

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS A COMPREHENSIVE SCALING LAW OF MIXTURE-OF-EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) models have become the consensus approach for enabling parameter-efficient scaling and cost-effective deployment in large language models. However, existing scaling laws for dense models are inapplicable to MoE models, which stems from three critical challenges: the multiplicity of influencing factors, their intricate coupling relationships and the non-monotonic nature of their performance impacts. They collectively necessitate a fine-grained investigation into MoE-specific scaling laws. In this work, we perform a systematic decomposition of MoE settings, identifying five key factors that influence model performance from both size and structural perspectives (data size (D), total model size (N), activated model size (N_a), number of active experts (G) and the ratio of shared experts (S)). Specifically, we design 450 controlled experiments to characterize their marginal effects, ultimately constructing a comprehensive and precise joint MoE scaling law that considers all essential factors. Furthermore, we derive the theoretically optimal and practically efficiency-aware optimal configurations for G , S and N_a/N with detailed analyses. Our results demonstrate that the optimal settings for G and S are independent of both the model architecture and data size. With the scaling of N , the optimal activation parameter ratio of N_a/N becomes sparser. Our proposed MoE scaling law could function as an accurate and insightful guidance to facilitate future MoE model design and training.

1 INTRODUCTION

Large language models (LLMs) have been widely verified and utilized in our daily lives. It is impressive and lucky to discover that LLMs can continuously expand its ability boundaries with increasing model and training data sizes. The scaling laws of LLMs (Kaplan et al., 2020; Hoffmann et al., 2022; Sun et al., 2025), which could predict the model loss based on crucial factors (e.g., data/model sizes) before training, shed lights on the promising way of wisely selecting appropriate model structures and settings before experiments and continuously enhancing the ability of LLMs under given training budget or environment constraints. Recently, **Mixture-of-Experts (MoE)** becomes one of the mainstream structures broadly used in powerful industry-level LLMs (Dubey et al., 2024; Liu et al., 2024; Sun et al., 2024; Liu et al., 2025; Qwen Team et al., 2025; OpenAI et al., 2025). Different from the original dense architecture that involves all parameters in the forward process, MoE often adopts multiple experts (e.g., FFNs) with a router to automatically select which experts should be activated for the current token. The sparse activation of experts in MoE could largely benefit from increasing total model sizes while maintaining efficient model inference.

With the thriving in efficient LLMs, lots of efforts have been dedicated to MoE architectures. The shared expert is proposed to capture general knowledge robustly (Dai et al., 2024; Sun et al., 2024). We also notice the trend of increasing (activated and total) expert numbers (Kimi et al., 2025; Liu et al., 2024; OpenAI et al., 2025). In this case, existing scaling laws of either dense models (Kaplan et al., 2020; Hoffmann et al., 2022) or MoE models (Krajewski et al., 2024; Wang et al., 2024b) cannot perfectly predict the model performance under the updated popular MoE structures and settings. The community urgently requires a new MoE scaling law to accurately guide model training.

To comprehensively explore the central factors of MoE models that largely impact the model performance, we first take the classical factors of **data size (D)** and **total model size (N)** also marked in dense scaling laws into consideration. Besides, the **activated model size (N_a)** functioning in the

forward process is essential in MoE models. For the expert aspect, we note the **number of activated experts** G as another essential factor (N_a and G collaboratively determine the expert size). Moreover, the **ratio of shared experts in activated experts** (S) is also modeled (S and G collaboratively set the specific numbers of shared and routed experts). We attempt to build our scaling laws of MoE based on the above five factors. The challenges mainly locate in three aspects: (a) our MoE scaling law considers more comprehensive factors D, N, N_a, G, S compared to existing scaling laws. (b) Our preliminary experiments imply that some factors have a non-monotonic impact on loss, which are more challenging to fit. (c) There exists mutual coupling relationships among these factors, which multiplies the challenges of constructing the final joint scaling law.

To accomplish our MoE scaling laws, we first select a reasonable and wider parameter range for the five essential factors D, N, N_a, G, S and then conduct experiments 450 to record the corresponding MoE losses of different parameter settings. Based on these experimental results, we first decide the basic scaling law formation with the fundamental D, N factors following Hoffmann et al. (2022). Next, we discover the marginal effects of N_a, G, S respectively, whose impacts on model losses are surprisingly non-monotonic and are coupled to other factors. Finally, we obtain the joint MoE scaling laws formulated as follows:

$$L(N, D, N_a, G, S) = (eG + \frac{f}{G} + mS^2 + nS) * (\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h\frac{N_a}{N}) + \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon. \quad (1)$$

which could satisfactorily predict MoE models' losses with larger data/model sizes (e.g., up to 9B total model size and 100B trained tokens) and different MoE settings (e.g., up to 256 experts, 20 activated experts and 70% ratio of shared experts).

Based on our MoE scaling laws, we conduct in-depth analyses and discover the following implications: (a) ***the optimal number of activated experts is around 7*** for real-world classical MoE settings considering its effectiveness. (b) ***Too dense/sparse MoE structures are not performance-optimal***. The 20% ~ 43% activated parameter ratios (N_a/N) are theoretical optimal for N from 1T to 20B. Considering the cost, the practical efficiency-aware optimal ratios range from 5% ~ 9%. (c) ***The existence of shared expert is essential***, while the best ratio S of shared experts to all activated experts ranges from 13% ~ 31% with marginal loss disturbances. We are confident that our MoE scaling laws with the above observations and insights could provide a more comprehensive understanding and more accurate performance prediction of MoE models with different settings, looking forward to facilitate LLM community in future MoE model design and training.

2 PRELIMINARY

2.1 MOE ARCHITECTURE

The Mixture-of-Experts (MoE) architecture modifies standard Transformer by replacing the dense Feed-Forward Networks (FFNs) with a set of independent experts, where each expert is usually an FFN of the same size (Fedus et al., 2022; Zhou et al., 2022; Jiang et al., 2024). Typically, for each token, the router selects and activates only a small subset of these experts. This design allows model size to grow by adding experts, while keeping the computational cost nearly unchanged. This makes it possible to scale models to very large sizes without a proportional increase in cost. Considering the trend of training-/inference- efficient LLM, MoE has become a mainstream and effective framework for building industry-level LLMs balancing model performance and computational efficiency.

2.2 EXISTING SCALING LAWS OF LLMs

Scaling Laws of Dense LLM. Scaling laws describe the relationship between key factors such as total model size N , data size D and the loss L . Classical scaling laws include the Chinchilla scaling law (Hoffmann et al., 2022), which states that L follows a power-law dependence on N and D , written as $L(N, D) = a/N^\alpha + b/D^\beta + \epsilon$. It consists of three terms: the first and second terms capture the limitations imposed by finite model size and finite data size, respectively. The last term, ϵ , represents the irreducible error that arises from the inherent uncertainty in the training data.

Scaling Laws for MoE. Unlike dense models, MoE introduces new structures with additional factors (e.g., the activated model size, the number of activated experts, the ratio of shared experts, etc),

108 whose effects on model loss are non-monotonic and often interdependent. Existing scaling laws for
 109 dense models are insufficient to guide MoE’s model design, which motivates the development of new
 110 scaling laws tailored to MoE with these new-added factors. Recent studies have investigated MoE
 111 scaling laws based on certain MoE-specific factors, including the granularity of activated experts
 112 (Krajewski et al., 2024) and the activated model size (Ludziejewski et al., 2025). Different from
 113 them, our scaling law is more comprehensive and quantitatively defined considering five factors. As
 114 a result, our scaling law provides a more accurate fit to the loss, as shown in Fig. 5.

115

116

117 3 EXPERIMENTAL SETUP

118

119 We systematically analyze the five key factors of MoE that influence training dynamics: data size
 120 D , total model size N , activated model size N_a , number of activated experts G and ratio of shared
 121 experts in activated experts S . To isolate their individual effects, we conduct 450 controlled experi-
 122 ments divided into several groups, each group varying a single target factor while holding the others
 123 fixed. This setup enables a clear assessment of how each factor impacts the validation loss.

124

125 Formally, we define the number of shared experts as n_s , the number of routed experts as n_e , the
 126 number of activated routed experts as n_k , the head dimension as d_{head} , the hidden dimension as
 127 d_{hidden} , the expert dimension as d_{expert} , the number of heads as n_h and the number of layers as l .
 128 Based on these definitions, the following relationships hold:

129

$$G = n_k + n_s, \quad N_a \approx (4d_{\text{head}} \cdot n_h + 3Gd_{\text{expert}})d_{\text{hidden}} \cdot l, \quad (2)$$

130

$$S = \frac{n_s}{G}, \quad N \approx (4d_{\text{head}} \cdot n_h + 3d_{\text{expert}}(SG + n_e))d_{\text{hidden}} \cdot l. \quad (3)$$

132

133 An MoE layer consists of multiple experts and a router that assigns tokens, often using a Top- K
 134 routing strategy with an auxiliary balance loss to ensure expert utilization. Training typically adopts
 135 standard optimizers such as AdamW (Kingma & Ba, 2014) with parallelism techniques (data, model
 136 and expert parallelism) for scalability. We select the widely-used classical MoE structures with
 137 architectural details provided in Appendix B. All experiments employ the Warmup-Stable-Decay
 138 (WSD) learning rate scheduler (Hu et al., 2024). For studies involving different values of D , we
 139 reused the same warmup and stable phases across runs to avoid redundant computation and reduce
 140 resource usage. All models are trained on a subset of the Dolma V1.7 dataset (Soldaini et al., 2024).

141

142 To fit the correlations between validation loss and five key factors, we systematically conduct ex-
 143 periments within controlled ranges of language model pretraining, with total model size $N \in$
 144 $[133\text{M}, 3.4\text{B}]$ and training data sizes $D \in [10\text{B}, 50\text{B}]$ tokens. We additionally vary the activated
 145 model size $N_a \in [30\text{M}, 2.2\text{B}]$, the number of activated experts $G \in [1, 20]$ and the ratio of shared
 146 experts $S \in [0.0, 0.7]$. For validation, we further extend to larger model and data sizes (up to 9B
 147 total model size and 100B trained tokens) and different MoE settings (up to 256 experts, 20 activated
 148 experts and 70% ratio of shared experts), successfully verifying the effectiveness and generalization
 149 ability of our scaling laws. The complete experimental settings are reported in Appendix L.

150

151

152 4 OUR SCALING LAWS FOR MOE

153

154 MoE has gradually emerged as a primary solution for the continuous scaling of model sizes and ef-
 155 ficient deployment of LLMs. The core factors of MoE models exhibit higher complexity and strong
 156 inter-factor coupling compared to dense models and such inherent complexity renders the classical
 157 Chinchilla (Hoffmann et al., 2022) and OpenAI (Kaplan et al., 2020) scaling laws insufficient to
 158 guide the design of MoE architectures.

159

160

161

162 We aim to build a comprehensive and accurate MoE scaling law. In the following, we sequentially
 163 elaborate on the marginal effects of each core factor on MoE model performance via controlled-
 164 factor experiments, encompassing the total model size (N), data size (D), activated model size (N_a),
 165 number of activated experts (G) and the ratio of shared experts in activated experts (S). Building
 166 upon these analyses, we further derive the methodology underlying our joint MoE scaling law.

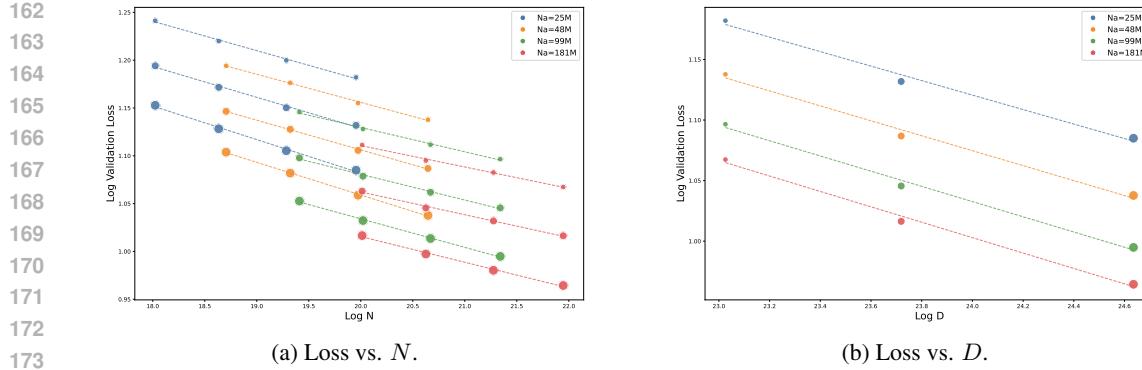


Figure 1: Marginal effects of validation loss with respect to N and D under the logarithmic coordinate system. Data point sizes are directly proportional to D .

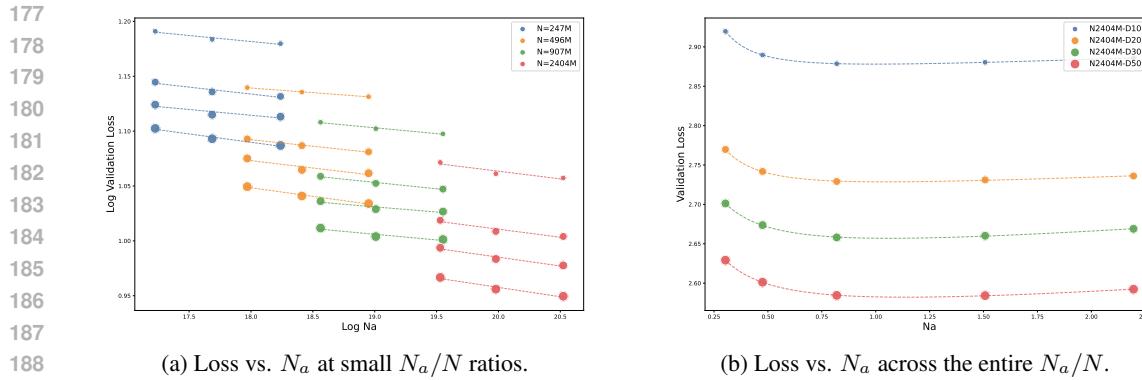


Figure 2: Marginal effects of validation loss with N_a . (a) illustrates the power-law-like marginal relationship between loss and N_a under smaller N_a/N . (b) indicates that loss oscillates and increases as N_a/N becomes increasingly large. Data point sizes are proportional to D .

4.1 THE BASIC MOE SCALING LAW'S FORM WITH N AND D

Total model size N and data size D constitute two primary factors influencing the performance of LLMs. Leveraging the scaling laws of dense models as a foundation, we examine whether N and D in MoE still conform to a power-law relationship. As illustrated in Figure 1, a distinct power-law relationship is observed between validation loss, total model size N and data size D .

Specifically, we increase N with G , S , D and N_a unchanged. By performing logarithmic transformations on both the validation loss and N , a linear relationship is observed across different ranges of model sizes—this confirms a significant power-law relationship between the loss and N . Similarly, a significant power-law relationship also exists between the loss and D . Furthermore, in Figure 1, we find that experimental groups with the same model size but varying data sizes exhibit a translation along the y -axis, which implies that N and D are mutually independent. From these observations, we conclude that the loss for MoE with respect to the total model size N and data size D is as:

$$L(N, D) = \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \epsilon, \quad (4)$$

which has the same form of the Chinchilla scaling law (Hoffmann et al., 2022). The specific fitting results of Eq. 4 are provided in Appendix C.2.

