or for GPT-3.
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Figure 8: Sentence-by-sentence comparison of source and correct target story, from one of the 18 story-
analogy problems.

Figure 9: Sentence-by-sentence comparison of source and incorrect target story, from the same story-analogy
problem as in Figure 8.

Figure 10: Sentence-by-sentence comparison of source and paraphrased correct target story, from the same
story-analogy problem as in Figure 8.

14
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the paraphrased version of Story A from Figure 8. In each case we replaced the original correct target
story with the paraphrased version, keeping the original source story and incorrect target story. We then
tested humans and GPT-4 on the story-problems with paraphrased correct targets.6 A human or machine
employing robust analogy-making abilities should not be affected by paraphrasing of candidate answers.

4.3 Methods for Studies on Humans and GPT Models on Story Analogies

Human Study Methods As for other studies, we collected data on Prolific Academic. Participants were
screened to have English as a first language, to currently be living in the UK, the USA, Australia, New
Zealand, Canada, or Ireland, and to have a 100% approval rate on Prolific with 5 or more studies approved.

We collected data from 245 participants. Each participant was asked to solve six story-analogy problems,
where each problem consisted of one source story and two comparison stories. Figure 11a gives an example of
the presentation format. The order of the answers (correct/incorrect) was randomized. Comparison stories
were either both in the original format used by WHL, or versions with paraphrased correct target stories.
The six problems were randomly selected from the set of 18. Participants were paid $6 for the base task
and $1 for each of the problems they answered correctly, giving a maximum of $12 payment. The task was
expected to take approximately 30 minutes.

In addition to the six problems, participants were also given two attention-check questions at random points
during the experiment, with a warning that if the attention checks were failed, then payment would be
withheld. Figure 11b gives an example of an attention check. Five of the 245 participants’ submissions
was rejected due to failed attention checks. As in WHL, as part of the initial instructions participants were
shown a template of the format that stories would be presented in.

(a) Example story-analogy problem (here,
Story B was paraphrased from the original cor-
rect story.

(b) Example story-analogy problem with atten-
tion check.

Figure 11: Example items in our human study on story-analogy problems.

GPT Study Methods Following WHL, we evaluated GPT-4 (0613) on each of the 18 story-analogy
problems twice, once with each answer candidate listed first.7 We did not evaluate GPT-3 as it was no
longer available at the time of our experiments.

The prompt we used was as follows:

6The original stories and paraphrased versions are available at [link redacted for anonymity].
7We also evaluated two more recent GPT-4 models, GPT-4-1106 and GPT4-0125, but neither surpassed the accuracy of

GPT-4 0613, so here we only report results for the 0613 version.
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System: You are a helpful assistant.
User: Consider the following story:\n\nStory 1: [Text of Story 1]\n\nNow consider two
more stories:\n\nStory A: [Text of Story A]\n\nStory B: [Text of Story B]\n\nWhich of
Story A and Story B is a better analogy to Story 1? Is the best answer Story A, Story B,
or both are equally analogous?

4.4 Results of Human and GPT Studies of Ordering Effects

Robustness to Answer Order Table 4 gives the accuracies reported by WHL for GPT-4, along with the
accuracies we recorded in our GPT-4 and human studies, for story-problem presentations in which the first
or second answer was correct, and over all presentations. In our GPT-4 study, we found a similar ordering
bias to that seen in WHL’s data: the model is correct more often when the correct answer is given first. In
contrast, we see no ordering bias for humans.

Table 4: Accuracy on 18 “far-analogy” story problems. The first / second columns give the accuracy for
presentations in which the first / second answer is the correct one. The last column gives the accuracy over
all story presentations.

Accuracy: Correct Answer First Accuracy: Correct Answer Second Accuracy: Total
GPT-4 (WHL) 0.89 (16/18) 0.61(11/18) 0.75 (27/36)
GPT-4 (Ours) 1.0 (18/18) 0.67 (12/18) 0.83 (30/36)

Humans (Ours) 0.78 (292/373) 0.78 (272/347) 0.78 (564/720)

Robustness to Paraphrasing Our experiments on stories with the correct answer paraphrased were run
exactly as our experiments on the original stories. Table 5 gives the accuracies obtained in our GPT-4 and
humans studies for both original and paraphrased cases. Both GPT-4 and human performance decreases
on the paraphrased stories, suggesting that the superficial similarities in the original stories we described
above may have contributed to the original accuracies for both GPT-4 and for people. GPT-4’s performance
decreases more than humans’ performance on paraphrased stories, but with only 18 stories it is difficult to
determine if this effect is statistically significant.

