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ABSTRACT

Molecular property prediction and protein-target interaction prediction with deep
learning are becoming increasingly popular in drug discovery pipelines in recent
years. An important factor that limits the development of these two areas is the
insufficiency of labeled data. One promising direction to address this problem is
to learn shared embedding from multiple prediction tasks within one molecular
type, e.g., molecule or protein, because different tasks might actually share similar
coarse-grained structural information. Unlike the previous methods, in this paper,
we first argue that, due to the possible local structural similarity between molecules
and protein-target complexes, coarse-grained latent embeddings can be found
across different molecular types. To take advantage of this, we propose a new
Multi-Dataset Multi-Task Graph Learning (MDMT-GL) framework, where we
are able to make the most use of the labeled data by simultaneously training
molecule property prediction and protein-target interaction prediction together.
MDMT-GL augments molecular representations with equivariant properties, 2D
local structures, and 3D geometric information. MDMT-GL can learn coarse-
grained embeddings for molecules and proteins, and also distinguish fine-grained
representations in various downstream prediction tasks with unique characteristics.
Experimentally, we implement and evaluate MDMT-GL on 2 molecular dynamic
datasets and 2 protein-target datasets, consisting of 825 tasks and over 3 million
data points. MDMT-GL achieves state-of-the-art performance on several tasks and
shows competitive performance on others. These experimental results confirm
that molecules and proteins indeed share some coarse-grained structures and that
the coarse-grained embedding is trainable, and their fine-grained embeddings are
more representative. To the best of our knowledge, this is the first work to train
multi-task learning across different molecular types, and to verify the structural
similarity between the molecules and the protein-target complexes.

1 INTRODUCTION

The discovery and development of a new drug could take more than a decade and cost billions
of dollars Hughes et al. (2011); Sliwoski et al. (2014). Therefore, to reduce costs, predicting the
properties of molecules and protein-target complexes (e.g., heat capacity, force field, binding affinity)
become an essential component for the early stage of the drug discovery pipeline. Molecules and
complexes are always represented as graph-structured data Li et al. (2021); Maziarka et al. (2020);
Thölke & De Fabritiis (2022), where atoms and bonds are nodes and edges, respectively, and graph
neural networks are in favor of learning representations from relational datasets Kipf & Welling
(2016); Luan et al. (2021); Hua et al. (2022). As a result, graph-based deep learning methods that
learn molecular graph representations have achieved great success in predicting molecule properties
Schütt et al. (2018; 2021); Klicpera et al. (2020); Thölke & De Fabritiis (2022) and protein-target
interactions Lim et al. (2019), but the data we have at hand are often insufficient, which will limit
model performance Sliwoski et al. (2014); Liu et al. (2022). Thus, reducing the requirement for
labeled data needed for the effective prediction of molecular and protein target properties becomes a
challenge in drug discovery.
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To address the aforementioned issue, multi-task learning for molecular property prediction Tan et al.
(2021) and protein-target interaction prediction Lee & Kim (2019); Hu et al. (2021); Liu et al. (2022)
is gradually drawing attention from the drug discovery community. Their models always deal with a
single molecular type, i.e., a molecule (or complex) is only used for multiple molecule property (or
protein-target interaction) prediction tasks. The difficulty stems from the fact that knowledge from
different molecular types cannot be easily decomposed and shared. However, we argue that due to
the internal geometric and local structural similarities between the molecule and the protein-target
complex, they should share similar coarse-grained latent embeddings Jain (2000); Bender & Glen
(2004); Löfblom et al. (2010). Hence, we believe that representations of molecules and complexes
could be coarse-grained and a coarse-grained latent embedding could be learned together under one
learning framework. Embodiments should share internal geometric and local structural information
across molecules and complexes from atomic perspectives. Eventually, the learning of protein
representations can benefit from the learning of molecule representations, and vice versa.

Therefore, we propose a new learning framework, Multi-Dataset Multi-Task Graph learning (MDMT-
GL) for molecular property prediction and protein-target interaction prediction. MDMT-GL aims to
make the best use of labeled data by transferring knowledge between molecules and complexes. The
cross-dataset paradigm for multi-task learning enables the shared embedding to be more informative
representations than the single-dataset paradigm. To the best of our knowledge, MDMT-GL is the
first work to train molecular property prediction and protein-target interaction prediction together
and to verify the structural similarities between the molecule and the protein-target complex. In
addition to the major contribution, we also develop the 2D graph transformer proposed by Kim et al.
(2021) into a 3D equivariant graph transformer for molecular dynamics, and the model is capable of
capturing high-order atom interactions in 3D space. Moreover, unlike multi-task learning within a
single dataset, the data imbalance of different datasets will lead to the task imbalance problem which
is fatal to multi-task learning. To treat each task equally, we propose a weighted loss to balance the
importance of the tasks, which is novel for MDMT-GL. The details of MDMT-GL are discussed in
Sec. 3. Furthermore, in Sec. 4, the experimental results support our argument and show that molecules
and complexes can share some similar coarse-grained structures, and the geometric and structural
similarities can be learned to leverage any molecular prediction task.

