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ABSTRACT

Mixture-of-Experts (MoE) models have become the consensus approach for en-
abling parameter-efficient scaling and cost-effective deployment in large language
models. However, existing scaling laws for dense models are inapplicable to MoE
models, which stems from three critical challenges: the multiplicity of influenc-
ing factors, their intricate coupling relationships and the non-monotonic nature
of their performance impacts. They collectively necessitate a fine-grained inves-
tigation into MoE-specific scaling laws. In this work, we perform a systematic
decomposition of MoE settings, identifying five key factors that influence model
performance from both size and structural perspectives (data size (D), total model
size (N ), activated model size (Na), number of active experts (G) and the ratio of
shared experts (S)). Specifically, we design 450 controlled experiments to charac-
terize their marginal effects, ultimately constructing a comprehensive and precise
joint MoE scaling law that considers all essential factors. Furthermore, we derive
the theoretically optimal and practically efficiency-aware optimal configurations
for G, S and Na/N with detailed analyses. Our results demonstrate that the opti-
mal settings for G and S are independent of both the model architecture and data
size. With the scaling of N , the optimal activation parameter ratio of Na/N be-
comes sparser. Our proposed MoE scaling law could function as an accurate and
insightful guidance to facilitate future MoE model design and training.

1 INTRODUCTION

Large language models (LLMs) have been widely verified and utilized in our daily lives. It is impres-
sive and lucky to discover that LLMs can continuously expand its ability boundaries with increasing
model and training data sizes. The scaling laws of LLMs (Kaplan et al., 2020; Hoffmann et al., 2022;
Sun et al., 2025), which could predict the model loss based on crucial factors (e.g., data/model sizes)
before training, shed lights on the promising way of wisely selecting appropriate model structures
and settings before experiments and continuously enhancing the ability of LLMs under given train-
ing budget or environment constraints. Recently, Mixture-of-Experts (MoE) becomes one of the
mainstream structures broadly used in powerful industry-level LLMs (Dubey et al., 2024; Liu et al.,
2024; Sun et al., 2024; Liu et al., 2025; Qwen Team et al., 2025; OpenAI et al., 2025). Different
from the original dense architecture that involves all parameters in the forward process, MoE often
adopts multiple experts (e.g., FFNs) with a router to automatically select which experts should be
activated for the current token. The sparse activation of experts in MoE could largely benefit from
increasing total model sizes while maintaining efficient model inference.

With the thriving in efficient LLMs, lots of efforts have been dedicated to MoE architectures. The
shared expert is proposed to capture general knowledge robustly (Dai et al., 2024; Sun et al., 2024).
We also notice the trend of increasing (activated and total) expert numbers (Kimi et al., 2025; Liu
et al., 2024; OpenAI et al., 2025). In this case, existing scaling laws of either dense models (Kaplan
et al., 2020; Hoffmann et al., 2022) or MoE models (Krajewski et al., 2024; Wang et al., 2024b) can-
not perfectly predict the model performance under the updated popular MoE structures and settings.
The community urgently requires a new MoE scaling law to accurately guide model training.

To comprehensively explore the central factors of MoE models that largely impact the model per-
formance, we first take the classical factors of data size (D) and total model size (N ) also marked
in dense scaling laws into consideration. Besides, the activated model size (Na) functioning in the
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forward process is essential in MoE models. For the expert aspect, we note the number of acti-
vated experts G as another essential factor (Na and G collaboratively determine the expert size).
Moreover, the ratio of shared experts in activated experts (S) is also modeled (S and G collabo-
ratively set the specific numbers of shared and routed experts). We attempt to build our scaling laws
of MoE based on the above five factors. The challenges mainly locate in three aspects: (a) our MoE
scaling law considers more comprehensive factors D, N , Na, G, S compared to existing scaling
laws. (b) Our preliminary experiments imply that some factors have a non-monotonic impact on
loss, which are more challenging to fit. (c) There exists mutual coupling relationships among these
factors, which multiplies the challenges of constructing the final joint scaling law.

To accomplish our MoE scaling laws, we first select a reasonable and wider parameter range for the
five essential factors D, N , Na, G, S and then conduct experiments 450 to record the corresponding
MoE losses of different parameter settings. Based on these experimental results, we first decide the
basic scaling law formation with the fundamental D, N factors following Hoffmann et al. (2022).
Next, we discover the marginal effects of Na, G, S respectively, whose impacts on model losses
are surprisingly non-monotonic and are coupled to other factors. Finally, we obtain the joint MoE
scaling laws formulated as follows:

L(N,D,Na, G, S) = (eG+
f

G
+mS2+nS)∗ ( 1

Nα
+

k

Nα
a

+h
Na

N
)+

a

Nα
+

b

Dβ
+

c

Nα
a

+ ϵ. (1)

which could satisfactorily predict MoE models’ losses with larger data/model sizes (e.g., up to 9B
total model size and 100B trained tokens) and different MoE settings (e.g., up to 256 experts, 20
activated experts and 70% ratio of shared experts).

Based on our MoE scaling laws, we conduct in-depth analyses and discover the following implica-
tions: (a) the optimal number of activated experts is around 7 for real-world classical MoE settings
considering its effectiveness. (b) Too dense/sparse MoE structures are not performance-optimal.
The 20% ∼ 43% activated parameter ratios (Na/N ) are theoretical optimal for N from 1T to 20B.
Considering the cost, the practical efficiency-aware optimal ratios range from 5% ∼ 9%. (c) The ex-
istence of shared expert is essential, while the best ratio S of shared experts to all activated experts
ranges from 13% ∼ 31% with marginal loss disturbances. We are confident that our MoE scaling
laws with the above observations and insights could provide a more comprehensive understanding
and more accurate performance prediction of MoE models with different settings, looking forward
to facilitate LLM community in future MoE model design and training.

2 PRELIMINARY

2.1 MOE ARCHITECTURE

The Mixture-of-Experts (MoE) architecture modifies standard Transformer by replacing the dense
Feed-Forward Networks (FFNs) with a set of independent experts, where each expert is usually an
FFN of the same size (Fedus et al., 2022; Zhou et al., 2022; Jiang et al., 2024). Typically, for each
token, the router selects and activates only a small subset of these experts. This design allows model
size to grow by adding experts, while keeping the computational cost nearly unchanged. This makes
it possible to scale models to very large sizes without a proportional increase in cost. Considering the
trend of training-/inference- efficient LLM, MoE has become a mainstream and effective framework
for building industry-level LLMs balancing model performance and computational efficiency.

2.2 EXISTING SCALING LAWS OF LLMS

Scaling Laws of Dense LLM. Scaling laws describe the relationship between key factors such as
total model size N , data size D and the loss L. Classical scaling laws include the Chinchilla scaling
law (Hoffmann et al., 2022), which states that L follows a power-law dependence on N and D,
written as L(N,D) = a/Nα + b/Dβ + ϵ. It consists of three terms: the first and second terms
capture the limitations imposed by finite model size and finite data size, respectively. The last term,
ϵ, represents the irreducible error that arises from the inherent uncertainty in the training data.

