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Abstract

We present SlotGAN, a framework for training001
a mention detection model that only requires002
unlabeled text and a gazetteer. It consists of003
a generator trained to extract spans from an004
input sentence, and a discriminator trained to005
determine whether a span comes from the gen-006
erator, or from the gazetteer. We evaluate the007
method on English newswire data and com-008
pare it against supervised, weakly-supervised,009
and unsupervised methods. We find that the010
performance of the method is lower than these011
baselines, because it tends to generate more and012
longer spans, and in some cases it relies only on013
capitalization. In other cases, it generates spans014
that are valid but differ from the benchmark.015
When evaluated with metrics based on overlap,016
we find that SlotGAN performs within 95% of017
the precision of a supervised method, and 84%018
of its recall. Our results suggest that the model019
can generate spans that overlap well, but an020
additional filtering mechanism is required.021

1 Introduction022

Detecting mentions of entities in text is an impor-023

tant step towards the extraction of structured in-024

formation from natural language sources. Men-025

tion Detection (MD) components can be found fre-026

quently in systems for Named Entity Recognition027

(NER) (Straková et al., 2019; Wang et al., 2021),028

entity linking (Wu et al., 2020; Cao et al., 2021),029

relationship extraction (Katiyar and Cardie, 2017;030

Zhong and Chen, 2021), and coreference resolu-031

tion (Joshi et al., 2019; Xu and Choi, 2020; Kirstain032

et al., 2021), where accurately modeling mentions033

is crucial for downstream performance.034

The MD task is often subsumed under NER,035

where most successful approaches employ super-036

vised learning with exhaustively annotated datasets.037

These methods become less feasible in cases where038

we need to rapidly build MD systems, for example,039

when moving to a domain with incompatible NER040

classes (such as news and scientific articles); or041

when there are not enough resources to create a 042

labeled dataset. We approach the problem from a 043

distant supervision perspective: we assume that we 044

have access to an unlabeled corpus, and a list of 045

known entity names (i.e. a gazetteer). We propose 046

SlotGAN– a framework for detecting mentions that 047

uses a generator to extract spans conditioned on 048

some input text, and a discriminator that determines 049

whether a span comes from the generator, or from 050

the gazetteer (see Fig. 1). 051

In contrast with distant supervision methods that 052

in some cases require training with false nega- 053

tives (Ratner et al., 2016; Giannakopoulos et al., 054

2017; Shang et al., 2018), SlotGAN avoids explicit 055

labels by using the discriminator to learn patterns 056

that are not likely to be names of entities (such as 057

verb phrases, or very long spans, which rarely occur 058

in a gazzetteer), thereby improving the generator’s 059

ability to ability to detect valid mentions. 060

We evaluate the method in a MD task using 061

the CoNLL 2003 English dataset for NER (Tjong 062

Kim Sang and De Meulder, 2003). We observe 063

that the absence of strong supervision in SlotGAN 064

results in different, yet valid notions of what con- 065

stitutes an entity. For instance, while in the sen- 066

tence “...a Russian airliner bringing coal miners...” 067

the word Russian is selected as a gold label, Slot- 068

GAN selects Russian airliner. In this case, metrics 069

for NER based on exact match underestimate the 070

performance of the method, assigning zero preci- 071

sion and recall. To account for this, we introduce 072

overlap-based metrics into the evaluation. 073

When using exact boundary match metrics, we 074

observe that SlotGAN exhibits lower performance 075

compared to different baselines. When evaluat- 076

ing overlap, we find that precision (how much of 077

the predicted span overlaps with the gold span) is 078

within 95% of the performance of the supervised 079

baseline, while recall (how much of the gold span 080

is actually predicted) is within 84%. We observe 081

that SlotGAN tends to generate more and longer 082
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Figure 1: SlotGAN consists of a generator G trained to extract spans from an input sentence. We represent spans as
matrices containing embeddings of words in a span, padded with zeros to a fixed length L. True spans are generated
from a gazetteer. A discriminator D is trained to determine if a span was generated from G or from the gazetteer.