Table 5: Accuracy on the original 18 “far-analogy” story problems and on stories with the correct answer
paraphrased.

Accuracy: Original Stories Accuracy: Stories with Paraphrasing
GPT-4 (Ours) 0.83 (30/36) 0.72 (26/36)

Humans (Ours) 0.78 (564/720) 0.70 (503/720)

5 Related Work

In the last few years there has been considerable work on evaluating the robustness of reasoning in LLMs,
with many studies showing that the performance of LLMs on reasoning tasks decreases, sometimes quite
substantially, when tested on variants of tasks that are likely to differ from those seen in the training data
Dziri et al. (2023); Hong et al. (2024); Jiang et al. (2024); McCoy et al. (2024a); Mirzadeh et al. (2024);
Mondorf & Plank (2024); Nezhurina et al. (2024); Prabhakar et al. (2024); Srivastava et al. (2024); Wu et al.
(2023); Yan et al. (2024).

Related Work On Letter-String Analogies For studying letter-string analogies, the work most closely
related to the work presented here is that of Hodel & West (2023), who tested GPT-3 with two types of
variations on the letter-string analogy problems used by WHL: ones that include larger intervals between
letters, and ones with randomly permuted alphabets. They found that GPT-3 performed substantially
worse than humans on both variations for all but one transformation type. A similar set of experiments
performed by Stevenson et al. (2024) compared several LLMs with adults and children on a small set of
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letter-string analogies and variations, and also found that LLMs performed poorly compared to humans
on the variations. Here we experiment with similar, but more systematic variations, and we compare the
performance of different GPT models with that of humans on these variations.

WHL published a response to Hodel & West (as well to other unpublished work), arguing that the GPT
models tested do indeed have an “emergent capacity for analogical reasoning,” and that the poor performance
of these models on variant problems could be explained, at least in part, by the models’ inability to count,
rather than a lack of analogical reasoning abilities. In particular, WHL claimed that solving problems with
permuted alphabets “require[s] that letters be converted into the corresponding indices in the permuted
alphabet, a process that depends on the ability to precisely count the items in a list.” WHL tested a version
of GPT-4 that could generate and execute Python code on variants of letter-string analogy problems, using
a randomly shuffled alphabet from Hodel & West’s paper. They found that this version of GPT-4 generated
code to convert letters to their corresponding numerical indices and then computed differences between
indices in order to to solve the problem.

For example, given the “fictional” alphabet x y l k w b f z t n j r q a h v g m u o p d i c s e, and the analogy
problem

b f z t → b f z n ; p d i c → ?,

GPT-4 would generate code that would (1) assign each letter to its numerical position in the alphabet (b is
the 6th letter, f is the 7th letter, etc.), (2) translate the problem to the equivalent numerical one:

5 6 7 8 → 5 6 7 9 ; 21 22 23 24 → ?

It would then compute the numerical difference between numbers in the first two sequences, and create a
numerical sequence s that has the same numerical differences with the target sequence. Finally, s would be
translated back to letters based on their indices in the alphabet.

Perhaps not surprisingly, on problems with this shuffled alphabet the version of GPT-4 with code generation
matched or exceeded human accuracy on problem types on which such familiar numerical pattens and
counting abilities were useful, such as “Successor,” “Predecessor,” “Extend sequence”, as well as on “Remove
redundant letter,” but code-generation was less successful on “Fix alphabetic sequence” and “Sort” problems;
translating into numerical patterns were not as useful in those cases. (WHL did not experiment with GPT-4
code generation on symbol alphabet problems.)

We disagree that the letter-string problems with permuted alphabets (or alphabets with non-numeric sym-
bols) “require that letters be converted into the corresponding indices.” One doesn’t have to compute that,
say, b is the 6th letter and p is the 21st letter to solve the problem given above. Rather, one just needs to
understand general abstract concepts such as successorship and predecessorship, and what these mean in
the context of the given “fictional” alphabet. Indeed, testing this general abstract understanding was the
point of creating variants of the original task.