2 RELATED WORK

2.1 MOLECULAR MULTI-TASK LEARNING

Molecular Multi-Task Learning (MTL) is mainly used to address the data insufficiency problem in
drug discovery. Liu et al. (2019c) uses a general architecture of a shared representation module and
multiple task-specific prediction modules for MTL. Tan et al. (2021) stacks a base regressor and
classifier with an additional training stage on the expanded molecular feature space for the prediction
of molecular properties. Lee & Kim (2019) finds that similarity within a target group can affect the
performance of MTL in the prediction of protein binding. Liu et al. (2022) possesses the knowledge
of task relations and constructs a task-relation graph to maximize the performance of MTL in protein
targeting. However, the aforementioned methods do not transfer knowledge between molecules and
protein-target complexes. Existing models only perform MTL on the same dataset, i.e., molecule or
protein, but the MTL between molecule and protein has never been explored. In this work, we aim to
make use of the shared information between molecules and proteins across various tasks, so that we
can make the most and best use of the labeled data.

2.2 GRAPH NEURAL NETWORKS FOR PROPERTY PREDICTION

In drug discovery, people apply message-passing-based models to predict the properties of molecules
and proteins. Schütt et al. (2018) respects essential quantum chemical constraints and models quantum
interactions by modeling interactions of atoms at arbitrary positions in a molecule. Satorras et al.
(2021) proposes a graph neural network, which is equivariant to rotations, translations, reflections,
and permutations in 3D geometry, to model molecular dynamics. Thölke & De Fabritiis (2022) builds
on top of the graph transformer and develops an equivariant graph transformer to predict quantum
molecule properties. Lim et al. (2019) learns drug-target interactions by extracting the graph features
of intermolecular interactions directly from 3D structural information on the protein-ligand binding
pose. Li et al. (2021) proposes a structure-aware interactive graph neural network to preserve the
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distance and angle information among atoms to learn interactions between proteins and ligands.
Overall, our architecture mainly consists of two equivariant graph transformers that focus on long-
range atom interactions and featurization of atomic types and coordinates, and a graph neural network
to preserve local structure information.

3 MULTI-DATASET MULTI-TASK FRAMEWORK FOR LEARNING MOLECULES
AND PROTEIN-TARGET COMPLEXES

As discussed in Sec. 1, the labeled data for molecules and protein-target complexes are often insuffi-
cient. Therefore, we strive to make the most of the available labeled data from molecule and protein
datasets for various tasks. In other words, we aim to design an architecture that can learn simultane-
ously from different molecular and protein datasets, in which learning protein representations can
benefit from learning molecule representations and vice versa. The core technical difficulty is how to
identify their coarse-grained similar internal geometry and local structures, and to also differentiate
their fine-grained representations for different conformation structures.

To achieve the goal, we divide our model into four components (1) a coarse-grained module, (2)
a fine-grained data-specific module, (3) a task-specific prediction module, and (4) a multi-dataset
multi-task loss (see the whole architecture in Fig. 1 and App. A).

The function of each module is as follows: (1) The coarse-grained module is designed to learn
a coarse-grained representation of molecules and protein-target complexes. Common geometric
and structural information can be obtained in molecules and complexes can be obtained. We will
discuss the details in Sec. 3.1. (2) The fine-grained module will process the molecules-specific
and complexes-specific representations separately. We will discuss it in Sec. 3.2. (3) Then, the
data-type-specific representations are fed into different task-specific prediction modules to make
predictions for various tasks, the details are discussed in Sec. 3.3. (4) Finally, weighted losses of
all tasks are used to balance the importance of different tasks. We describe how to compute the
MDMT loss in Sec. 3.4. The whole framework can be trained in an end-to-end manner. In Sec. 4,
we experimentally show that the representations could be coarse-grained between molecules and
protein-target complexes.

3.1 COARSE-GRAINED MODULE

Although having different conformation structures and dynamics, molecules and protein-target
complexes are made of basic atoms and bonds, and should thus share fundamental internal geometric
and local structural information Jain (2000); Bender & Glen (2004); Löfblom et al. (2010). For
example, the carbon dioxide molecule O=C=O and methanoic acid H(C=O)OH have different
conformation structures and different force fields, but they share the same carbon atom C and similar
local structures around the carbon atoms, e.g., double bond with oxygen O. Thus, two carbon atoms
could potentially share coarse-grained information about their local structures. The coarse-grained
module is designed to capture such atomic-level similarities so that generalizable features between
molecules and proteins can be learned.

To capture the atomic-level similarities, we give each basic atom a unique learnable embedding Schütt
et al. (2018); Klicpera et al. (2020); Thölke & De Fabritiis (2022), which is shared by all compounds
in all tasks across different datasets (see the atom-wise embedding layer in Fig. 1).This is the first time
that the atomic-level coarse-grained representations are exploited in the MDMT setting for molecules
and proteins. To be more specific, an input molecule or complex m = [a1, a2, ..., aNm

]T ∈ NNm×1

is a 1D vector of the atoms that build m, where Nm is the number of atoms in m, ai is the
number of atoms in the periodic table. The molecular embedding is zm = fatom(m), where
fatom : NNm×1 → RNm×d projects a 1D molecule vector onto a 2D learnable embedding, where
each row of the embedding represents a hidden atom feature, and d is the dimension of the embedding
space. Take the carbon dioxide molecule O=C=O for example, its input is a 1D vector representation
[8, 6, 8]T , where 8 and 6 are the number of atoms of oxygen and carbon in the periodic table, and its
embedding follows zO=C=O = [fO(8), fC(6), fO(8)]

T ∈ R3×d, where fC(6), fO(8) are the learnable
embeddings for carbon and oxygen, respectively.