spans than those in the benchmark, and in some083

cases it relies only on capitalization.084

2 SlotGAN085

In the MD task, we are given a sentence from a086

corpus as a sequence of words (w1, w2, ..., wn).087

The output of the system is a set of spans that088

contain a mention, and each span is a tuple (is, ie)089

where is is an integer indicating the position where090

the span starts, and ie the position where it ends. As091

an additional source of information, we are given092

a gazetteer E = (e1, e2, ..., eN ) containing names093

of entities relevant to a particular domain.094

SlotGAN is a method for MD based on Gen-095

erative Adversarial Networks (Goodfellow et al.,096

2014) and its conditional variants that allow intro-097

ducing dependencies on some input (Mirza and098

Osindero, 2014; Reed et al., 2016). It consists of a099

generator trained to extract spans from a sentence,100

and a discriminator that determines whether a span101

comes from the generator or from the gazetteer.102

We define the embedding of a sentence w =103

(w1, ..., wn) as a lookup operation emb(w) ∈ Rd×n104

that arranges a pretrained embedding for each wi105

in the columns of a matrix. Similarly, we represent106

spans as matrices in a space S = Rd×L, where L107

is an arbitrary maximum length. For a span (is, ie),108

the matrix contains the embeddings of the words109

within the span, from column is to column ie. The110

rest of the columns are padded with zeros, and for111

empty spans all entries are zero.112

In SlotGAN, the generator G takes as input the113

embedding matrix emb(w) of a sentence, and as-114

signs each of its columns to one of k different slots.115

The output is a sequence of k span representations116

(Si)
k
i=1 with Si ∈ S, such that the j-th column of117

Si contains the j-th column of the input matrix, if118

it was assigned to slot i. Unused columns of Si are119

filled with zeros. When sampling a name e of an120

entity in the gazetteer, we obtain an embedding as121

emb(e) and then add zero padding via a pad func- 122

tion if necessary, to obtain a span representation of 123

the entity name in S . The discriminator D takes as 124

input span representations in S , and outputs a score 125

that should be high for samples from the gazetteer, 126

and low for samples from the generator. 127

Denoting as pw the distribution used to sample 128

sentences from the corpus, and as pe the distribu- 129

tion for sampling names from the gazetteer, the 130

generator and discriminator are trained via gradient 131

descent using the W-GAN (Arjovsky et al., 2017) 132

minimax optimization objective: 133

min
G

max
D

Ee∼pe [D(pad(emb(e)))]− 134

Ew∼pw

[
k∑

i=1

D(G(emb(w))i)

]
, (1) 135

where we have denoted as G(emb(w))i the i-th 136

span representation produced by the generator. 137

To allow also not extracting any mentions when 138

not required, we randomly introduce empty spans 139

in the gazetteer, and we reformulate the generator 140

objective with an equality constraint derived from 141

generated spans. Following Bastings et al. (2019), 142

we define the constraint in terms of a differentiable 143

function C such that C(G(emb(w)i) counts the 144

number of transitions from zero to non-zero, and 145

viceversa, in a span representation. For valid spans, 146

this should be equal to 2. We solve the problem 147

introducing a Lagrange multiplier λ, and the term 148

in Eq. 1 that depends on the generator becomes 149

min
λ,G

Ew∼pw

[
k∑

i=1

−D(Si(w))− λ(2− C(Si(w))

]
(2) 150

where Si(w) is a shorthand for G(emb(w))i. This 151

constraint prevents the generator from producing 152

only empty spans. 153

At test time, we can use the spans produced by 154

the generator as predictions for mentions. Alter- 155
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natively, we can balance precision and recall by156