Moreover, this notion of counting violates the spirit of the letter-string domain. As was described in Hofs-
tadter & Mitchell (1994), the whole point of the letter-string domain was to get at general mechanisms of
analogical reasoning, rather than requiring very domain-specific reasoning, such as counting up the positions
of letters in the alphabet, or subtracting the indices of one letter from another. According to Hofstadter &
Mitchell, “[P]roblems should not depend on arithmetical facts about letters, such as the fact that ‘t’ comes
exactly eleven letters after ‘i’, or that ‘m’ and ‘n’ flank the midpoint of the alphabet...arithmetical operations
such as addition and multiplication play no role in the [letter-string] domain.”

Related Work On Story Analogies For studying story analogies, the work most closely related to our
own is that of Sourati et al. (2024), who created a benchmark of over 1,000 story-analogy problems similar
to the ones from Gentner et al. (1993), and systematically tested different types of mappings. They found
that humans were substantially more accurate on these problems than any of the LLM models they tested,
with a particularly large gap between human and LLM performance on “far analogies.”

To our knowledge, ours is the first study to have tested the robustness of WHL’s results on digit matrices.
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6 Conclusions

The purpose of the work described in this paper was to investigate the robustness of claims of emergent
zero-shot analogical reasoning in GPT models Webb et al. (2023). In particular, we evaluated GPT models’
performance on three of the four domains used by WHL: letter-string analogies, digit matrices, and story
analogies, and tested the robustness of these models and of humans on variants of problems in those domains,
ones that required the same abstract analogical reasoning but were unlikely to be similar to those seen in
the models’ pre-training data. In addition, we tested the effects of answer order for the story analogies.

In the letter-string-analogy domain, we evaluated humans and GPT models on two types of variant prob-
lems: ones using permuted alphabets and ones using symbol alphabets. On the simplest problems (zero-
generalization) humans’ performance remained relatively high across variants, whereas GPT models’ perfor-
mance decreased, particularly on symbol alphabets. This is in spite of the fact that GPT models seemed
to comprehend basic relationships in the variant alphabets, as shown by our counterfactual comprehension
checks. On more difficult problems (one to three generalizations), this effect was less prominent as both
humans and GPT models performed poorly across original and variant problems.

In the digit-matrix domain we also evaluated humans and GPT models on two types of variant problems:
ones in which the answer “blank” position was randomly selected, and ones in which we replaced digits
with symbols. For the problems with alternate blank positions, the human participants performance was
essentially unchanged from that on the original problems, whereas the performance of the GPT models we
tested dropped dramatically. For problems with symbols replacing digits, the performance of both humans
and GPT models stayed approximately constant with that on the original problems.

On the story-analogy problems tested by WHL, where the solver was asked not to generate an answer but
to choose one of three possibilities (“Story A is more analogous”; “Story B is more analogous,”; “They
are equally analogous”) we evaluated humans and GPT-4 on two dimensions of robustness: answer-ordering
effects and paraphrasing effects. We found that while humans are not affected by answer order, GPT-4 seems
substantially biased by order. The performance of both humans and GPT models seems to decrease with
paraphrasing (in which surface parallels between the original story and correct-answer story are minimized).
While our results are suggestive, the small number of stories in this experiment (18) makes it difficult to
obtain useful statistics on the size of these effects.

Overall, our results provide evidence that, despite previously reported successes of LLMs on zero-shot analog-
ical reasoning, these models in many cases lack the robustness of zero-shot human analogy-making, exhibiting
brittleness on most of the variations and biases we tested.

These results support the conclusions of other work showing that LLMs’ performance is better, sometimes
dramatically, on versions of reasoning tasks that are likely similar to those seen in training data. While they
may have some capability for abstract reasoning, LLMs often lack general, robust reasoning abilities, but
instead rely on “narrow, non-transferable procedures for task solving” (Wu et al., 2023). Humans have also
been found to perform better on tasks involving familiar content (Lampinen et al., 2024), but, as seen in
our results, are often able to overcome their biases and outperform LLMs on abstract analogical reasoning,
perhaps due to their abilities for metacognitive deliberation (Thompson, 2009), which are largely lacking
in current state-of-the-art AI systems (Johnson et al., 2024). Our results also illustrate the importance of
replicating published claims and carefully evaluating AI systems not only for accuracy but also robustness
when testing their cognitive capabilities (Frank, 2023; Ivanova, 2023).

As we discussed in Section 1, our goal in this paper was to evaluate the robustness of published claims of
zero-shot analogical reasoning with simple prompts, so we did not test other prompting formats or models
specifically trained for chain-of-thought reasoning, but rather leave such evaluations for future work. That
being said, we agree with WHL’s assessment that using simple zero-shot prompts is the most appropriate
way to evaluate LLMs’ abilities for analogical reasoning.

