
Under review as a conference paper at ICLR 2021

BENCHMARKING MULTI-AGENT DEEP REINFORCE-
MENT LEARNING ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We benchmark commonly used multi-agent deep reinforcement learning (MARL)
algorithms on a variety of cooperative multi-agent games. While there has been
significant innovation in MARL algorithms, algorithms tend to be tested and tuned
on a single domain and their average performance across multiple domains is
less characterized. Furthermore, since the hyperparameters of the algorithms are
carefully tuned to the task of interest, it is unclear whether hyperparameters can
easily be found that allow the algorithm to be repurposed for other cooperative
tasks with different reward structure and environment dynamics. To investigate
the consistency of the performance of MARL algorithms, we build an open-source
library of multi-agent algorithms including DDPG/TD3/SAC with centralized
Q functions, PPO with centralized value functions, as well as QMix, and test
them across a range of tasks that vary in coordination difficulty and agent number.
The domains include the Multi-agent Particle World environments, StarCraftII
micromanagement challenges, the Hanabi challenges, and the Hide-And-Seek
environments. Finally, we investigate the ease of hyperparameters tuning for each
of the algorithms by tuning hyperparameters in one environment per domain and
re-using them in the other environments within the domain. The open-source
code and more details can be found in our website: https://sites.google.
com/view/marlbenchmarks.

1 INTRODUCTION

Widespread availability of high-speed computing, neural network architectures, and advances in
reinforcement learning (RL) algorithms have led to a continuing series of interesting results in building
cooperative artificial agents: agents collectively playing Hanabi to an expert level (Hu & Foerster,
2019), designing cooperative StarCraftII bots (Rashid et al., 2018) that outperform hand-designed
heuristics, and constructing emergent languages between agents (Mordatch & Abbeel, 2017). Each
of these aforementioned results have often come with the introduction of a new algorithm, leading to
a proliferation of new algorithms that is rapidly advancing the field.

However, these algorithms are often designed and tuned to get optimal performance in a particular
deployment environment. In particular, it is not unusual for each new algorithm to come with a new
proposed benchmark on which it is evaluated. Consequently it is not obvious that these algorithms
can easily be re-purposed for new tasks; subtle interactions between the algorithm, the architecture
and the environment may lead to high asymptotic performance on one task and total failure when
applied to a new task. Without examining an algorithm across a range of tasks, it is difficult to assess
how general purpose it is.

Furthermore, the high asymptotic rewards that are often presented may hide complexities in using the
algorithms in practice. The amount of time that researchers spent in finding optimal hyperparameters
is often obscured, making it unclear how extensive of a hyperparameter search was needed to find
the good hyperparameters. That is, researchers will often report a grid search of hyperparameters
but not the prior work that was done to pick out a hyperparameter grid that actually contained good
hyperparameters. Furthermore, the amount of computation provided to tune the studied algorithm
may not be provided to the baseline algorithms that it will be compared against. This can lead to
an inflated performance of the proposed algorithm relative to the benchmarks. All these problems
can arise without any ill intent on the part of the authors, but they make the problem of assessing
algorithms quite challenging.

1

https://sites.google.com/view/marlbenchmarks
https://sites.google.com/view/marlbenchmarks

Under review as a conference paper at ICLR 2021

The downstream consequence of this proliferation of algorithms coupled with an absence of standard
benchmarks is a lack of clarity on the part of practitioners as to which algorithm will give consis-
tent, high performance with minimal tuning. Researchers are often operating under computational
constraints that limit how extensive of a hyper-parameter sweep they can perform; the ease with
which good hyperparameters can be found is consequently a useful metric. When tackling a new
multi-agent problem, researchers have no clear answer to the questions: 1) which MARL algorithm
should I use to maximize performance and 2) given my computational resources, which algorithm is
likeliest to work under my constraints?

We present an attempt to evaluate the performance, robustness and the relative ease of using these
algorithms by benchmarking them across a wide variety of environments that vary in both agent
number, exploration difficulty, and coordination complexity. By exploring a large range of possible
environments, we identify algorithms that perform well on average and serve as a strong starting point
for a variety of problems. We tackle the question of relative difficulty in finding hyperparameters
by looking at how hyperparameters transfer across settings: tuning hyperparameters on one set
of environments and applying them without re-tuning on the remaining environments. Using this
procedure, we can provide effective recommendations on algorithm choice for researchers attempting
to deploy deep multi-agent reinforcement learning while operating under constrained hyper-parameter
budgets. We test Proximal Policy Optimization (Schulman et al., 2017) with centralized value func-
tions (MAPPO), Multi-Agent DDPG (MADDPG) (Lowe et al., 2017), Multi-Agent TD3 (Fujimoto
et al., 2018a) (MATD3), a Multi-Agent variant of Soft Actor Critic (Haarnoja et al., 2018) (MASAC),
and QMix (Rashid et al., 2018). We focus specifically on the performance of these algorithms on
fully cooperative tasks, as this avoids game theoretic issues around computing the distance to Nash
equilibria, and allows us to solely characterize performance in terms of asymptotic reward.

The contributions of this paper are the following

• Benchmarking multi-agent variants of single-agent algorithms across a wide range of
possible tasks including StarCraftII micromanagement (Rashid et al., 2019), Multi-agent
Particle World (Mordatch & Abbeel, 2017), Hanabi (Bard et al., 2020), and the Hide-And-
Seek domain (Baker et al., 2019).

• Establishing that under constrained hyperparameter searching budgets, the multi-agent
variant of PPO appears to be the most consistent algorithm across different domains.

• The design and release of a new multi-agent library of various on/off-policy learning
algorithms with recurrent policy support.

2 RELATED WORK

MARL algorithms have a long history but have, until recently, primarily been applied in tabular
settings (Littman, 1994; Busoniu et al., 2008). Notions of using a Q-function that operated on the
actions of all agents, known as Joint-Action Learners (Claus & Boutilier, 1998) have existed in the
literature since its inception with algorithms like Hyper-Q (Tesauro, 2004) using inferred estimates of
other agent strategies in the Q-function. Recent MARL algorithms have built upon these ideas by
incorporating neural networks (Tampuu et al., 2017), policy-gradient methods (Foerster et al., 2017),
and finding ways to combine local and centralized Q-functions to enable centralized learning with
decentralized execution (Lowe et al., 2017; Sunehag et al., 2018).