2D molecular local structures, 3D molecular geometric information, and equivariant property are
important for coarse-grained representations to preserve physical constraints Löfblom et al. (2010);
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Schütt et al. (2021). Therefore, to obtain the above capacities, we augment the coarse-fined repre-
sentation zm by the following augmentation network faug, which can be an equivariant graph neural
network Satorras et al. (2021); Schütt et al. (2021); Thölke & De Fabritiis (2022). The augmentation
network faug takes zm, edge (bond) indices em ∈ [0, 1]Nm×Nm , edge (bond) features fm ∈ REm×fe

and atom positions rm ∈ RNm×3 as input, and produces ẑm = faug(zm, rm, em,fm) ∈ RNm×d,
which is an equivariant coarse-fined representation (see the augmentation network in Fig. 1). This
design enables ẑm to learn the shared fundamental internal geometric and structural information
across different tasks and datasets while preserving equivariant property.

In conclusion, the coarse-grained module consists of two components: (1) an atom-wise embedding
layer and (2) an augmentation network. Atom-wise embedding layer is used to obtain an atom-wise
coarse-grained representation zm for every input molecule or complex m, and the augmentation net-
work augments every coarse-grained representation with equivariant property by 2D local structures
and 3D geometric information to produce an equivariant coarse-grained representation ẑm.

In addition to the equivariant coarse-grained representations, different molecular types require
fine-grained data-type specific representations to capture differences in conformation structure and
geometric information for performing different downstream tasks. In Sec. 3.2, we will introduce the
fine-grained data-specific module and discuss the initiative to have it.
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Figure 1: Overview of the Multi-Dataset Multi-Task Graph Learning framework (MDMT-GL)
for concurrently learning representations of molecules and protein-target complexes. The figure
demonstrates the direction of the MDMT-GL framework from left to right. MDMT-GL can be
divided into five components which include (a) input data, (b) coarse-grained module, (c) fine-grained
data-specific module, (d) task-specific prediction module, and (f) multi-dataset multi-task loss. The
input data are molecules and protein-target complexes m with their 2D local structures (atom features
xm, edge indices em, edges features fm) and 3D geometry (rm). In the coarse-grained module, an
input object will be embedded by an atom-wise embedding layer and augmented by the augmentation
network. Molecules and protein-target complexes will share principal features, position, and structure
information in coarse-grained embeddings. Then, we distinguish the difference between molecules
and complexes in fine-grained data-specific modules. If the object is originally a molecule, it will
get processed by the short-chain molecule network; or if the object is originally a complex, it will
get processed by the long-chain complex network. Then, the processed item will be fed into its
corresponding prediction network for a task prediction. All the task losses will be weighted and
aggregated to a multi-dataset multi-task loss to balance all datasets and tasks for optimization. The
architecture details are discussed in Sec. 3.
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3.2 FINE-GRAINED DATA-SPECIFIC MODULE

Previously in Sec. 3.1, we discuss how the coarse-grained module can learn atom-wise atom-wise
coarse-grained representations to utilize the use of labeled molecules and complexes. And we discuss
the initiative and reason to make coarse-grained representations fine-grained for downstream uses.

The chain of a protein-target complex (normally from 100 to more than 1000 atoms) is always
significantly longer than the chain of a molecule (normally from 1 to 60 atoms), thus making atom-
wise interactions highly different, i.e., two atoms might be farther away in a long chain. They could
potentially interact, and the high-order long-range interactions always exist, which should be captured
between atoms in a complex but are not solid and required for molecules Luan et al. (2019); Morris
et al. (2019). For example, oxidoreductase C879H1426N250O260S3 is a protein of 2818 atoms while
carbon dioxide CO2 is a molecule that has only 3 atoms.

With this in mind, to distinguish the different conformation structures resulting from the chain-size
difference between molecules and complexes, in the fine-grained data-specific module, we process
coarse-grained representations ẑm of molecules and complexes in different ways. To be more specific,
we use high-order graph networks for large graphs Morris et al. (2019) like complexes to capture
high-order interactions, and shallow graph networks for small graphs like molecules where high-order
interactions are not solid Luan et al. (2019).

Therefore, we divide our fine-grained module into two data-specific networks, (1) a fine-grained
complex network fptc that has the ability to capture high-order long-range interactions for atoms in
complexes (see the long-chain complex network in Fig. 1), and (2) a shallow fine-grained molecule
network fmol for molecules (see the short-chain molecule network in Fig. 1).