4.2 IMPACT OF ACTIVATED MODEL SIZE N_a

Activated model size N_a is a critical factor specific to MoE architectures that governs the balance between the model performance and efficiency. To gain deeper insights into the scaling law with

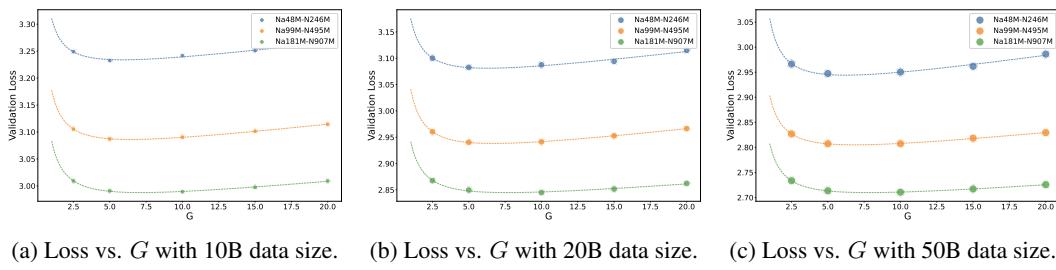


Figure 3: Marginal effects of validation loss with respect to G . (a), (b) and (c) illustrate the marginal relationship between loss and G under different D and N . Data point sizes are proportional to D .

N_a as an independent factor, we conducted multiple controlled experiments where N_a was the only varying factor. The formula followed by the controlled variable of N_a is detailed in Appendix H..

In Figure 2, the scaling of activated parameters N_a is achieved by increasing the expert dimension, while the total model size N is maintained constant through a corresponding reduction in the number of routed experts. When the ratio of N_a to N is small, a power-law-like relationship is exhibited between N_a and validation loss. However, as this ratio increases, the validation loss demonstrates a tendency to rise gradually, leading to an overall distribution that resembles a hook-like function, which is formalized as follows:

$$L(N_a) = \frac{c}{N_a^\gamma} + hN_a + \iota. \quad (5)$$

Next, we proceed to integrate the relationship involving N_a with those of data size D and total model size N . We performed hyperparameter fitting under different configurations of D and N , with the results presented in Figure 8. We observe that ι exhibits a negative correlation with both D and N , following a power-law distribution. In contrast, c and γ exhibit oscillations with variations in N and D , indicating that they bear no systematic relationship to N and D . Furthermore, h is negatively correlated with N , exhibiting an inversely proportional relationship, while showing no dependence on D . Therefore, the joint scaling law of N , D and N_a is concluded as follows:

$$L(N, D, N_a) = \frac{c}{N_a^\gamma} + h\frac{N_a}{N} + \iota L(N, D). \quad (6)$$

$L(N, D)$ denotes the basic scaling law sharing the same form in Eq. 4. Notably, our fitting results reveal that $\gamma \approx \alpha$. Hence, the final scaling law that governs $L(N, D, N_a)$ is formalized as follows:

$$L(N, D, N_a) = \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + h\frac{N_a}{N} + \epsilon. \quad (7)$$

We explored alternative relationship forms of $L(N_a)$, performed relevant comparative experiments and derivations and ultimately established the aforementioned formulas describing the scaling law of N , D and N_a . Eq. 7 implies that N_a has an optimal value, which seems to be contrary to the prevalent assumption that “a larger N_a yields lower loss”. It is because that when N_a/N exceeds a specific threshold with other factors (e.g., N and G) remains unchanged, the expert size increases progressively while the number of experts decreases. It induces gradual structural distortion in the MoE architecture, which in turn disrupt the advantage of MoE’s combinational activation and thus degrades the performance. We have also validated that Eq. 7 can accurately predict the loss for models with larger model sizes. More discussions and detailed parameter fitting procedures are given in Appendix C.3 and F.

4.3 IMPACT OF THE NUMBER OF ACTIVATED EXPERTS G

G constitutes another critical factor, defined as the number of activated experts (including activated shared and routed experts). It reflects the granularity of expert partitioning in MoE architectures. To investigate the scaling law with G as the independent factor, a series of controlled experiments were conducted with other factors constant, shown in Figure 3 and Figure 11. With the increase in G , the validation loss exhibits a trend of first decreasing and then increasing. It is hypothesized that the impact of G better conforms to a hook function relationship, expressed as follows:

$$L(G) = eG + \frac{f}{G} + \tau. \quad (8)$$

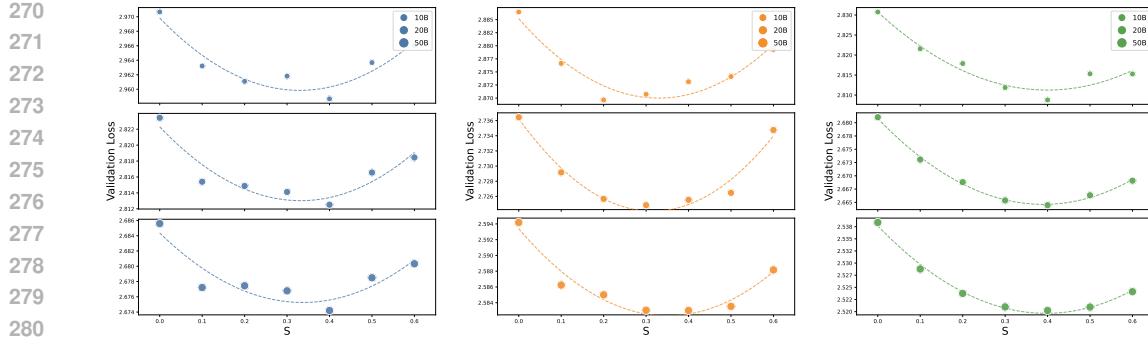
(a) Loss vs. S : Na240M-N1.2B. (b) Loss vs. S : Na476M-N2.4B. (c) Loss vs. S : Na793M-N4B.

Figure 4: Marginal effects of validation loss with respect to S . (a), (b) and (c) respectively illustrate the marginal relations between loss and S under different N, D settings. For small N and D , the trend of S is taking shape but is also easily affected by noise. As they increase, the scaling law of S gradually becomes significant and robust. More details are in Appendix C.5.

It is noteworthy that the possible G ’s exponent term approaches 1. Therefore, based on the fitting results and the Occam’s Razor principle (Blumer et al., 1987), the exponent term of G is omitted.

4.4 THE JOINT MOE SCALING LAW OF N, D, N_a AND G

Based on the above conclusions in Eq. 7 and 8, we explore the variation patterns of the fitted hyperparameters $a, \alpha, b, \beta, c, h, \epsilon$ under different values of G . We observe that a, c and h exhibit the hook-function trend with variations in G , whereas other hyperparameters are largely unaffected by G and display no discernible pattern in Figure 10. Hence, we can express them as $a = e_1 G + \frac{f_1}{G} + \tau_1$, $c = e_2 G + \frac{f_2}{G} + \tau_2$ and $h = e_3 G + \frac{f_3}{G} + \tau_3$. Furthermore, after re-parameterizing them, we notably found that (e_1, f_1) , (e_2, f_2) and (e_3, f_3) exhibit a proportional correlation and $\tau_3 \approx 0$. Therefore, the scaling law for $L(N, D, N_a, G)$ is presented as follows:

$$L(N, D, N_a, G) = (eG + \frac{f}{G}) * (\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h \frac{N_a}{N}) + \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon. \quad (9)$$

Here, $\frac{a}{N^\alpha} + \frac{b}{D^\beta} + \epsilon$ denotes the basic Chinchilla-like scaling law part from Eq. 4. Considering that N_a and N exhibit a similar mechanism of action on the loss to a certain extent, we also have a power-law term $\frac{c}{N_a^\alpha}$ for N_a . The right terms $\frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon$ could be viewed to characterize the scaling law with respect to (activated/total) model size and data size. For the left term, $eG + \frac{f}{G}$ denotes the effect of G (related to MoE expert structure) on loss from Eq. 8 and such effect is scaled by the model size factors $(\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h \frac{N_a}{N})$, which is non-monotonic for N_a introduced in Eq. 7). The detailed analysis of hyperparameters and fitting results of Eq. 9 are provided in Appendix C.4.

4.5 EXTENDED JOINT MOE SCALING LAW WITH SHARED EXPERT RATIO S

The shared experts have been verified to be essential in popular MoE architectures (Dai et al., 2024; Liu et al., 2025). We set the shared expert ratio S ($S = n_s/G$, where n_s represents the number of shared experts) as the sole varying factor to conduct experiments as presented in Figure 4. We find that MoE models with shared experts significantly outperform those without shared experts, verifying the necessity of shared expert isolation. As S increases, the loss first decreases and then increases, while it exerts a relatively minor impact on losses around the optimal point. Based on these observations, we adopt a quadratic function to capture the marginal effect of S on the loss.

$$L(S) = mS^2 + nS + \psi. \quad (10)$$

Final Joint MoE Scaling Law. We then incorporate S into Eq. 9 to build our final joint MoE scaling law with all five factors. Given that S exerts only a minor influence on loss in a wide range, we assume that S has negligible impact on the form and hyperparameters. Accordingly, we perform

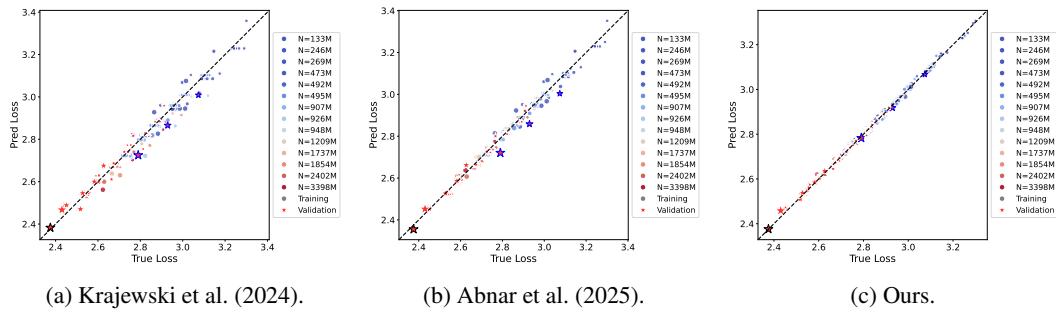


Figure 5: Fitting results of existing and our joint scaling laws for MoE architectures. The average validation loss errors of (a), (b) and (c) are respectively 0.0193, 0.0170 and 0.0060. Star points are validation data with larger model sizes, larger data sizes and different MoE settings. Data point size is proportional to D . Detailed descriptions of compared scaling laws are provided in Appendix I.

hyperparameter fitting for Eq. 10 across diverse configurations of N , D , N_a and G and analyze the relationships between these fitted hyperparameters and factors. The results are presented in Figure 13 with key findings: (1) m and n are independent of D , indicating that D and S are mutually decoupled; (2) m increases with the growth of N and N_a , whereas n decreases with the growth of N and N_a . Notably, the extreme point of S remains unchanged with variations in N and N_a ; (3) ψ exhibits an obvious power-law relationship with N , N_a and D ; (4) As can be inferred from the definition of S in Eq. 3, S is already correlated with G , so its relationship with G will not be further considered. Considering the compatibility with Eq. 9, the form of $L(N, D, N_a, G, S)$ is expressed as: $(L(G) + L(S)) * \phi(N, N_a) + \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon$. Consequently, we propose our MoE scaling law comprehensively with N , D , N_a , G , S as follows:

$$L(N, D, N_a, G, S) = (eG + \frac{f}{G} + mS^2 + nS) * (\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h\frac{N_a}{N}) + \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon. \quad (11)$$

Note that the factors of S and G , which jointly characterize the MoE structure of activated experts, are included in the first term, while the other terms remain consistent with those in Eq. 9. Their impact on the loss is also regulated by the total model size N and the activated model size N_a . A detailed analysis of hyperparameters is presented in Appendix C.5.

Fitting Results. To determine the specific value of hyperparameters in Eq. 11, we implement all 450 experiments that encompass diverse configurations of N , D , N_a , G and S . The corresponding hyperparameter values are provided in Table 2 in Appendix C.1. Next, we evaluate the fitting performance of our MoE scaling law in Figure 5, where the satisfactory fitting performance demonstrates the advantage of our MoE scaling law compared to others. Notably, for the sake of fairness, during the comparison, the baseline MoE scaling laws were first re-fitted with hyperparameters using the same data points, followed by prediction. Moreover, we extend the experiments to larger MoE models (up to 9B total model size and 100B trained tokens) with different MoE structure settings (G ranges from 2 to 20 and S ranges from 0 to 0.7). The consistently accurate fitting results demonstrate that our scaling law maintains robust performance when applied to larger-scale MoE models with broad ranges of parameter selections.

5 KEY IMPLICATIONS FOR MOE ARCHITECTURE DESIGN

In this section, we discuss the insightful findings deduced on the basis of our MoE scaling laws, which are anticipated to provide more effective guidance for the design of better MoE models.

5.1 IMPLICATION-1: OPTIMAL NUMBER OF ACTIVATED EXPERTS G

In light of Eq. 11, the optimal number of activated experts G can be expressed as follows:

$$G_{opt} = \sqrt{f/e}. \quad (12)$$

Eq. 12 demonstrates that the optimal G is independent of model size N , activated model size N_a and data size D , thereby corresponding to a fixed optimal value $G_{opt} \approx 6.78$. Moreover,

378 the theoretically derived optimal G exhibits strong alignment with the configurations employed by
 379 current mainstream MoE models, including DeepSeek-V3.1 (Liu et al., 2024), Kimi-K2 (Kimi et al.,
 380 2025) and Qwen3-235B-A22B (Qwen Team et al., 2025) (both $G = 8$ or 9). The detailed formula
 381 derivation is provided in Appendix D.

383 5.2 IMPLICATION-2: OPTIMAL RATIO OF SHARED EXPERTS S

385 Similarly, S is independent of other factors and also has an optimal value as follows:

$$386 \quad S_{opt} = -n/2m. \quad (13)$$

388 Eq. 13 shows that the optimal $S \approx 0.31$ is also independent of other factors. As shown in Table 3,
 389 since S has minor impact on loss around the optimal point as stated in Section 4.5, the appropriate
 390 S values are approximately distributed in the range of $[0.13, 0.31]$ for the majority of popular MoE
 391 settings, with the loss deviation to the optimal setting's less than 0.001. In conclusion, our findings
 392 lead to the following recommendation: the shared expert constitutes an essential component. For the
 393 optimal total activated expert number $G = 7$, we could set 1 or 2 shared experts. Notably, this aligns
 394 with the architectural configurations observed in open-source canonical MoE models, corroborating
 395 the validity of our conclusions. More details and analyses are in Appendix E.

396 5.3 IMPLICATION-3: OPTIMAL ACTIVATED PARAMETER RATIO N_a/N

398 **Theoretical Analysis.** From Eq. 11, it can be observed that there are two types of terms involving
 399 the activated model size N_a as a numerator or denominator. These two terms exert opposite
 400 effects on the loss of MoE models. Intuitively, this implies that there exists an optimal N_a given
 401 the configurations of other factors (e.g., the model size N). Given N , the $(\frac{N_a}{N})_{opt_t}$ that achieves the
 402 theoretically optimal loss is formalized as follows (Comprehensive derivation is in Appendix F):

$$404 \quad \left(\frac{N_a}{N}\right)_{opt_t} = \left(\frac{\alpha \cdot \left[k \cdot \left(eG + \frac{f}{G} + mS^2 + nS \right) + c \right]}{hN^\alpha \cdot \left(eG + \frac{f}{G} + mS^2 + nS \right)} \right)^{\frac{1}{\alpha+1}} = \left(\frac{\alpha \cdot [k \cdot const + c]}{hN^\alpha \cdot const} \right)^{\frac{1}{\alpha+1}}. \quad (14)$$

408 According to our Implications #1 and #2, G and S have optimal values and thus $eG + \frac{f}{G} + mS^2 + nS$
 409 can be represented as a constant term $const$ under the optimal setting. Eq. 14 indicates that the
 410 optimal $(\frac{N_a}{N})_{opt_t}$ decreases as the model size N increases. It verifies that with the increasing total
 411 model sizes, the optimal MoE architecture will be sparser with smaller N_a , which is consistent with
 412 the current trend of MoE models (Kimi et al., 2025; OpenAI et al., 2025). For instance, for N from
 413 30B (Qwen3-30B-A3B (Qwen Team et al., 2025)) to 671B (Deepseek-V3.1 (Liu et al., 2024)), the
 414 theoretically optimal ratio satisfies $(\frac{N_a}{N})_{opt_t}$ range from 40.0% to 22.0%.