Scaling Laws for MoE. Unlike dense models, MoE introduces new structures with additional fac-
tors (e.g., the activated model size, the number of activated experts, the ratio of shared experts, etc),
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whose effects on model loss are non-monotonic and often interdependent. Existing scaling laws for
dense models are insufficient to guide MoE’s model design, which motivates the development of new
scaling laws tailored to MoE with these new-added factors. Recent studies have investigated MoE
scaling laws based on certain MoE-specific factors, including the granularity of activated experts
(Krajewski et al., 2024) and the activated model size (Ludziejewski et al., 2025). Different from
them, our scaling law is more comprehensive and quantitatively defined considering five factors. As
a result, our scaling law provides a more accurate fit to the loss, as shown in Fig. 5.

3 EXPERIMENTAL SETUP

We systematically analyze the five key factors of MoE that influence training dynamics: data size
D, total model size N , activated model size Na, number of activated experts G and ratio of shared
experts in activated experts S. To isolate their individual effects, we conduct 450 controlled experi-
ments divided into several groups, each group varying a single target factor while holding the others
fixed. This setup enables a clear assessment of how each factor impacts the validation loss.

Formally, we define the number of shared experts as ns, the number of routed experts as ne, the
number of activated routed experts as nk, the head dimension as dhead, the hidden dimension as
dhidden, the expert dimension as dexpert, the number of heads as nh and the number of layers as l.
Based on these definitions, the following relationships hold:

G = nk + ns, Na ≈
(
4dhead · nh + 3Gdexpert

)
dhidden · l, (2)

S =
ns
G
, N ≈

(
4dhead · nh + 3dexpert(SG+ ne)

)
dhidden · l. (3)

An MoE layer consists of multiple experts and a router that assigns tokens, often using a Top-K
routing strategy with an auxiliary balance loss to ensure expert utilization. Training typically adopts
standard optimizers such as AdamW (Kingma & Ba, 2014) with parallelism techniques (data, model
and expert parallelism) for scalability. We select the widely-used classical MoE structures with
architectural details provided in Appendix B. All experiments employ the Warmup-Stable-Decay
(WSD) learning rate scheduler (Hu et al., 2024). For studies involving different values of D, we
reused the same warmup and stable phases across runs to avoid redundant computation and reduce
resource usage. All models are trained on a subset of the Dolma V1.7 dataset (Soldaini et al., 2024).

To fit the correlations between validation loss and five key factors, we systematically conduct ex-
periments within controlled ranges of language model pretraining, with total model size N ∈
[133M, 3.4B] and training data sizes D ∈ [10B, 50B] tokens. We additionally vary the activated
model size Na ∈ [30M, 2.2B], the number of activated experts G ∈ [1, 20] and the ratio of shared
experts S ∈ [0.0, 0.7]. For validation, we further extend to larger model and data sizes (up to 9B
total model size and 100B trained tokens) and different MoE settings (up to 256 experts, 20 activated
experts and 70% ratio of shared experts), successfully verifying the effectiveness and generalization
ability of our scaling laws. The complete experimental settings are reported in Appendix L.

4 OUR SCALING LAWS FOR MOE

MoE has gradually emerged as a primary solution for the continuous scaling of model sizes and ef-
ficient deployment of LLMs. The core factors of MoE models exhibit higher complexity and strong
inter-factor coupling compared to dense models and such inherent complexity renders the classical
Chinchilla (Hoffmann et al., 2022) and OpenAI (Kaplan et al., 2020) scaling laws insufficient to
guide the design of MoE architectures.

We aim to build a comprehensive and accurate MoE scaling law. In the following, we sequentially
elaborate on the marginal effects of each core factor on MoE model performance via controlled-
factor experiments, encompassing the total model size (N ), data size (D), activated model size (Na),
number of activated experts (G) and the ratio of shared experts in activated experts (S). Building
upon these analyses, we further derive the methodology underlying our joint MoE scaling law.

3
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(a) Loss vs. N .
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(b) Loss vs. D.

Figure 1: Marginal effects of validation loss with respect to N and D under the logarithmic coordi-
nate system. Data point sizes are directly proportional to D.
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(a) Loss vs. Na at small Na/N ratios.
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(b) Loss vs. Na across the entire Na/N .

Figure 2: Marginal effects of validation loss with Na. (a) illustrates the power-law-like marginal re-
lationship between loss and Na under smaller Na/N . (b) indicates that loss oscillates and increases
as Na/N becomes increasingly large. Data point sizes are proportional to D.

4.1 THE BASIC MOE SCALING LAW’S FORM WITH N AND D

Total model size N and data size D constitute two primary factors influencing the performance of
LLMs. Leveraging the scaling laws of dense models as a foundation, we examine whether N and
D in MoE still conform to a power-law relationship. As illustrated in Figure 1, a distinct power-law
relationship is observed between validation loss, total model size N and data size D.

Specifically, we increase N with G, S, D and Na unchanged. By performing logarithmic transfor-
mations on both the validation loss andN , a linear relationship is observed across different ranges of
model sizes—this confirms a significant power-law relationship between the loss andN . Similarly, a
significant power-law relationship also exists between the loss and D. Furthermore, in Figure 1, we
find that experimental groups with the same model size but varying data sizes exhibit a translation
along the y-axis, which implies that N and D are mutually independent. From these observations,
we conclude that the loss for MoE with respect to the total model size N and data size D is as:

L(N,D) =
a

Nα
+

b

Dβ
+ ϵ, (4)

which has the same form of the Chinchilla scaling law (Hoffmann et al., 2022). The specific fitting
results of Eq. 4 are provided in Appendix C.2.

4.2 IMPACT OF ACTIVATED MODEL SIZE Na

Activated model size Na is a critical factor specific to MoE architectures that governs the balance
between the model performance and efficiency. To gain deeper insights into the scaling law with
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(a) Loss vs. G with 10B data size.
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(b) Loss vs. G with 20B data size.
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(c) Loss vs. G with 50B data size.

Figure 3: Marginal effects of validation loss with respect toG. (a), (b) and (c) illustrate the marginal
relationship between loss and G under different D and N . Data point sizes are proportional to D.

Na as an independent factor, we conducted multiple controlled experiments where Na was the only
varying factor. The formula followed by the controlled variable of Na is detailed in Appendix H..

In Figure 2, the scaling of activated parameters Na is achieved by increasing the expert dimension,
while the total model sizeN is maintained constant through a corresponding reduction in the number
of routed experts. When the ratio of Na to N is small, a power-law-like relationship is exhibited
between Na and validation loss. However, as this ratio increases, the validation loss demonstrates
a tendency to rise gradually, leading to an overall distribution that resembles a hook-like function,
which is formalized as follows:

L(Na) =
c

Nγ
a
+ hNa + ι. (5)

Next, we proceed to integrate the relationship involvingNa with those of data sizeD and total model
size N . We performed hyperparameter fitting under different configurations of D and N , with the
results presented in Figure 8. We observe that ι exhibits a negative correlation with both D and N ,
following a power-law distribution. In contrast, c and γ exhibit oscillations with variations in N and
D, indicating that they bear no systematic relationship to N and D. Furthermore, h is negatively
correlated with N , exhibiting an inversely proportional relationship, while showing no dependence
on D. Therefore, the joint scaling law of N , D and Na is concluded as follows:

L(N,D,Na) =
c

Nγ
a
+ h

Na

N
+ ιL(N,D). (6)

L(N,D) denotes the basic scaling law sharing the same form in Eq. 4. Notably, our fitting results
reveal that γ ≈ α. Hence, the final scaling law that governs L(N,D,Na) is formalized as follows:

L(N,D,Na) =
a

Nα
+

b

Dβ
+

c

Nα
a

+ h
Na

N
+ ϵ. (7)

We explored alternative relationship forms of L(Na), performed relevant comparative experiments
and derivations and ultimately established the aforementioned formulas describing the scaling law
of N , D and Na. Eq. 7 implies that Na has an optimal value, which seems to be contrary to the
prevalent assumption that “a larger Na yields lower loss”. It is because that when Na/N exceeds a
specific threshold with other factors (e.g., N and G) remains unchanged, the expert size increases
progressively while the number of experts decreases. It induces gradual structural distortion in the
MoE architecture, which in turn disrupt the advantage of MoE’s combinational activation and thus
degrades the performance. We have also validated that Eq. 7 can accurately predict the loss for
models with larger model sizes. More discussions and detailed parameter fitting procedures are
given in Appendix C.3 and F.