The fine-grained complex network fptc can be any high-order graph neural network Li et al.
(2021); Kim et al. (2021); Thölke & De Fabritiis (2022). We adopt and develop the 2D high-
order transformer Kim et al. (2021) to a 3D equivariant transformer (see App. A), our fine-grained
complex network fptc is capable of capturing any-order atom interactions and preserving equiv-
ariant property, which is novel. The fine-grained protein-target complex embedding follows
z̃ptc = fptc(ẑm, rm, em,fm,xm) ∈ RNm×d′

, where xm ∈ RNm×fn is atom features and d′ de-
notes the dimension of the embedding.

For the fine-grained molecule network fmol, the idea is fairly easy. Since equivariant property is
closely related to high-order long-range interactions in 3D space Satorras et al. (2021), which is not
required in small molecule graphs, we only need a shallow graph neural network as the fine-grained
molecule network fmol to model local message passing in short-chain molecules Kipf & Welling
(2016); Luan et al. (2020); Hua et al. (2022). And considering the computational cost, we choose the
simplest graph convolutional network Kipf & Welling (2016) for fmol. The fine-grained molecule
embedding follows z̃mol = fmol(ẑm, em,fm,xm) ∈ RNm×d′

.

Overall, we have a fine-grained complex network fptc which is a high-order equivariant graph network,
and a fine-grained molecule network fmol which is a shallow graph network. We treat molecules
and protein-target complexes differently in fine-grained data-specific networks because complexes
are always significantly longer than molecules and the high-order long-range interactions need to
be captured among them. For a coarse-grained representation ẑm, if it is originally a protein-target
complex, it will be embedded by the complex network fptc, or if it is originally a molecule, it will be
embedded by the molecule network fmol.

3.3 TASK-SPECIFIC PREDICTION MODULE

The task-specific prediction module will distinguish representations ẑptc, ẑmol, and generate the
outputs for each task ŷtask. In the multi-task learning setting, each task should have its own specific
prediction network ftask Collobert & Weston (2008); Liu et al. (2019c); Aribandi et al. (2021) (see the
task-specific prediction module in Fig. 1). In practice, our task-specific prediction module consists of
825 output networks corresponding to 825 prediction tasks from the following 4 datasets.

QM9 (12 prediction networks) QM9 is a dataset of molecules consisting of 12 tasks Ramakrishnan
et al. (2014). We use the specialized output networks in Thölke & De Fabritiis (2022) for the
prediction of molecular dipole moment µ and the prediction of electronic spatial extent 〈R2〉. The
gated equivariant blocks Weiler et al. (2018); Schütt et al. (2021) are used for the remaining 10 tasks.
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MD17 (14 prediction networks) MD17 is a dataset of molecules consisting of 7 sub-datasets
(Aspirin, Ethanol, Malondialdehyde, Naphthalene, Salicylic Acid, Toluene, Uracil) Chmiela et al.
(2017). There are 14 tasks in total, where each sub-dataset has 2 prediction tasks for molecular energy
E and forces F⃗ . We use the gated equivariant blocks proposed in Weiler et al. (2018); Schütt et al.
(2021) to predict E, and F⃗ are calculated using the negative gradient of E with respect to the atomic
coordinates F⃗ = −∂E/∂r⃗ Thölke & De Fabritiis (2022).

ChEMBL (798 prediction networks) ChEMBL is a protein-target dataset originally proposed in
Mendez et al. (2019). Furthermore, 3 sub-datasets ChEMBL10, ChEMBL50, ChEMBL100 are
developed by Mayr et al. (2018); Liu et al. (2022) for multi-task learning, and each sub-dataset
contains 406, 263, 129 regression tasks, accordingly. We apply a linear function over z̃ptc and apply
sum pooling to get an output for each regression task.

PDBbind (1 prediction network) PDBbind Wang et al. (2005) is a protein-target dataset consisting
of 1 regression task for protein-ligand binding affinity prediction. We apply a linear function over
z̃ptc and apply sum pooling to predict protein-ligand binding affinity.

The loss Li for each task will be calculated based on the outputs ŷi from each task and the ground
truth labels yi, where i is the task number. All Li will be weighted and sum up to a multi-dataset
multi-task loss LMDMT for optimization. One principle for the LMDMT design is to treat each task
equally important. This principle is naturally held in conventional multi-task learning Mayr et al.
(2018). But when it comes to the multi-dataset setting, the data imbalance between different molecular
datasets will break this principle. In Sec. 3.4, we will discuss this problem and how to address it by
the design of the weighted loss LMDMT .

3.4 MULTI-DATASET MULTI-TASK LOSS

In MDMT-GL, we will face the data imbalance problem. The problem only occurs when we train our
model on different datasets simultaneously, e.g., molecules and protein-target complexes, because the
number of labeled molecules is always greater than the number of labeled protein-target complexes,
and the model will focus more on molecule datasets than protein datasets. This problem is special
for multi-dataset setting and does not exist in previous works on multi-task learning with a single
molecular type Tan et al. (2021); Lee & Kim (2019); Hu et al. (2021); Liu et al. (2022).

To address this issue, we propose a weighted loss, specific to MDMT-GL, to address the data
imbalance problem between different molecular datasets. We are motivated to design the loss so that
all tasks are treated equally regardless of the size of labeled training data.