415 **Practical Efficiency-aware Analysis.** However, the theoretically optimal sparsity degree of MoE
 416 $\frac{N_a}{N}$ calculated in Eq. 14 cannot be directly used to guide the real-world MoE architecture design, as
 417 the efficiency of LLMs is also an essential factor. Specifically, when N_a gradually increases toward
 418 its optimal value, the performance gains become increasingly marginal, while the associated costs
 419 rise steadily. Therefore, it is necessary to explore more practical efficiency-aware optimal $(\frac{N_a}{N})_{opt_e}$
 420 under the consideration of the balance between performance gain and efficiency cost.

421 Specifically, we define the loss gain threshold as $\Delta Loss$ for the step size of ΔN_a set as $0.01N$. As
 422 N_a is incrementally scaled for each step size, the marginal gain of loss reduction will ultimately fall
 423 below the loss gain threshold $\Delta Loss$, where we suppose the model reaches the practical efficiency-
 424 aware optimal $(\frac{N_a}{N})_{opt_e}$. Comprehensive derivation and pseudo code are in Appendix F. Hence, for
 425 a given model size N , our MoE scaling law yields a practically applicable range for N_a , spanning the
 426 interval from the practical efficiency-aware optimal point to the theoretical optimal point, i.e., $N_a \in$
 427 $[(\frac{N_a}{N})_{opt_e}, (\frac{N_a}{N})_{opt_t}]$. To substantiate the validity of our conclusions, we conducted an analysis on
 428 the configurations of mainstream industrial MoE models, with detailed specifications in Table 4. It
 429 shows that the activated model sizes of most mainstream MoE models are within our recommended
 430 range above. Note that some recent MoE models (e.g., Kimi-K2 (Kimi et al., 2025) and gpt-oss-
 431 120b (OpenAI et al., 2025)) employ a more aggressive sparser architecture with $\frac{N_a}{N} \leq 4\%$, primarily
 432 aiming to reduce the training/inference costs in practice with larger total model sizes.

432

6 RELATED WORK

433

6.1 MOE ARCHITECTURE

436 In the field of language models, the MoE model enables experts to learn different knowledge and
 437 combine their outputs (Abdin et al., 2024; Team et al., 2025; Zeng et al., 2025; Lieber et al., 2024).
 438 Shazeer et al. (2017) expanded upon this with the Sparsely-Gated Mixture-of-Experts (SMoE) layer
 439 and Top- K routing, which selects a fixed number of experts for each token. This was further devel-
 440 oped by Gshard (Lepikhin et al., 2020) and SwitchTransformer (Fedus et al., 2022) by integrating
 441 MoE into Transformer feedforward layers with Top-1 and Top-2 routing. More recently, Dai et al.
 442 (2024) proposed modifying the MoE layer by subdividing experts into smaller experts and adding
 443 shared experts into the architecture. These advancements continue to enhance the efficiency and
 444 flexibility of MoE. At the same time, there is a trend toward scaling MoE to larger model sizes and
 445 to a greater number of experts, as shown in recent works such as K2 (Kimi et al., 2025), DeepSeek-
 446 V3 (Liu et al., 2024) and Mixture of a Million Experts (He, 2024). In parallel, several studies have
 447 investigated alternative routing strategies and expert designs, including heterogeneous experts in
 448 HMoE (Wang et al., 2024a), autonomous expert activation in AoE (Lv et al., 2025) and probabilistic
 449 Top- P routing (Zhou et al., 2022). In this work, when analyzing scaling laws, we adopt the classical
 450 Top- K routing strategy as our main setting.

451

6.2 SCALING LAWS OF LLMs

452 Scaling laws for LLMs describe how model performance depends on factors such as model size and
 453 training data. In dense Transformers, Kaplan et al. (2020) first studied scaling laws and showed
 454 that the final model perplexity follows a power-law relationship with both model size and data size.
 455 Building on this, Hoffmann et al. (2022) extended the analysis by incorporating variable cosine
 456 cycle lengths and proposed a revised scaling formulation. Scaling behavior has also been examined
 457 in alternative architectures and training regimes, particularly in MoE models. Clark et al. (2022)
 458 investigated MoE scaling laws under a fixed dataset, focusing on the impact of model size and the
 459 number of experts. Krajewski et al. (2024) studied how scaling changes with different levels of
 460 expert granularity in MoE architectures. Abnar et al. (2025) analyzed scaling laws with respect to
 461 total model size N , dataset size D and the fraction of inactive experts, while Ludziejewski et al.
 462 (2025) examined the joint effects of multiple factors, including the activated model size N_a , dataset
 463 size D . The comparison between these scaling laws and ours is in Table 5.

464 Beyond architectures, Step Law (Li et al., 2025a) and relevant studies (Shuai et al., 2024; Zhang
 465 et al., 2024; McCandlish et al., 2018) provide principles for learning rate, weight decay and batch
 466 size, while Farseer (Li et al., 2025b) refines loss scaling for accurate extrapolation. Other works
 467 include parallel scaling (Chen et al., 2025) for improving compute efficiency and SynthLLM (Qin
 468 et al., 2025) for analyzing the scalability of synthetic data. More recently, Sun et al. (2025) proposed
 469 a joint scaling law for floating point quantization training, highlighting the influence of exponent and
 470 mantissa bits, the effect of critical data size and the optimal precision range for efficient LLM training.
 471 Overall, these works extend scaling laws across optimizers, architectures and data, providing
 472 guidance for LLM design and training. Nevertheless, the community is urgent to build a more
 473 comprehensive MoE scaling law.

474

7 CONCLUSION AND FUTURE WORK

475 In this work, we propose a more accurate joint MoE scaling law that considers more comprehensive
 476 factors, including total model size N , data size D , activated model size N_a , the number of activated
 477 experts G and the ratio of shared experts in activated experts S . Based on the joint MoE scaling
 478 law, we further derive the optimal value expressions for essential MoE-specific factors of G , S and
 479 N_a/N and identify several insightful implications, which can facilitate future MoE model design
 480 and training. In the future, we will further validate our scaling law under larger scales and novel
 481 MoE architectures. Currently, our investigations have primarily centered on factors pertaining to
 482 the MoE blocks. It would be worthwhile to extend this scope to encompass both the factors and
 483 structural configurations associated with other LLM blocks, such as the attention layers.

486 REPRODUCIBILITY STATEMENT
487

488 To ensure the reproducibility of our results, we have taken the following measures: (1) **Datasets**.
489 In Section 3, we specify the dataset (Dolma V1.7 dataset) used in the experiments and provide its
490 source attribution. (2) **Code**. All experiments in our scaling law research were trained using open-
491 source frameworks (Megatron and TorchTITAN), ensuring high reproducibility. [Details are provided](#)
492 [in the supplementary materials](#). (3) **Experimental Details**. The basic experimental settings are
493 described in Section 3, with specific hyperparameter configurations provided in Appendix B and
494 detailed experimental specifications in Appendix L. (4) **Proof Details**. The derivation process of our
495 joint MoE scaling law is elaborated in detail in Section 4 and Appendix C. Meanwhile, the derivation
496 of the key implications involved is thoroughly explained in Section 5, as well as in Appendices D,
497 E, F and G.

498 REFERENCES
499

500 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
501 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
502 cal report. *arXiv preprint arXiv:2412.08905*, 2024.

503 Samira Abnar, Harshay Shah, Dan Busbridge, Alaaeldin Mohamed Elnouby Ali, Josh Susskind,
504 and Vimal Thilak. Parameters vs flops: Scaling laws for optimal sparsity for mixture-of-experts
505 language models. *arXiv preprint arXiv:2501.12370*, 2025.

506 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Occam’s razor.
507 *Information processing letters*, 24(6):377–380, 1987.

508 Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin, and
509 Zhongxin Liu. Parallel scaling law for language models. *arXiv preprint arXiv:2505.10475*, 2025.

510 Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
511 mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
512 laws for routed language models. In *International conference on machine learning*, pp. 4057–
513 4086. PMLR, 2022.

514 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
515 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
516 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

517 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
518 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
519 *arXiv e-prints*, pp. arXiv–2407, 2024.

520 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
521 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
522 2022.

523 Xu Owen He. Mixture of a million experts. *arXiv preprint arXiv:2407.04153*, 2024.

524 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
525 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
526 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

527 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
528 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
529 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

530 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
531 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
532 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

533 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
534 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
535 models. *arXiv preprint arXiv:2001.08361*, 2020.

540 Team Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 541 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 542 *preprint arXiv:2507.20534*, 2025.

543 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 544 *arXiv:1412.6980*, 2014.

545 Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
 546 Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdż, Piotr Sankowski, et al. Scaling
 547 laws for fine-grained mixture of experts. *arXiv preprint arXiv:2402.07871*, 2024.

548 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 549 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 550 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

551 Houyi Li, Wenzhen Zheng, Jingcheng Hu, Qiu Feng Wang, Hanshan Zhang, Zili Wang, Shijie
 552 Xuyang, Yuan Tao Fan, Shuigeng Zhou, Xiangyu Zhang, et al. Predictable scale: Part i-optimal
 553 hyperparameter scaling law in large language model pretraining. *arXiv e-prints*, pp. arXiv–2503,
 554 2025a.

555 Houyi Li, Wenzhen Zheng, Qiu Feng Wang, Zhenyu Ding, Haoying Wang, Zili Wang, Shijie Xuyang,
 556 Ning Ding, Shuigeng Zhou, Xiangyu Zhang, et al. Farseer: A refined scaling law in large language
 557 models. *arXiv preprint arXiv:2506.10972*, 2025b.

558 Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
 559 Zhang, Wei Feng, Howard Huang, Junjie Wang, et al. Torch titan: One-stop pytorch native solution
 560 for production ready llm pre-training. *arXiv preprint arXiv:2410.06511*, 2024.

561 Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
 562 Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
 563 mamba language model. *arXiv preprint arXiv:2403.19887*, 2024.

564 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 565 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 566 *arXiv:2412.19437*, 2024.

567 Ao Liu, Botong Zhou, Can Xu, Chayse Zhou, Chen Chen Zhang, Chengcheng Xu, Chenhao Wang,
 568 Decheng Wu, Dengpeng Wu, et al. Hunyuan-turbos: Advancing large language models through
 569 mamba-transformer synergy and adaptive chain-of-thought. *arXiv preprint arXiv:2505.15431*,
 570 2025.

571 Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki,
 572 Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, et al. Joint moe scaling laws:
 573 Mixture of experts can be memory efficient. *arXiv preprint arXiv:2502.05172*, 2025.

574 Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu, Xingwu Sun, Zhanhui Kang, Di Wang, and Rui
 575 Yan. Autonomy-of-experts models. *arXiv preprint arXiv:2501.13074*, 2025.

576 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 577 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018.

578 Sandhini OpenAI, Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus,
 579 Rahul K Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model
 580 card. *arXiv preprint arXiv:2508.10925*, 2025.

581 Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, Mahmoud
 582 Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R Fung, et al. Scaling laws of synthetic
 583 data for language models. *arXiv preprint arXiv:2503.19551*, 2025.

584 An Qwen Team, Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen
 585 Yu, Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 586 *arXiv:2505.09388*, 2025.

594 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 595 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 596 *arXiv preprint arXiv:1701.06538*, 2017.

597

598 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 599 Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
 600 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

601 Xian Shuai, Yiding Wang, Yimeng Wu, Xin Jiang, and Xiaozhe Ren. Scaling law for language
 602 models training considering batch size. *arXiv preprint arXiv:2412.01505*, 2024.

603

604 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
 605 Ben Beglin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of
 606 three trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*,
 607 2024.

608 Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li,
 609 Zhen Yang, Jonny Han, Xiaobo Shu, et al. Hunyuan-large: An open-source moe model with 52
 610 billion activated parameters by tencent. *arXiv preprint arXiv:2411.02265*, 2024.

611 Xingwu Sun, Shuaipeng Li, Ruobing Xie, Weidong Han, Kan Wu, Zhen Yang, Yixing Li, An Wang,
 612 Shuai Li, Jinbao Xue, et al. Scaling laws for floating point quantization training. In *Proceeding
 613 of ICML*, 2025.

614

615 Meituan LongCat Team, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang,
 616 Chen Gao, Chen Zhang, Cheng Sun, et al. Longcat-flash technical report. *arXiv preprint
 617 arXiv:2509.01322*, 2025.

618 An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
 619 Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
 620 *arXiv preprint arXiv:2408.10681*, 2024a.

621

622 Siqi Wang, Zhengyu Chen, Bei Li, Keqing He, Min Zhang, and Jingang Wang. Scaling laws across
 623 model architectures: A comparative analysis of dense and moe models in large language models.
 624 *arXiv preprint arXiv:2410.05661*, 2024b.

625 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 626 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 627 models. *arXiv preprint arXiv:2508.06471*, 2025.

628

629 Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
 630 ter, and Sham Kakade. How does critical batch size scale in pre-training? *arXiv preprint
 631 arXiv:2410.21676*, 2024.

632 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
 633 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural
 634 Information Processing Systems*, 35:7103–7114, 2022.

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
649650 In this paper, we leveraged LLMs to support and refine the writing. Specifically, LLMs were used
651 for grammar and spelling correction, as well as polishing linguistic expressions to enhance clarity
652 and readability. All other core components of the work, including the development of ideas, design
653 and execution of experiments and derivation of formulas, were completed manually by ourselves.
654655 B HYPERPARAMETER DETAILS
656658 We report several typical hyper-parameters used for training our MoE models in Table 1. The
659 models vary in layers, hidden size and expert size across different scales, while the optimizer and
660 learning rate settings are consistent. All models are trained with AdamW and cosine learning rate
661 decay, using a sequence length of 2048 and a batch size of 2M tokens. The detailed hyper-parameters
662 of our MoE models are given as follows. [In all of our experiments, the parameters considered do
663 not include those from the embedding layer](#). For all experimental settings, refer to Appendix L.664
665 Table 1: Typical model hyper-parameters for different sizes.
666

Total model size	247M	496M	907M	2.40B	3.96B
Activated model size	48M	99M	181M	476M	793M
# Layers	12	12	12	20	24
# Routed experts	32	32	32	32	32
# Activated routed experts	4	4	4	4	4
# Shared experts	1	1	1	1	1
# Attention heads	8	12	16	20	24
Hidden size	512	768	1024	1280	1536
Expert size	384	512	704	896	1024
Attention head size	64	64	64	64	64
Optimizer	AdamW				
Adam (β_1, β_2)	(0.9, 0.95)				
Adam ϵ	1×10^{-8}				
Weight decay	0.1				
Clip grad norm	1.0				
Max lr	3.0×10^{-4}				
Min lr	0				
Lr decay	Cosine				
Decay rate	10%				
Sequence length	2048				
Batch size (# tokens)	2M				
Warmup steps	500				
Normalization	RMSNorm				
Vocabulary size	128256				
Positional encoding	ROPE				

693 C FITTING DETAILS OF OUR MOE SCALING LAWS
694695 Our MoE scaling law precisely characterizes the effects of three critical dimensions—parameters,
696 data sizes and model architectures—on scaling patterns. Specifically, the term $L(G, S) \cdot \phi(N_a, N)$
697 quantifies the architectural impact on loss, while explicitly revealing its regulation by parameter
698 scale. The formulation $\rho(N, D, N_a) = \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon$ delineates how parameters and data size
699 influence the MoE loss. By integrating all core factors that govern MoE architectural performance
700 into a joint scaling law, our proposed MoE scaling law achieves an elegant integration. This theoretical
701 construct carries substantial significance for informing the design of MoE model architectures.
Further details regarding the fitting process of our MoE scaling laws are elaborated below.