leveraging the discriminator, by only keeping spans157

with a score D(Si(w)) > t where t is a threshold.158

We implement the generator using BERT (De-159

vlin et al., 2019), followed by a modified Slot Atten-160

tion layer (Locatello et al., 2020) to model discrete161

selections of distinct spans. The discriminator is a162

temporal CNN. For more details on the architecture,163

we refer the reader to Appendix A.164

3 Related Work165

The task of MD has been addressed under NER166

in multiple works where supervised learning has167

proven to be effective (Devlin et al., 2019; Straková168

et al., 2019; Peters et al., 2018; Yu et al., 2020;169

Wang et al., 2021). Some works have addressed the170

lack of labeled data in a target domain by applying171

domain adaptation techniques from a source do-172

main with labeled data (Zhou et al., 2019; Li et al.,173

2019; Zhang et al., 2021). In this work we focus174

on the case where annotations are not available.175

Closer to our work are methods for weakly176

or distantly supervised learning, where heuristics177

and domain-specific rules are used to generate a178

noisy training set, often using external sources like179

gazetteers (Safranchik et al., 2020; Lison et al.,180

2020; Zhao et al., 2021; Ratner et al., 2016; Shang181

et al., 2018; Li et al., 2021a). These methods are182

limited by false negatives that reduce recall in MD.183

Furthermore, even though rules can be used to an-184

notate a dataset at a large scale, the process of185

devising these rules in the first place can be tedious,186

and requires knowledge of domain experts in cer-187

tain cases. We avoid training with false positives by188

using the discriminator to learn patterns that are not189

likely to be in the gazetteer, which in turn is used190

by the generator to learn to detect valid mentions.191

Luo et al. (2020) recently introduced a fully un-192

supervised method for NER that uses a pipeline193

of clustering over word embeddings, a generative194

model, and reinforcement learning to solve the195

NER task without any labels or external sources.196

These elements are obtained separately, whereas197

SlotGAN provides an end-to-end architecture.198

4 Experiments199

Datasets We evaluate MD performance using200

the CoNLL 2003 English dataset for NER (Tjong201

Kim Sang and De Meulder, 2003). For meth-202

ods that require a dictionary of entity types or a203

gazetteer, we build it using the annotations in the204

training set. We also explore a pretraining strat- 205

egy for SlotGAN, where we sample sentences from 206

Wikipedia articles, and names of entities from Wiki- 207

data. Both are obtained from the July 2019 dumps. 208

Experimental setup We evaluate the perfor- 209

mance of SlotGAN when trained with the CoNLL 210

2003 data only, and when pre-training with 211

Wikipedia and Wikidata. In both cases, we apply 212

a threshold to all spans based on the discriminator 213

score, and the threshold is selected based on the 214

validation set performance. Training and hyperpa- 215

rameter details can be found in Appendix B. Our 216

implementation and data is available online1. 217

Baselines We first consider a string maching 218

baseline where we label as mentions all spans that 219

are present in the gazetteer, giving precedence to 220

longer spans. We then compare with methods rang- 221

ing from supervised, weakly supervised, to unsu- 222

pervised. ACE (Wang et al., 2021) is a state-of-the- 223

art method for supervised NER. AutoNER (Shang 224

et al., 2018) is a weakly supervised method that 225

requires a type dictionary. Lastly, we compare with 226

the unsupervised method of Luo et al. (2020)2. 227

Evaluation Recent works have highlighted the 228

presence of unlabeled mentions in the CoNLL 229

dataset, which has a negative effect when training 230

and evaluating models based on exact match (Jie 231

et al., 2019; Li et al., 2021b). Exact match met- 232

rics also penalize more strongly models that do not 233

match boundaries exactly, than a model that does 234

not predict a span at all (Manning, 2006; Esuli and 235

Sebastiani, 2010). With this motivation, we also re- 236

port overlap by computing the intersection between 237

gold and predicted spans. Precision is defined as 238

the length of the intersection divided by the length 239

of the predicted span, and recall is the length of 240

the intersection divided by the length of the gold 241

span. We denote these as OP and OR, respectively. 242

Overlap F1 (OF1) is the harmonic mean of OP and 243

OR. We report the average over all gold spans. 244

Results We present MD results in Table 1. We ob- 245

serve that pretraining with Wikipedia and Wikidata 246

entity names helps to improve the performance over 247

a version trained with the CoNLL 2003 data only. 248

The higher recall of SlotGAN in comparison with 249

the string matching baseline shows that the gener- 250

ator is not simply memorizing the gazetteer and 251

1https://anonymous.4open.science/r/adv-0236/
2Their implementation is not available. Results for P, R,

and F1 from their paper.
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Method Data P R F1 OP OR OF1

String matching Gazetteer 76.2 54.0 63.2 57.4 61.3 58.6
ACE (Wang et al., 2021) Gold labels 96.0 97.1 96.5 98.3 98.1 98.1
AutoNER (Shang et al., 2018) Type dictionary 88.4 94.2 91.2 97.4 97.2 96.9
Unsupervised (Luo et al., 2020) Domain concepts 80.0 72.0 76.0 — — —

SlotGAN - no pretraining
Gazetteer

55.9 66.1 60.6 82.9 79.5 82.9
SlotGAN - pretrained 60.1 71.1 65.2 93.2 83.0 84.7

Table 1: Mention detection results evaluated via exact match precision (P), recall (R), and F1 score; and overlap
metrics (preceded with O). The “Data” column indicates what is required to train the model in addition to a corpus.

Gold on the road to [Tripoli] airport
Predicted on the road to [Tripoli airport]

Gold [Belgian] police said on Saturday
Predicted [Belgian police] said on Saturday

Gold [JOHNSON] WINS UNANIMOUS POINTS VERDICT
Predicted [JOHNSON WINS UNANIMOUS POINTS VERDICT]

Gold BASKETBALL - [BENETTON] BEAT [DINAMO] 92 - 81
Predicted [BASKETBALL] - [BENETTON BEAT DINAMO] 92 - 81

Table 2: Comparison of gold spans and spans predicted
by SlotGAN.