Suppose that we have U tasks and originally n1, n2, . . . , nU labeled training data for each task,
we obtain predictions ŷi,1, ŷi,2, . . . , ŷi,ni

for task i, and compare them with ground-truth labels
yi,1,yi,2, . . . ,yi,ni

for the loss of i-th task Li =
∑ni

j=1 li(yi,j , ŷi,j). The multi-dataset multi-

task loss LMDMT =
∑U

i=1 ciLi is a weighted sum of Li. To balance the weights of Li, we want
n1∑
i=1

c1 =
n2∑
i=1

c2 = · · · =
nU∑
i=1

cU , which leads to c1n1 = c2n2 = · · · = cUnU . In practice, suppose

nmin = MIN(n1, n2, . . . , nU ) = nk, then we set ck = 1 and for any i ̸= k, we have ci =
nmin
ni

. We
will discuss the implementation in Sec. 4.

4 EXPERIMENTS

In this section, we evaluate the Multi-Dataset Multi-Task Graph Learning framework (MDMT-GL)
on real-world molecule and protein-target complex datasets, and show that our proposed learning
method can be used to better learn molecule and complex representations. We briefly introduce our
datasets in Sec. 3.3. We conduct experiments across 2 molecule datasets and 2 complex datasets,
consisting of 825 tasks and 3,139,011 labeled molecular graphs. We divide the experiment section
into two subsections, including discussions of molecule datasets in Sec. 4.1 in and discussions on
protein datasets in Sec. 4.2. In more detail, we discuss the performance of the model on QM9 in
Sec. 4.1.1, on MD17 in Sec. 4.1.1, on ChEMBL in Sec. 4.2.1, and on PDBbind in Sec. 4.2.2.
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4.1 MOLECULE DATASETS

In this section, we discuss our model performance on molecule datasets including QM9 Ramakrishnan
et al. (2014) and MD17 Chmiela et al. (2017). We compare our MDMT-GL with several classic
baselines and the state-of-the-art models in Tab. 1&2. The experimental results show that learning
molecule representations can benefit from learning protein representations.

4.1.1 QM9

Data QM9 dataset reports computed geometric, thermodynamic, energetic, and electronic properties
for locally optimized geometries. We use the same data split as in Schütt et al. (2018); Klicpera et al.
(2020); Thölke & De Fabritiis (2022), where the labeled molecules are divided into 110,000 / 10,000
/ 10,831 for training / validation / testing.

Comparison We compare MDMT-GL with several popular baselines and state-of-the-art models,
including SchNet Schütt et al. (2018), EGNN Satorras et al. (2021), PhysNet Unke & Meuwly (2019),
DimeNet++ Klicpera et al. (2020), Cormorant Anderson et al. (2019), PaiNN Schütt et al. (2021),
and Equivariant Transformer (ET) Thölke & De Fabritiis (2022), and report the results in Tab. 1. The
results of baselines are obtained from Thölke & De Fabritiis (2022), and the MDMT-GL results are
averaged over three runs.

Table 1: Results on all QM9 targets and comparison to previous literature. Scores are reported as
mean absolute errors (MAE). Results of MDMT-GL are averaged over three runs.

Target Unit SchNet EGNN PhysNet DimeNet++ Cormorant PaiNN ET MDMT-GL
µ D 0.033 0.029 0.0529 0.041 0.0297 0.012 0.011 0.024
α a30 0.235 0.071 0.0615 0.0435 0.085 0.045 0.059 0.061
ϵHOMO meV 41 29 32.9 24.6 34 27.6 20.3 19.2
ϵLUMO meV 34 25 24.7 19.5 38 20.4 17.5 16.5
∆ϵ meV 63 48 42.5 32.6 61 45.7 36.1 31.7
〈R2〉 a20 0.073 0.106 0.765 0.331 0.961 0.066 0.033 0.047
ZPV E meV 1.7 1.55 1.39 1.21 2.027 1.28 1.84 1.35
U0 meV 14 11 8.15 6.32 22 5.85 6.15 5.74
U meV 19 12 8.34 6.28 21 5.83 6.38 5.75
H meV 14 12 8.42 6.53 21 5.98 6.16 6.06
G meV 14 12 9.4 7.56 20 7.35 7.62 7.23
Cv

cal
mol K 0.033 0.031 0.028 0.023 0.026 0.024 0.026 0.026

From Tab. 1, we can observe that MDMT-GL outperforms most popular baselines with significant
improvements on 6 out of 12 QM9 targets, including ϵHOMO, ϵLUMO,∆ϵ,U0,U,G. MDMT-GL
shows very competitive performance and delivers significant improvements in the challenging
molecular chemical property prediction problem via multi-dataset learning.

4.1.2 MD17

Data consists of molecular dynamics trajectories of small organic molecules, including both
energies and forces. We use the same data split as in previous works Schütt et al. (2018); Klicpera
et al. (2020); Thölke & De Fabritiis (2022). For each sub-dataset, we split the data into a training
set with 950 molecules and a validation set with 50 molecules, leaving the remaining molecules for
testing.