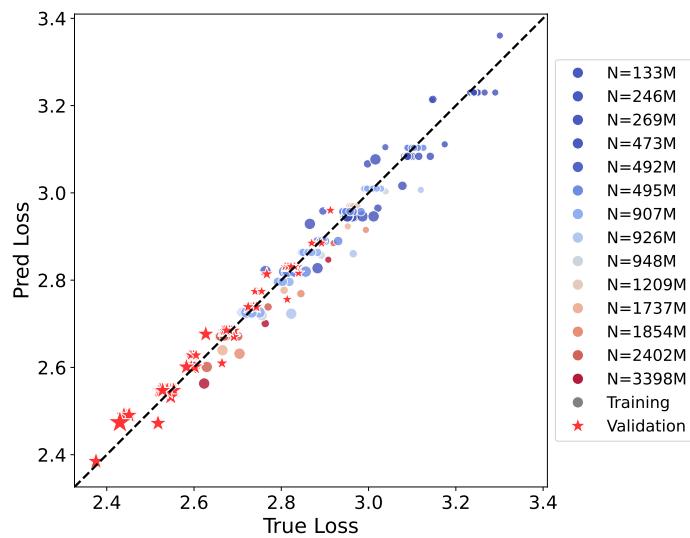
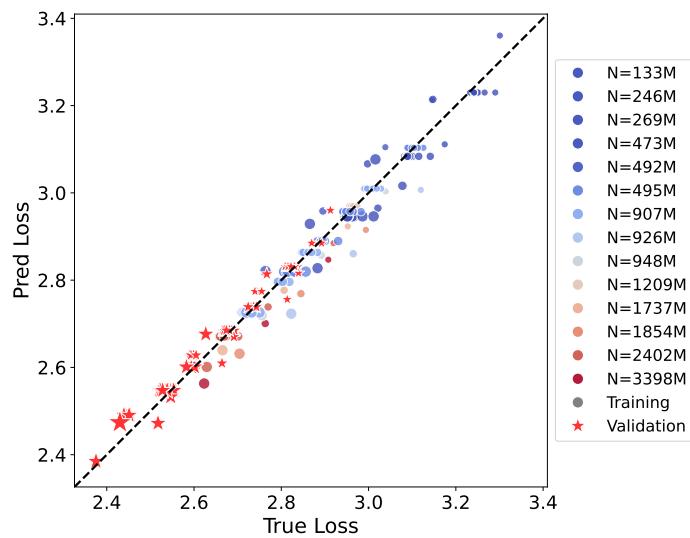
702 C.1 NUMBERICAL FITS OF OUR JOINT MOE SCALING LAW
703704 Our joint MoE scaling law is formalized as:
705

706
$$L(N, D, N_a, G, S) = (eG + \frac{f}{G} + mS^2 + nS) * (\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h\frac{N_a}{N}) + \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{N_a^\alpha} + \epsilon, \quad (15)$$

707

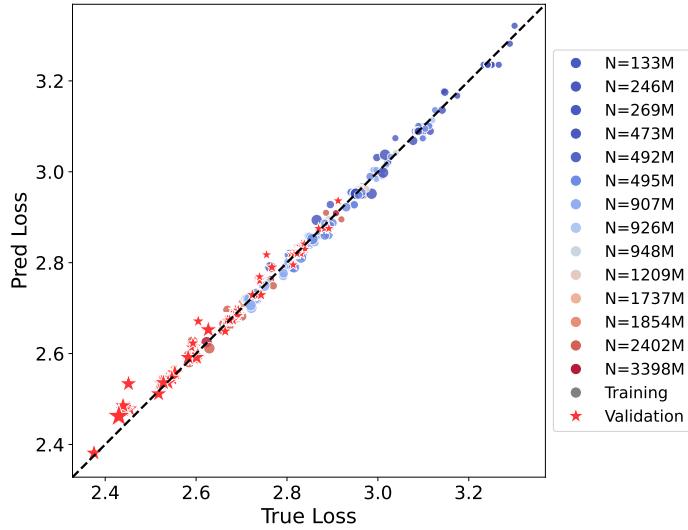
708 where the detailed fitted constants and values are presented below, based on 450 experiments across
709 different model settings. Of these, 268 were used for fitting, 91 for validation, and 90 small-size
710 experiments to observe the marginal effect of G .
711712
713 Table 2: Fitted constants and their values in Eq. 15.
714715
716
717
718
719
720
721
722
723
724
725
726

Constant	Value
e	0.1577
f	7.2446
m	5.1395
n	-3.2363
k	0.0013
h	0.0450
a	38.0510
α	0.2383
b	27129.0488
β	0.4694
c	31.0958
ϵ	1.8182

727
728
729 C.2 FITTING RESULTS OF THE SCALING LAW FOR $L(N, D)$
730731 Figure 6 presents the fitting performance of the $L(N, D)$ Eq. 4 in fitting the loss of MoE archi-
732 tectures, where only total model size N and data size D are considered. It can be observed that
733 $L(N, D)$ only provides a coarse-grained fit to our experimental data points, with suboptimal spe-
734 cific fitting performance. This indicates that additional factors within the MoE architecture need to
735 be taken into account.
736Figure 6: Fitting results of the scaling law of $L(N, D)$. Average validation loss error: 0.0179.

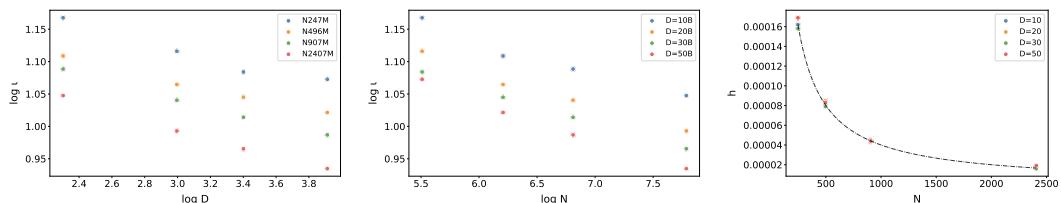
756 C.3 FITTING RESULTS OF THE SCALING LAW FOR $L(N, D, N_a)$
757

758 Figure 7 demonstrates the fitting performance of the scaling law $L(N, D, N_a)$ Eq. 7 on the loss
759 of MoE models, where N_a is incorporated into the law. This result indicates that N_a constitutes a
760 critical factor influencing the MoE scaling law and the inclusion of N_a in the joint scaling law yields
761 a substantial improvement in fitting performance compared to the original scaling law $L(N, D)$.



780 Figure 7: Fitting results of the scaling law of $L(N, D, N_a)$. Average validation loss error: 0.0124.
781

782
783 In the following, we elaborate on the process of incorporating the factor N_a into the scaling law
784 $L(N, D, N_a)$ Eq. 7. Specifically, we first designed and conducted a series of controlled experi-
785 ments on N_a following Eq. 35. Subsequently, hyperparameter fitting was performed across diverse
786 configurations of D and N , with the associated results presented in Figure 8.
787

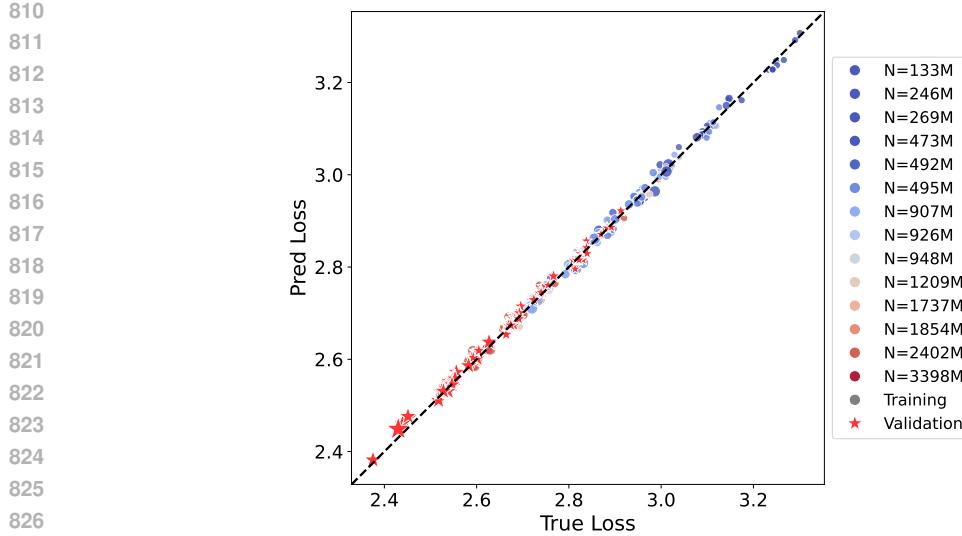
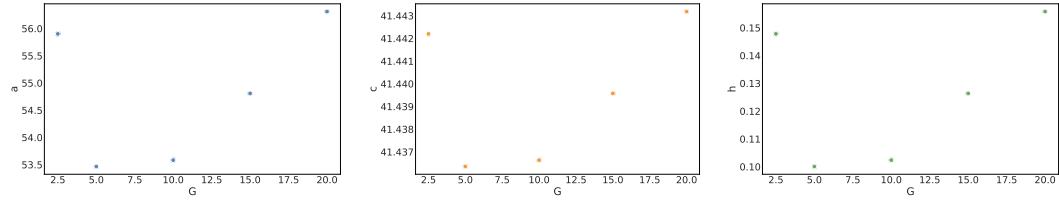


788 Figure 8: The correlations between t , h in Eq. 5 and N , D . t and h can be viewed as functions of
789 N or D .
790

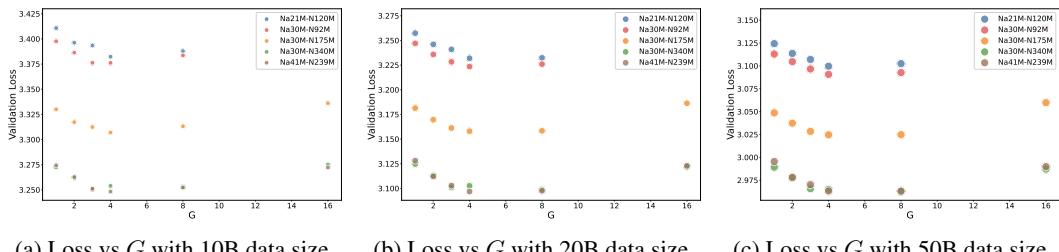
791 It can be observed that t exhibits a linear relationship with N and D after logarithmic transformation,
792 indicating a power-law relationship between t and N as well as D . The parameter h shows an
793 inverse proportional relationship with N across different data volumes D . Other factors c and γ
794 fluctuate with changes in N and D without displaying obvious correlations and thus are considered
795 independent of N and D . It is noteworthy that the hyperparameter fitting results indicate the fitted
796 value of the exponent term for N_a in the term $h \frac{N_a}{N}$ approaches 1. Therefore, it is reasonable to
797 conclude that N_a in the term $h \frac{N_a}{N}$ does not have an exponent.
798

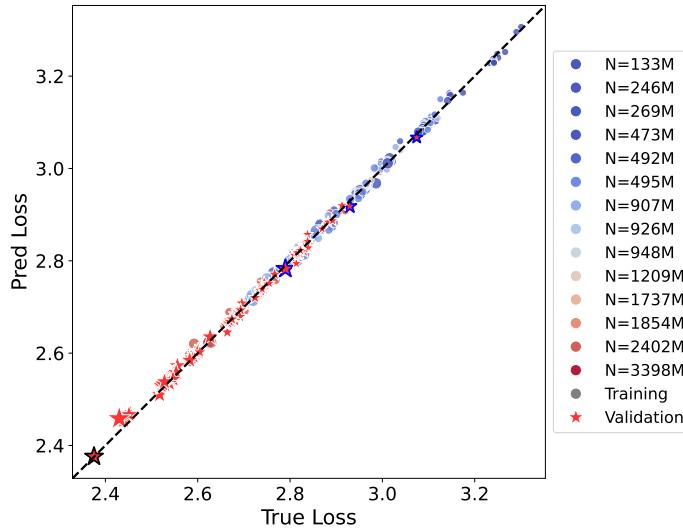
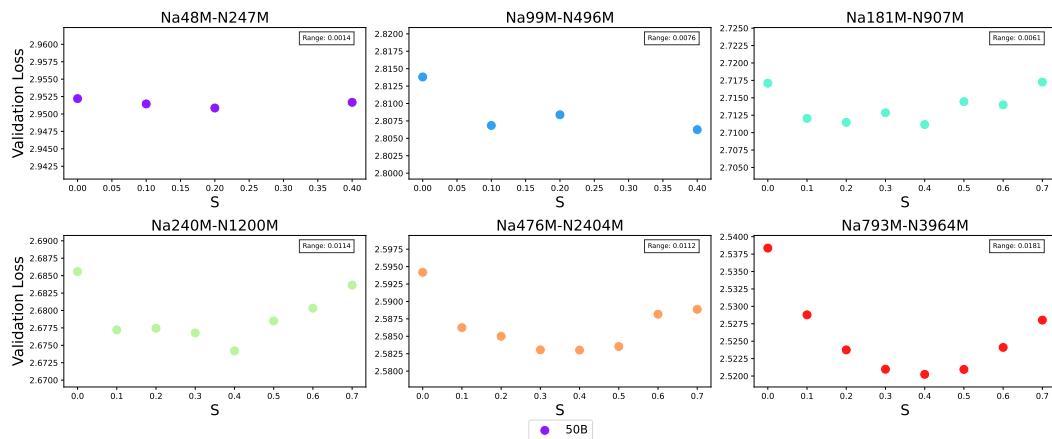
800 C.4 FITTING RESULTS OF THE SCALING LAW FOR $L(N, D, N_a, G)$
801

802 Figure 9 illustrates the fitting performance of the scaling law $L(N, D, N_a, G)$ Eq. 9 on the loss of
803 MoE architectures, where the granularity G is incorporated. As stated in Section 4.3, G characterizes
804

828 Figure 9: Fitting results of the scaling law of $L(N, D, N_a, G)$. Average validation loss error: 0.0083.
829837 Figure 10: The correlations between a, c, h in Eq. 7 and G . a, c, h can be viewed as functions of G .
838

841 the structural properties of MoE architectures and reflects the impact of MoE architecture on performance.
842 The results demonstrate that the scaling law which considers the structural factor G yields
843 superior fitting performance. By analogy, to incorporate G into the scaling law $L(N, D, N_a, G)$,
844 we first designed and conducted a series of controlled experiments where G was treated as the sole
845 factor of variation, with all other factors held constant. Specifically, as G increases, the counts of
846 routed experts and shared experts expand proportionally, whereas the corresponding expert dimensions
847 shrink proportionally. Considering the marginal effect between G and loss, as well as the
848 coupling relationships among G, N and N_a , we hypothesize that a, b, c and h —which appear in
849 the numerator—are correlated with G . Experimental results demonstrate that the data size D is in-
850 dependent of G . The variation curves of the fitted hyperparameters a, c, h under different values of
851 G are presented in Figure 10. Furthermore, we also provide the scaling law of validation loss with
852 respect to G under other settings, which serve to observe the marginal effect of G .
853

862 Figure 11: Marginal effect of validation loss and G with $S = 0$. Data point sizes are proportional to
863 D .

864 C.5 FITTING RESULTS OF THE SCALING LAW FOR $L(N, D, N_a, G, S)$
865866 Similarly, the ratio of shared experts to activated experts (S) constitutes another critical struc-
867 tural characteristic of MoE architectures. The fitting performance of our final joint scaling law
868 $L(N, D, N_a, G, S)$ is illustrated in Figure 12.
869888
889 Figure 12: Fitting results of our final scaling law of $L(N, D, N_a, G, S)$. Average validation loss
890 error: 0.0059.
891
892893 Similarly, the analysis of hyperparameters related to S is presented in Figure 13. It can be observed:
894 (1) m and n are independent of D , indicating that D and S are mutually decoupled; (2) m increases
895 with the growth of N and N_a , whereas n decreases with the growth of N and N_a . Notably, the
896 extreme point of S remains unchanged with variations in N and N_a ; (3) ψ exhibits an obvious
897 power-law relationship with N , N_a and D .898 Furthermore, as stated in Section 4.5, the scaling law of S becomes increasingly prominent with the
899 growth of model size. As shown in Figure 14.
900916
917 Figure 14: Illustration of the scaling law of S becoming increasingly prominent with growing model
918 size with a data size of 50B.
919