can thus detect mentions not seen during training.252

However, its precision and recall are low compared253

to other systems. We attribute this partly to the254

lack of strong supervision of the generator, which255

results in boundaries that differ from gold spans,256

and detection of more mentions than those present257

in the dataset. The overlap-based metrics show that258

on average, predicted spans overlap 93% and gold259

spans overlap 83% with the intersection. This indi-260

cates that extra words are added to predicted spans,261

and boundary mismatch, though these values of262

precision and recall are within 95% and 84% of the263

supervised baseline, respectively.264

A closer analysis of the length of overlapping265

spans shows that in 69.4% of the cases the length is266

the same as gold spans, in 21.1% the predicted span267

is longer, and in 9.5% it is shorter. This often leads268

to mentions that are actually correct, as shown in269

Table 2. However, SlotGAN also produces spans270

that do not overlap with any gold span. This can be271

observed by plotting the average number of words272

assigned to a mention by the model versus the gold273

annotations, as shown in Fig 2. We see that across274

different numbers of mention words for the gold275

annotations, SlotGAN produces a higher number276

in average. We also find cases where it relies on277

capitalization only, which becomes problematic in278

upper case sentences: for regular sentences, there279
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Figure 2: Number of words assigned to a mention per
sentence, computed over the gold and predicted spans.

is no exact boundary match in 11% of the cases. 280

For sentences in upper case, this increases to 23%. 281

5 Conclusion 282

We have presented SlotGAN, a method for training 283

a mention detector that only requires unlabeled text 284

and a list of entity names, that relies on implicit 285

supervision provided by a discriminator that is also 286

optimized during training. This results in spans 287

that overlap well with gold spans, but also a ten- 288

dency towards generating more and longer spans, 289

and relying on capitalization only. This suggests 290

that spans predicted by SlotGAN are likely to be 291

correct, but an additional mechanism is needed to 292

filter them. Even though its performance is close 293

to a supervised model according to overlap-based 294

metrics, it cannot match other methods that also 295

use a gazetteer or are unsupervised. In spite of 296

this, we consider SlotGAN a promising framework 297

for IE tasks with less supervision, where improve- 298

ments can be explored in terms of architectures 299

and training objectives that enable better control of 300

generated spans. The end-to-end architecture also 301

presents an opportunity for fine-tuning with gold 302

labels, which we plan to explore in future work. 303
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A Architectures557

In our implementation of SlotGAN, the embed-558

ding function emb(w) used to obtain embeddings559

of sentences and names in the gazetteer is uses a560

fixed lookup table of pretrained embeddings. We561

use WorPiece embeddings from the input layer of562

BERT (Devlin et al., 2019).563

The generator consists of BERT, which for564

an input sentence of length n, outputs a matrix565

H ∈ Rd×n where d is the dimension of the566

output layer of BERT, equal to 768. We use567

the bert-base-cased implementation in Hugging-568

Face’s Transformer library (Wolf et al., 2019).569

The output matrix is passed to a modified Slot570

Attention layer (Locatello et al., 2020). In the orig-571

inal implementation, Slot Attention assigns each572

of the n outputs in the columns of M to k slots,573

by using a differentiable clustering algorithm. This574

algorithm works for a variable number of slots, by575

sampling k initial slot representations from a Gaus-576

sian distribution. In the MD case, for words that do577

not belong to any mention, we want the generator578

Layer Output features Activation

3× 3 Conv 128 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 —
Flatten —
Linear 32 ReLU
Linear 1 —

Table 3: Architecture of the discriminator used in our
experiments.

to be able to assign them to a “default” slot. We 579

achieve this by introducing an extra slot, whose 580

representation, instead of sampled, is a single vec- 581

tor with a learned representation. Slot Attention 582

in the generator thus contains k + 1 slots, but the 583

default slot is discarded when passing generated 584

spans to the discriminator. In our experiments we 585

use k = 10, and the number of iterations of the 586

clustering algorithm is set to 3. 587

For the discriminator we use a temporal CNN, 588

where convolutions are applied along the sequence 589

axis. The input is a matrix of span representations 590

of shape d × L, and the output is a scalar. The 591

architecture is described in Table 3. 592

B Training Procedure 593

We train SlotGAN with mini-batches of 32 sen- 594

tences. We update the generator once for every 5 595

updates of the discriminator. To let the discrimina- 596

tor accept empty spans as valid, we replace names 597

from the gazetteer with an empty span with a prob- 598

ability of 0.5. We use a gradient penalty coeffi- 599

cient (Gulrajani et al., 2017) of 10 when computing 600

the discriminator loss. 601

We use a learning rate of 2 × 10−5, with a lin- 602

ear warm-up schedule for the first 10% of epochs. 603

For the Lagrange multiplier, we use the Modified 604

Differential Method of Multipliers (Platt and Barr, 605

1987) with a constant learning rate of 1× 10−3. 606

We run our experiments in a workstation with 607

an Intel Xeon processor, 1 NVIDIA GeForce GTX 608

1080 Ti GPU with 11GB of memory, and 60GB 609

of RAM. When pretraining with Wikipedia and 610

Wikidata, we train SlotGAN with 20,000 updates 611

of the generator, and 5,000 when training with the 612

CoNLL 2003 dataset. 613
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