Alongside the proliferation of algorithms has come a wide variety of new, cooperative MARL
benchmarks. Unlike single-agent RL, where MuJoCo (Todorov et al., 2012) and Atari (Mnih
et al., 2013) have become standard benchmarks, there is significantly less consensus on appropriate
benchmarks. In this work, we consider 4 popular multi-agent environments, which we believe are the
most representative in the community. Besides those we considered in this work, other interesting
cooperative environments may include MAgent (Zheng et al., 2017), a platform that can efficiently
support hundreds of particle agents for cooperative tasks, multi-agent MuJoCo, in which each joint
is an independent agent (Schroeder de Witt et al., 2020), and CityFlow (Zhang et al., 2019), which
studies large-scale decentralized traffic light control.

There also has been a variety of attempts to benchmark MARL algorithms that differ in scope
from our paper. Gupta et al. (2017) benchmarks a similar set of algorithms to ours on a wide
variety of environments. However, they do not consider algorithms that train in a centralized fashion

2

Under review as a conference paper at ICLR 2021

while acting decentralized and instead perform a comparison between fully centralized training and
execution and full decentralized algorithms. They establish that parameter sharing is an essential
component of getting quick convergence in MARL algorithms. Schroeder de Witt et al. (2020)
benchmark algorithms with centralized Q and value functions on a decentralized variant of the
MuJoCo environments; however, they primarily study variants of QMix and MADDPG and do not
compare with on-policy algorithms.

3 MARL ALGORITHMS

3.1 PRELIMINARIES

We study decentralized partially observed Markov decision processes (DEC-POMDP) (Oliehoek
et al., 2016) with global rewards. A DEC-POMDP is defined by an eight tuple 〈S,U, P, r, Z,O, n, γ〉.
s ∈ S is a state space describing a sufficient set of state variables to make the system dynamics
Markovian. For simplicity we assume the agents share action space U and each agent a ∈ {1, . . . , n}
picks an action ua ∈ U which are concatenated to form join action u ∈ Un. We denote the joint
action without the action of agent a as u−a. Joint actions u and state are fed to state transition
function P (s′|s,u) : S × U × S → [0, 1]. These are cooperative tasks so all agents share a bounded
reward function r(s,u) : S × Un → R and have shared discount factor γ ∈ [0, 1]

Each agent i has an observation function Oa(s) : S → Z which defines how the global state is
mapped onto a local observation z ∈ Z. Each agent maintains an action-observation history τa ∈ T ∈
(Z ×U)

∗ which it conditions its policy πa(ua|τa) : T×U → [0, 1] on. Finally, given the joint policy
π(u) =

∏
i π

a(ua|τa) we can define a joint value function V π (st) = Est+1:∞

[∑∞
i=0 γ

irt+i|st
]

and joint Q function Qπ (st,ut) = Est+1:∞

[∑∞
i=0 γ

irt+i|st,ut
]
.

We assume that the learning algorithm has access to both true states S, as well as the trajectories of
all agents τa. The agents however, only have access to τa for computing their policy. The goal of the
agents is to jointly optimize the quantity Jπ = E

[∑∞
i=0 γ

ir(st,u)
]
.

3.2 BASELINE ALGORITHMS

We introduce all the baseline algorithms we consider, including MADDPG, MATD3, MASAC, QMix
and MAPPO. For all problems considered, the action space is discrete. More algorithmic details and
the complete pseudo-code can be found in the appendix.

MADDPG: The MADDPG algorithm is perhaps the most popular general-purpose off-policy MARL
algorithm. The algorithm was proposed by Lowe et al. (2017), based on the DDPG algorithm (Lil-
licrap et al., 2015), and uses a centralized Q-function taking observations and actions from all the
agents to alleviate the non-stationarity issue and stabilize multi-agent training. Note that although
DDPG was originally designed for continuous actions, MADDPG adopts the gumbel-softmax (Jang
et al., 2016) trick to handle discrete actions.

MATD3: The TD3 algorithm (Fujimoto et al., 2018b) is a popular enhanced version of the standard
DDPG algorithm (Lillicrap et al., 2016). We similarly apply the same centralized critic technique
introduced in MADDPG to TD3 to derive a multi-agent variant of TD3, i.e., MATD3. The only
difference between MATD3 and MADDPG is the use of twin delayed critics and the addition of small
amounts of noise to the actions sampled from the buffer.

MASAC: The Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) is an extremely popular
off-policy algorithm and has been considered as a state-of-the-art baseline for a diverse range of RL
problems with continuous actions. Similar to MADDPG, we introduce a centralized critic in SAC to
achieve another general-purpose MARL algorithm, MASAC.

QMix: QMix (Rashid et al., 2018) is a Q-learning algorithm designed for multi-agent cooperative
tasks with a global reward. The core idea of QMix is value decomposition, which formulates the
global Q function, Qtot as the output of a ”mixer” neural network whose inputs are the individual
agent Q functions, Qa; The weights of this ”mixer” network are constrained to be positive in order
to insure that ∂Qtot

∂Qa
≥ 0,∀ agents a. This ensures that by acting greedily to maximize their local

Q functions, agents will also be maximizing the global Q function. QMix was first introduced in
the StarCraftII micromanagement and has been a popular benchmark algorithm for this challenge.
However, it is rarely tested in other domains.

3

Under review as a conference paper at ICLR 2021

MAPPO: In addition to the off-policy algorithms above, we also consider an on-policy MARL
algorithm, i.e., a multi-agent variant of PPO (MAPPO). We enhance the standard decentralized PPO
algorithm by learning a centralized critic that takes in the global state or the concatenation of each
agent’s local observation (when global state is not available). This idea of centralized value functions
was originally introduced in the COMA algorithm (Foerster et al., 2018). Our implementation follows
the details in Baker et al. (2019), including using two separate networks for policy and value function,
GAE, advantage normalization and a Pop-Art value normalizer (Hessel et al., 2019), which uses
running statistics of the values to normalizes the regression target of value network to zero mean and
a standard deviation of one.

3.3 KEY IMPLEMENTATION DETAILS

We highlight some important techniques here. More details can be found in Appendix Sec. B.

To increase the likelihood that differences in performance are primarily coming from the algorithm,
we ensure all the policies use the same network architecture for both actor and critic. We use
parameter sharing for all agents, i.e., all the agents share the same weights.

To handle partial observability, recurrent networks are used in all the algorithms. For MAPPO, we
follow Baker et al. (2019), which cuts a full trajectory into small chunks (i.e., 10 timesteps per chunk)
and maintains the initial hidden state of each chunk. Then the RNN policy is trained over a batch
of data chunks. A similar chunking technique has also been introduced for off-policy learning by
Kapturowski et al. (2018), which, however, does not work well in our experiments. Instead, we follow
the procedure in Rashid et al. (2020) and Hausknecht & Stone (2015), which trains the recurrent
policy over a batch of complete trajectories. More specifically, for each timestep t in a training
trajectory, we start with a zero-vector as the initial hidden state and re-feed all timesteps up to t to
make sure the hidden state of time t is up-to-date.

