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ABSTRACT

In this paper, we discuss statistical inference when using a sequential strategy to
collect data. While inferential tasks become challenging with sequentially col-
lected data, we argue that this problem can be alleviated when the sequential al-
gorithm satisfies certain stability properties; we call such algorithms stable bandit
algorithms. Focusing on batched bandit problems, we first demonstrate that popu-
lar algorithms including the greedy-UCB algorithm and ω-greedy ETC algorithms
are not stable, complicating downstream inferential tasks. Our main result shows
that a form of elimination algorithm is stable in the batched bandit setup, and we
characterize the asymptotic distribution of the sample means. This result allows
us to construct asymptotically exact confidence intervals for arm-means which are
sharper than existing concentration-based bounds. As a byproduct of our main re-
sults, we propose an Explore and Commit (ETC) strategy, which is stable — thus
allowing easy statistical inference— and also attains optimal regret up to a factor
of 4.
Our work connects two historically conflicting paradigms in sequential learn-
ing environments: regret minimization and statistical inference. Ultimately, we
demonstrate that it is possible to minimize regret without sacrificing the ease of
performing statistical inference, bridging the gap between these two important
aspects of sequential decision-making.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a pivotal paradigm in artificial intelligence, driving
significant advancements across diverse domains. Its impact spans from theoretical computer sci-
ence to practical applications in robotics, control systems, and beyond. At the core of RL lies
the fundamental challenge of balancing exploration and exploitation - a dilemma that encapsulates
the agent’s need to gather new information about its environment while simultaneously leveraging
existing knowledge to maximize rewards. This balance is crucial for developing effective decision-
making strategies through environmental interaction, positioning RL as a cornerstone technology in
the evolution of autonomous systems.

In many real-world applications of reinforcement learning, data is collected sequentially and often
in batches, reflecting practical constraints and operational realities. This batched approach to data
collection is particularly prevalent in domains such as online education Kizilcec et al. (2020), mo-
bile health interventions Liao et al. (2020); Klasnja et al. (2019); Yom-Tov et al. (2017), and digital
marketing Li et al. (2010), where multiple users interact with systems simultaneously. While tradi-
tional RL algorithms excel at optimizing performance within a specific problem instance, there is
a growing need for methods that can extract generalizable insights from the collected data. Statis-
tical inference on sequentially collected data becomes crucial when the goal extends beyond mere
performance optimization to include scientific discovery and informed decision-making for future
implementations. Consider a mobile app designed to improve dental hygiene habits Trella et al.
(2024); Nahum-Shani et al. (2024). The app uses RL to personalize reminders and brushing tech-
nique tips. Beyond maximizing daily app engagement, researchers and dentists would be interested
in understanding which interventions most effectively promote long-term oral health improvements.
They might want to determine if gamified brushing sessions are more impactful than educational
content, or if the frequency of reminders significantly affects adherence to recommended brushing
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duration. This knowledge could guide the development of future dental health interventions, allow
for refinement of less effective strategies, and contribute to our understanding of habit formation in
oral care.

In this paper, we focus on the problem of statistical inference in bandits problems with data collected
in batches; colloquially known as batched bandit problems. While bandit strategies focus on mini-
mizing regret, the sequential (non-iid) nature of bandit algorithms make the down-steam statistical
inference much more challenging. For instance, sample means maybe biased for bandit data Nie
et al. (2018), and the sample means may not be asymptotically normal Zhang et al. (2020); Ying
et al. (2024). In the following section, we provide a brief survey of batched bandit algorithms, with
a special focus on explore and commit (ETC) strategies, and on statistical inference with the data
collected from a sequential procedure, akin to a bandit algorithm.

1.1 RELATED WORK

1.1.1 BATCHED BANDITS AND EXPLORE-THEN-COMMIT ALGORITHMS

The study of batched bandits has gained significant attention in recent years, with a focus on algo-
rithms that balance exploration and exploitation in a limited number of interaction rounds. Explore-
Then-Commit (ETC) algorithms represent a special case of batched bandits where the learning pro-
cess is divided into two distinct phases: an exploration phase followed by a commitment phase. See
the work of Robbins (1952); Anscombe (1963). Perchet et al. (2016) proposed a general strategy
for constructing batched bandit algorithms, including ETC-type approaches. Their work addressed
the crucial aspect of batch size selection, which may vary across batches to obtain minimax regret
bounds. Building on this foundation, Gao et al. (2019) investigated whether adaptively chosen batch
sizes could further reduce regret in batched settings. Exploring different aspects of batched bandits,
Jin et al. (2021) examined a scenario with a random horizon, ensuring asymptotically optimal regret
for exponential families as reward distributions. This work highlighted the flexibility of batched ap-
proaches in handling uncertain time horizons. The algorithm that we study in this paper is motivated
from the work of Auer & Ortner (2010), where the authors discussed an elimination-based algorithm
for batched bandits.