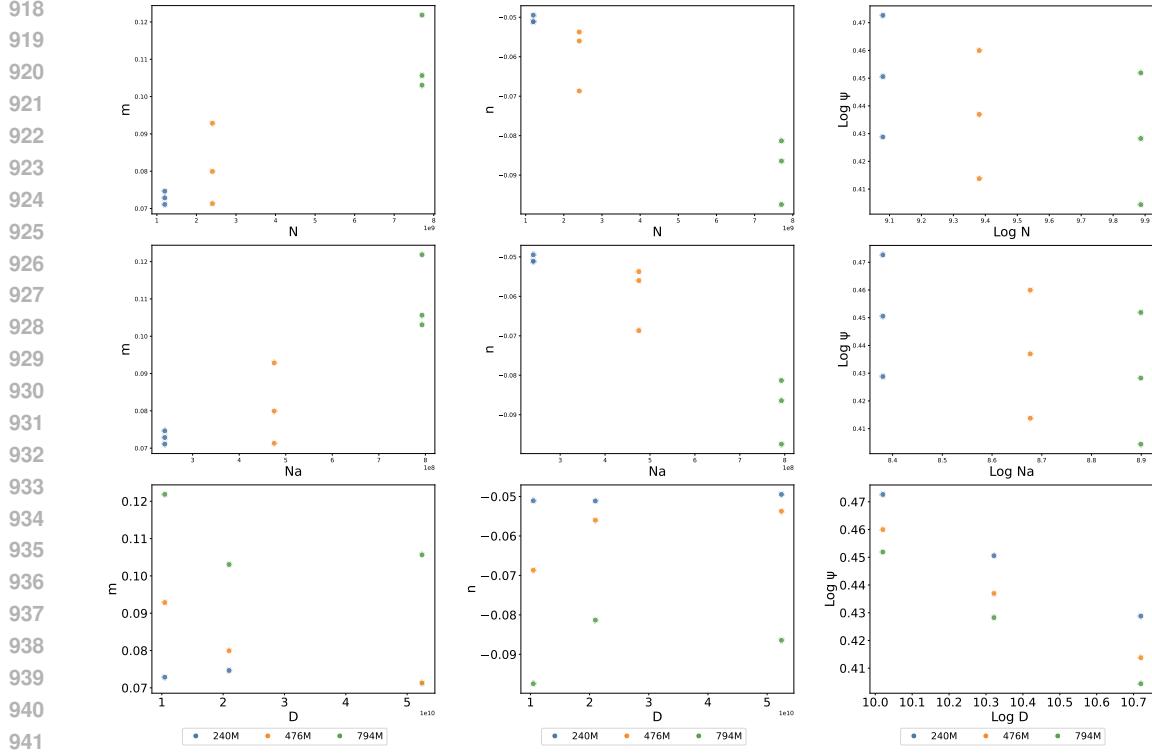


Figure 13: The correlations between m , n and ψ in Eq. 10 and N , N_a , D . m , n and ψ can be viewed as functions of N , N_a or D .

D DERIVATION OF THEORETICAL OPTIMAL G

First, we decompose $L(N, D, N_a, G, S)$ Eq. 15 into three components to isolate terms involving G . This decomposition leverages the fact that most variables (N, D, N_a, S) are independent of G :

$$L_{N, D, N_a, S}(G) = \underbrace{\left(eG + \frac{f}{G} + mS^2 + nS \right)}_{A(G)} \cdot \underbrace{\left(\frac{1}{N^\alpha} + \frac{k}{N_a^\alpha} + h \frac{N_a}{N} \right)}_{B} + \underbrace{\left(\frac{a}{N^\alpha} + \frac{c}{N_a^\alpha} + \frac{b}{D^\beta} + s \right)}_{C} = A(G) \cdot B + C \quad (16)$$

Compute $\frac{\partial L}{\partial G}$ and set to 0:

$$\frac{\partial L}{\partial G} = \left(e - \frac{f}{G^2} \right) \cdot B = 0 \quad (17)$$

Since $B \neq 0$, we get $e - \frac{f}{G^2} = 0$. Therefore:

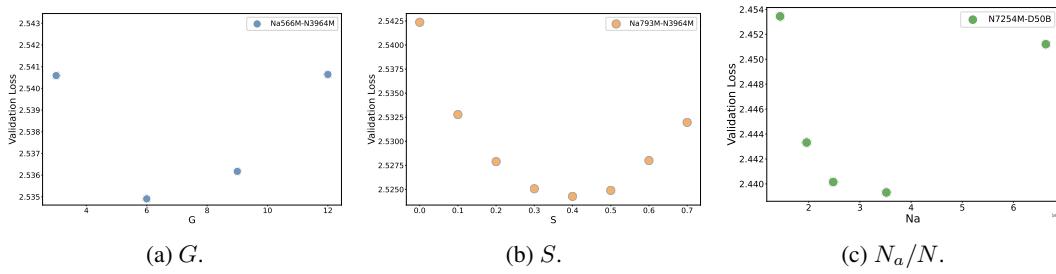
$$G^2 = \frac{f}{e} \implies G = \sqrt{\frac{f}{e}} \quad (G > 0) \quad (18)$$

The second derivative checks to confirm a minimum.

$$\frac{\partial^2 L}{\partial G^2} = \frac{2f}{G^3} \cdot B > 0 \quad (19)$$

The extreme point (minimum) is:

$$G_{opt} = \sqrt{\frac{f}{e}} \quad (20)$$

Figure 15: Verification of the marginal relationship for G , S and N_a/N under larger model sizes.

Substituting the optimized hyperparameters into the above Eq. 20 yields $G_{\text{opt}} \approx 6.78$.

To substantiate the validity of our conclusions, we conducted an analysis on the configurations of mainstream industrial MoE models, with detailed specifications in Table 3.

Table 3: Analyses of mainstream MoE models. Based on our scaling law, the theoretical optimal G and S are set as: $G \approx 6.78$, $S \approx 0.31$. The practical ranges provide relative recommended settings of G and S in practice with less effectiveness loss (≤ 0.001).

Model	G ($n_s + \text{TopK}$)	G (Actual)	G Practical Range (Thr = 0.001)	S (Actual)	S Practical Range (Thr = 0.001)
gpt-oss-20b	0 + 4	4	[5.09, 9.04]	0	[0.183, 0.446]
Qwen3-30B-A3B	0 + 8	8	[4.80, 9.58]	0	[0.156, 0.473]
Hunyuan-A13B	1 + 8	9	[4.99, 9.21]	1/9	[0.175, 0.455]
GLM-4.5-Air	1 + 8	9	[4.77, 9.64]	1/9	[0.154, 0.476]
gpt-oss-120b	0 + 4	4	[4.27, 10.77]	0	[0.102, 0.528]
Qwen3-235B-A22B	0 + 8	8	[4.61, 9.98]	0	[0.138, 0.492]
GLM4.5	1 + 8	9	[4.56, 10.09]	1/9	[0.133, 0.497]
Deepseek-V3.1	1 + 8	9	[4.20, 10.93]	1/9	[0.095, 0.535]
Kimi-K2	1 + 8	9	[3.85, 11.95]	1/9	[0.053, 0.577]

Theoretically, the optimal values of G and S are determined to be 6.78 and 0.31, respectively. In practical deployment scenarios, however, a trade-off range for G and S is typically adopted, mainly owing to inherent efficiency constraints of MoE models. Building upon our proposed joint MoE scaling law, we further derive efficiency-aware ranges for G and S tailored to mainstream MoE models, with the loss threshold constrained to 0.001.

As presented in Table 3, the practical ranges of G exhibit a predominant distribution within the interval [4, 11] across diverse model configurations. Moreover, these practical ranges of G are demonstrated to be dependent on parameters N and N_a . Notably, the theoretically optimal value of G (i.e., 7) and our recommended practical range show strong consistency with the parameter settings of mainstream MoE models across varying model scales, which implicitly corroborates the validity of our inferences regarding G . The verification of the marginal effect for G under larger model sizes is illustrated in Figure 15(a).

E DERIVATION OF THEORETICAL OPTIMAL S

Analogous to the derivation of the optimal value of G , the isolation of S from other factors followed by the computation of its first-order derivative $\frac{\partial L}{\partial S}$ —with the derivative set to 0:

$$\frac{\partial L}{\partial S} = (2mS + n) \cdot B = 0 \quad (21)$$

Since $B \neq 0$, we get $2mS + n = 0$. Therefore:

$$S_{\text{opt}} = -\frac{n}{2m} \quad (22)$$

Likewise, the second-derivative test confirms that S_{opt} corresponds to a minimum value. Substituting the optimized hyperparameters into the above Eq. 22 yields $S_{\text{opt}} \approx 0.31$.

1026 Similarly, as shown in Table 3, we have also deduced the theoretical optimal value of S and its
 1027 corresponding efficiency-aware practical range. It is of particular note that both our experimental
 1028 findings and deductive inferences collectively highlight the indispensable role of shared experts in
 1029 the design of MoE architectures.

1030 Existing researches on the parameter S in mainstream models remain relatively insufficient. Most
 1031 studies merely focus on the issue of whether to incorporate shared experts and no consistent consensus
 1032 has been established in the field thus far. Our empirical findings demonstrate that the inclusion
 1033 of S outperforms its exclusion in terms of model performance. Notably, within a specific range
 1034 of S values, the model can consistently achieve satisfactory results with negligible performance
 1035 fluctuations.

1036 The verification of the marginal law for S under larger model sizes is illustrated in Figure 15(b).
 1037

1038 **F DERIVATION OF THEORETICAL AND PRACTICAL OPTIMAL N_a/N**

1039 **Theoretically Analysis.** From Eq. 11, we can observe that there are two types of terms involving
 1040 the activated model size N_a as a numerator or denominator. These two terms exert opposite effects
 1041 on the loss of MoE models. Intuitively, this implies that there exists an optimal N_a given the config-
 1042 urations of other factors (e.g., the model size N). It has been experimentally validated on both the
 1043 TorchTITAN Liang et al. (2024) and Megatron Shoeybi et al. (2019) pre-training frameworks. To find
 1044 the optimal point of $(\frac{N_a}{N})_{opt_t}$ in $L(N, D, N_a, G, S)$, firstly, let $r = \frac{N_a}{N}$, then decompose L as:
 1045

$$1046 L_{N,D,G,S}(r) = \underbrace{\left(eG + \frac{f}{G} + mS^2 + nS \right)}_A \cdot \underbrace{\left(\frac{1}{N^\alpha} + \frac{k}{(rN)^\alpha} + hr \right)}_{B(r)} \\ 1047 + \underbrace{\left(\frac{a}{N^\alpha} + \frac{c}{(rN)^\alpha} + \frac{b}{D^\beta} + s \right)}_{C(r)} \quad (23)$$

1048 Compute first derivative $\frac{\partial L}{\partial r}$ and set to 0:
 1049

$$1050 \frac{\partial L}{\partial r} = A \cdot \frac{\partial B}{\partial r} + \frac{\partial C}{\partial r} = 0 \quad (24)$$

1051 Calculate partial derivatives:
 1052

$$1053 \frac{\partial B}{\partial r} = -\frac{\alpha k}{N^\alpha r^{\alpha+1}} + h, \quad \frac{\partial C}{\partial r} = -\frac{\alpha c}{N^\alpha r^{\alpha+1}} \quad (25)$$

1054 Substitute and simplify:
 1055

$$1056 A \left(-\frac{\alpha k}{N^\alpha r^{\alpha+1}} + h \right) - \frac{\alpha c}{N^\alpha r^{\alpha+1}} = 0 \quad (26)$$

1057 Rearrange terms to isolate r :
 1058

$$1059 Ah = \frac{\alpha}{N^\alpha r^{\alpha+1}} (Ak + c) \implies r^{\alpha+1} = \frac{\alpha(Ak + c)}{AhN^\alpha} \quad (27)$$

1060 Thus:
 1061

$$1062 r = \left(\frac{\alpha(Ak + c)}{AhN^\alpha} \right)^{\frac{1}{\alpha+1}} \quad (28)$$

1063 For $\alpha > 0$, $\frac{\partial^2 L}{\partial r^2} = \frac{\alpha(\alpha+1)(Ak+c)}{N^\alpha r^{\alpha+2}} > 0$, confirming a minimum.
 1064

1065 Therefore, the optimal point of $(\frac{N_a}{N})_{opt_t}$ is:
 1066

$$1067 \left(\frac{N_a}{N} \right)_{opt_t} = \left(\frac{\alpha \cdot [k \cdot (eG + \frac{f}{G} + mS^2 + nS) + c]}{hN^\alpha \cdot (eG + \frac{f}{G} + mS^2 + nS)} \right)^{\frac{1}{\alpha+1}} \quad (29)$$

1080 From the expression of $(\frac{N_a}{N})_{opt_t}$, it can be deduced that the theoretical optimal value is collectively
 1081 determined by factors G , S and N . Specifically, G (refer to Appendix D) and S (refer to Appendix
 1082 E), as validated by the foregoing analysis, generally exhibit respective independent optimal values.
 1083 Therefore, the optimal $(\frac{N_a}{N})_{opt_t}$ decreases as the model size N increases. It verifies that with the
 1084 increasing total model sizes, the optimal MoE architecture will be sparser, which is consistent with
 1085 the current trend of current industry-level MoE models (Kimi et al., 2025; OpenAI et al., 2025).
 1086

1087 **Practical Efficiency-aware Analysis.** However, the theoretically optimal sparsity degree of MoE
 1088 $\frac{N_a}{N}$ calculated in Eq. 29 cannot be directly used to guide the real-world MoE architecture design, for
 1089 the efficiency of LLMs is also an essential factor. Specifically, when N_a gradually increases toward
 1090 its optimal value, the performance gains become increasingly marginal, while the associated costs
 1091 rise steadily. Therefore, it is necessary for us to explore the optimal $\frac{N_a}{N}$ under the consideration of
 1092 the balance between performance gain and efficiency cost.

1093 We define the loss gain threshold as ΔLoss for the step size of ΔN_a set as $0.01N$. As N_a is
 1094 incrementally scaled according to the specified step size, the marginal gain of loss reduction will
 1095 ultimately fall below the defined threshold ΔLoss , where we suppose the model reaches the practical
 1096 efficiency-aware optimal $\frac{N_a}{N}$. The detailed derivation proceeds as follows:

1097 **Algorithm 1:** Find Efficiency-aware Optimal N_a

1098 **Function** `FindEfficiencyAwareNa(N, D, G, S, threshold):`
 1099 step = $0.01 \times N$;
 1100 $N_{a,prev} \leftarrow step$;
 1101 loss_prev $\leftarrow \hat{\mathcal{L}}(N, D, N_{a,prev}, G, S)$;
 1102 iteration = 1;
 1103 max_iterations = n ;
 1104 **while** iteration \leq max_iterations **do**
 1105 $N_{a,current} \leftarrow N_{a,prev} + step$;
 1106 loss_current $\leftarrow \hat{\mathcal{L}}(N, D, N_{a,current}, G, S)$;
 1107 loss_reduction $\leftarrow loss_{prev} - loss_{current}$;
 1108 **if** loss_reduction $< threshold$ **then**
 1109 \leftarrow **return** $N_{a,current}$;
 1110 $N_{a,prev} \leftarrow N_{a,current}$;
 1111 loss_prev $\leftarrow loss_{current}$;
 1112 iteration $\leftarrow iteration + 1$;
 1113 **return** None;

1115 Hence, for a given model size N , our MoE scaling law yields a practically applicable range for
 1116 N_a , i.e., spanning the interval from the practical efficiency-aware optimal point to the theoretically
 1117 optimal point, i.e., $N_a \in [(\frac{N_a}{N})_{opt_e}, (\frac{N_a}{N})_{opt_t}]$.