Lastly, different from standard multi-agent games where all the agents act at the same time, the
Hanabi challenge is a turn-based game, i.e., all the agents take actions one by one. Hence, in an
N -player Hanabi game, we decompose a trajectory into N separate sub-trajectories for each agent
and each agent’s policy is only trained on its own state-action sequence. We make sure that for each
agent’s training trajectories, all the other agents’ actions are properly observed in the state.

4 ENVIRONMENTS

We briefly outline the settings used to test the algorithms as well as key details on the modifications
we made to their original implementations. We will refer to each of these settings as domains and
each of the individual problems in the domains as environments. From each domain we only include
the fully cooperative tasks.

Multi-agent Particle World environments were introduced in Lowe et al. (2017). These environ-
ments consist of various multi-agent games in a 2D world with small particles navigating within
a square box. We will refer to these environments as the MPEs, i.e., multi-particle environments.
We consider the 3 fully cooperative tasks from the original set shown in Fig. 1(a): simple-spread,
speaker-listener, and simple-reference. Note that since the two agents in speaker-listener have
different observation and action spaces, this is the only setting in this paper where we do not share
parameters but train separate policies for each agent.

As will be discussed in Sec. 5, almost all algorithms solve all of the MPE tasks, so we primarily use
it as a basic check that our algorithms are likely correctly implemented.

StarCraftII Micromanagement (SMAC) 1 was introduced in Samvelyan et al. (2019). In these
tasks, decentralized agents must cooperate to defeat adversarial bots in various scenarios with a wide
range of agent numbers (from 2 to 27). We use the global game state to train our centralized critics or
Q-functions. Note that an agent may “die” in an episode. We masked out the inputs of dead agents
by zero and make sure they do not contribute to the learning objective. Fig. 2(a) (left) shows two
example StarCraftII environments.

Hanabi is a turn-based card game, introduced as a MARL challenge in Bard et al. (2020), where each
agent observes other players’ cards except their own cards. A visualization of the game is shown in
Fig. 1(b). The goal of the game is to send information tokens to others and cooperatively take actions

1Version 4.10 is used in this paper.

4

Under review as a conference paper at ICLR 2021

Agent 0 Speaker

Listener

“Blue”

Agent 2

Agent 1

Agent 1

Agent 0

‘Blue’

simple spread speaker listener simple reference

‘Red’

(a) MPE tasks

G1

B

3/3 1/1

Desk DiscardsStacks

P0 P1 P2

G3 B1 R2 G3

P3

B4 B2

(b) Hanabi-small with 4 players
Figure 1: Task visualizations. (a) the Particle-World domain. simple-spread (left): agents need to
cover all the landmarks and do not have a color preference for the landmark they navigate to; speaker-
listener (middle): the listener needs to navigate to a specific landmarks following the instruction from
the speaker; simple-reference (right): both agents only know the other’s goal landmark and needs to
communicate to ensure both agents move to the desired target. (b) The simplified Hanabi domain
(Hanabi-small): We use just two colors instead of the five used in the original Hanabi game.

(a) Two representative StarCraftII micromanagement
scenarios (2c vs 64zg and corridor).

(b) Tasks in the hide-and-seek domain: construction,
box-locking and box-locking-easy.

Figure 2: Visualizations of the StarCraftII domain and the hide-and-seek domain.

to stack as many cards as possible in ascending order to collect points. Since the original full Hanabi
game may require up over 100 million samples for a general-purpose algorithm to converge (Foerster
et al., 2019), we consider a simplified variant, “Hanabi-small” from Bard et al. (2020), which only
has 2 colors, hand size 2, 1 life token, 3 information tokens and a maximum score of 10.

The Hide-And-Seek Domain, introduced by Baker et al. (2019), is a MuJoCo-based physical world
with agents, walls and manipulable objects. We modify the original environment to generate three
cooperative games adapted from the transfer task set in Baker et al. (2019), including box-locking,
where agents need to lock all the boxes as fast as possible, and construction, where agents need to
manipulate boxes to desired locations. We also consider a simplified version of box-locking, named
box-locking-easy, with a much smaller maze size for faster training and hyperparameter tuning. Note
that in box-locking, all the boxes need to be locked for a success while in construction, all the boxes
have to be placed on the target sites for a success. See visualizations of the environments in Fig. 2(b).

5 EXPERIMENT RESULTS

5.1 EXPERIMENTAL DETAILS

To ensure a fair comparison over different algorithms, we (1) make sure that all policy architectures
and weight initialization are consistent across algorithms (2) use similarly sized grid searches for all
algorithms with slightly larger grid searches for the worst performing algorithms. For the algorithms
we tune the following hyperparameters and report the values and sweeping procedure in Appendix
Sec. B.1:

• MADDPG, MATD3: learning rate and the polyak update rate for target-network updates.

• MASAC: learning rate, polyak update rate for target networks, target entropy coefficient.

• QMix: learning rate, target network update frequency.

• MAPPO: learning rate, epoch.

These algorithms, particularly the on-policy MAPPO algorithm, are highly sensitive to batch size.
In domains other than the MPEs, where batch size has a nominal effect, we use the largest possible
batch-size possible that can be fit into GPU memory. Every single environment is conducted in a
single desktop machine using a single GPU card for training. To enable easy comparison of wall-clock
time between algorithms, we run all of the algorithms without any parallelism in the environment. For
each experiment, we keep training until convergence or at most 3 days. All the results are averaged

5

Under review as a conference paper at ICLR 2021

scenarios MAPPO QMix MASAC MATD3 MADDPG
simple-spread -122.131 -127.95 -129.497 -142.907 -156.161

speaker-listener -12.3095 -13.3582 -13.098 -34.9912 -31.0721
simple-reference -9.84231 -13.9181 -13.1636 -44.4698 -49.3984

Table 1: Average episode rewards in MPE.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e7

300

275

250

225

200

175

150

125

100

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Step 1e6

125

100

75

50

25

0

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Step 1e6

100

75

50

25

0

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

(a) Learning curves of different algorithms w.r.t. environment steps.

0.0 0.2 0.4 0.6 0.8 1.0
Wall Time/s 1e5

300

275

250

225

200

175

150

125

100

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Wall Time/s 1e4

125

100

75

50

25

0

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Wall Time/s 1e4

100

75

50

25

0

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

QMIX
MASAC
MADDPG
MATD3
MAPPO

(b) Learning curves of different algorithms w.r.t. running time.