Comparison We compare MDMT-GL with several popular baselines and state-of-the-art models,
including SchNet Schütt et al. (2018), PhysNet Unke & Meuwly (2019), DimeNet Klicpera et al.
(2020), PaiNN Schütt et al. (2021), and Equivariant Transformer (ET) Thölke & De Fabritiis (2022),
and report the results in Tab. 2. The baseline results are obtained from Thölke & De Fabritiis (2022),
and the MDMT-GL results are averaged over three runs.

From Tab. 2, we can observe that MDMT-GL outperforms the most popular baselines with significant
improvements on 8 out of 14 MD17 sub-datasets, except energy and forces for naphthalene, forces for
salicylic acid, energy and forces for toluene, and forces for uracil. MDMT-GL shows very competitive
performance and delivers significant improvements in the challenging molecular dynamics trajectory
prediction problem via multi-dataset learning.
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Table 2: Results on MD trajectories from the MD17 dataset and comparison to previous literature.
The scores are given by the MAE of the energy predictions (kcal/mol) and forces (kcal/mol/Å).
The results of MDMT-GL are averaged over three runs.

Molecule SchNet PhysNet DimeNet PaiNN ET MDMT-GL

Aspirin
energy 0.37 0.230 0.204 0.167 0.123 0.122
forces 1.35 0.605 0.499 0.338 0.253 0.233

Ethanol
energy 0.08 0.059 0.064 0.064 0.052 0.063
forces 0.39 0.160 0.230 0.224 0.109 0.107

Malondialdehyde
energy 0.13 0.094 0.104 0.091 0.077 0.077
forces 0.66 0.319 0.383 0.319 0.169 0.165

Naphthalene
energy 0.16 0.142 0.122 0.116 0.085 0.093
forces 0.58 0.310 0.215 0.077 0.061 0.085

Salicylic Acid
energy 0.20 0.126 0.134 0.116 0.093 0.090
forces 0.85 0.337 0.374 0.195 0.129 0.137

Toluene
energy 0.12 0.100 0.102 0.095 0.074 0.079
forces 0.57 0.191 0.216 0.094 0.067 0.071

Uracil
energy 0.14 0.108 0.115 0.106 0.095 0.087
forces 0.56 0.218 0.301 0.139 0.095 0.101

4.2 PROTEIN-TARGET DATASETS

In this section, we discuss our model performance on protein-target complex datasets including
ChEMBL Mendez et al. (2019) and PDBbind Wang et al. (2005). We compare our MDMT-GL with
several classic baselines and the state-of-the-art model in Tab. 3&4. The experimental results show
that learning protein representations can benefit from learning molecule representations.

4.2.1 CHEMBL

Data The ChEMBL dataset is originally proposed by Mendez et al. (2019) for protein-targeting, but
authors in Liu et al. (2022) modify the original dataset and provide three sub-datasets ChEMBL10,
ChEMBL50, ChEMBL100 for multi-task learning. In Liu et al. (2022), they claim the tasks numbers
are 382/ 152/ 132 (666 tasks in total) for ChEMBL10/ ChEMBL50/ ChEMBL100, but we actually
get 406/ 263/ 129 (798 tasks in total) when running their data generation steps. So, we run and test
baselines and MDMT-GL on 406/ 263/ 129 tasks, and report the averaged results over three runs. We
use the same data split in Liu et al. (2022), splitting the labeled data into the ratio of 80%/ 10%/ 10%
for training/ validation/ testing.

Comparison We compare MDMT-GL with several classic multi-task learning baselines and state-
of-the-art models, including Multi-Task Learning (MTL) Mayr et al. (2018), Uncertainty Weighing
(UW) Kendall et al. (2018), GradNorm Chen et al. (2018), Dynamic Weight Average (DWA) Liu et al.
(2019b), Loss-Balanced Task Weighting (LBTW) Liu et al. (2019a), State Graph Neural Network
(SGNN) Liu et al. (2022), and Energy-Based State Graph Neural Network (SGNN-EBM) Liu et al.
(2022), and report the averaged results in Tab. 3.

Table 3: Results on ChEMBL10, ChEMBL50, ChEMBL100 and comparison to previous literatures.
We follow Liu et al. (2022) evaluation metrics on multi-task learning for drug discovery, i.e., the
mean of ROC-AUC over all tasks. Results of baselines and MDMT-GL are averaged over three runs.

Method MTL UW GradNorm DWA LBTW SGNN SGNN-EBM MGMT-GL
ChEMBL10 0.567 0.552 0.579 0.550 0.583 0.592 0.611 0.637
ChEMBL50 0.531 0.549 0.588 0.569 0.571 0.597 0.613 0.621
ChEMBL100 0.552 0.571 0.567 0.537 0.568 0.605 0.623 0.649

From Tab. 3, we can observe that MDMT-GL outperforms all popular baselines with marginal
improvements of AUC-ROC score on ChEMBL10, ChEMBL50, ChEMBL100. By simultaneously
learning other molecular datasets and tasks, the MDMT-GL framework can make the best use of the
data and leverage the results of predictions for protein-targeting.
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4.2.2 PDBBIND

Data PDBbind dataset provides 3D binding structures of protein-ligand complexes with experimen-
tally determined binding affinities. In our experiment, we use the PDBbind2016 dataset, which is the
most used PDBbind dataset in previous works Lim et al. (2019); Li et al. (2021). We use the same
data split in Li et al. (2021).