1118 To substantiate the validity of our conclusions, we conducted an analysis on the configurations of
 1119 mainstream industrial MoE models, with detailed specifications in Table 4. It indicates that the
 1120 activated model sizes N_a of most mainstream MoE models are consistent with our recommended
 1121 ranges above. Practical MoE designs could jointly consider both effectiveness and efficiency with
 1122 the help of our proposed MoE scaling laws. The verification of the marginal law for N_a/N under
 1123 larger model sizes is illustrated in Figure 15(c).

1124 **Discussion on the Optimal G and N_a .** We attempt to explain possible misunderstandings that the
 1125 phenomenon reflected by our MoE scaling law (i.e., G and N_a have optimal value) seems to “con-
 1126 flict with” our intuitive cognition on expanding MoE experts or activated parameters (i.e., larger G
 1127 and N_a are likely to achieve better results). Precisely, it intuitively seems that larger values of G and
 1128 N_a would be preferable. This notion, however, does not contradict our proposed MoE scaling law:
 1129 typically, when adjusting N_a while keeping the total model size N fixed (which is the most natural
 1130 operation of “increasing N_a ”), such adjustment is achieved by increasing G , leading to the concur-
 1131 rent growth of both parameters N_a and G . In this situation, our formula correctly reflects that the
 1132 loss generally decreases under these circumstances. Nevertheless, when focusing on G with other
 1133 factors held constant, increasing G results in a greater number of routed experts but progressively

Table 4: Theoretical and practical efficiency-aware optimal N_a/N analysis for mainstream MoE models

Model	Na-N (Actual)	Na/N Theoretical Opt	Na/N Practical Opt ($\Delta\text{Loss} = 0.001$)	Na/N Practical Opt ($\Delta\text{Loss} = 0.005$)
gpt-oss-20b	3.6B-21B	42.89% (9.0B)	22.00% (4.6B)	9.00% (1.9B)
Qwen3-30B-A3B	3B-30B	40.04% (12.0B)	21.00% (6.3B)	9.00% (2.7B)
Hunyuan-A13B	13B-80B	33.16% (26.5B)	18.00% (14.4B)	7.00% (5.6B)
GLM-4.5-Air	12B-106B	31.41% (33.3B)	17.00% (18.0B)	7.00% (7.4B)
gpt-oss-120b	5.1B-117B	30.82% (36.1B)	16.00% (18.7B)	7.00% (8.2B)
Qwen3-235B-A22B	22B-235B	26.95% (63.33B)	14.00% (32.9B)	6.00% (14.1B)
GLM-4.5	32B-355B	24.89% (88.4B)	13.00% (46.2B)	6.00% (21.3B)
Deepseek-V3.1	37B-671B	22.02% (147.8B)	12.00% (80.5B)	5.00% (33.6B)
Kimi-K2	32B-1T	20.40% (204.0B)	11.00% (110.0B)	5.00% (50.0B)

smaller expert dimensions due to partitioning. While appropriate fine-grained partitioning can enhance performance, exceeding a specific threshold will conversely impair model performance. Similarly, when focusing on N_a with other factors fixed, increasing N_a leads to larger expert dimensions but a reduced number of all/routed experts, thereby diminishing the sparsity advantage of the MoE model. This induces gradual structural distortion in the MoE architecture, which in turn disrupts the advantage of MoE’s combinational activation mechanism and thus degrades performance.

G COMPUTE-OPTIMALITY WITH FIXED CONFIGURATIONS

We control the total computation cost $C = D \cdot N_a$ and analyze the relationship between the optimal loss and C . According to our Implications #1 and #2, G and S have optimal values. Thus, the term $eG + \frac{f}{G} + mS^2 + nS$ can be expressed as a constant term const under the optimal configuration. When N is fixed, substituting $D = \frac{C}{N_a}$ into our joint MoE scaling law (Eq. 11) yields the following result:

$$L(N_a, C) = C_0 + (\text{const} \cdot k + c) \cdot \frac{1}{N_a^\alpha} + \frac{\text{const} \cdot h}{N} \cdot N_a + \frac{bN_a^\beta}{C^\beta} \quad (30)$$

where $\text{const} = eG + \frac{f}{G} + mS^2 + nS$ and $C_0 = \frac{\text{const} + a}{N^\alpha} + s$.

To find the optimal N_a (denoted N_a^*) that minimizes $L(N_a)$, compute the first derivative of $L(N_a)$ with respect to N_a and set $\frac{dL}{dN_a} = 0$:

$$\frac{b\beta N_a^{*\beta-1}}{C^\beta} = \alpha (\text{const} \cdot k + c) N_a^{*\alpha-1} - \frac{\text{const} \cdot h}{N} \quad (31)$$

Substitute N_a^* into Eq. 30 to get the optimal loss L^* :

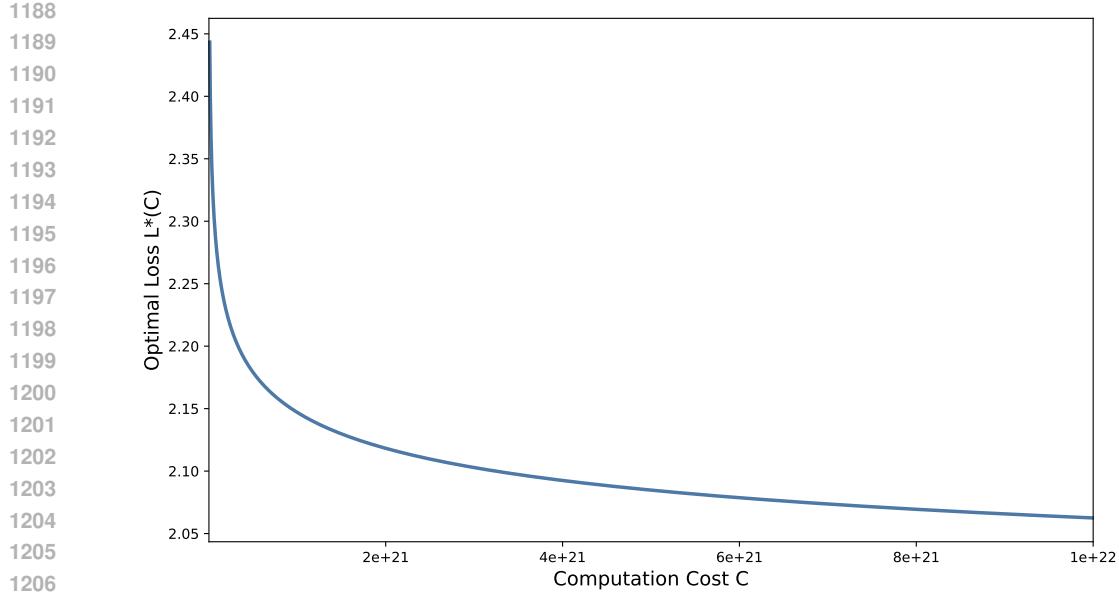
$$L^*(C) = C_0 + \frac{(\text{const} \cdot k + c)(\alpha + \beta)}{\beta} N_a^{*\alpha} + \frac{\text{const} \cdot h(\beta - 1)}{N\beta} N_a^*, \quad (32)$$

subject to $\frac{b\beta N_a^{*\beta-1}}{C^\beta} = \alpha (\text{const} \cdot k + c) N_a^{*\alpha-1} - \frac{\text{const} \cdot h}{N}$,

where $\text{const} = eG + \frac{f}{G} + mS^2 + nS$ and $C_0 = \frac{\text{const} + a}{N^\alpha} + s$.

To facilitate understanding, we conduct the derivation under the predefined fixed configuration: $G = 7$, $S = 0.31$ and $N = 1\text{T}$. The expression for $L^*(C)$ is provided as follows and illustrated in Figure 16:

$$L^*(C) \approx 1.87 + 576 \cdot C^{-0.158} \quad (33)$$

Figure 16: Illustration of $L^*(C)$ under the configuration of $N = 1T$, $G = 7$ and $S = 0.31$.

H DERIVATION OF THE u - v RELATIONSHIP FOR N_a

To achieve the exclusive variation of the control variable N_a , it can be derived from Eq. 3 that when G and S are fixed, N_a needs to be adjusted by modifying the expert dimension and the number of routed experts. Specifically, we scaled the expert dimension by a factor of u while scaling down the number of routed experts by a corresponding factor v . However, to ensure that N remains unchanged simultaneously, the following constraint applies:

$$(4d_{\text{head}} \cdot n_h + 3d_{\text{expert}}(SG + n_e))d_{\text{hidden}} \cdot l = (4d_{\text{head}} \cdot n_h + 3d_{\text{expert}} \cdot u(SG + n_e \cdot v))d_{\text{hidden}} \cdot l \quad (34)$$

Through formula transformation, we can derive:

$$v = \frac{(1-u) \cdot S \cdot G + n_e}{u \cdot n_e}. \quad (35)$$

Thus, by setting the ratio of u to v according to the aforementioned Eq. 35, the controlled variation of N_a can be achieved. For instance, when $N = 2.4B$, $G = 20$ and $S = 0.2$, N_a takes values in the set $\{303M, 476M, 819M, 1507M, 2196M\}$, with the corresponding d_{expert} being $\{112, 224, 448, 896, 1344\}$ and the respective n_e being $\{260, 128, 62, 29, 18\}$.

I RELATED SCALING LAWS

Table 5: Comparison with existing MoE scaling laws.

	N	N_a	D	G	S
Scaling Laws for Fine-Grained MoE (Krajewski et al., 2024)	✓	✗	✓	✓	✗
Parameters vs. FLOPs (Abnar et al., 2025)	✓	✓	✓	✗	✗
Joint MoE Scaling Laws (Ludziejewski et al., 2025)	✓	✓	✓	✗	✗
Scaling Laws Across Architectures (Wang et al., 2024b)	✓	✗	✓	✗	✗
Unified Routed LMs (Clark et al., 2022)	✓	✗	✗	✗	✗
Our MoE Scaling Law	✓	✓	✓	✓	✓

We selected two related scaling laws for comparison, each focusing on different aspects. Below, we briefly introduce their main ideas and describe how we use them to compare with the scaling law derived from our experiments.

1242 I.1 SCALING LAWS FOR FINE-GRAINED MIXTURE-OF-EXPERTS
1243

1244 Krajewski et al. (2024) introduced a *granularity* factor into MoE scaling laws. They model the
1245 training loss \mathcal{L} as a function of the number of **active parameters** N , the dataset size D and the
1246 **granularity** G :

$$1247 \quad \mathcal{L}(N, D, G) = c + \left(\frac{g}{G^\gamma} + a \right) \frac{1}{N^\alpha} + \frac{b}{D^\beta}. \quad (36)$$

1249 Here c is the irreducible loss. The term $N^{-\alpha}$ captures the effect of model size, adjusted by G :
1250 finer experts (larger G) reduce this contribution. The last term $D^{-\beta}$ reflects the improvement from
1251 more data. Overall, the law indicates diminishing returns from N and D , with better performance
1252 at higher G . As shown in Figure 5, this fitted result is less accurate than ours. **The detailed fitted**
1253 **constants and values in Eq. 36 are presented below in Table 6.**

1254 Table 6: Fitted constants and their values in Eq. 36.
1255

1256	Constant	Value
1257	a	81.9404
1258	α	0.2380
1259	b	3195.7723
1260	β	0.3695
1261	c	1.7709
1262	g	0.0004
1263	γ	0.0028

1264 I.2 SCALING LAWS FOR OPTIMAL SPARSITY IN MOE
1265

1266 Abnar et al. (2025) analyzed the effect of **sparsity** S , defined as the fraction of inactive experts.
1267 Their scaling law is:

$$1268 \quad L(N, D, S) = \frac{a}{N^\alpha} + \frac{b}{D^\beta} + \frac{c}{(1-S)^\lambda} + \frac{d}{(1-S)^\delta N^\gamma} + e. \quad (37)$$

1269 The first two terms represent the standard effects of model and data size. The third term penalizes
1270 high sparsity, while the fourth couples sparsity with model size. The constant e is an offset. This
1271 form shows that both the level of sparsity and its interaction with N influence the loss. As shown in
1272 Figure 5, our method achieves a better fit than this result. **The detailed fitted constants and values**
1273 **in Eq. 37 are presented below in Table 7.**

1274 Table 7: Fitted constants and their values in Eq. 37.
1275

1276	Constant	Value
1277	a	43.2889
1278	α	0.1948
1279	b	8280.7176
1280	β	0.4145
1281	e	1.6351
1282	c	0.0003
1283	d	9.4982
1284	λ	1.8469
1285	δ	0.0802
1286	γ	14.0591

1287 I.3 COMPARISON METHODOLOGY
1288

1289 For a fair comparison, we use the same dataset to fit as ours for these scaling laws. Each formula is
1290 applied without modification and parameters are optimized on identical experimental results under
1291 the same settings. This ensures that any differences arise solely from the functional forms. In

1296 addition, we also fit other MoE scaling law (Ludziejewski et al., 2025; Clark et al., 2022), but their
 1297 performance is likewise inferior to ours. This is likely because our formulation incorporates a more
 1298 comprehensive set of MoE factors— D, N, N_a, G, S —and is applied over a broader range of MoE
 1299 settings. Furthermore, our fitting carefully accounts for marginal effects while leveraging Occam’s
 1300 razor to simplify both hyperparameters and functional forms.

1302 J LIMITATIONS

1304 Our work has several limitations. In this work, we mainly focus on the classical MoE architecture.
 1305 The analysis has not been validated at extremely larger scales or with alternative MoE architectures /
 1306 training objectives due to the resource limit. In addition, we focus primarily on MoE-related factors
 1307 and do not examine other components of LLMs that may also impact the performance of MoE, such
 1308 as the attention layers and their interactions. Future work should extend the analysis to broader
 1309 architectures and assess robustness.

1311 K VARIATION OF DIFFERENT FACTORS

1313 In our study, the core factors, including N_a, N, G , and S , are varied in strict adherence to the
 1314 principle of controlling variables. We have already discussed the methods used to control these
 1315 factors during the experiments in Appendix C. To clarify the experimental procedure, we provide a
 1316 series of illustrations in Figure 17 that demonstrate how each variable is systematically adjusted:

1318 L DETAILED SETTINGS OF EXPERIMENTS

1320 We show the detailed configurations of our experiments as follows. Precisely, the value ranges
 1321 of various factors in the experimental setup are as follows: for fitting data points, $G \in (1, 20]$,
 1322 $S \in [0.0, 0.8]$, $N_a \in [30M, 2.2B]$, $N \in [133M, 3.4B]$ and $D \in [10B, 50B]$; for validation data
 1323 points, $G \in (1, 40]$, $S \in [0.0, 0.7]$, $N_a \in [453M, 6.6B]$, $N \in [2.4B, 30B]$ and $D \in [10B, 100B]$.

1325 We should highlight that our joint MoE scaling law is designed to accommodate practical experimen-
 1326 tal configurations. Therefore, the MoE configurations are more focused on the relatively practical
 1327 settings, with partial of extreme settings to reveal the marginal effect of different factors. For the
 1328 validation data, we adopt larger model/data sizes and broader ranges of factors to evaluate the ef-
 1329 fectiveness of our scaling law. For some uncommon and impractical experimental setups, such as
 1330 those with extremely large G and exceptionally high N_a/N ratios simultaneously (whose efficiency
 1331 is unsatisfactory in the view of MoE models), perfect fitting is not pursued by our MoE scaling law.
 The detailed configurations are given in Table 8.