4.3 IMPACT OF THE NUMBER OF ACTIVATED EXPERTS G

G constitutes another critical factor, defined as the number of activated experts (including activated
shared and routed experts). It reflects the granularity of expert partitioning in MoE architectures. To
investigate the scaling law with G as the independent factor, a series of controlled experiments were
conducted with other factors constant, shown in Figure 3 and Figure 11. With the increase in G, the
validation loss exhibits a trend of first decreasing and then increasing. It is hypothesized that the
impact of G better conforms to a hook function relationship, expressed as follows:

L(G) = eG+
f

G
+ τ. (8)
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Figure 4: Marginal effects of validation loss with respect to S. (a), (b) and (c) respectively illustrate
the marginal relations between loss and S under different N , D settings. For small N and D, the
trend of S is taking shape but is also easily affected by noise. As they increase, the scaling law of S
gradually becomes significant and robust. More details are in Appendix C.5.

It is noteworthy that the possible G’s exponent term approaches 1. Therefore, based on the fitting
results and the Occam’s Razor principle (Blumer et al., 1987), the exponent term of G is omitted.

4.4 THE JOINT MOE SCALING LAW OF N , D, Na AND G

Based on the above conclusions in Eq. 7 and 8, we explore the variation patterns of the fitted
hyperparameters a, α, b, β, c, h, ϵ under different values of G. We observe that a, c and h exhibit the
hook-function trend with variations in G, whereas other hyperparameters are largely unaffected by
G and display no discernible pattern in Figure 10. Hence, we can express them as a = e1G+ f1

G +τ1,
c = e2G+ f2

G + τ2 and h = e3G+ f3
G + τ3. Furthermore, after re-parameterizing them, we notably

found that (e1, f1), (e2, f2) and (e3, f3) exhibit a proportional correlation and τ3 ≈ 0. Therefore,
the scaling law for L(N,D,Na, G) is presented as follows:

L(N,D,Na, G) = (eG+
f

G
) ∗ ( 1

Nα
+

k

Nα
a

+ h
Na

N
) +

a

Nα
+

b

Dβ
+

c

Nα
a

+ ϵ. (9)

Here, a
Nα + b

Dβ + ϵ denotes the basic Chinchilla-like scaling law part from Eq. 4. Considering
that Na and N exhibit a similar mechanism of action on the loss to a certain extent, we also have a
power-law term c

Nα
a

for Na. The right terms a
Nα + b

Dβ + c
Nα

a
+ ϵ could be viewed to characterize

the scaling law with respect to (activated/total) model size and data size. For the left term, eG+ f
G

denotes the effect of G (related to MoE expert structure) on loss from Eq. 8 and such effect is scaled
by the model size factors ( 1

Nα + k
Nα

a
+ hNa

N , which is non-monotonic for Na introduced in Eq. 7).
The detailed analysis of hyperparameters and fitting results of Eq. 9 are provided in Appendix C.4.

4.5 EXTENDED JOINT MOE SCALING LAW WITH SHARED EXPERT RATIO S

The shared experts have been verified to be essential in popular MoE architectures (Dai et al., 2024;
Liu et al., 2025). We set the shared expert ratio S (S = ns/G, where ns represents the number
of shared experts) as the sole varying factor to conduct experiments as presented in Figure 4. We
find that MoE models with shared experts significantly outperform those without shared experts,
verifying the necessity of shared expert isolation. As S increases, the loss first decreases and then
increases, while it exerts a relatively minor impact on losses around the optimal point. Based on
these observations, we adopt a quadratic function to capture the marginal effect of S on the loss.

L(S) = mS2 + nS + ψ. (10)

Final Joint MoE Scaling Law. We then incorporate S into Eq. 9 to build our final joint MoE
scaling law with all five factors. Given that S exerts only a minor influence on loss in a wide range,
we assume that S has negligible impact on the form and hyperparameters. Accordingly, we perform
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(a) Krajewski et al. (2024).
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(c) Ours.

Figure 5: Fitting results of existing and our joint scaling laws for MoE architectures. The average
validation loss errors of (a), (b) and (c) are respectively 0.0193, 0.0170 and 0.0060. Star points are
validation data with larger model sizes, larger data sizes and different MoE settings. Data point size
is proportional to D. Detailed descriptions of compared scaling laws are provided in Appendix I.

hyperparameter fitting for Eq. 10 across diverse configurations of N , D, Na and G and analyze the
relationships between these fitted hyperparameters and factors. The results are presented in Figure
13 with key findings: (1) m and n are independent of D, indicating that D and S are mutually
decoupled; (2) m increases with the growth of N and Na, whereas n decreases with the growth of
N and Na. Notably, the extreme point of S remains unchanged with variations in N and Na; (3)
ψ exhibits an obvious power-law relationship with N , Na and D; (4) As can be inferred from the
definition of S in Eq. 3, S is already correlated with G, so its relationship with G will not be further
considered. Considering the compatibility with Eq. 9, the form of L(N,D,Na, G, S) is expressed
as: (L(G) +L(S)) ∗ ϕ(N,Na) +

a
Nα + b

Dβ + c
Nα

a
+ ϵ. Consequently, we propose our MoE scaling

law comprehensively with N , D, Na, G, S as follows:

L(N,D,Na, G, S) = (eG+
f

G
+mS2+nS)∗( 1

Nα
+

k

Nα
a

+h
Na

N
)+

a

Nα
+

b

Dβ
+

c

Nα
a

+ϵ. (11)

Note that the factors of S and G, which jointly characterize the MoE structure of activated experts,
are included in the first term, while the other terms remain consistent with those in Eq. 9. Their
impact on the loss is also regulated by the total model size N and the activated model size Na. A
detailed analysis of hyperparameters is presented in Appendix C.5.

Fitting Results. To determine the specific value of hyperparameters in Eq. 11, we implement all
450 experiments that encompass diverse configurations of N , D, Na, G and S. The corresponding
hyperparameter values are provided in Table 2 in Appendix C.1. Next, we evaluate the fitting perfor-
mance of our MoE scaling law in Figure 5, where the satisfactory fitting performance demonstrates
the advantage of our MoE scaling law compared to others. Notably, for the sake of fairness, dur-
ing the comparison, the baseline MoE scaling laws were first re-fitted with hyperparameters using
the same data points, followed by prediction. Moreover, we extend the experiments to larger MoE
models (up to 9B total model size and 100B trained tokens) with different MoE structure settings
(G ranges from 2 to 20 and S ranges from 0 to 0.7). The consistently accurate fitting results demon-
strate that our scaling law maintains robust performance when applied to larger-scale MoE models
with broad ranges of parameter selections.