Comparison We compare MDMT-GL with several classic baselines and state-of-the-art models,
including Spatial Graph Convolution Network (SGCN) Danel et al. (2020), GNN-DTI Lim et al.
(2019), DMPNN Yang et al. (2019), Molecule Attention Transformer (MAT) Maziarka et al. (2020),
DimeNet Klicpera et al. (2020), CMPNN Song et al. (2020), and Structure-aware Interactive Graph
Network (SIGN) Liu et al. (2022). The baseline results are obtained from Li et al. (2021), and
MDMT-GL results are averaged over three runs.

Table 4: Results on protein-ligand binding affinity of PDBbind and comparison to previous literature.
Scores are reported as root mean square error (RMSE), mean absolute errors (MAE), Pearson’s
correlation coefficient (R) and standard deviation (SD) in regression to measure the prediction error
as in Liu et al. (2022). The results of MDMT-GL are averaged over three runs.

Method GraphDTA SGCN GNN-DTI DMPNN MAT DimeNet CMPNN SIGN MGMT-GL
RMSE ↓ 1.562 1.583 1.492 1.493 1.457 1.453 1.408 1.316 1.172
MAE ↓ 1.191 1.250 1.192 1.188 1.154 1.138 1.117 1.027 0.923
SD ↓ 1.558 1.582 1.471 1.489 1.445 1.434 1.399 1.312 1.201
R ↑ 0.697 0.686 0.736 0.729 0.747 0.752 0.765 0.797 0.866

From Tab. 4, we can observe that MDMT-GL outperforms all popular baselines with significant
improvements in RMSE, MAE, SD, and R scores on the PDBbind dataset. MDMT-GL shows very
competitive performance and delivers significant improvements on the challenging protein-binding
affinity prediction problem via multi-dataset learning.

Overall, we can see that the Multi-Dataset Multi-Task Graph Learning framework (MDMT-GL)
is very competitive in all tasks. We can conclude that MDMT-GL enables the learning of protein
representations to benefit the learning of molecule representations, and vice versa. The strong
experimental results show that our proposed learning method can utilize the use of labeled training
data, and can make the most and best use of them. And this learning framework can mitigate the lack
of labeled data in drug discovery.

5 CONCLUSION AND FUTURE WORK

In conclusion, our proposed Multi-Dataset Multi-Task Graph Learning (MDMT-GL) framework
is able to address the data insufficiency problem by concurrently training the representations of
molecules and protein-target complexes for multiple prediction tasks. The strong experimental results
show that there does exist transferable information between molecules and protein-target complexes
and it is learnable. We can also say that the learning of protein representations can facilitate the
learning of molecule representations, and vice versa. Furthermore, in the future, we could discover
some quantum chemical constraints and prior knowledge and add them to the coarse-grained network
to capture more informative coarse-grained embeddings.
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A MODEL ARCHITECTURE

We introduce the full MDMT-GL architecture. Suppose we are given an input molecular data of Nm

atoms and Em edges, its atom numbers m ∈ NNm×1, atom features xm ∈ RNm×d, atom positions
rm ∈ RNm×3 in 3D space, edge indices em ∈ [0, 1]Nm×Nm , edge features fm ∈ REm×fe , where
fn, fe denote numbers of node features and edge features, respectively.

First, we embed the atom numbers m to an atom-wise coarse-grained representation zm by an
atom-embedding transformation:

zm = Watom m ∈ RNm×d

where d is the hidden feature dimension.

Then the coarse-grained representation zm will be augmented to an equivariant coarse-grained
representation ẑm by an augmentation network. There are many equivariant graph neural network
options Satorras et al. (2021); Schütt et al. (2021); Thölke & De Fabritiis (2022), and our choice is
the equivariant transformer proposed in Thölke & De Fabritiis (2022).

Before the coarse-grained representation gets augmented, there is an exponential normal radial basis
function that resembles a continuous filter convolution to filter the neighborhood of an atom Schütt
et al. (2018). The distance dij between atoms i, j is defined as:

eRBF
k = ϕ(dij)exp(−βk(exp(−dij)− µk)

2, ϕ(dij) =


1

2
(cos(

πdij
dcut

) + 1), if dij ≤ dcut

0, if dij > dcut

where βk, µk are fixed parameters specifying the center and width of the radial basis function k.
β is initialized as (2K−1(1 − exp(dcut)))

−2, µ is initialized with values equally spaced between
exp(−dcut) and 1 for all k proposed by Unke & Meuwly (2019). And the cosine cutoff ϕ(dcut) is
used to ensure a smooth transition to 0 as dij approaches to dcut.

The neighborhood embedding nm for m is then defined as:

nm ∈ RNm×d, nm,i =

N∑
j=1

zm,j ⊙WFilter e
RBF(dij) ∈ Rd,

where each row i corresponds to the neighbor embedding of atom i of m. We update the coarse-
grained representations zm with the neighbor embedding nm:

zm = LayerNorm(WTransform[zm,nm] + bTransform).