1332 Table 8: All configurations of experiments. The last column is **Label**, where \checkmark indicates that the
 1333 data point is used for validation and \times indicates that the data point is used for fitting or for observing
 1334 marginal patterns.

	Na	N	D	G	S	Label		Na	N	D	G	S	Label
1338 0	48M	247M	10B	2.5	0.2	\times	1	48M	247M	10B	5	0.2	\times
1339 2	48M	247M	10B	10	0.2	\times	3	48M	247M	10B	15	0.2	\times
1340 4	48M	247M	10B	20	0.2	\times	5	48M	247M	20B	2.5	0.2	\times
1341 6	48M	247M	20B	5	0.2	\times	7	48M	247M	20B	10	0.2	\times
1342 8	48M	247M	20B	15	0.2	\times	9	48M	247M	20B	20	0.2	\times
1343 10	48M	247M	50B	2.5	0.2	\times	11	48M	247M	50B	5	0.2	\times
1344 12	48M	247M	50B	10	0.2	\times	13	48M	247M	50B	15	0.2	\times
1345 14	48M	247M	50B	20	0.2	\times	15	99M	496M	10B	2.5	0.2	\times
1346 16	99M	496M	10B	5	0.2	\times	17	99M	496M	10B	10	0.2	\times
1347 18	99M	496M	10B	15	0.2	\times	19	99M	496M	10B	20	0.2	\times
1348 20	99M	496M	20B	2.5	0.2	\times	21	99M	496M	20B	5	0.2	\times
1349 22	99M	496M	20B	10	0.2	\times	23	99M	496M	20B	15	0.2	\times

Continued on next page

1350

Table 8 continued from previous page

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

	Na	N	D	G	S	Label		Na	N	D	G	S	Label
24	99M	496M	20B	20	0.2	✗	25	99M	496M	50B	2.5	0.2	✗
26	99M	496M	50B	5	0.2	✗	27	99M	496M	50B	10	0.2	✗
28	99M	496M	50B	15	0.2	✗	29	99M	496M	50B	20	0.2	✗
30	181M	907M	10B	2.5	0.2	✗	31	181M	907M	10B	5	0.2	✗
32	181M	907M	10B	10	0.2	✗	33	181M	907M	10B	15	0.2	✗
34	181M	907M	10B	20	0.2	✗	35	181M	907M	20B	2.5	0.2	✗
36	181M	907M	20B	5	0.2	✗	37	181M	907M	20B	10	0.2	✗
38	181M	907M	20B	15	0.2	✗	39	181M	907M	20B	20	0.2	✗
40	181M	907M	50B	2.5	0.2	✗	41	181M	907M	50B	5	0.2	✗
42	181M	907M	50B	10	0.2	✗	43	181M	907M	50B	15	0.2	✗
44	181M	907M	50B	20	0.2	✗	45	48M	133M	10B	10	0.2	✗
46	48M	247M	10B	10	0.2	✗	47	48M	473M	10B	10	0.2	✗
48	48M	926M	10B	10	0.2	✗	49	48M	133M	20B	10	0.2	✗
50	48M	247M	20B	10	0.2	✗	51	48M	473M	20B	10	0.2	✗
52	48M	926M	20B	10	0.2	✗	53	48M	133M	50B	10	0.2	✗
54	48M	247M	50B	10	0.2	✗	55	48M	473M	50B	10	0.2	✗
56	48M	926M	50B	10	0.2	✗	57	99M	269M	10B	10	0.2	✗
58	99M	496M	10B	10	0.2	✗	59	99M	949M	10B	10	0.2	✗
60	99M	1855M	10B	10	0.2	✗	61	99M	269M	20B	10	0.2	✗
62	99M	496M	20B	10	0.2	✗	63	99M	949M	20B	10	0.2	✗
64	99M	1855M	20B	10	0.2	✗	65	99M	269M	50B	10	0.2	✗
66	99M	496M	50B	10	0.2	✗	67	99M	949M	50B	10	0.2	✗
68	99M	1855M	50B	10	0.2	✗	69	181M	492M	10B	10	0.2	✗
70	181M	907M	10B	10	0.2	✗	71	181M	1738M	10B	10	0.2	✗
72	181M	3399M	10B	10	0.2	✗	73	181M	492M	20B	10	0.2	✗
74	181M	907M	20B	10	0.2	✗	75	181M	1738M	20B	10	0.2	✗
76	181M	3399M	20B	10	0.2	✗	77	181M	492M	50B	10	0.2	✗
78	181M	907M	50B	10	0.2	✗	79	181M	1738M	50B	10	0.2	✗
80	181M	3399M	50B	10	0.2	✗	81	48M	247M	10B	10	0.0	✗
82	48M	247M	10B	10	0.1	✗	83	48M	247M	10B	10	0.2	✗
84	48M	247M	10B	10	0.4	✗	85	48M	247M	20B	10	0.0	✗
86	48M	247M	20B	10	0.1	✗	87	48M	247M	20B	10	0.2	✗
88	48M	247M	20B	10	0.4	✗	89	48M	247M	50B	10	0.0	✗
90	48M	247M	50B	10	0.1	✗	91	48M	247M	50B	10	0.2	✗
92	48M	247M	50B	10	0.4	✗	93	99M	496M	10B	10	0.0	✗
94	99M	496M	10B	10	0.1	✗	95	99M	496M	10B	10	0.2	✗
96	99M	496M	10B	10	0.4	✗	97	99M	496M	20B	10	0.0	✗
98	99M	496M	20B	10	0.1	✗	99	99M	496M	20B	10	0.2	✗
100	99M	496M	20B	10	0.4	✗	101	99M	496M	50B	10	0.0	✗
102	99M	496M	50B	10	0.1	✗	103	99M	496M	50B	10	0.2	✗
104	99M	496M	50B	10	0.4	✗	105	181M	907M	10B	10	0.0	✗
106	181M	907M	10B	10	0.1	✗	107	181M	907M	10B	10	0.2	✗
108	181M	907M	10B	10	0.3	✗	109	181M	907M	10B	10	0.4	✗
110	181M	907M	10B	10	0.5	✗	111	181M	907M	10B	10	0.6	✗
112	181M	907M	10B	10	0.7	✗	113	181M	907M	20B	10	0.0	✗
114	181M	907M	20B	10	0.1	✗	115	181M	907M	20B	10	0.2	✗
116	181M	907M	20B	10	0.3	✗	117	181M	907M	20B	10	0.4	✗
118	181M	907M	20B	10	0.5	✗	119	181M	907M	20B	10	0.6	✗
120	181M	907M	20B	10	0.7	✗	121	181M	907M	50B	10	0.0	✗
122	181M	907M	50B	10	0.1	✗	123	181M	907M	50B	10	0.2	✗
124	181M	907M	50B	10	0.3	✗	125	181M	907M	50B	10	0.4	✗
126	181M	907M	50B	10	0.5	✗	127	181M	907M	50B	10	0.6	✗
128	181M	907M	50B	10	0.7	✗	129	240M	1209M	10B	10	0.0	✗
130	240M	1209M	10B	10	0.1	✗	131	240M	1209M	10B	10	0.2	✗
132	240M	1209M	10B	10	0.3	✗	133	240M	1209M	10B	10	0.4	✗

Continued on next page

1404

Table 8 continued from previous page

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

	Na	N	D	G	S	Label		Na	N	D	G	S	Label
134	240M	1209M	10B	10	0.5	✗	135	240M	1209M	10B	10	0.6	✗
136	240M	1209M	10B	10	0.7	✗	137	240M	1209M	20B	10	0.0	✗
138	240M	1209M	20B	10	0.1	✗	139	240M	1209M	20B	10	0.2	✗
140	240M	1209M	20B	10	0.3	✗	141	240M	1209M	20B	10	0.4	✗
142	240M	1209M	20B	10	0.5	✗	143	240M	1209M	20B	10	0.6	✗
144	240M	1209M	20B	10	0.7	✗	145	240M	1209M	50B	10	0.0	✗
146	240M	1209M	50B	10	0.1	✗	147	240M	1209M	50B	10	0.2	✗
148	240M	1209M	50B	10	0.3	✗	149	240M	1209M	50B	10	0.4	✗
150	240M	1209M	50B	10	0.5	✗	151	240M	1209M	50B	10	0.6	✗
152	240M	1209M	50B	10	0.7	✗	153	476M	2404M	10B	10	0.0	✗
154	476M	2404M	10B	10	0.1	✗	155	476M	2404M	10B	10	0.3	✗
156	476M	2404M	10B	10	0.4	✗	157	476M	2404M	10B	10	0.5	✗
158	476M	2404M	10B	10	0.6	✗	159	476M	2404M	10B	10	0.7	✗
160	476M	2404M	20B	10	0.0	✗	161	476M	2404M	20B	10	0.1	✗
162	476M	2404M	20B	10	0.3	✗	163	476M	2404M	20B	10	0.4	✗
164	476M	2404M	20B	10	0.5	✗	165	476M	2404M	20B	10	0.6	✗
166	476M	2404M	20B	10	0.7	✗	167	476M	2404M	50B	10	0.0	✗
168	476M	2404M	50B	10	0.1	✗	169	476M	2404M	50B	10	0.3	✗
170	476M	2404M	50B	10	0.4	✗	171	476M	2404M	50B	10	0.5	✗
172	476M	2404M	50B	10	0.6	✗	173	476M	2404M	50B	10	0.7	✗
174	240M	1209M	10B	5	0.0	✗	175	240M	1209M	10B	5	0.2	✗
176	240M	1209M	10B	5	0.4	✗	177	240M	1209M	10B	5	0.6	✗
178	240M	1209M	10B	5	0.8	✗	179	240M	1209M	20B	5	0.0	✗
180	240M	1209M	20B	5	0.2	✗	181	240M	1209M	20B	5	0.4	✗
182	240M	1209M	20B	5	0.6	✗	183	240M	1209M	20B	5	0.8	✗
184	240M	1209M	50B	5	0.0	✗	185	240M	1209M	50B	5	0.2	✗
186	240M	1209M	50B	5	0.4	✗	187	240M	1209M	50B	5	0.6	✗
188	240M	1209M	50B	5	0.8	✗	189	476M	2404M	10B	5	0.0	✗
190	476M	2404M	10B	5	0.2	✗	191	476M	2404M	10B	5	0.4	✗
192	476M	2404M	10B	5	0.6	✗	193	476M	2404M	10B	5	0.8	✗
194	476M	2404M	20B	5	0.0	✗	195	476M	2404M	20B	5	0.2	✗
196	476M	2404M	20B	5	0.4	✗	197	476M	2404M	20B	5	0.6	✗
198	476M	2404M	20B	5	0.8	✗	199	476M	2404M	50B	5	0.0	✗
200	476M	2404M	50B	5	0.2	✗	201	476M	2404M	50B	5	0.4	✗
202	476M	2404M	50B	5	0.6	✗	203	476M	2404M	50B	5	0.8	✗
204	31M	247M	10B	20	0.2	✗	205	31M	247M	20B	20	0.2	✗
206	31M	247M	30B	20	0.2	✗	207	31M	247M	50B	20	0.2	✗
208	64M	496M	10B	20	0.2	✗	209	99M	496M	10B	20	0.2	✗
210	170M	496M	10B	20	0.2	✗	211	312M	496M	10B	20	0.2	✗
212	453M	496M	10B	20	0.2	✗	213	64M	496M	20B	20	0.2	✗
214	99M	496M	20B	20	0.2	✗	215	170M	496M	20B	20	0.2	✗
216	312M	496M	20B	20	0.2	✗	217	453M	496M	20B	20	0.2	✗
218	64M	496M	30B	20	0.2	✗	219	99M	496M	30B	20	0.2	✗
220	170M	496M	30B	20	0.2	✗	221	312M	496M	30B	20	0.2	✗
222	453M	496M	30B	20	0.2	✗	223	64M	496M	50B	20	0.2	✗
224	99M	496M	50B	20	0.2	✗	225	170M	496M	50B	20	0.2	✗
226	312M	496M	50B	20	0.2	✗	227	453M	496M	50B	20	0.2	✗
228	116M	907M	10B	20	0.2	✗	229	181M	907M	10B	20	0.2	✗
230	310M	907M	10B	20	0.2	✗	231	570M	907M	10B	20	0.2	✗
232	829M	907M	10B	20	0.2	✗	233	116M	907M	20B	20	0.2	✗
234	181M	907M	20B	20	0.2	✗	235	310M	907M	20B	20	0.2	✗
236	570M	907M	20B	20	0.2	✗	237	829M	907M	20B	20	0.2	✗
238	116M	907M	30B	20	0.2	✗	239	181M	907M	30B	20	0.2	✗
240	310M	907M	30B	20	0.2	✗	241	570M	907M	30B	20	0.2	✗
242	829M	907M	30B	20	0.2	✗	243	116M	907M	50B	20	0.2	✗