5 KEY IMPLICATIONS FOR MOE ARCHITECTURE DESIGN

In this section, we discuss the insightful findings deduced on the basis of our MoE scaling laws,
which are anticipated to provide more effective guidance for the design of better MoE models.

5.1 IMPLICATION-1: OPTIMAL NUMBER OF ACTIVATED EXPERTS G

In light of Eq. 11, the optimal number of activated experts G can be expressed as follows:

Gopt =
√
f/e. (12)

Eq. 12 demonstrates that the optimal G is independent of model size N , activated model size
Na and data size D, thereby corresponding to a fixed optimal value Gopt ≈ 6.78. Moreover,
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the theoretically derived optimal G exhibits strong alignment with the configurations employed by
current mainstream MoE models, including DeepSeek-V3.1 (Liu et al., 2024), Kimi-K2 (Kimi et al.,
2025) and Qwen3-235B-A22B (Qwen Team et al., 2025) (both G = 8 or 9). The detailed formula
derivation is provided in Appendix D.

5.2 IMPLICATION-2: OPTIMAL RATIO OF SHARED EXPERTS S

Similarly, S is independent of other factors and also has an optimal value as follows:

Sopt = −n/2m. (13)

Eq. 13 shows that the optimal S ≈ 0.31 is also independent of other factors. As shown in Table 3,
since S has minor impact on loss around the optimal point as stated in Section 4.5, the appropriate
S values are approximately distributed in the range of [0.13, 0.31] for the majority of popular MoE
settings, with the loss deviation to the optimal setting’s less than 0.001. In conclusion, our findings
lead to the following recommendation: the shared expert constitutes an essential component. For the
optimal total activated expert numberG = 7, we could set 1 or 2 shared experts. Notably, this aligns
with the architectural configurations observed in open-source canonical MoE models, corroborating
the validity of our conclusions. More details and analyses are in Appendix E.

5.3 IMPLICATION-3: OPTIMAL ACTIVATED PARAMETER RATIO Na/N

Theoretical Analysis. From Eq. 11, it can be observed that there are two types of terms involv-
ing the activated model size Na as a numerator or denominator. These two terms exert opposite
effects on the loss of MoE models. Intuitively, this implies that there exists an optimal Na given
the configurations of other factors (e.g., the model size N ). Given N , the (Na

N )optt that achieves the
theoretically optimal loss is formalized as follows (Comprehensive derivation is in Appendix F):

(
Na

N

)
optt

=

α ·
[
k ·

(
eG+ f

G +mS2 + nS
)
+ c

]
hNα ·

(
eG+ f

G +mS2 + nS
)


1

α+1

=

(
α · [k · const+ c]

hNα · const

) 1
α+1

.

(14)
According to our Implications #1 and #2,G and S have optimal values and thus eG+ f

G+mS2+nS
can be represented as a constant term const under the optimal setting. Eq. 14 indicates that the
optimal (Na

N )optt decreases as the model size N increases. It verifies that with the increasing total
model sizes, the optimal MoE architecture will be sparser with smaller Na, which is consistent with
the current trend of MoE models (Kimi et al., 2025; OpenAI et al., 2025). For instance, for N from
30B (Qwen3-30B-A3B (Qwen Team et al., 2025)) to 671B (Deepseek-V3.1 (Liu et al., 2024)), the
theoretically optimal ratio satisfies (Na

N )optt range from 40.0% to 22.0%.

Practical Efficiency-aware Analysis. However, the theoretically optimal sparsity degree of MoE
Na

N calculated in Eq. 14 cannot be directly used to guide the real-world MoE architecture design, as
the efficiency of LLMs is also an essential factor. Specifically, when Na gradually increases toward
its optimal value, the performance gains become increasingly marginal, while the associated costs
rise steadily. Therefore, it is necessary to explore more practical efficiency-aware optimal (Na

N )opte
under the consideration of the balance between performance gain and efficiency cost.

Specifically, we define the loss gain threshold as ∆Loss for the step size of ∆Na set as 0.01N . As
Na is incrementally scaled for each step size, the marginal gain of loss reduction will ultimately fall
below the loss gain threshold ∆Loss, where we suppose the model reaches the practical efficiency-
aware optimal (Na

N )opte . Comprehensive derivation and pseudo code are in Appendix F. Hence, for
a given model sizeN , our MoE scaling law yields a practically applicable range forNa, spanning the
interval from the practical efficiency-aware optimal point to the theoretical optimal point, i.e., Na ∈
[(Na

N )opte , (
Na

N )optt ]. To substantiate the validity of our conclusions, we conducted an analysis on
the configurations of mainstream industrial MoE models, with detailed specifications in Table 4. It
shows that the activated model sizes of most mainstream MoE models are within our recommended
range above. Note that some recent MoE models (e.g., Kimi-K2 (Kimi et al., 2025) and gpt-oss-
120b (OpenAI et al., 2025)) employ a more aggressive sparser architecture with Na

N ≤ 4%, primarily
aiming to reduce the training/inference costs in practice with larger total model sizes.
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6 RELATED WORK

6.1 MOE ARCHITECTURE

In the field of language models, the MoE model enables experts to learn different knowledge and
combine their outputs (Abdin et al., 2024; Team et al., 2025; Zeng et al., 2025; Lieber et al., 2024).
Shazeer et al. (2017) expanded upon this with the Sparsely-Gated Mixture-of-Experts (SMoE) layer
and Top-K routing, which selects a fixed number of experts for each token. This was further devel-
oped by Gshard (Lepikhin et al., 2020) and SwitchTransformer (Fedus et al., 2022) by integrating
MoE into Transformer feedforward layers with Top-1 and Top-2 routing. More recently, Dai et al.
(2024) proposed modifying the MoE layer by subdividing experts into smaller experts and adding
shared experts into the architecture. These advancements continue to enhance the efficiency and
flexibility of MoE. At the same time, there is a trend toward scaling MoE to larger model sizes and
to a greater number of experts, as shown in recent works such as K2 (Kimi et al., 2025), DeepSeek-
V3 (Liu et al., 2024) and Mixture of a Million Experts (He, 2024). In parallel, several studies have
investigated alternative routing strategies and expert designs, including heterogeneous experts in
HMoE (Wang et al., 2024a), autonomous expert activation in AoE (Lv et al., 2025) and probabilistic
Top-P routing (Zhou et al., 2022). In this work, when analyzing scaling laws, we adopt the classical
Top-K routing strategy as our main setting.

6.2 SCALING LAWS OF LLMS

Scaling laws for LLMs describe how model performance depends on factors such as model size and
training data. In dense Transformers, Kaplan et al. (2020) first studied scaling laws and showed
that the final model perplexity follows a power-law relationship with both model size and data size.
Building on this, Hoffmann et al. (2022) extended the analysis by incorporating variable cosine
cycle lengths and proposed a revised scaling formulation. Scaling behavior has also been examined
in alternative architectures and training regimes, particularly in MoE models. Clark et al. (2022)
investigated MoE scaling laws under a fixed dataset, focusing on the impact of model size and the
number of experts. Krajewski et al. (2024) studied how scaling changes with different levels of
expert granularity in MoE architectures. Abnar et al. (2025) analyzed scaling laws with respect to
total model size N , dataset size D and the fraction of inactive experts, while Ludziejewski et al.
(2025) examined the joint effects of multiple factors, including the activated model size Na, dataset
size D. The comparison between these scaling laws and ours is in Table 5.