Figure 3: Evolution of cumulative episode rewards according to step-number (top) and wall-clock
time (bottom) for different algorithms in the particle-world domain.

over 5 random seeds in the StarCraftII domain, Hanabi and Hide-And-Seek domain, and over 10
seeds in the particle-world domain.

For hyperparameter optimization we perform a sequential search per hyperparameter, optimizing
them one at a time and then proceeding onto the next hyper-parameter using the best value found
previously. For example, we might tune learning rate, find the best learning rate, and then move on to
optimizing target update frequency while keeping learning rate fixed to the best value. We perform
this procedure on one representative environment in each domain and re-use the hyperparameters for
the other environments.

The only exception to our outlined hyperparameter tuning is QMix in the StarCraftII domain, where
we simply inherit the hyperparameters from the original QMix paper as these parameters are already
tuned for good performance. For a similar reason, in these environments we re-use the QMix batch
size of 32 episodes for all the off-policy algorithms in the StarCraftII domain.

5.2 PARTICLE-WORLD

Hyperparameter Selection: The hyperparameters are tuned on the simple-spread scenario for each
algorithm and reused across the other two scenarios.

Asymptotic reward: The final average scores at convergence are shown in Table. 1 We find that all
of the algorithms perform somewhat similarly, with some degradation in performance for MATD3 and
MADDPG in the speaker-listener and simple-reference scenarios. Note that the results for MADDPG
we obtained are similar to the numbers reported in the original MADDPG paper.

Wall-clock time: Fig. 3 shows the evolution of the rewards both in step number and wall-clock time.
The run-time is dominated by gradient steps rather than environment collection and consequently we
observe that MAPPO, which takes many fewer gradient steps, converges to a good solution much
quicker than the other algorithms. Note that we have turned off the parallel sample collection in
MAPPO. Hence, with enough computational resources, the wall-clock time of MAPPO could be
even lower.

6

Under review as a conference paper at ICLR 2021

Maps MAPPO QMix MASAC MATD3 MADDPG
2m vs 1z 100 100 90.88 89.84 89.06

3m 99.875 94.71 55.54 60.125 48.63
2s vs 1sc 99.56 95.25 20.06 0 46.63

2s3z 98.5 94.07 23.52 3.125 14.59
3s vs 3z 99.5625 97.03 0 0 0
3s vs 4z 99.27 95.98 0 0 0

2c vs 64zg 99.375 96.08 0 0 0
so many baneling 99.68 93.18 62.43 45.28 56.15

8m 99.48 95.07 43.65 0 0
MMM 98.59 96.95 16.83 0 0
1c3s5z 100 96.09 24 0 0

3s5z vs 3s6z 80 79.03 0 0 0
bane vs bane 94.4792 91.97 0 0 0

25m 96.88 86.15 0 0 0
5m vs 6m 75.01 71.46 0 0 0
8m vs 9m 92.97 93.44 0 0 0

10m vs 11m 84.27 94.85 0 0 0
3s5z 90.94 82.15 0 0 0

MMM2 0 86.43 0 0 0
3s vs 5z 23.35 96.58 0 0 X
6h vs 8z 8.59 79.32 0 0 0
corridor 0 75.625 0 0 0

27m vs 30m 10.625 64.06 0 0 0

Table 2: Eval Win rate in SMAC maps over 32 trials.

5.3 STARCRAFTII MICOMANAGEMENT

Hyperparameter Selection: We use the easier maps 3m and 2s3z to do the hyperparameter tuning
where easier is characterized both by how quickly QMix finds a solution as well as how many agents
are involved. For MAPPO we found that all hyperparameters worked for 3m so we used 2s3z for
the tuning whereas for MASAC/MATD3/MAaDDPG we could not maximize performance on 3m,
the easiest map, so we stuck to tuning parameters on that map. As mentioned before, for QMix we
simply re-use the hyperparameters from the original QMix paper (Rashid et al., 2020). We run each
of the maps for 10 million steps. Note that this is longer than in the QMix paper (Rashid et al., 2020)
and so may lead to better results than are reported there.

We evaluate the algorithms on 32 testing episodes and consider the test winning rate as our perfor-
mance metric. Table. 2 represents the performance metric for all of our algorithms. The results
demonstrate that in easy and medium environments, MAPPO performs as well, if not better, than
QMix. However, in the hardest maps, MAPPO underperforms in relation to QMix. A deeper investi-
gation of this trend revealed that with MAPPO’s performance in these difficult maps significantly
improves with a lower number of epochs - specifically, 5 epochs instead of 15. Appendix A.1 shows
the results for MAPPO with 5 epochs. This may be caused by the fact that a higher epoch number
results in a larger amount of data reuses, potentially rendering the hidden states of the recurrent
network stale. We also note that the off-policy actor critic algorithms, while showing promise in
the easiest maps, quickly drop in performance on the medium and difficult maps, in which they
consistently fail.

5.4 HANABI

For Hanabi, we tune hyperparameters on the 2-player game and re-use the chosen hyperparameters
on the remaining games. We trained all algorithms for either 100 million steps or 3 days, whichever
came first.

We report the averaged training rewards of the best hyperparameters in Table. 3. No hyperparameters
for the off-policy algorithms recieved a score above one despite the same hyperparameter grid working
for other domains. Since the task only gets harder as we increase agent number, we only report the
results for increasing agent number for MAPPO.

7

Under review as a conference paper at ICLR 2021

MAPPO QMix MASAC MATD3 MADDPG
2 players 6.8777 0.2907 1.094 0.1026 0.4211
3 players 5.1788 X X X X
4 players 3.9557 X X X X
5 players 3.5 X X X X

Table 3: Average score in the Hanabi-Small with different number of players. X’s represent trials that
were not run due to underperformance.

5.5 THE HIDE-AND-SEEK DOMAIN

We tune hyperparameters on the box-locking-easy environment and the chosen hyperparameters are
re-used on the other environments. We report the final success rate for each of the tasks in Table. 4.
We find that MAPPO performs well across the environments, while of the off-policy algorithms, only
MASAC has high performance on the easy task. Even after 2 days of training, MASAC was not able
to solve the the two harder tasks. However, MAPPO is able to achieve its results within half a day of
training time despite operating without parallelism.

Tasks MAPPO QMix MASAC MATD3 MADDPG
box-locking-easy 97.0 10.6 93.0 56.5 73.23

box-locking 96 0 2.3 0.0 0
construction 48.0 0 9 0 0.2

Table 4: Success rate of each of the algorithms in the Hide-And-Seek domain.