1.1.2 STATISTICAL INFERENCE WITH BANDIT DATA

The challenge of performing valid statistical inference with sequentially collected data, particularly
in batched bandit settings, has become an important area of research. Zhang et al. (2020) demon-
strated that the average reward obtained from batched bandit algorithms is not necessarily asymp-
totically normal, and proposed a batched OLS estimator for inference in non-stationary settings. To
address these challenges, researchers have developed two main approaches: non-asymptotic meth-
ods based on concentration bounds for self-normalized martingales Abbasi-Yadkori et al. (2011),
and asymptotic methods exploiting the martingale nature of the data and debiasing techniques. See
the works in Hall & Heyde (2014); Zhang & Zhang (2014); Khamaru et al. (2021); Ying et al. (2024);
Lin et al. (2023); Bibaut et al. (2021); Hadad et al. (2021); Zhang et al. (2021); Abbasi-Yadkori et al.
(2011) and references therein.

1.2 CONTRIBUTIONS

Our approach to inference in the bandit problem is significantly different from existing approaches.
As we already pointed out in the previous related work section, most of the inference methods are
post-processing methods; meaning they utilize very little information of the bandit algorithm itself,
and rely on the Martingale structure present in the sequentially collected data. While this approach is
more flexible, the worst-case guarantees for such methods can be pessimistic; see the paper Khamaru
et al. (2021); Lattimore (2023) for worst-case lower bounds.

In contrast, we discuss classes of algorithms, which we call stable bandit algorithms, where no such
post-processing is needed, and classical statistical methods — which are used for iid data — can be
used. At a very high level,

We can treat bandit data as iid data (asymptotically) when the bandit algorithm is stable.
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Figure 1: Stable ETC arm 1 Figure 2: BAI ETC arm 1

Figure 3: Comparison of error distributions for stable-ETC Algorithm 2 and BAI ETC algorithm
for a two-armed-bandit with Gaussian rewards and µ1 = µ2 = 1. We see that the asymptotic
distribution of the arm-means are close to Gaussian when stable-ETC — a stable algorithm— is
used. But, the distributions of arm means are not Gaussian when BAI-ETC algorithm — which
provides optimal regret — is used; the mean of standardized noise are significantly positive, close
to 0.20. We also show (in Corollary 2) that the regret of stable-ETC is no more than 4-times the
the optimal-regret. The simulation results are average of 5000 repetitions and the horizon is set to
T = 1000. See Appendix B for a detailed simulation.

The notion of stable bandit algorithm is motivated from the seminal work of Lai & Wei (1982). To
the best of our knowledge, this work is the first to show stable bandit algorithms in batched settings.

Our main contributions are as follows:

• First, we introduce a class of bandit algorithms for multi-armed bandits, which we call
stable bandit algorithms, and argue that the sample means for each arm are asymptotically
normal, when the bandit data is collected using a stable bandit algorithm.

• In Section 3.2 we focus on 2-batch algorithms. We demonstrate that the vanilla ω-greedy
explore-then-commit (ETC) algorithm is not stable, and we propose a modification of the
explore-then-commit algorithm which is stable. An interesting result in this section is a
stable ETC algorithm whose regret is optimal up to a factor 4.

• In Section 3.3 we focus on B-batch algorithms. In Algorithm 3, we propose a B-batch
algorithm, in Theorem 2 we discuss the stability property of this algorithm, and characterize
the asymptotic distribution of the sample-means.

2 PROBLEM SET UP

In this paper we focus on multiarmed bandit algorithm where the data is collected in multiple
batches. For sake of exposition, we discuss the two-armed case in full details, though many of
our results extend to the K-armed setting. At each round 1 → t → T , we select an arm At ↑ {1, 2}
and receive a reward Yt ↑ R from the distribution PAt . We assume

• Let µa and ε2
a, respectively, denote the mean and variance of the distribution Pa. We

assume that Pa is a sub-Gaussian random variable with sub-Gaussian parameter ϑa. The
parameters (µa,ε2

a,ϑa) are unknown and without loss of genrality we assume that ϑa → 1
for a = 1, 2.