This work does not probe into how either humans or GPT form responses to the problems we used in this
evaluation, or analyze in depth the kinds of errors they make (though Appendix A.5 gives a preliminary
analysis of human and GPT-model errors for simple letter-string problems). Future work in this area could
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be to request that both humans and LLMs give justifications for a particular answer, and to examine how
aligned are the kinds of errors made by humans and LLMs.

A Appendix

A.1 Letter-String Prompts

For the our experiments on letter-string-analogy problems (and variants), we experimented with three dif-
ferent prompts for GPT models. The prompt from Hodel & West (2023) described in Section 2.3 resulted in
the highest performance for all GPT models, and was used for our letter-string experiments. We also tested
a prompt similar to the instructions given to human participants (“Humanlike Prompt”), and a minimal
version of the human prompt (“Minimal Prompt”). These prompts are given below.

Humanlike Prompt:

System: You are able to solve letter-string analogies.
User: In this study, you will be presented with a series of patterns involving alphanumeric
characters, together with an example alphabet.\n\nNote that the alphabet may be in an
unfamiliar order. \n\nEach pattern will have one missing piece marked by [ ? ].\n\nFor
each pattern, you will be asked to guess the missing piece.\n\nUse the given alphabet when
guessing the missing piece.\n\nYou do not need to include the ‘[ ]’ or spaces between letters
in your response.\n\na b c h e f g d i j k l m n o p q r s t u v w x y z \n\n[a a a] [b b
b]\n\n[c c c] [ ? ]
Assistant: h h h
User: In this case, the missing piece is ‘h h h’ \n\nNote that in the given alphabet, ‘b’ is
the letter after ‘a’ and ‘h’ is the letter after ‘c’
User: Use the following alphabet to guess the missing piece.\n\n[a u c d e f g h i j k l m n o
p q r s t b v w x y z] \n\nNote that the alphabet may be in an unfamiliar order. Complete
the pattern using this order. \n\n[a u c d] [a u c e]\n\n[i j k l] [?]

Minimal Prompt:

System: You are able to solve letter-string analogies.
User: Use the following alphabet to complete the pattern.\n\n[a u c d e f g h i j k l m n o
p q r s t b v w x y z] \n\nNote that the alphabet may be in an unfamiliar order. Complete
the pattern using this order. \n\n[a u c d] [a u c e]\n\n[i j k l] [

A.2 Digit Matrix Prompts

For our experiments on digit-matrix problems (and variants) we experimented with three different prompts
for GPT models:

We found that the prompt described in Section 3.3 performed the best for all models; that was the prompt
we used in our digit-matrix experiments. The other prompts we tested were as follows:

Alternate Prompt 1

System: You are a helpful assistant.
User: [2] [2] [2]\n[5] [5] [5]\n[6] [6] [

Alternate Prompt 2

System: You are a helpful assistant.
User: Let’s try to complete the pattern:\n\n[2] [2] [2]\n[5] [5] [5]\n[6] [6] [
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Alternate Prompt 3

System: You are a helpful assistant.
User: Try to guess the missing piece. Give ONLY the answer with no explanation\n\n[2]
[2] [2]\n[5] [5] [5]\n[6] [6] [

A.3 Letter-String Problems: Counterfactual Comprehension Checks

Here we give details of the results of the counterfactual comprehension checks (CCCs) for letter-string-analogy
problems we described in Section 2.5. The prompts for these checks have the following format:

System: You are able to solve simple letter-based problems.
User: Use this fictional alphabet: [a u c ....]. \nWhat is the next letter after a?\nThe next
letter after a is:

System: You are able to solve simple letter-based problems.
User: Use this fictional alphabet: [a u c ....]. \nWhat is the letter before c?\nThe letter
before c is:

For the non-permuted alphabet, each permuted alphabet αn(i), and for two symbol alphabets ψ10(1) and
ψ10(2), we performed the Successor and Predecessor CCCs on each letter (or symbol) as described above.
Note that we ran Predecessor CCCs after GPT-3 was no longer available, so we only include results for that
model on Successor CCCs.