5.6 SUMMARY

Across environments we find that MAPPO has strong average performance on all domains while
being occasionally outperformed by other algorithms on a few environments. More problematically,
we find that we cannot easily tune MADDPG/MATD3/MASAC outside of the particle environments
and that the same issue applies to QMix outside of the SMAC environments. These issues could
probably be alleviated with a more extensive grid search for the off-policy algorithms but suggest
either that 1) MAPPO is a more stable algorithm across environments or 2) that the default PPO
hyperparameters around which we search are well configured for MARL tasks.

6 CONCLUSION

The results in Sec. 5 suggest that MAPPO is a good starting point for tackling new MARL problems.
Although QMix occasionally outperforms PPO on certain maps in the StarCraftII domain, this is
achieved using tuned hyperparameters from the original implementation and MAPPO might achieve
similar performance given equal tuning budget. Given access to equally sized compute budgets
for hyperparameter optimization, MAPPO is the most consistently successful algorithm across the
studied environments, performing well at SMAC, as well as any algorithm in the MPEs and the best
in hide-and-seek and Hanabi-small. Surprisingly, we also find that the centralized Q function variants
DDPG, SAC, and TD3 almost entirely fail to solve any of the studied tasks, particularly in slightly
harder environments.

Of course, these results are likely dependent on the choice of hyperparameters and architectural
choices. Thus, it may be the case that the initial point around which we perform our grid search for
MADDPG/MATD3/MASAC does not contain any good solutions and that performance of a set of
hyperparameters on the MPEs is not predictive of performance in other domains. Finding a better set
of hyperparameters over which to search for the off policy algorithms is an important direction for
future work. Similarly, seeing if our conclusions hold over a larger set of problem domains would
additionally be valuable. It is possible that our conclusions are a function of the restricted length of
time we ran the algorithms for; it would be interesting to investigate the asymptotic performance of
these algorithms over much longer training times. Finally, it would be worthwhile to investigate the
failures of these off-policy algorithms in these settings to understand more deeply the performance
discrepancy.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent
systems. AAAI/IAAI, 1998(746-752):2, 1998.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926, 2017.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI 2018: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, February 2018.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent reinforcement
learning. volume 97 of Proceedings of Machine Learning Research, pp. 1942–1951, Long Beach,
California, USA, 09–15 Jun 2019.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591. PMLR, 2018a.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 66–83. Springer, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. arXiv
preprint arXiv:1507.06527, 2015.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, W. Czarnecki, Simon Schmitt, and H. V. Hasselt.
Multi-task deep reinforcement learning with popart. In AAAI, 2019.

Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1912.02288, 2019.

Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in
optimizing deep linear networks. arXiv preprint arXiv:2001.05992, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

9

Under review as a conference paper at ICLR 2021

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016. URL http://arxiv.org/abs/1509.02971.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
ICML’10, pp. 807–814. Omnipress, 2010. ISBN 9781605589077.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement
learning. volume 80 of Proceedings of Machine Learning Research, pp. 4295–4304. PMLR, 10–15
Jul 2018.

Tabish Rashid, Philip HS Torr, Gregory Farquhar, Chia-Man Hung, Tim GJ Rudner, Nantas Nardelli,
Shimon Whiteson, Christian Schroeder de Witt, Jakob Foerster, and Mikayel Samvelyan. The star-
craft multi-agent challenge. volume 4, pp. 2186–2188. International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:2003.08839, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
cooperative control. arXiv, pp. arXiv–2003, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinı́cius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In AAMAS,
pp. 2085–2087, 2018.

10

http://arxiv.org/abs/1509.02971

Under review as a conference paper at ICLR 2021

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

Gerald Tesauro. Extending q-learning to general adaptive multi-agent systems. In Advances in neural
information processing systems, pp. 871–878, 2004.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The World Wide Web Conference, pp. 3620–3624, 2019.

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. arXiv preprint
arXiv:1712.00600, 2017.

11

Under review as a conference paper at ICLR 2021

common hyperparameters value
ppo epoch 15

recurrent data chunk length 10
use clipped value loss True
max clipped value loss 0.2

entropy coef 0.01
gradient clip norm 10.0

gae lamda 0.95
gamma 0.99

loss huber loss
huber delta 10.0
batchsize parallel envs × episode length × num agents

mini batch size batch size / num mini batch

Table 5: common hyperparameters used in MAPPO across all domains.

A TRAINING DETAILS

A.1 ALGORITHM HYPER-PARAMETERS

Below, we list the details of the hyperparameters used for all experiments, as well as the hyperparam-
eter sweeping procecure for hyperparameters that were tuned.

For MAPPO, certain hyperparameters were kept constant across all environments; these are listed
in Tab. 5, and are mostly inherited from the baseline implementation of PPO. Note that since we
use parameter sharing and mix all agents’ data, the actual batch-size will be larger with more agents.
Regarding the mini-batch-size, we use the largest possible mini-batch-size under the constraint of
GPU memory limit. Note that while we list ”parallel envs” for MAPPO, we actually run it without
any parallelism to create fair comparisons of wallclock speed between algorithms. For MAPPO,
”parallel envs” is only used to control the batch size.

Network architecture hyperparameters: All neural networks are implemented with the following
overall structure: m fully connected layers, followed by k Gated Recurrent Unit (GRU) (Chung et al.,
2014) layers, and lastly by n fully connected layers. In the following hyperparameter tables, the
“num fc before” hyperparameter corresponds to m, “num GRU layers” corresponds to k, and “num fc
after” corresponds to n. The nonlinearity function used is the rectified linear unit (ReLU) (Nair &
Hinton, 2010), with a gain value equal to the “ReLU gain” hyperparameter. Lastly, The “use feature
normalization” hyperparameter describes if layer normalization (Ba et al., 2016) is applied to the
inputs.

Tuned hyperparameters: For MADDPG, MATD3, and MASAC, the “tau” hyperparameter corre-
sponds to the rate of the polyak average technique used to update the target networks. For MASAC,
the “target entropy coef” hyperparameter determines the target entropy; specifically, the target entropy
is given by: H̄ = β ∗ (−log(1

|A|)), where |A| is the dimension of the discrete action space, and β
is equal to the “target entropy coef” hyperparameter. For QMix, the “hard target update interval”
hyperparameter specifies the number of gradient updates which must elapse before the target network
parameters are updated to equal the live network parameters. Note that the tables specifying the
sweeping procedure for each domain list the hyperparameters in the order in which they were tuned.

For each domain, we describe the network architectures, the hyperparameters kept constant across
that domain for each algorithm, as well as the hyperparameter sweeping procedure for tunable
hyperparameters for each algorithm.