The focus of this paper is to understand bandit algorithms where the data is collected in batches. We
consider two types of batched bandit algorithms:
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1. Two batch algorithm: In Section 3.2 we focus on a two batch algorithm where the num-
ber of arms within each batch goes to ↓. See Algorithms 1 and 2 for more details. The
algorithm discussed in this section are motivated from Explore Then Commit (ETC) strate-
gies Robbins (1952); Anscombe (1963), and draws inspiration from the ETC type algorithm
discussed in Auer & Ortner (2010).

2. B-batch algorithm: In Section 3, we focus on algorithms where the data is collected in B
batches. The number of rounds in each batch, which we denote by 2m remains fixed, and
we let the number of batches B to ↓. We detail our B-batch procedure in Algorithm 3.

Goal: The goal in both cases is to understand the asymptotic properties of the samples means for
both arms defined as

µ̄a,T =
1

na,T
·

T∑

t=1

Yt · 1At=a where na,T =
T∑

t=1

1At=a.

We are interested to understand the asymptotic behavior of the sample means (µ̄1,T , µ̄2,T ). This, for
example, will allow us to construct confidence intervals of (µ1, µ2).

3 MAIN RESULTS

Before moving onto the details of the algorithm we introduce a class of bandit algorithms which
we call stable bandit algorithms. Our first result, stated in Lemma 1, proves that stable algorithms
ensures that the sample means (µ̄1,T , µ̄2,T ) are asymptotically normal.

3.1 STABLE BANDIT ALGORITHMS

Throughout, we use MT to denote a generic bandit algorithm with horizon T . Let na,t(MT )
denote the number of arm pulls of arm a in t rounds. We say an algorithm MT is stable if for arms
a ↑ {1, 2} there exists non-random scalars nω

a(MT ) satisfying

(stability:)
na,T (MT )

nω
a(MT )

p↔ 1 for some nω
a(MT ) ↔ ↓ as T ↔ ↓. (1)

Here, the constants {nω
a(MT )}a=1,2 above may depend on the parameters associated to reward

distributions P1, P2 or other tuning parameters that are independent of the data collected using
algorithm MT . Throughout, we hide the dependence of the algorithm MT in na,T and nω

a for
notational simplicity. Let us first prove a simple yet useful Lemma for stable algorithms:

Lemma 1 If an algorithm MT is stable and the third moment of the arm-reward distribution Pa is

bounded. Then for all arms a ↑ {1, 2} the sample means are asymptotically normal. Concretely,

↗
na,T · (µ̄a,T ↘ µa)

p↔ N (0,ε2
a) (2)

Proof of Lemma 1 Fix an arm a. Define the partial sum:

Sa,t =
∑

ε→t

(Yε ↘ µa) · 1{Aω=a}

By construction, Sa,t is a sum of Martingale difference sequence. Additionally, using the notation
Ft := ε{(Yε, Aε)ε→t} for the ε-field generated by data-set obtained up to stage t, we have

∑

1→t→T

Var
(

1

εa ·
↗
nω
a

· (Yt ↘ µa) · 1{At=a} | Ft↑1

)
=

na,T

nω
a

p↔ 1.

In words, the sum of the conditional variances of the Martingale difference array stabilizes. Com-
bining this with the assumption nω

a ↔ ↓ and using the fact that the third moment of the reward
distribution is bounded (recall that rewards are sub-Gaussian) we see that the Lindeberg conditions
of the Martinagale Central Limit Theorem Dvoretzky (1972) are satisfied. Thus, applying the Mar-
tingale CLT from Dvoretzky (1972) we conclude

↗
na,T · (µ̄a,T ↘ µa)

p↔ N (0,ε2
a) (3)

This completes the proof of Lemma 1.
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Confidence interval for µa: Of course, we can estimate the reward variance by the sample vari-
ance estimate, and utilize Lemma 1 to construct confidence intervals for the unknown sample means
µ1 and µ2. For instance, for any consistent estimator of ε̂a,T of εa, and given any target ϖ ↑ (0, 1)
using Slutsky’s theorem we conclude that

lim
T↓↔

P
([

µ̄a,T ↘ ε̂a,T ·
zϑ/2↗
na,T

, µ̄a,T + ε̂a,T ·
zϑ/2↗
na,T

]
≃ µa

)
= 1↘ ϖ.