Beyond architectures, Step Law (Li et al., 2025a) and relevant studies (Shuai et al., 2024; Zhang
et al., 2024; McCandlish et al., 2018) provide principles for learning rate, weight decay and batch
size, while Farseer (Li et al., 2025b) refines loss scaling for accurate extrapolation. Other works
include parallel scaling (Chen et al., 2025) for improving compute efficiency and SynthLLM (Qin
et al., 2025) for analyzing the scalability of synthetic data. More recently, Sun et al. (2025) proposed
a joint scaling law for floating point quantization training, highlighting the influence of exponent and
mantissa bits, the effect of critical data size and the optimal precision range for efficient LLM train-
ing. Overall, these works extend scaling laws across optimizers, architectures and data, providing
guidance for LLM design and training. Nevertheless, the community is urgent to build a more
comprehensive MoE scaling law.

7 CONCLUSION AND FUTURE WORK

In this work, we propose a more accurate joint MoE scaling law that considers more comprehensive
factors, including total model size N , data size D, activated model size Na, the number of activated
experts G and the ratio of shared experts in activated experts S. Based on the joint MoE scaling
law, we further derive the optimal value expressions for essential MoE-specific factors of G, S and
Na/N and identify several insightful implications, which can facilitate future MoE model design
and training. In the future, we will further validate our scaling law under larger scales and novel
MoE architectures. Currently, our investigations have primarily centered on factors pertaining to
the MoE blocks. It would be worthwhile to extend this scope to encompass both the factors and
structural configurations associated with other LLM blocks, such as the attention layers.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have taken the following measures: (1) Datasets.
In Section 3, we specify the dataset (Dolma V1.7 dataset) used in the experiments and provide its
source attribution. (2) Code. All experiments in our scaling law research were trained using open-
source frameworks (Megatron and Torchtitan), ensuring high reproducibility. Details are provided
in the supplementary materials. (3) Experimental Details. The basic experimental settings are
described in Section 3, with specific hyperparameter configurations provided in Appendix B and
detailed experimental specifications in Appendix L. (4) Proof Details. The derivation process of our
joint MoE scaling law is elaborated in detail in Section 4 and Appendix C. Meanwhile, the derivation
of the key implications involved is thoroughly explained in Section 5, as well as in Appendices D,
E, F and G.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we leveraged LLMs to support and refine the writing. Specifically, LLMs were used
for grammar and spelling correction, as well as polishing linguistic expressions to enhance clarity
and readability. All other core components of the work, including the development of ideas, design
and execution of experiments and derivation of formulas, were completed manually by ourselves.

B HYPERPARAMETER DETAILS

We report serveral typical hyper-parameters used for training our MoE models in Table 1. The
models vary in layers, hidden size and expert size across different scales, while the optimizer and
learning rate settings are consistent. All models are trained with AdamW and cosine learning rate
decay, using a sequence length of 2048 and a batch size of 2M tokens. The detailed hyper-parameters
of our MoE models are given as follows. In all of our experiments, the parameters considered do
not include those from the embedding layer. For all experimental settings, refer to Appendix L.

Table 1: Typical model hyper-parameters for different sizes.

Total model size 247M 496M 907M 2.40B 3.96B
Activated model size 48M 99M 181M 476M 793M

# Layers 12 12 12 20 24
# Routed experts 32 32 32 32 32
# Activated routed experts 4 4 4 4 4
# Shared experts 1 1 1 1 1
# Attention heads 8 12 16 20 24
Hidden size 512 768 1024 1280 1536
Expert size 384 512 704 896 1024
Attention head size 64 64 64 64 64

Optimizer AdamW
Adam (β1, β2) (0.9, 0.95)
Adam ϵ 1× 10−8

Weight decay 0.1
Clip grad norm 1.0
Max lr 3.0× 10−4

Min lr 0
Lr decay Cosine
Decay rate 10%
Sequence length 2048
Batch size (# tokens) 2M
Warmup steps 500
Normalization RMSNorm
Vocabulary size 128256
Positional encoding ROPE

C FITTING DETAILS OF OUR MOE SCALING LAWS

Our MoE scaling law precisely characterizes the effects of three critical dimensions—parameters,
data sizes and model architectures—on scaling patterns. Specifically, the term L(G,S) · ϕ(Na, N)
quantifies the architectural impact on loss, while explicitly revealing its regulation by parameter
scale. The formulation ρ(N,D,Na) =

a
Nα + b

Dβ + c
Nα

a
+ ϵ delineates how parameters and data size

influence the MoE loss. By integrating all core factors that govern MoE architectural performance
into a joint scaling law, our proposed MoE scaling law achieves an elegant integration. This theoret-
ical construct carries substantial significance for informing the design of MoE model architectures.
Further details regarding the fitting process of our MoE scaling laws are elaborated below.
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C.1 NUMBERICAL FITS OF OUR JOINT MOE SCALING LAW

Our joint MoE scaling law is formalized as:

L(N,D,Na, G, S) = (eG+
f

G
+mS2+nS)∗( 1

Nα
+

k

Nα
a

+h
Na

N
)+

a

Nα
+

b

Dβ
+

c

Nα
a

+ϵ, (15)

where the detailed fitted constants and values are presented below, based on 450 experiments across
different model settings. Of these, 268 were used for fitting, 91 for validation, and 90 small-size
experiments to observe the marginal effect of G.

Table 2: Fitted constants and their values in Eq. 15.

Constant Value

e 0.1577
f 7.2446
m 5.1395
n -3.2363
k 0.0013
h 0.0450
a 38.0510
α 0.2383
b 27129.0488
β 0.4694
c 31.0958
ϵ 1.8182

C.2 FITTING RESULTS OF THE SCALING LAW FOR L(N,D)

Figure 6 presents the fitting performance of the L(N,D) Eq. 4 in fitting the loss of MoE archi-
tectures, where only total model size N and data size D are considered. It can be observed that
L(N,D) only provides a coarse-grained fit to our experimental data points, with suboptimal spe-
cific fitting performance. This indicates that additional factors within the MoE architecture need to
be taken into account.
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Figure 6: Fitting results of the scaling law of L(N,D). Average validation loss error: 0.0179.
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C.3 FITTING RESULTS OF THE SCALING LAW FOR L(N,D,Na)

Figure 7 demonstrates the fitting performance of the scaling law L(N,D,Na) Eq. 7 on the loss
of MoE models, where Na is incorporated into the law. This result indicates that Na constitutes a
critical factor influencing the MoE scaling law and the inclusion ofNa in the joint scaling law yields
a substantial improvement in fitting performance compared to the original scaling law L(N,D).
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Figure 7: Fitting results of the scaling law of L(N,D,Na). Average validation loss error: 0.0124.

In the following, we elaborate on the process of incorporating the factor Na into the scaling law
L(N,D,Na) Eq. 7. Specifically, we first designed and conducted a series of controlled experi-
ments on Na following Eq. 35. Subsequently, hyperparameter fitting was performed across diverse
configurations of D and N , with the associated results presented in Figure 8.
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Figure 8: The correlations between ι, h in Eq. 5 and N , D. ι and h can be viewed as functions of
N or D.