Then the coarse-grained representation zm is augmented by an equivariant transformer layer proposed
in Thölke & De Fabritiis (2022). The interatomic distances are projected into two multidimensional
filters DK , DV :

DK = σ(WDK
eRBF(rm,ij) + bDK

), DV = σ(WDV
eRBF(rm,ij) + bDV

).

And attention is weighted by a cosine cutoff to ensure that atoms with a distance greater than dcut do
not interact:

A = Activation(
F∑
k

Qk ⊙Kk ⊙DK
k ) · ϕ(dij), Q = WQ1zm and K = WK1zm.

The attention mechanism’s value is also split into three vectors of equal dimension:

s1m,ij , s
2
m,ij , s

3
m,ij = split(Vj ⊙DV

ij) ∈ Rd, V = WV1zm,

and

ym ∈ RNm×3d, ym,i = WO1
(

N∑
j

Aij · s3ij),

where ym,i, s
1
m,ij , s

2
m,ij correspond to features, and two filters. Then the features ym are split into

three features of equal size:
q1
m,q2

m,q3
m ∈ RNm×d‘
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∆zm = q1
m + q2

m ⊙<WLinear1v,WLinear2v> ∈ RNm×d,

notice that vm ∈ RNm×3 is set to 0 in the beginning, i.e., initially vm = 0Nm×3. And for v,

∆vm = wm + q3
m ⊙WLinear3vm, wm,i =

N∑
j

s1m,ij ⊙ vm,j + s2m,ij ⊙
rm,i − rm,j

||rm,i − rm,j ||
,

and
zm = zm +∆zm, vm = vm +∆vm.

More details on the transformer can be found in Thölke & De Fabritiis (2022). After iterative updates,
we will receive our equivariant coarse-grained representation ẑm,

ẑm = LayerNorm(zm +
∑
l

∆zm) ∈ RN×d.

Then the equivariant coarse-grained representation is cooperated with node and edge features

ẑm = LayerNorm(WC [ẑm,xm,WEfm]) ∈ RN×d

If ẑm is originally a protein-target complex then will be encoded by an equivariant high-order graph
neural network Satorras et al. (2021); Schütt et al. (2021); Thölke & De Fabritiis (2022). And our
choice is to develop Kim et al. (2021) to an equivariant graph transformer for complex network, it
follows

ẑm = Enck→l(ẑm) = Attnk→l(ẑm) + L2
l→l(Activation(L1

l→l(Attnk→l(ẑm)))) ∈ RN l
m×d′

,

Attnk→l(ẑm)j =

H∑
h=1

∑
µ

∑
i

αh,µ
i,j ẑm,iW

V2

h,µW
O
h,µ,

where in the first layer k = 1, H is the number of heads, L1
l→l : RN l

m×d → RN l
m×d′

, L2
l→l :

RN l
m×d′ → RN l

m×d. And to compute each attention αh,µ ∈ Rnk+l

from ẑm ∈ Rnk×d,

ah,µi,j =


σ(Qµ

j ,K
µ
i )∑

i|(i,j)∈µ σ(Q
µ
j ,K

µ
i )

, (i, j) ∈ µ

0, otherwise

, Qµ = Lµ
k→l(ẑm) and Kµ = Lµ

k→k(ẑm).

More details can be found in Kim et al. (2021), we augment ẑm ∈ RN l
m×d′

to an equivariant form by

s1m,ij , s
2
m,ij , s

3
m,ij = split(Vj) ∈ Rl×d′

, V = WV2 ẑm,

and

ym ∈ RN l
m×3d′

, ym,i = WO2(

N∑
j

ai,j · s3ij).

Then the features ym are split into three features of equal size:

q1
m,q2

m,q3
m ∈ RN l

m×d‘

∆ẑm = q1
m + q2

m ⊙<WLinear1’v,WLinear2’v> ∈ RN l
m×d′

,

notice that vm ∈ RN l
m×3 is set to 0 in the beginning, i.e., initially vm = 0N

l
m×3. And for vm,

∆vm = wm + q3
m ⊙WLinear3’vm, wm,i =

N∑
j

s1m,ij ⊙ vm,j + s2m,ij ⊙
rm,i − rm,j

||rm,i − rm,j ||
,

and
z̃mol = zm +∆zm ∈ RN l

m×d′
, vm = vm +∆vm ∈ RN l

m×3.

In the last layer, we set l = 1 and receive receive our equivariant fine-grained complex representation
ẑm,

z̃ptc = LayerNorm(z̃ptc) ∈ RNm×d′
.

We have the fine-gained representations for protein-target complex.

Or if ẑm is originally a molecule then will be encoded by a shallow graph neural network Kipf
& Welling (2016); Luan et al. (2020); Hua et al. (2022). And our choice is the simplest graph
convolution network Kipf & Welling (2016),

z̃mol = LayerNorm(Activation(emzmWm)) ∈ RNm×d′
.

Then it will be fed into downstream task-specific module.
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