On the non-permuted (n = 0) alphabet, all three models scored 100% accuracy on the Successor test, and
both GPT-3.5 and GPT 4.0 scored 100% accuracy on the Predecessor test. Table 6 gives the accuracy for
each model on these tests on permuted alphabets (averaged over alphabets with n = 2, 5, 10, 20) and symbol
alphabets. For permuted alphabets, the average accuracies are given for two cases: (1) the sample letter
and its successor (or predecessor) are in their original alphabetic position and (2) the sample letter and/or
its successor (or predecessor) are not in their original alphabetic position. For example, for the alphabet in
Figure 1(a), the letter ‘f’ and its successor ‘g’ are in the first case—both in their original positions—whereas
the letter ‘f’ and its predecessor ‘m’ are in the second case, since ‘m’ is not in its original position.

Table 6: (a) Accuracy on “Successor” and “Predecessor” counterfactual comprehension checks for different
GPT models averaged across alphabets with different numbers n of permuted letters (2, 5, 10, and 20), and
across symbol alphabets. The first value in each triplet (e.g., 1.0 in the triplet 1.0/0.82/1.0) is the average
accuracy over permuted alphabets in cases in which letters and their successors (or predecessors) were in
their original positions; the second value is the average accuracy over permuted alphabets in cases in which
letters and/or their sucessors (or predecessors) were not in their original positions; and the third value is
the average accuracy over the symbol alphabets. Note that we ran Predecessor CCCs after GPT-3 was no
longer available, so we only include results for that model on Successor CCCs.

Successor Predecessor
GPT-3 1.0/0.82/1.0 -/-/-

GPT-3.5 0.99/0.95/0.94 1.0/0.75/0.94
GPT-4 1.0/1.0/1.0 1.0/0.97/1.0

We see that accuracy is generally quite high, indicating that the models generally grasp what “successor”
and “predecessor” mean in each fictional alphabet. However, GPT-3 and GPT-3.5 have lower accuracies on,
respectively, giving the successor / predecessor in cases of permuted letters.

A.4 Digit Matrix Problems: More Detailed Results

Here we give more detailed results of human and GPT-model performance on our variants on digit-matrix
problems. Figure 12b(a) gives the performance of our human participants on the original digit-matrix
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problems (blue points) and on the problems with alternate blank positions (orange points), for different
numbers of rules, and for logic problems. Human performance does not change significantly when alternate
blank positions are used. Figure 12b(b) gives the performance of GPT-3.5 and GPT-4 on the original
problems (blue and green points) and on problems with alternate blank positions (orange and red ploints).
It can be seen that the performance of both models drops substantially for alternative blank positions in all
cases.
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(a) Number of samples for human participants for
digit matrices are as in Figure 6. Number of samples
for alternate blank matrices for one-rule problems is
208, for two-rule 182, for 3-rule 299 and for logic 311.
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GPT-4 (0613) Digits
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(b) Numbers of samples for digit matrices are as in
Figure 7. Number of samples for alternate blank ma-
trices for one-rule problems is 216, for two-rule 300,
for 3-rule 500 and for logic 450.

Figure 12: Accuracy on the original digit-matrix problems and those with and alternative blanks positions
across different problem types for human participants and GPT models. Data points indicate mean accuracy
across all problem types for each number of rules and bars indicate 95% binomial confidence intervals.
Numbers of samples are given in individual captions.

Figure 13(a) gives the performance of our human participants on the original digit-matrix problems (blue
points) and on ones in which symbols replace numbers (orange points). The performance of humans does not
show a substantial decrease when digits are replaced by symbols, except in the case of three-rule problems.
Figure 13(b) shows a similar effect for GPT models, except in the case of logic problems, in which the
performance of the GPT models does show a small but significant decrease when digits are replaced by
symbols.

A.5 Preliminary Error Analysis on Letter-String Analogies

A crucial aspect of letter-string analogy problems is that they do not necessarily have a “correct” answer,
although, as we mentioned above, humans generally agree on what are the “best” rules describing letter-
string transformations in this domain. However, there are other rules that can be inferred from a given pair
of letter strings. We therefore examined the “incorrect” answers of humans and of GPT-3 and 4 to ascertain
whether the kinds of errors made are similar.

For both GPT-3 and GPT-4, we randomly selected five incorrect answers from each problem type and
alphabet, giving a sample of approximately 160 incorrect responses per GPT model. This number can be
lower if there were fewer than 5 incorrect responses for a problem type and alphabet. For humans, we
selected 184 incorrect answers.