It can be observed that ι exhibits a linear relationship withN andD after logarithmic transformation,
indicating a power-law relationship between ι and N as well as D. The parameter h shows an
inverse proportional relationship with N across different data volumes D. Other factors c and γ
fluctuate with changes in N and D without displaying obvious correlations and thus are considered
independent of N and D. It is noteworthy that the hyperparameter fitting results indicate the fitted
value of the exponent term for Na in the term hNa

N approaches 1. Therefore, it is reasonable to
conclude that Na in the term hNa

N does not have an exponent.

C.4 FITTING RESULTS OF THE SCALING LAW FOR L(N,D,Na, G)

Figure 9 illustrates the fitting performance of the scaling law L(N,D,Na, G) Eq. 9 on the loss of
MoE architectures, where the granularityG is incorporated. As stated in Section 4.3,G characterizes
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Figure 9: Fitting results of the scaling law ofL(N,D,Na, G). Average validation loss error: 0.0083.
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Figure 10: The correlations between a, c, h in Eq. 7 and G. a, c, h can be viewed as functions of G.

the structural properties of MoE architectures and reflects the impact of MoE architecture on perfor-
mance. The results demonstrate that the scaling law which considers the structural factor G yields
superior fitting performance. By analogy, to incorporate G into the scaling law L(N,D,Na, G),
we first designed and conducted a series of controlled experiments where G was treated as the sole
factor of variation, with all other factors held constant. Specifically, as G increases, the counts of
routed experts and shared experts expand proportionally, whereas the corresponding expert dimen-
sions shrink proportionally. Considering the marginal effect between G and loss, as well as the
coupling relationships among G, N and Na, we hypothesize that a, b, c and h—which appear in
the numerator—are correlated with G. Experimental results demonstrate that the data size D is in-
dependent of G. The variation curves of the fitted hyperparameters a, c, h under different values of
G are presented in Figure 10. Furthermore, we also provide the scaling law of validation loss with
respect to G under other settings, which serve to observe the marginal effect of G.

2 4 6 8 10 12 14 16
G

3.250

3.275

3.300

3.325

3.350

3.375

3.400

3.425

Va
lid

at
io

n 
Lo

ss

Na21M-N120M
Na30M-N92M
Na30M-N175M
Na30M-N340M
Na41M-N239M

(a) Loss vs G with 10B data size.
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(b) Loss vs G with 20B data size.
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(c) Loss vs G with 50B data size.

Figure 11: Marginal effect of validation loss and G with S = 0. Data point sizes are proportional to
D.
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C.5 FITTING RESULTS OF THE SCALING LAW FOR L(N,D,Na, G, S)

Similarly, the ratio of shared experts to activated experts (S) constitutes another critical struc-
tural characteristic of MoE architectures. The fitting performance of our final joint scaling law
L(N,D,Na, G, S) is illustrated in Figure 12.
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Figure 12: Fitting results of our final scaling law of L(N,D,Na, G, S). Average validation loss
error: 0.0059.

Similarly, the analysis of hyperparameters related to S is presented in Figure 13. It can be observed:
(1) m and n are independent of D, indicating that D and S are mutually decoupled; (2) m increases
with the growth of N and Na, whereas n decreases with the growth of N and Na. Notably, the
extreme point of S remains unchanged with variations in N and Na; (3) ψ exhibits an obvious
power-law relationship with N , Na and D.

Furthermore, as stated in Section 4.5, the scaling law of S becomes increasingly prominent with the
growth of model size. As shown in Figure 14.
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Figure 14: Illustration of the scaling law of S becoming increasingly prominent with growing model
size with a data size of 50B.
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Figure 13: The correlations between m, n and ψ in Eq. 10 and N , Na, D. m, n and ψ can be
viewed as functions of N , Na or D.

D DERIVATION OF THEORETICAL OPTIMAL G

First, we decompose L(N,D,Na, G, S) Eq. 15 into three components to isolate terms involving G.
This decomposition leverages the fact that most variables (N,D,Na, S) are independent of G:

LN,D,Na,S(G) =

(
eG+

f

G
+mS2 + nS

)
︸ ︷︷ ︸

A(G)

·
(

1

Nα
+

k

Nα
a

+ h
Na

N

)
︸ ︷︷ ︸

B

+

(
a

Nα
+

c

Nα
a

+
b

Dβ
+ s

)
︸ ︷︷ ︸

C

= A(G) ·B + C

(16)

Compute ∂L
∂G and set to 0:

∂L

∂G
=

(
e− f

G2

)
·B = 0 (17)

Since B ̸= 0, we get e− f
G2 = 0. Therefore:

G2 =
f

e
=⇒ G =

√
f

e
(G > 0) (18)

The second derivative checks to confirm a minimum.

∂2L

∂G2
=

2f

G3
·B > 0 (19)

The extreme point (minimum) is:

Gopt =

√
f

e
(20)
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Figure 15: Verification of the marginal relationship for G, S and Na/N under larger model sizes.

Substituting the optimized hyperparameters into the above Eq. 20 yields Gopt ≈ 6.78.

To substantiate the validity of our conclusions, we conducted an analysis on the configurations of
mainstream industrial MoE models, with detailed specifications in Table 3.

Table 3: Analyses of mainstream MoE models. Based on our scaling law, the theoretical optimal G
and S are set as: G ≈ 6.78, S ≈ 0.31. The practical ranges provide relative recommended settings
of G and S in practice with less effectiveness loss (≤0.001).

Model G G G Practical Range S S Practical Range
(ns+TopK) (Actual) (Thr = 0.001) (Actual) (Thr = 0.001)

gpt-oss-20b 0 + 4 4 [5.09, 9.04] 0 [0.183, 0.446]
Qwen3-30B-A3B 0 + 8 8 [4.80, 9.58] 0 [0.156, 0.473]
Hunyuan-A13B 1 + 8 9 [4.99, 9.21] 1/9 [0.175, 0.455]
GLM-4.5-Air 1 + 8 9 [4.77, 9.64] 1/9 [0.154, 0.476]
gpt-oss-120b 0 + 4 4 [4.27, 10.77] 0 [0.102, 0.528]

Qwen3-235B-A22B 0 + 8 8 [4.61, 9.98] 0 [0.138, 0.492]
GLM4.5 1 + 8 9 [4.56, 10.09] 1/9 [0.133, 0.497]

Deepseek-V3.1 1 + 8 9 [4.20, 10.93] 1/9 [0.095, 0.535]
Kimi-K2 1 + 8 9 [3.85, 11.95] 1/9 [0.053, 0.577]

Theoretically, the optimal values of G and S are determined to be 6.78 and 0.31, respectively. In
practical deployment scenarios, however, a trade-off range for G and S is typically adopted, mainly
owing to inherent efficiency constraints of MoE models. Building upon our proposed joint MoE
scaling law, we further derive efficiency-aware ranges for G and S tailored to mainstream MoE
models, with the loss threshold constrained to 0.001.

As presented in Table 3, the practical ranges of G exhibit a predominant distribution within the
interval [4, 11] across diverse model configurations. Moreover, these practical ranges of G are
demonstrated to be dependent on parameters N and Na. Notably, the theoretically optimal value of
G (i.e., 7) and our recommended practical range show strong consistency with the parameter settings
of mainstream MoE models across varying model scales, which implicitly corroborates the validity
of our inferences regarding G. The verification of the marginal effect for G under larger model sizes
is illustrated in Figure 15(a).