12

Under review as a conference paper at ICLR 2021

Multi-agent Particle World (MPE):

QMix lr [1e-4, 5e-4, 7e-4, 1e-3]; hard update interval [200, 500, 700, 900, 1500]
MADDPG lr [1e-4, 5e-4, 7e-4, 1e-3, 1e-2]; tau [0.01, 0.005, 0.001]

MATD3 lr [1e-4, 5e-4, 7e-4, 1e-3, 1e-2]; tau [0.01, 0.005, 0.001]
MASAC lr [1e-4, 5e-4, 7e-4, 1e-3, 1e-2]; tau [0.01, 0.005, 0.001]; target entropy coef [0.1, 0.3, 0.5, 0.7]
MAPPO lr [1e-3, 7e-4, 5e-4, 1e-4]; ppo epoch [5, 10, 15, 20, 25]

Table 6: sweeping procedure in MPE, tau denotes the target network update rate, the bold font
indicates the value adopted.

network hyperparameters value
initialization method orthogonal

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc before 2
num fc after 1

use feature normalization True
optimizer Adam

optimizer eps 1e-5
weight decay 0

ReLU True
ReLU gain sqrt(2)

Table 7: network hyperparameters used in the MPE domain by all algorithms

hyperparameters value
episode length 25

last action layer gain 0.01
gamma 0.99

buffer size 5000
batch size 32

epsilon from 1.0 to 0.05
epsilon anneal time 50000

Q function loss MSE loss

Table 8: Hyperparameters used in the MPE domain by MADDPG, MATD3, MASAC, and QMix.
Buffer size and batch size is calculated by episodes.

hyperparameters value
parallel envs 128

last action layer gain 0.01
num mini batch 1

Table 9: Hyperparameters used in the MPE domain by MAPPO

13

Under review as a conference paper at ICLR 2021

StarCraftII Micromanagement (SMAC): All algorithms are trained until convergence, 10M
timesteps is reached, or for a maximum of 3 days. Since the maximum length of an episode
varies per map, we change the maximum episode length based on the maximum amount allowed by
the map.

QMix use open-source hyperparameters
MADDPG lr [1e-3, 5e-4, 1e-4] tau [0.01, 0.005, 0.001]

MATD3 lr [1e-3, 5e-4, 1e-4] tau [0.01, 0.005, 0.001]
MASAC lr [1e-3, 5e-4, 1e-4] tau [0.01, 0.005, 0.001] target entropy coef [0.1, 0.3, 0.5, 0.7]
MAPPO lr [1e-3, 7e-4, 5e-4, 1e-4], ppo epoch [5, 10, 15, 20, 25]

Table 10: Sweeping procedure in the SMAC domain, the bold font indicates the value adopted.

network hyperparameters value
initialization method orthogonal

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc before 2
num fc after 1

use feature normalization True
optimizer Adam

optimizer eps 1e-5
weight decay 0

ReLU True
ReLU gain sqrt(2)

Table 11: network hyperparameters used in the StarCraft domain by all algorithms

hyperparameters value
episode length depends on maps

last action layer gain 1
gamma 0.99

buffer size 5000
batch size 32

epsilon from 1.0 to 0.05
epsilon anneal time 50000

Q-function loss MSE loss

Table 12: Hyperparameters used in SMAC by MADDPG, MATD3, MASAC, and QMix. buffer size
and batch size is calculated by episodes.

hyperparameters value
parallel envs 8

episode length 400
last action layer gain 1

Table 13: Hyperparameters used in the SMAC domain by MAPPO

14

Under review as a conference paper at ICLR 2021

Maps MAPPO QMix MASAC MATD3 MADDPG
epoch=15

2m vs 1z 100 100 90.88 89.84 89.06
3m 99.875 94.71 55.54 60.125 48.63

2s vs 1sc 99.56 95.25 20.06 0 46.63
2s3z 98.5 94.07 23.52 3.125 14.59

3s vs 3z 99.5625 97.03 0 0 0
3s vs 4z 99.27 95.98 0 0 0

2c vs 64zg 99.375 96.08 0 0 0
so many baneling 99.68 93.18 62.43 45.28 56.15

8m 99.48 95.07 43.65 0 0
MMM 98.59 96.95 16.83 0 0
1c3s5z 100 96.09 24 0 0

3s5z vs 3s6z 80 79.03 0 0 0
8m vs 9m 92.97 93.44 0 0 0

bane vs bane 94.4792 91.97 0 0 0
25m 96.88 86.15 0 0 0

5m vs 6m 64.58 71.46 0 0 0
6h vs 8z 8.59 79.32 0 0 0
corridor 0 75.625 0 0 0

epoch=5
3s vs 5z 96.88 96.58 0 0 0

3s5z 96.84 82.15 0 0 0
MMM2 87.5 86.43 0 0 0

10m vs 11m 87.5 94.85 0 0 0
lr=7e-4,epoch=5

27m vs 30m 61.25 64.06 0 0 0

Table 14: Eval win rate in SMAC domain over 32 trials.

Hanabi

QMix lr[1e-3, 5e-4, 1e-4, 2.5e-5]; hard update interval [200, 500, 900, 1500]
MADDPG lr[1e-3, 5e-4, 1e-4, 2.5e-5]; tau [0.001, 0.005, 0.01]

MATD3 lr[1e-3, 5e-4, 1e-4, 2.5e-5]; tau [0.001, 0.005, 0.01]
MASAC lr[1e-3, 5e-4, 1e-4, 2.5e-5]; tau [0.001, 0.005, 0.01]; target entropy coef [0.1, 0.3, 0.5, 0.7]
MAPPO lr[1e-3, 7e-4, 5e-4, 1e-4]; ppo epoch [5, 10, 15, 20, 25]

Table 15: Sweeping procedure in the Hanabi domain, the bold font indicates the value adopted.

network hyperparameters value
initialization method orthogonal

num GRU layers 1
RNN hidden state dim 512

fc layer dim 64
num fc before 3
num fc after 1

use feature normalization False
optimizer Adam

optimizer eps 1e-5
weight decay 0

ReLU True
ReLU gain sqrt(2)

Table 16: Network hyperparameters used in the Hanabi domain by all algorithms

15

Under review as a conference paper at ICLR 2021

hyperparameters value
episode length 80

last action layer gain 0.01
gamma 0.99

buffer size 5000
batch size 64

epsilon from 1.0 to 0.05
epsilon anneal time 80000

Q function loss MSE loss

Table 17: Hyperparameters used in the Hanabi domain by MADDPG, MATD3, MASAC, and QMix.
Buffer size and batch size is calculated by episodes.