See, the comments after Theorem1.for a discussion on consistent estimator of εa.

3.2 INFERENCE IN 2-BATCH BANDITS: EXPLORE THEN COMMIT (ETC) STRATEGIES

In this section, we focus on explore then commit-type strategies. Before doing so, we argue that
many naive and intuitive algorithms are not stable.

3.2.1 INSTABILITY OF VANILLA-ETC STRATEGY:

Arguably, the most naive and intuitive strategy is the explore then commit strategy which uses sam-
ple mean to decide which arm to commit to. Concretely, consider an ω-greedy ETC algorithm where
we

• Pull both arms with probability 1/2 for a total of 2m times in the first batch.

• Define

(ω-greedy) âmax = arg max
a↗{1,2}

µ̄a,2m (4)

• For the remaining T ↘ 2m rounds, pull the arm âmax with higher sample mean with prob-
ability 1↘ ω, and the arm with lower mean with probability ω > 0.

Let us discuss the stability property of the above algorithm. For simplicity, let us assume the reward
distributions are Gaussian; i.e., P1 ⇐ N (µ1, 1), P2 ⇐ N (µ2, 1), and m = ⇒T/4⇑. In the case when
the margin ! = µ1 ↘ µ2 = 0, by symmetry we have

P(µ̄1,2m > µ̄2,2m) = P(µ̄2,2m > µ̄1,2m) =
1

2

Thus for both arms a ↑ {1, 2} we have, as T ↔ ↓

na,T

T
p↔
{ 1

4 + ϖ
2 with probability 1

2
3
4 ↘ ϖ

2 with probability 1
2

Stated differently, the ω-greedy ETC algorithm from equation 4 is not stable when ! = 0. Invok-
ing (Zhang et al., 2020, Theorem 6) we have the following lemma:

Lemma 2 (Zhang et al., 2020, Theorem 6) Suppose the data is collected using the ETC algo-

rithm from equation 4. Then the sample mean for arm 1 is not asymptotically normal when

! = µ1 ↘ µ2 = 0. In particular,

↗
n1,T · (µ̄1,T ↘ µ1)

d↔ Y (5)

where Y =
√

1
3↑ϖ

(
Z1 ↘

↗
2↘ ωZ3

)
IZ1>Z2 +

√
1

1+ϖ (Z1 ↘
↗
ωZ3) IZ1<Z2 , and Z1, Z2, Z3 are iid

standard Gaussian random variables.

This instability property of the ω-greedy ETC algorithm also extends to other natural algorithms like
ω↘greedy upper confidence bound (UCB) algorithm, and the non-normality of the sample means
phenomenon still persists. See Appendix C of the paper Zhang et al. (2020) for more details.

5
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3.2.2 A STABLE ETC-STRATEGY:

We are now ready to discuss a modification of the ω-greedy ETC ( displayed in equation 4) which is
stable. The algorithm proceeds in two stages:

• In the first stage, we select both arms m times.
• At the end of first stage, we collect arms with high rewards and create an active set A ⇓
{1, 2}. In the second stage, we select all the arms in the active set A equally often.

The details of this two-batch method is detailed in Algorithm 1. We point out the strategy in Algo-
rithm 1 draws motivation from elimination types algorithms studies Auer & Ortner (2010). We are
now ready to analyze the stability of Algorithm 1.

Algorithm 1 An Explore then Commit strategy

Inputs: Pair of integers (T,m) with 1 → m → T/2

Batch 1
Pull both arm m times, and construct the active set after the total 2m arm-pulls

A :=

{
a | µ̄a,2m +

√
2 log T

na,2m
⇔ max

{
µ̄1,2m ↘

√
2 log T

n1,2m
, µ̄2,2m ↘

√
2 log T

n2,2m

}}
(6)

Batch 2:
if T ↘ 2m ⇔ 1 then

If the set A is singleton, pull the arm in A remaining T ↘ 2m times, or pull both arms with
probability 1/2, a total of T ↘ 2m times.
end if

Condition on m: Let, ” denote the collection of all problem dependent parameters. In Theorem 1,
we allow any sequence of m ⇐ m(T,”) that satisfies the following property:

m ·!2

8 log T
↔ ϱ for some 0 → ϱ → ↓ as T ↔ ↓. (7)

Here, the condition for ϱ = ↓ means m·!2

8 log T ↔ ↓. The condition above, for instance allows for
m = Tϑ for some 1 > ϖ > 0, m = 2 log T

!2 , or any constant value of m. Additionally, the condition 7
is always satisfied with ϱ = 0 when ! = 0 for any value of m. Condition 7 rules out choices of m
— changing with T — for which the ratio in 7 oscillates. The condition equation 7 allows for most
choices of m that are used in practice, especially when ! is kept fixed as the number of T increases.
As we discuss later, the above condition also allows us to analyze the case when ! is allowed to
scale with the sample size T .