E DERIVATION OF THEORETICAL OPTIMAL S

Analogous to the derivation of the optimal value of G, the isolation of S from other factors followed
by the computation of its first-order derivative ∂L

∂S —with the derivative set to 0:

∂L

∂S
= (2mS + n) ·B = 0 (21)

Since B ̸= 0, we get 2mS + n = 0. Therefore:

Sopt = −
n

2m
(22)

Likewise, the second-derivative test confirms that Sopt corresponds to a minimum value. Substitut-
ing the optimized hyperparameters into the above Eq. 22 yields Sopt ≈ 0.31.
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Similarly, as shown in Table 3, we have also deduced the theoretical optimal value of S and its
corresponding efficiency-aware practical range. It is of particular note that both our experimental
findings and deductive inferences collectively highlight the indispensable role of shared experts in
the design of MoE architectures.

Existing researches on the parameter S in mainstream models remain relatively insufficient. Most
studies merely focus on the issue of whether to incorporate shared experts and no consistent consen-
sus has been established in the field thus far. Our empirical findings demonstrate that the inclusion
of S outperforms its exclusion in terms of model performance. Notably, within a specific range
of S values, the model can consistently achieve satisfactory results with negligible performance
fluctuations.

The verification of the marginal law for S under larger model sizes is illustrated in Figure 15(b).

F DERIVATION OF THEORETICAL AND PRACTICAL OPTIMAL Na/N

Theoretically Analysis. From Eq. 11, we can observe that there are two types of terms involving
the activated model size Na as a numerator or denominator. These two terms exert opposite effects
on the loss of MoE models. Intuitively, this implies that there exists an optimal Na given the config-
urations of other factors (e.g., the model size N ). It has been experimentally validated on both the
Torchtitan Liang et al. (2024) and Megatron Shoeybi et al. (2019) pre-training frameworks. To find
the optimal point of (Na

N )optt in L(N,D,Na, G, S), firstly, let r = Na

N , then decompose L as:

LN,D,G,S(r) =

(
eG+

f

G
+mS2 + nS

)
︸ ︷︷ ︸

A

·
(

1

Nα
+

k

(rN)α
+ hr

)
︸ ︷︷ ︸

B(r)

+

(
a

Nα
+

c

(rN)α
+

b

Dβ
+ s

)
︸ ︷︷ ︸

C(r)

(23)

Compute first derivative ∂L
∂r and set to 0:

∂L

∂r
= A · ∂B

∂r
+
∂C

∂r
= 0 (24)

Calculate partial derivatives:

∂B

∂r
= − αk

Nαrα+1
+ h,

∂C

∂r
= − αc

Nαrα+1
(25)

Substitute and simplify:

A

(
− αk

Nαrα+1
+ h

)
− αc

Nαrα+1
= 0 (26)

Rearrange terms to isolate r:

Ah =
α

Nαrα+1
(Ak + c) =⇒ rα+1 =

α(Ak + c)

AhNα
(27)

Thus:

r =

(
α(Ak + c)

AhNα

) 1
α+1

(28)

For α > 0, ∂2L
∂r2 = α(α+1)(Ak+c)

Nαrα+2 > 0, confirming a minimum.

Therefore, the optimal point of (Na

N )optt is:

(
Na

N

)
optt

=

α ·
[
k ·

(
eG+ f

G +mS2 + nS
)
+ c

]
hNα ·

(
eG+ f

G +mS2 + nS
)


1

α+1

(29)
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From the expression of
(
Na

N

)
optt

, it can be deduced that the theoretical optimal value is collectively
determined by factors G, S and N . Specifically, G (refer to Appendix D) and S (refer to Appendix
E), as validated by the foregoing analysis, generally exhibit respective independent optimal values.
Therefore, the optimal

(
Na

N

)
optt

decreases as the model size N increases. It verifies that with the
increasing total model sizes, the optimal MoE architecture will be sparser, which is consistent with
the current trend of current industry-level MoE models (Kimi et al., 2025; OpenAI et al., 2025).

Practical Efficiency-aware Analysis. However, the theoretically optimal sparsity degree of MoE
Na

N calculated in Eq. 29 cannot be directly used to guide the real-world MoE architecture design, for
the efficiency of LLMs is also an essential factor. Specifically, when Na gradually increases toward
its optimal value, the performance gains become increasingly marginal, while the associated costs
rise steadily. Therefore, it is necessary for us to explore the optimal Na

N under the consideration of
the balance between performance gain and efficiency cost.

We define the loss gain threshold as ∆Loss for the step size of ∆Na set as 0.01N . As Na is
incrementally scaled according to the specified step size, the marginal gain of loss reduction will
ultimately fall below the defined threshold ∆Loss, where we suppose the model reaches the practical
efficiency-aware optimal Na

N . The detailed derivation proceeds as follows:

Algorithm 1: Find Efficiency-aware Optimal Na

Function FindEfficiencyAwareNa(N , D, G, S, threshold):
step = 0.01×N ;
Na prev ← step;
loss prev← L(N,D,Na prev, G, S);
iteration = 1;
max iterations = n;
while iteration ≤ max iterations do

Na current ← Na prev + step;
loss current← L(N,D,Na current, G, S);
loss reduction← loss prev − loss current;
if loss reduction < threshold then

return Na current;
Na prev ← Na current;
loss prev← loss current;
iteration← iteration + 1;

return None;

Hence, for a given model size N , our MoE scaling law yields a practically applicable range for
Na, i.e., spanning the interval from the practical efficiency-aware optimal point to the theoretically
optimal point, i.e., Na ∈ [

(
Na

N

)
opte

,
(
Na

N

)
optt

].

To substantiate the validity of our conclusions, we conducted an analysis on the configurations of
mainstream industrial MoE models, with detailed specifications in Table 4. It indicates that the
activated model sizes Na of most mainstream MoE models are consistent with our recommended
ranges above. Practical MoE designs could jointly consider both effectiveness and efficiency with
the help of our proposed MoE scaling laws. The verification of the marginal law for Na/N under
larger model sizes is illustrated in Figure 15(c).

Discussion on the Optimal G and Na. We attempt to explain possible misunderstandings that the
phenomenon reflected by our MoE scaling law (i.e., G and Na have optimal value) seems to “con-
flict with” our intuitive cognition on expanding MoE experts or activated parameters (i.e., larger G
and Na are likely to achieve better results). Precisely, it intuitively seems that larger values of G and
Na would be preferable. This notion, however, does not contradict our proposed MoE scaling law:
typically, when adjusting Na while keeping the total model size N fixed (which is the most natural
operation of “increasing Na”), such adjustment is achieved by increasing G, leading to the concur-
rent growth of both parameters Na and G. In this situation, our formula correctly reflects that the
loss generally decreases under these circumstances. Nevertheless, when focusing on G with other
factors held constant, increasing G results in a greater number of routed experts but progressively
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Table 4: Theoretical and practical efficiency-aware optimal Na/N analysis for mainstream MoE
models