hyperparameters value
parallel envs 1000

episode length 80
last action layer gain 0.01

Table 18: Hyperparameters used in the Hanabi domain by MAPPO

The Hide-And-Seek (HNS) domain

QMix lr[1e-3, 5e-4, 1e-4]; hard update interval [200, 500, 700, 900]
MADDPG lr[1e-3, 5e-4, 1e-4]; tau [0.01, 0.005 0.001]

MATD3 lr[1e-3, 5e-4, 1e-4]; tau [0.01, 0.005 0.001]
MASAC lr[1e-3, 5e-4, 1e-4]; tau [0.01, 0.005, 0.001]
MAPPO lr[1e-3, 7e-4, 5e-4]; ppo epoch [5, 10,15, 20, 25]

Table 19: Sweeping procedure in the HNS domain

network hyperparameters value
initialization method orthogonal

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc before 2
num fc after 1

use feature normalization True
optimizer Adam

optimizer eps 1e-5
weight decay 0

ReLU True
ReLU gain sqrt(2)

Table 20: Network hyperparameters used in the HNS domain by all algorithms

16

Under review as a conference paper at ICLR 2021

hyperparameters value

episode length boxlocking: 120
blueprint construction: 200

last action layer gain 0.01
gamma 0.99

buffer size 5000
batch size 256

epsilon from 1.0 to 0.05
epsilon anneal time 50000

Q function loss MSE loss

Table 21: Hyperparameters used in the HNS domain by MADDPG, MATD3, MASAC, and QMix.
Buffer size and batch size is calculated by episodes.

hyperparameters value

parallel envs boxlocking: 250
blueprint construction: 400

episode length
2 × task horizons
boxlocking: 240
construction:400

last action layer gain 0.01

Table 22: hyperparameters used in the HNS domain by MAPPO

B ALGORITHM DETAILS

We use policies to refer to each unique actor and critic network pair and agents to refer to the actors
in the environment. We will use m to denote the number of policies being trained, and n to be the
number of active agents in the environment. We will use g(◦) to refer to the function which maps
each agent to the policy which controls it, and Ai to be the number of agents under the control of
policy i. In a setting where all agents share the same parameters, m = 1, as there is only a single
policy, and g would map all agents to this single policy. In a setting in which all agents have their
own critic and actor, m = n, as the number of policies equals the number of agents, and g would
map each agent to its unique policy containing the actor and critic networks.

As a notational simplification, in all of the outlined algorithms we will assume that the environment
and all agents have a fixed horizon length T ; modifying the algorithms to work with varying time
horizons is simple. We will also assume that the agents have discrete actions. For the MADDPG,
MATD3, and MASAC algorithms, in order for actions to be differentiable in a discrete setting, we
use the gumbel softmax trick Jang et al. (2016), which approximately samples an action from a
categorical distribution parameterized by the output logits of the actor network. Finally, we will
always assume that the number of active agents in the environment is fixed across the horizon; this
lets us ensure that there is a constant length input to the centralized critic.

The psuedocode of MADDPG, MASAC, QMix and MAPPO with the support of recurrent policies
are shown in Algo. 1, Algo. 2, Algo. 3 and Algo. 4 respectively.

17

Under review as a conference paper at ICLR 2021

Algorithm 1: MADDPG
Initialize θ1, · · · , θm, the parameters of agent critic networks, and φ1, · · · , φm, the parameters of

the agent actor networks, using Orthogonal initialization (Hu et al., 2020);
Set the function g mapping agent a to index of the policy i which controls the agent;
Set the learning rate α, batch size B and replay buffer D = {};
θ−i = θi, φ

−
i = φi for i = 1...m;

step=0, episodes=0;
while step ≤ stepmax do

s0 = initial state;
initialize h(1)0 · · ·h

(n)
0 actor RNN states;

τ = {} empty trajectory;
for timestep t=1...T do

for each agent a do
i← g(a) Get the index of the policy controlling agent a;
ε = epsilon-schedule(step);
u
(a)
t , h

(a)
t ={

µi(o
(a)
t , h

(a)
t−1;φi) using the Gumbel Softmax Trick with probability 1− ε

randint(1, |U |) with probability ε
end
Get reward rt, next state st+1, done dt, observations o1t , . . . , o

t
n;

τ = τ ∪ {(st,ut, rt, st+1, o
1
t , . . . o

t
n)};

step = step + 1;
end
D = D ∪ τ ;
episodes = episodes + 1;
if episodes ≥ B and train-interval training steps have passed then

for each policy i in 1...m do
b← random batch of B episodes from D for policy i;
for each timestep t in each episode in batch b do

Qt = Qi(st, u
(1)
t , ..., u

(n)
t , h

(i)
Q,t−1; θi);

Compute µ(a)
t+1 = µg(a)(o

(a)
t+1, h

′(a)
µ,t ;φ−g(a)) for each agent a;

Qt+1 = Q′i(st+1, µ
(1)
t+1, ..., µ

(n)
t+1, h

′(i)
Q,t; θ

−
i);

Q∗t = rt + (1− dt)γ(Qt+1);

Update RNN states h(i)Q,t−1, h
′(i)
Q,t, h

′(j)
µ,t , j ∈ [1, n] using transitions from batch b

end
L(θi) = 1

B
1
T

∑
k

∑
t(Qt −Q∗t)2;

θi = θi − α∇θiL(θi);
Reset RNN states h(i)Q,t, h

(i)
µ,t;

for each timestep t in each episode in batch b do
for each agent a controlled by policy i do

Q
(a)
t = Q(st, u

(1)
t , ..., µi(o

(a)
t , h

(a)
µ,t−1;φi), ..., u

(n)
t , h

(i)
Q,t−1; θi);

Update RNN states h(a)Q,t, h
(a)
µ,t using transitions from batch b

end
end
L(φi) = − 1

Ai

1
B

1
T

∑
a

∑
k

∑
tQ

(a)
t ;

φi = φi − α∇φiL(φi);
θ−i = (1− λ)θ−i + λθi;
φ−i = (1− λ)φ−i + λφi;

end
end

end

18

Under review as a conference paper at ICLR 2021

Algorithm 2: MASAC
Initialize θ1, · · · , θm, the parameters of agent critic networks, and φ1, · · · , φm, the parameters of

the agent actor networks, using Orthogonal initialization (Hu et al., 2020);
Set the learning rate ε, polyak update rate λ and replay buffer D = {};
Set the initial entropy temperature, α, and the target entropy H̄;
θ−i = θi, φ