Theorem 1 Suppose m satisfies condition equation 7 for some 0 → ϱ → ↓, and T ↘ 2m ↔ ↓.

Then Algorithm 1 is stable with the following choices of nω
1, n

ω
2

If ϱ → 1, nω
1 = nω

2 =
T

2
(8)

If ϱ > 1, then nω
1 = T ↘ 8ϱ log T

!2
and nω

2 =
8ϱ log T

!2
(9)

Consequently, for both arms

ε̂a,T ·↗na,T · (µ̄a,T ↘ µa)
d↔ N (0, 1).

Here, µ̄a,T denotes the sample mean, and ε̂a,T is any consistent estimator of variance εa.

See Section A.2 for a proof of this theorem 1. A few comments regarding Theorem 1 are in order.
1When ω = →, we replace 8 log T

!2 by m in equation 9.

6
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Estimating variance and statistical inference: It turns out that under the assumptions of Theo-
rem 1 sample variance estimate ε̂a,T is a consistent estimator of εa. Here,

ε̂a,T =
1

na,T

T∑

t=1

(Yt ↘ µ̄a,T )
2 · 1At=a (10)

See Corollary 1 in the paper Khamaru & Zhang (2024) for a proof of consistency for ε̂a,T . One can
now easily create asymptotically exact 1↘ϖ confidence interval. In particular, given any 1 > ϖ > 0
define the confidence interval Ca,ϑ

Ca,ϑ =

[
µ̄a,T ↘ ε̂a,T ·

z1↑ϑ/2↗
na,T

, µ̄a,T ↘ ε̂a,T ·
z1↑ϑ/2↗
na,T

]
(11)

where z1↑ϑ/2 is the (1↘ ϖ/2)th quantile of the standard Gaussian distribution. Then, we have that
for both arms a ↑ {1, 2} limT↓↔ P(µa ≃ Ca,ϑ) = 1↘ ϖ.

Stability its and connections to Law of Iterated Logarithm: It is interesting understand whether
the bonus factor

↗
2 log T plays any special role in stability, and whether we can replace it some other

bonus factor. A careful look at the proof (see Section A.2) reveals that one can replace
↗
2 log T in

the equation 6 by any other bonus-term qT satisfying
↗
2 log log T

qT
↔ 0 as T ↔ ↓. (12)

The term
↗
2 log log T above comes from the Law of Iterated Logarithm (LIL). In other words, the

stability of Algorithm 1 is guaranteed as long as the bonus factor is qT over-powers the fluctuations
in the sample means — which is governed by the Law of Iterated Logarithm. In such case, modifying
the argument of Theorem 1 we obtain the following corollary:

Corollary 1 Suppose condition 12 holds, and
m!2

4qT
↔ ϱ for some 0 → ϱ → ↓. Then Algorithm 1

with bonus-term qT in place of
↗
2 log T is stable. We have

nω
1 = nω

2 =
T

2
If ϱ → 1, and

nω
1 = T ↘ 4ϱq2T

!2
and nω

2 =
4ϱq2T
!2

If ϱ > 1.

3.2.3 DATA DEPENDENT STOPPING: OPTIMAL-REGRET WITH FREE INFERENCE

In Theorem 1 we assume that the choice of m in Algorithm 1 is a pre-determined input to the
algorithm, and it does not depend on the data collected by Algorithm 1. In this section, we analyze
a two-stage algorithm where m is dependent on the data, more formally a stopping time.

Corollary 2 Algorithm 2 is stable with

n1,T

T ↘ 4 log T/!2

p↔ 1 and
n2,T

4 log T/!2

p↔ 1

Additionally, assuming T!2 ⇔ 4e2, the regret RT of Algorithm can be upper bounded by

RT → 16 log T

!
+

120e
√
log(!2T/4) + 64e+ 32

!
+ 2!