Continued on next page

1458

1459

1460

Table 8 continued from previous page

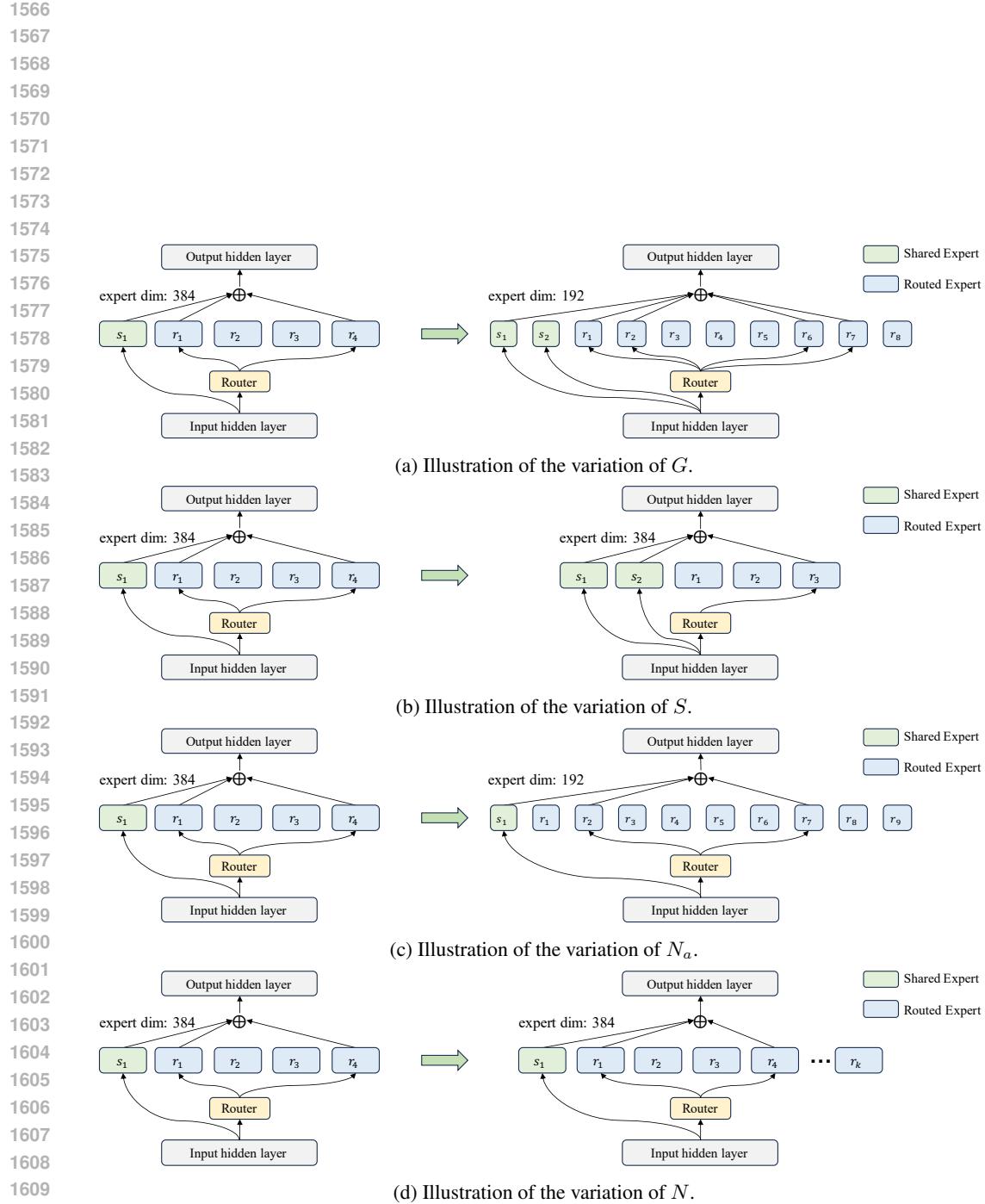
	Na	N	D	G	S	Label		Na	N	D	G	S	Label	
1461	244	181M	907M	50B	20	0.2	✗	245	310M	907M	50B	20	0.2	✗
1462	246	570M	907M	50B	20	0.2	✗	247	829M	907M	50B	20	0.2	✗
1463	248	304M	2404M	10B	20	0.2	✗	249	476M	2404M	10B	20	0.2	✗
1464	250	820M	2404M	10B	20	0.2	✗	251	1508M	2404M	10B	20	0.2	✗
1465	252	2196M	2404M	10B	20	0.2	✗	253	304M	2404M	20B	20	0.2	✗
1466	254	476M	2404M	20B	20	0.2	✗	255	820M	2404M	20B	20	0.2	✗
1467	256	1508M	2404M	20B	20	0.2	✗	257	2196M	2404M	20B	20	0.2	✗
1468	258	304M	2404M	30B	20	0.2	✗	259	476M	2404M	30B	20	0.2	✗
1469	260	820M	2404M	30B	20	0.2	✗	261	1508M	2404M	30B	20	0.2	✗
1470	262	2196M	2404M	30B	20	0.2	✗	263	304M	2404M	50B	20	0.2	✗
1471	264	476M	2404M	50B	20	0.2	✗	265	820M	2404M	50B	20	0.2	✗
1472	266	1508M	2404M	50B	20	0.2	✗	267	2196M	2404M	50B	20	0.2	✗
1473	268	22M	121M	10B	1	0.0	✗	269	22M	121M	10B	2	0.0	✗
1474	270	22M	121M	10B	3	0.0	✗	271	22M	121M	10B	4	0.0	✗
1475	272	22M	121M	10B	8	0.0	✗	273	22M	121M	10B	16	0.0	✗
1476	274	22M	121M	20B	1	0.0	✗	275	22M	121M	20B	2	0.0	✗
1477	276	22M	121M	20B	3	0.0	✗	277	22M	121M	20B	4	0.0	✗
1478	278	22M	121M	20B	8	0.0	✗	279	22M	121M	20B	16	0.0	✗
1479	280	22M	121M	50B	1	0.0	✗	281	22M	121M	50B	2	0.0	✗
1480	282	22M	121M	50B	3	0.0	✗	283	22M	121M	50B	4	0.0	✗
1481	284	22M	121M	50B	8	0.0	✗	285	22M	121M	50B	16	0.0	✗
1482	286	30M	93M	10B	1	0.0	✗	287	30M	93M	10B	2	0.0	✗
1483	288	30M	93M	10B	3	0.0	✗	289	30M	93M	10B	4	0.0	✗
1484	290	30M	93M	10B	8	0.0	✗	291	30M	93M	10B	16	0.0	✗
1485	292	30M	93M	20B	1	0.0	✗	293	30M	93M	20B	2	0.0	✗
1486	294	30M	93M	20B	3	0.0	✗	295	30M	93M	20B	4	0.0	✗
1487	296	30M	93M	20B	8	0.0	✗	297	30M	93M	20B	16	0.0	✗
1488	298	30M	93M	50B	1	0.0	✗	299	30M	93M	50B	2	0.0	✗
1489	300	30M	93M	50B	3	0.0	✗	301	30M	93M	50B	4	0.0	✗
1490	302	30M	93M	50B	8	0.0	✗	303	30M	93M	50B	16	0.0	✗
1491	304	30M	175M	10B	1	0.0	✗	305	30M	175M	10B	2	0.0	✗
1492	306	30M	175M	10B	3	0.0	✗	307	30M	175M	10B	4	0.0	✗
1493	308	30M	175M	10B	8	0.0	✗	309	30M	175M	10B	16	0.0	✗
1494	310	30M	175M	20B	1	0.0	✗	311	30M	175M	20B	2	0.0	✗
1495	312	30M	175M	20B	3	0.0	✗	313	30M	175M	20B	4	0.0	✗
1496	314	30M	175M	20B	8	0.0	✗	315	30M	175M	20B	16	0.0	✗
1497	316	30M	175M	50B	1	0.0	✗	317	30M	175M	50B	2	0.0	✗
1498	318	30M	175M	50B	3	0.0	✗	319	30M	175M	50B	4	0.0	✗
1499	320	30M	175M	50B	8	0.0	✗	321	30M	175M	50B	16	0.0	✗
1500	322	30M	340M	10B	1	0.0	✗	323	30M	340M	10B	2	0.0	✗
1501	324	30M	340M	10B	3	0.0	✗	325	30M	340M	10B	4	0.0	✗
1502	326	30M	340M	10B	8	0.0	✗	327	30M	340M	10B	16	0.0	✗
1503	328	30M	340M	20B	1	0.0	✗	329	30M	340M	20B	2	0.0	✗
1504	330	30M	340M	20B	3	0.0	✗	331	30M	340M	20B	4	0.0	✗
1505	332	30M	340M	20B	8	0.0	✗	333	30M	340M	20B	16	0.0	✗
1506	334	30M	340M	50B	1	0.0	✗	335	30M	340M	50B	2	0.0	✗
1507	336	30M	340M	50B	3	0.0	✗	337	30M	340M	50B	4	0.0	✗
1508	338	30M	340M	50B	8	0.0	✗	339	30M	340M	50B	16	0.0	✗
1509	340	41M	239M	10B	1	0.0	✗	341	41M	239M	10B	2	0.0	✗
1510	342	41M	239M	10B	3	0.0	✗	343	41M	239M	10B	4	0.0	✗
1511	344	41M	239M	10B	8	0.0	✗	345	41M	239M	10B	16	0.0	✗
1512	346	41M	239M	20B	1	0.0	✗	347	41M	239M	20B	2	0.0	✗
1513	348	41M	239M	20B	3	0.0	✗	349	41M	239M	20B	4	0.0	✗
1514	350	41M	239M	20B	8	0.0	✗	351	41M	239M	20B	16	0.0	✗
1515	352	41M	239M	50B	1	0.0	✗	353	41M	239M	50B	2	0.0	✗

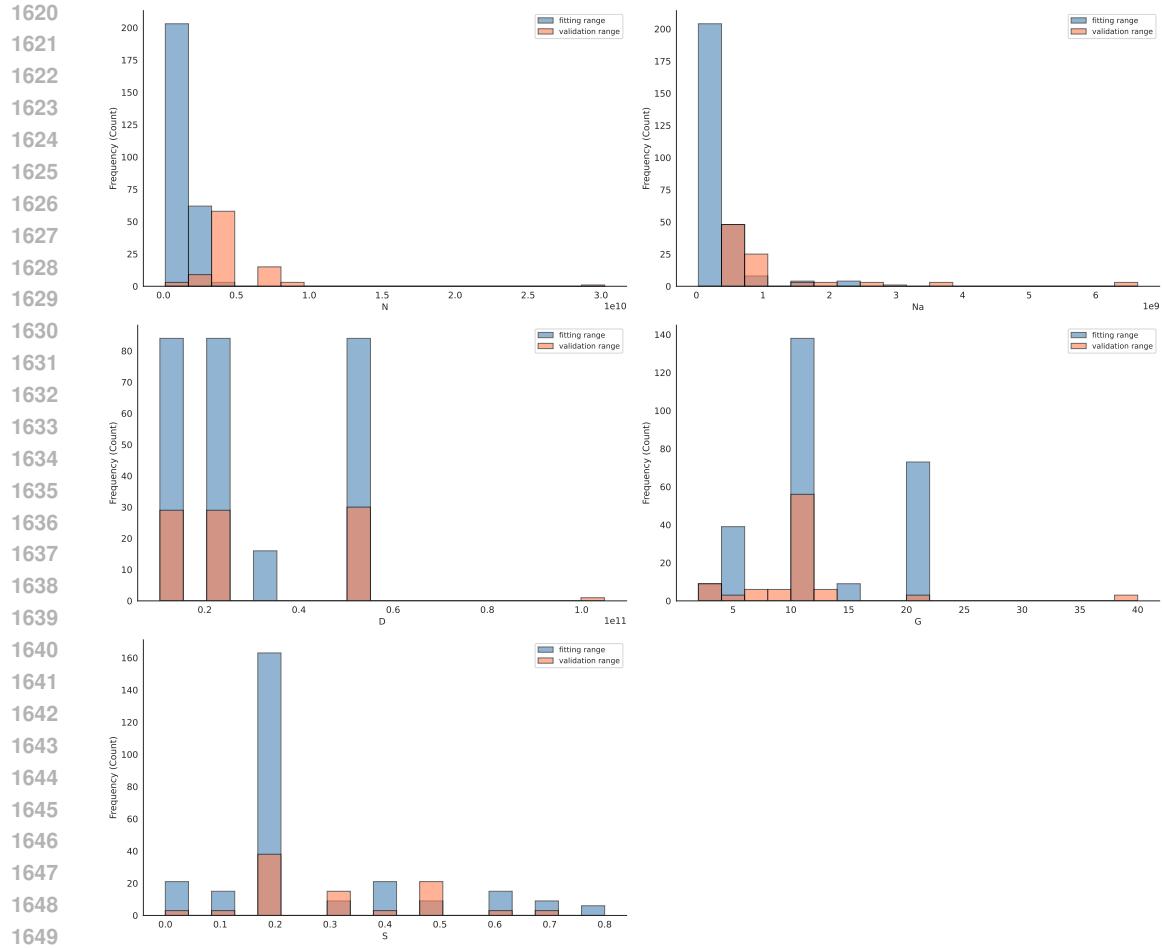
Continued on next page

Table 8 continued from previous page

	Na	N	D	G	S	Label		Na	N	D	G	S	Label	
1512	354	41M	239M	50B	3	0.0	✗	355	41M	239M	50B	4	0.0	✗
1513	356	41M	239M	50B	8	0.0	✗	357	41M	239M	50B	16	0.0	✗
1514	358	476M	1301M	10B	10	0.2	✓	359	476M	2404M	10B	10	0.2	✓
1515	360	476M	4604M	10B	10	0.2	✓	361	476M	9008M	10B	10	0.2	✓
1516	362	476M	1301M	20B	10	0.2	✓	363	476M	2404M	20B	10	0.2	✓
1517	364	476M	4604M	20B	10	0.2	✓	365	476M	9008M	20B	10	0.2	✓
1518	366	476M	1301M	50B	10	0.2	✓	367	476M	2404M	50B	10	0.2	✓
1519	368	476M	4604M	50B	10	0.2	✓	369	476M	9008M	50B	10	0.2	✓
1520	370	793M	3964M	10B	10	0.0	✓	371	793M	3964M	10B	10	0.1	✓
1521	372	793M	3964M	10B	10	0.2	✓	373	793M	3964M	10B	10	0.3	✓
1522	374	793M	3964M	10B	10	0.4	✓	375	793M	3964M	10B	10	0.5	✓
1523	376	793M	3964M	10B	10	0.6	✓	377	793M	3964M	10B	10	0.7	✓
1524	378	793M	3964M	20B	10	0.0	✓	379	793M	3964M	20B	10	0.1	✓
1525	380	793M	3964M	20B	10	0.2	✓	381	793M	3964M	20B	10	0.3	✓
1526	382	793M	3964M	20B	10	0.4	✓	383	793M	3964M	20B	10	0.5	✓
1527	384	793M	3964M	20B	10	0.6	✓	385	793M	3964M	20B	10	0.7	✓
1528	386	793M	3964M	50B	10	0.0	✓	387	793M	3964M	50B	10	0.1	✓
1529	388	793M	3964M	50B	10	0.2	✓	389	793M	3964M	50B	10	0.3	✓
1530	390	793M	3964M	50B	10	0.4	✓	391	793M	3964M	50B	10	0.5	✓
1531	392	793M	3964M	50B	10	0.6	✓	393	793M	3964M	50B	10	0.7	✓
1532	394	1441M	7255M	10B	10	0.2	✓	395	1960M	7255M	10B	10	0.2	✓
1533	396	2479M	7255M	10B	10	0.2	✓	397	3517M	7255M	10B	10	0.2	✓
1534	398	6632M	7255M	10B	10	0.2	✓	399	1441M	7255M	20B	10	0.2	✓
1535	400	1960M	7255M	20B	10	0.2	✓	401	2479M	7255M	20B	10	0.2	✓
1536	402	3517M	7255M	20B	10	0.2	✓	403	6632M	7255M	20B	10	0.2	✓
1537	404	1441M	7255M	50B	10	0.2	✓	405	1960M	7255M	50B	10	0.2	✓
1538	406	2479M	7255M	50B	10	0.2	✓	407	3517M	7255M	50B	10	0.2	✓
1539	408	6632M	7255M	50B	10	0.2	✓	409	453M	3964M	10B	2	0.5	✓
1540	410	453M	3964M	10B	4	0.5	✓	411	453M	3964M	10B	6	0.5	✓
1541	412	453M	3964M	10B	8	0.5	✓	413	453M	3964M	10B	10	0.5	✓
1542	414	453M	3964M	10B	12	0.5	✓	415	453M	3964M	20B	2	0.5	✓
1543	416	453M	3964M	20B	4	0.5	✓	417	453M	3964M	20B	6	0.5	✓
1544	418	453M	3964M	20B	8	0.5	✓	419	453M	3964M	20B	10	0.5	✓
1545	420	453M	3964M	20B	12	0.5	✓	421	453M	3964M	50B	2	0.5	✓
1546	422	453M	3964M	50B	4	0.5	✓	423	453M	3964M	50B	6	0.5	✓
1547	424	453M	3964M	50B	8	0.5	✓	425	453M	3964M	50B	10	0.5	✓
1548	426	453M	3964M	50B	12	0.5	✓	427	566M	3964M	10B	3	0.33	✓
1549	428	566M	3964M	10B	6	0.33	✓	429	566M	3964M	10B	9	0.33	✓
1550	430	566M	3964M	10B	12	0.33	✓	431	566M	3964M	20B	3	0.33	✓
1551	432	566M	3964M	20B	6	0.33	✓	433	566M	3964M	20B	9	0.33	✓
1552	434	566M	3964M	20B	12	0.33	✓	435	566M	3964M	50B	3	0.33	✓
1553	436	566M	3964M	50B	6	0.33	✓	437	566M	3964M	50B	9	0.33	✓
1554	438	566M	3964M	50B	12	0.33	✓	439	476M	2404M	10B	2.5	0.2	✓
1555	440	476M	2404M	20B	2.5	0.2	✓	441	476M	2404M	50B	2.5	0.2	✓
1556	442	793M	3964M	100B	10	0.2	✓	443	476M	2404M	10B	20	0.2	✓
1557	444	476M	2404M	20B	20	0.2	✓	445	476M	2404M	50B	20	0.2	✓
1558	446	3070M	30249M	50B	20	0.2	✓	447	181M	907M	10B	40	0.2	✓
1559	448	181M	907M	20B	40	0.2	✓	449	181M	907M	50B	40	0.2	✓

1560
1561
1562
1563
1564
1565

Figure 17: Illustration of the variation of factor G , S , N_a and N under controlled conditions.

Figure 18: Distribution histograms of N , N_a , D , G , and S for fitting data and validation data.