−
i = φi for i = 1...m;

step=0, episodes=0;
while step ≤ stepmax do

s0 = initial state, τ = {} empty trajectory;
initialize h(1)0 · · ·h

(n)
0 actor RNN states;

for timestep t=1...T do
for each agent a do

i← g(a);
u
(a)
t ∼ πi(ut|o(a)t , h

(a)
t−1;φi);

Update RNN state h(a)t−1 to h(a)t ;
end
Get reward rt, next state st+1;
τ = τ ∪ {(st,ut, rt, st+1)};
step = step + 1;

end
D = D ∪ τ ;
episodes = episodes + 1;
if episodes ≥ B and train-interval training steps have passed then

for each policy i in 1...m do
b← random batch of B episodes from D for policy i;
for each timestep t in each episode in batch b do

Qt = Q(st, u
(1)
t , ..., u

(n)
t , h

(i)
Q,t−1; θi);

Compute ā(a)t+1 ∼ πg(a)(āt+1|o(a)t+1, h
′(a)
π,t ;φ−g(a)) for each agent a;

Qt+1 = Qi(st+1, ā
(1)
t+1, ..., ā

(n)
t+1, h

′(i)
Q,t; θ

−
i);

Vt+1 = Qt+1 − α log(πg(a)(āt+1|o(a)t+1, h
′(a)
π,t ;φ−g(a)));

Q∗t = rt + (1− dt)γVt+1;
Update RNN states h(i)Q,t−1, h

′(i)
Q,t, h

′(j)
π,t , j ∈ [1, n] using transitions from batch b

end
L(θi) = 1

B
1
T

∑
i

∑
t(Qt −Q∗t)2;

θi = θi − ε∇θiL(θi);
Reset RNN states h(i)Q,t, h

(i)
π,t;

for each timestep t in each episode in batch b do
for each agent a controlled by policy i do

ūt
(a) ∼ π(ūt|o(a)t , h

(a)
π,t−1;φi) // Sample ūt(a) using Gumbel Softmax Trick;

Q
(a)
t = Q(st, u

(1)
t , ..., ūt

(a), ..., u
(n)
t , h

(i)
Q,t−1; θi);

Update RNN states h(a)Q,t, h
(a)
µ,t using transitions from batch b

end
end
L(φi) = 1

Ai

1
B

1
T

∑
a

∑
k

∑
t α log(π(ūt|o(a)t , h

(a)
π,t−1;φi))−Qt;

φi = φi − ε∇φiL(φi);
θ−i = (1− λ)θ−i + λθi;
φ−i = (1− λ)φ−i + λφi ;
L(α) = 1

Ai

1
B

1
T

∑
k

∑
t−α[log(π(ūt|o(a)t , h

(a)
π,t−1;φi)) + H̄];

α = α− ε∇αL(α)
end

end
end

19

Under review as a conference paper at ICLR 2021

Algorithm 3: QMix
Initialize θh, the hypernetwork parameters, and φi, the parameters of the agent Q networks for
policy i, for i ∈ {1 · · ·m}, using Orthogonal initialization (Hu et al., 2020);

Set θ = {θh, φ1, ...φm}, the collection of all parameters.;
Set θ− = θ;
Set the learning rate α, and replay buffer D = {};
step = 0, episodes = 0;
while step ≤ stepmax do

s0 = initial state, τ = {} empty trajectory;
initialize h(1)0 · · ·h

(n)
0 actor RNN states;

for timestep t=1...T do
for each agent a do

i← g(a);
ε = epsilon-schedule(step);

u
(a)
t , h

(a)
t =

{
arg max

u
(a)
t
Qi(o

(a)
t , u

(a)
t , h

(a)
t−1;φi) with probability 1− ε

randint(1, |U |) with probability ε
end
Get reward rt, next state st+1;
τ = τ ∪ {(st,ut, rt, st+1)};
step = step + 1;

end
D = D ∪ τ ;
episodes = episodes + 1;
if episodes ≥ B and train-interval training steps have passed then

b← random batch of B episodes from D;
for each timestep t in each episode in batch b do

Qt =

Mixer-net(Qg(1)(o
(1)
t , h

(1)
t−1;φg(1)), ..., Qg(n)(o

(n)
t , h

(n)
t−1;φg(n)); hypernet(st; θh));

Qt+1 =

Mixer-net(Qg(1)(o
(n)
t+1, h

′(1)
t ;φ−g(1)), ..., Qg(n)(o

(n)
t+1, h

′(n)
t ;φ−g(n)); hypernet(st+1; θ−h));

Q∗t = rt + (1− dt)γQt+1;
Update RNN states h(i), h′(i), i ∈ [1, n] using transitions from batch b

end
L(θ) = 1

B
1
T

∑
i

∑
t(Q
∗
t −Qt)2;

θ = θ − α∇θL(θ)
end
if update-interval training steps have passed then

θ− = θ
end

end

20

Under review as a conference paper at ICLR 2021

Algorithm 4: MAPPO
Initialize θi, the parameter for policy i and φi, the parameter for critic i, for i ∈ {1 · · ·m}, using

Orthogonal initialization (Hu et al., 2020);
Set the learning rate α;
while step ≤ stepmax do

set data buffer D = {};
for batchsize b=1...B do

τ = [] empty trajectory list;
initialize h(1)0 · · ·h

(n)
0 actor RNN states;

for timestep t=1...T do
for each agent a do

i← g(a);
u
(a)
t , h

(a)
t = π(a)(st, h

(a)
t−1; θi);

v
(a)
t = V (a)(st, h

(a)
t−1;φi) ;

end
Get reward rt, next state st+1;
τ = τ + {[(st,ut,ht,vt, rt, st+1)]};

end
compute advantage A and value target V ′ for τ by applying GAE on τ ;
// process a trajectory into chunks of length 10;
for timestep t = 1, 11, 21, . . . , T − 9 do

D = D ∪ (τ [t : t+ 10], A[t : t+ 10], V ′[t : t+ 10]);
end

end
normalize all the advantages in D to zero mean and one standard deviation;
for mini-batch k=1...K do

for each policy i=1...n do
b← random mini-batch from D for policy i;
for each data chunk c in the mini-batch b do

update the RNN hidden states for each timestep in c from the first hidden state;
end
Adam update for θi with PPO objective and data b;
Adam update for φi with value regression objective and data b;

end
end

end

21

	Introduction
	Related Work
	MARL Algorithms
	Preliminaries
	Baseline Algorithms
	Key Implementation Details

	Environments
	Experiment Results
	Experimental Details
	Particle-World
	StarCraftII Micomanagement
	Hanabi
	The Hide-And-Seek Domain
	Summary

	Conclusion
	Training Details
	Algorithm Hyper-Parameters

	Algorithm Details