See Section A.3.1 for a proof of this corollary.

Comparison with lower bound: It is interesting to compare the regret of the Algorithm 2 with a
lower bound for explore and commit-type algorithms. Following the work of (Garivier et al., 2016,
Theorem 4) we have that for any uniformly efficient ETC strategies Lai & Robbins (1985); Garivier
et al. (2016) we have that

(Lower bound): lim inf
T↓↔

RT

log T
⇔ 4

!
. (13)

7
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Algorithm 2 ETC with stopping time
Inputs: Integer T ⇔ 2
Set A1 = 1, A2 = 2 and set t = 2

while |µ̄1,t ↘ µ̄2,t| →
√

4 log T
(t/2) do

Use At+1 = 1 and At+2 = 2, and set t = t+ 2
end while

A :=

{
a | µ̄a,t +

√
log T

(t/2)
⇔ max

{
µ̄1,t ↘

√
log T

(t/2)
, µ̄2,t ↘

√
log T

(t/2)

}}

if T ↘ t ⇔ 1 then
If the set A is singleton, pull the arm in A remaining T ↘ t times, or pull both arms with

probability 1/2, a total of T ↘ t times.
end if

See Section 3 of work by Garivier et al. (2016) for more discussion on the lower bound. It is now
interesting to understand the asymptotic behavior of the Algorithm 2. Assuming ! is bounded by a
constant, simple algebra yields

lim sup
T↓↔

RT

log T
→ 16

!

Stated differently, Algorithm 2 ensures accurate asymptotic inference while matching the minimax-
optimal regret up to a factor of 4.

3.3 INFERENCE IN B-BATCHED BANDITS

In this section, we focus on a batched bandit algorithm with B batches. In each batch 1 → b → B,
we perform arm pulls a total of 2m times. Throughout this section, we assume m is fixed, and we
let the number of B ↔ ↓. We give details about our algorithm in Algorithm 3. Akin to the last
section, we are interested in the stability of Algorithm 3.

We point-out that unlike Section 3.2.2 the number of arm pulls within each batch is fixed, i.e., not
data-dependent.

Algorithm 3 B-batch algorithm

Input: Pair of integer (m,B) with m,B ⇔ 1.
Set T = 2mB, A1 = {1, 2} and pull both arms m times.
for b = 1 to B ↘ 1 do

Construct the active set

Ab+1 :=

{
a

∣∣∣∣∣ µ̄a,2mb +

√
2 log T

na,2mb
⇔ max

{
µ̄1,2mb ↘

√
2 log T

n1,2mb
, µ̄2,2mb ↘

√
2 log T

n2,2mb

}}

If the set Ab+1 is singleton, pull the arm in Ab+1 2m times, or pull both arms m times.
end for

Theorem 2 Suppose B ↔ ↓, then Algorithm 3 is stable with

nω
1 =

T

2
· 1{!=0} +

(
T ↘ 8 log T

!2

)
· 1{!>0} and

nω
2 =

T

2
· 1{!=0} +

8 log T

!2
· 1{!>0}. (14)

Consequently, for each arm a ↑ {1, 2}

ε̂a,T ·↗na,T · (µ̄a,T ↘ µa)
d↔ N (0, 1).

Here, µ̄a,T denotes the sample mean, and ε̂a,T is any consistent estimator of variance εa.
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See Section A.3 for a proof of this theorem. Just like our previous section, the results in Theorem 2
can be generalized to a general bonus term qT satisfying

↗
2 log log T

qT
↔ 0 as T ↔ ↓.

In particular, for any qT , the expression of nω
a in equation 14 changes to

nω
1 =

T

2
· 1{!=0} +

(
T ↘ 4q2T

!2

)
· 1{!>0} and

nω
2 =

T

2
· 1{!=0} +

4q2T
!2

· 1{!>0}.

4 PROOFS

In this section, we prove our main Theorem 1, in part. Complete proof of all the results are deferred
to the Appendix.

Define

gT =
√
2 log T and hT :=

√
7 log log(4T ) + 3 log 2 (15)

ET :=

{
|µ̄1,n1,t ↘ µ1| → ϑ1

hT↗
n1,t

and |µ̄2,n2,t ↘ µ2| → ϑ2
hT↗
n2,t

↖ t ↑ [T ]


(16)

The proof utilizes the following lemma from (Khamaru & Zhang, 2024, Lemma 5.1). See also the
work by Balsubramani (2014).