By manually examining these selections, we identified four broad categories of errors: 1) Alternate rule
formation, where the answer given is consistent with an alternative rule. For example, if we have source
transformation [a b c d] [a b c e] with target [i j k l], then according to the Successor rule the answer [i j k
m] is correct. However, the answer [i j k e] is consistent with the rule “Replace the last letter with ‘e’.” 2)
Incorrect rule use, in which the answer given is clearly related to the target letter string, and some kind
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(a) Number of samples for human participants for
digit matrices for one-rule problems is 206, for two-
rule 147, for three-rule 202 and for logic 441. Number
of samples for symbol matrices for one-rule problems
is 205, for two-rule 149, for 3-rule 205 and for logic
441.
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(b) Number of samples for both digit and symbol
matrices for one-rule problems is 400, for two-rule
300, for 3-rule 400 and for logic 900.

Figure 13: Accuracy on the digit matrix and symbol matrix tasks across different numbers of rules, plus
logic problems, for human participants and GPT models. Data points indicate mean accuracy across all task
types for each number of rules and bars indicate 95% binomial confidence intervals. Numbers of samples are
given in individual captions.

Problem Type Source Target Literal Answer Explanation
Succ [f g h i] [f g h j] [e f g h] [e f g j] Replace last letter with ‘j’.
Fix [b f g h i] [e f g h i] [h i r k l] [e i r k l] Replace first letter with ‘e’.
Rem [g g h i j k] [g h i j k] [k l m n n o] [l m n n o] Remove first letter of sequence.
Sort [b c f e d] [b c d e f] [v t u s w] [v t w s u] Swap 3rd and 5th letters.

Table 7: Examples of literal interpretations of rules found by humans.
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of rule has been applied, but the rule is inconsistent with the example pair. For example, for [a b c d] [a b c
e] with [i j k l], the response [i j k l m] is given. 3) Wrong, in which the answer given is inconsistent with the
expected answer, but related to the target letter string. We could not discern any clear misunderstanding
or alternate rule use. For example, for [a b c d] [a b c e] with [i j k l], the response [i j k q] is given. 4)
Completely Wrong, in which the answer given is inconsistent with the expected answer, and unrelated to
the target letter string. Again, we could not discern any clear misunderstanding or alternate rule use. For
example, for [a b c d] [a b c e] with [i j k l], the response [z y x b] is given. Table 8 gives percentages for
each error type for humans and for each model. We see that in humans a large percentage (38.59%) of errors
stem from using alternate rules. This is also seen in GPT-4 to a lesser extent (22%), but much less in GPT-3
(5.81%). We also see a difference in the percentage of incorrect rules applied, with GPT 3 and 4 both having
over 30% of errors in this category and humans having around 15% of errors in this category. GPT models
also have a higher percentage in the Wrong category, and for each of the models this category is the largest
across the errors they made. Humans have a larger percentage of errors in the Completely Wrong category
than do GPT-3 and 4 however. Across these four broad categories GPT-3 and 4 make different patterns of
errors than humans.

Table 8: % error types across GPT-3, GPT-4, and Human

Error type
Alt rule Incorrect Rule Wrong Completely

Wrong
GPT-3 5.81% 30.97% 55.48% 7.74%
GPT-4 22.00% 32.67% 42.67% 2.67%
Human 38.59% 14.67% 34.24% 12.50%

We can further look at the kinds of alternative rules that are used by humans and by GPT. One key type of
alternative rule is where a ‘literal’ interpretation of a rule is applied, illustrated in Table 7. As well as literal
rules, humans found alternative rules for the Fix Alphabet problem type: they would interpret the changed
letter as being moved a certain number of steps in the alphabet, and would move an equivalent letter in the
prompt the same way. Usually “equivalent” means position; sometimes it means the identity of the letter.
We find that GPT-4 gives the same kind of literal responses that humans do, but does not use alternative
rules other than literal responses. GPT-3 has a limited number of errors in this category, and almost all
are literal responses to Remove Redundant. In summary, within the “Alternative Rule” category, the GPT
models found literal rules in the same way humans did, but did not find more inventive alternative rules.

Breaking down the Incorrect Rule category, we see more differences between human and GPT behavior.
Human responses in this category are mostly where one of the rules has been applied in an incorrect situation,
for example Add Letter has been applied instead of Successor. GPT-3 errors include adding two letters
instead of one; continuing the alphabet; reversing the target; shifting the target; using an unpermuted
alphabet instead of the one given; and repeating the target. GPT-4 made these mistakes and also generated
responses that were too long. Very few humans made any of these mistakes. Out of the incorrect responses,
the types of response made by humans and GPT models are very different.
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