Lemma 3 Let X1, X2, . . . be i.i.d. ϑa-sub-Gaussian random variable with zero mean. Then the

sample-mean Xt := (X2 + . . .+Xt)/t satisfies the following bound

P

↙t ⇔ 1 : |Xt| ⇔ ϑa


9

4t
· log (log2 4t)

2

ς


→ 2ς

By assumptions the arm-means are sub-Gaussian with sub-Gaussian parameter bounded by 1.Thus,
substituting ς = 1/ log(4T ) in Lemma 3 and taking a union bound over both arms we obtain

P (ET ) = P
(
|µa,t ↘ µa| → hT , for all 1 → t → T, 1 → a → 2

)
⇔ 1↘ 6

log(4T )
(17)

4.1 PARTIAL PROOF OF THEOREM 1

Let us define two indicator variables

I1 := 1{1↗A} and I2 := 1{2↗A}.

From Algorithm 1 we have,

n1,T =






T ↘m if I2 = 0,
m if I1 = 0,
m+ #T↑2m

i=1 Vi if I1 = I2 = 1.

(18)

where Vi ∝ Bern
(
0, 1

2

)
for 1 → i → T ↘ 2m

The proof follows by analyzing the random variable n1,T under the high probability event ET . Using
the bound equation 16, we get that P(ET ) ⇔ 1 ↘ 6

log 4T . Thus, it suffices to study the behavior of
n1,T on the high-probability event ET .

9
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CASE 1: ϱ → 1:

We have that for large T s

{I2 = 0} ′ ET =

{
µ̄2,2m +

gT↗
n2,2m

< µ̄1,2m ↘ gT↗
n1,2m


′ ET

(i)
⇓

{
µ2 ↘ ϑ2

hT↗
n2,2m

+
gT↗
n2,2m

< µ1 + ϑ1
hT↗
n1,2m

↘ gT↗
n1,2m



=

{
µ2 ↘ ϑ2

hT↗
m

+
gT↗
m

< µ1 + ϑ1
hT↗
m

↘ gT↗
m



=

{
1↗
m
(↘(ϑ1 + ϑ2)hT + 2gT ) < !



The step (i) uses the property of the event ET . Now note that the set in the last line is empty when
! = 0 for large T ; this is because gT

hT
↔ 0 as T ↔ ↓. When ! > 0 with ϱ → 1, we have using

condition equation 7 and hT /gT ↔ 0 we have

1

!
↗
m
(↘(ϑ1 + ϑ2)hT + 2gT ) ↔ 1/

√
ϱ ⇔ 1.

where we have used the notation 1/0 ⇐ ↓ for ϱ = 0, and we have P(ET ′ {I2 = 0}) ↔ 0 when
0 → ϱ → 1. Since µ1 ⇔ µ2 by assumption, it is immediate to verify that P(ET ′ {I1 = 0}) ↔ 0.
Thus we have

P({I1 = 1} ′ {I2 = 1} ′ ET ) ↔ 1, (19)

When I1 = I2 = 1, we have n1,T = m+


i→T↑2m Vi, and we have

m+


i→T↑2m Vi

T/2
= 1 +


i→T↑2m(Vi ↘ 1

2 )
T
2

p↔ 1

where the last deduction above uses T ↘ 2m ↔ ↓ and the weak law of large numbers. Using a
similar argument for n1,T , and putting together the pieces we conclude

n1,T

T/2
p↔ 1 and

n2,T

T/2
p↔ 1.

The proof of the case ϱ > 1 is similar, and the details are moved to Appendix .

5 DISCUSSION

In this paper, we discussed the problem of statistical inference when data is collected using a batched
bandit algorithm. We introduced the concept of stable bandit algorithms, which allows for straight-
forward statistical inference even when the dataset is not i.i.d. For instance, the sample arm means
are asymptotically normal when data is collected using a stable bandit algorithm. We also argue that
such stable algorithms do not sacrifice regret and are optimal up to a constant factor in certain cases.
Our work bridges the gap between regret minimization and statistical inference, two historically
conflicting paradigms in sequential learning environments.

While we focused on two-armed bandit problems in this paper, several interesting questions remain.
For instance, it would be interesting to extend our results to the K-armed case. In our B batched
Algorithm 3, the number of arm-pulls (m) in each batch is kept fixed. It would be interesting to
understand the stability properties of our algorithm when the number of arm-pulls are allowed to
grow with T .
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