Model Na-N Na/N Na/N Practical Opt Na/N Practical Opt
(Actual) Theoretical Opt (∆Loss = 0.001) (∆Loss = 0.005)

gpt-oss-20b 3.6B-21B 42.89% (9.0B) 22.00% (4.6B) 9.00% (1.9B)
Qwen3-30B-A3B 3B-30B 40.04% (12.0B) 21.00% (6.3B) 9.00% (2.7B)
Hunyuan-A13B 13B-80B 33.16% (26.5B) 18.00% (14.4B) 7.00% (5.6B)
GLM-4.5-Air 12B-106B 31.41% (33.3B) 17.00% (18.0B) 7.00% (7.4B)
gpt-oss-120b 5.1B-117B 30.82% (36.1B) 16.00% (18.7B) 7.00% (8.2B)

Qwen3-235B-A22B 22B-235B 26.95% (63.33B) 14.00% (32.9B) 6.00% (14.1B)
GLM-4.5 32B-355B 24.89% (88.4B) 13.00% (46.2B) 6.00% (21.3B)

Deepseek-V3.1 37B-671B 22.02% (147.8B) 12.00% (80.5B) 5.00% (33.6B)
Kimi-K2 32B-1T 20.40% (204.0B) 11.00% (110.0B) 5.00% (50.0B)

smaller expert dimensions due to partitioning. While appropriate fine-grained partitioning can en-
hance performance, exceeding a specific threshold will conversely impair model performance. Sim-
ilarly, when focusing onNa with other factors fixed, increasingNa leads to larger expert dimensions
but a reduced number of all/routed experts, thereby diminishing the sparsity advantage of the MoE
model. This induces gradual structural distortion in the MoE architecture, which in turn disrupts the
advantage of MoE’s combinational activation mechanism and thus degrades performance.

G COMPUTE-OPTIMALITY WITH FIXED CONFIGURATIONS

We controll the total computation cost C = D ·Na and analyze the relationship between the optimal
loss and C. According to our Implications #1 and #2, G and S have optimal values. Thus, the term
eG + f

G +mS2 + nS can be expressed as a constant term const under the optimal configuration.
When N is fixed, substituting D = C

Na
into our joint MoE scaling law (Eq. 11) yields the following

result:

L(Na, C) = C0 + (const · k + c) · 1

Nα
a

+
const · h

N
·Na +

bNβ
a

Cβ

where const = eG+
f

G
+mS2 + nS and C0 =

const+ a

Nα
+ s.

(30)

To find the optimal Na (denoted N∗
a ) that minimizes L(Na), compute the first derivative of L(Na)

with respect to Na and set dL
dNa

= 0:

bβN∗β−1
a

Cβ
= α (const · k + c)N∗−α−1

a − const · h
N

(31)

Substitute N∗
a into Eq. 30 to get the optimal loss L∗:

L∗(C) = C0 +
(const · k + c) (α+ β)

β
N∗−α

a +
const · h(β − 1)

Nβ
N∗

a ,

subject to
bβN∗β−1

a

Cβ
= α (const · k + c)N∗−α−1

a − const · h
N

,

where const = eG+
f

G
+mS2 + nS and C0 =

const+ a

Nα
+ s.

(32)

To facilitate understanding, we conduct the derivation under the predefined fixed configuration:
G = 7, S = 0.31 and N = 1T. The expression for L∗(C) is provided as follows and illustrated in
Figure 16:

L∗(C) ≈ 1.87 + 576 · C−0.158 (33)
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Figure 16: Illustration of L∗(C) under the configuration of N = 1T, G = 7 and S = 0.31.

H DERIVATION OF THE u-v RELATIONSHIP FOR Na

To achieve the exclusive variation of the control variable Na, it can be derived from Eq. 3 that when
G and S are fixed, Na needs to be adjusted by modifying the expert dimension and the number of
routed experts. Specifically, we scaled the expert dimension by a factor of u while scaling down the
number of routed experts by a corresponding factor v. However, to ensure thatN remains unchanged
simultaneously, the following constraint applies:(
4dhead ·nh +3dexpert(SG+ne)

)
dhidden · l =

(
4dhead ·nh +3dexpert ·u(SG+ne · v)

)
dhidden · l (34)

Through formula transformation, we can derive:

v =
(1− u) · S ·G+ ne

u · ne
. (35)

Thus, by setting the ratio of u to v according to the aforementioned Eq. 35, the controlled vari-
ation of Na can be achieved. For instance, when N = 2.4B, G = 20 and S = 0.2, Na

takes values in the set {303M, 476M, 819M, 1507M, 2196M}, with the corresponding dexpert being
{112, 224, 448, 896, 1344} and the respective ne being {260, 128, 62, 29, 18}.

I RELATED SCALING LAWS

Table 5: Comparison with existing MoE scaling laws.

N Na D G S

Scaling Laws for Fine-Grained MoE (Krajewski et al., 2024) ✓ ✗ ✓ ✓ ✗
Parameters vs. FLOPs (Abnar et al., 2025) ✓ ✓ ✓ ✗ ✗
Joint MoE Scaling Laws (Ludziejewski et al., 2025) ✓ ✓ ✓ ✗ ✗
Scaling Laws Across Architectures (Wang et al., 2024b) ✓ ✗ ✓ ✗ ✗
Unified Routed LMs (Clark et al., 2022) ✓ ✗ ✗ ✗ ✗

Our MoE Scaling Law ✓ ✓ ✓ ✓ ✓

We selected two related scaling laws for comparison, each focusing on different aspects. Below, we
briefly introduce their main ideas and describe how we use them to compare with the scaling law
derived from our experiments.
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I.1 SCALING LAWS FOR FINE-GRAINED MIXTURE-OF-EXPERTS

Krajewski et al. (2024) introduced a granularity factor into MoE scaling laws. They model the
training loss L as a function of the number of active parameters N , the dataset size D and the
granularity G:

L(N,D,G) = c +
( g

Gγ
+ a

) 1

Nα
+

b

Dβ
. (36)

Here c is the irreducible loss. The term N−α captures the effect of model size, adjusted by G:
finer experts (larger G) reduce this contribution. The last term D−β reflects the improvement from
more data. Overall, the law indicates diminishing returns from N and D, with better performance
at higher G. As shown in Figure 5, this fitted result is less accurate than ours. The detailed fitted
constants and values in Eq. 36 are presented below in Table 6.

Table 6: Fitted constants and their values in Eq. 36.

Constant Value

a 81.9404
α 0.2380
b 3195.7723
β 0.3695
c 1.7709
g 0.0004
γ 0.0028

I.2 SCALING LAWS FOR OPTIMAL SPARSITY IN MOE

Abnar et al. (2025) analyzed the effect of sparsity S, defined as the fraction of inactive experts.
Their scaling law is:

L(N,D, S) =
a

Nα
+

b

Dβ
+

c

(1− S)λ
+

d

(1− S)δ Nγ
+ e. (37)

The first two terms represent the standard effects of model and data size. The third term penalizes
high sparsity, while the fourth couples sparsity with model size. The constant e is an offset. This
form shows that both the level of sparsity and its interaction with N influence the loss. As shown in
Figure 5, our method achieves a better fit than this result. The detailed fitted constants and values
in Eq. 37 are presented below in Table 7.

Table 7: Fitted constants and their values in Eq. 37.

Constant Value

a 43.2889
α 0.1948
b 8280.7176
β 0.4145
e 1.6351
c 0.0003
d 9.4982
λ 1.8469
δ 0.0802
γ 14.0591

I.3 COMPARISON METHODOLOGY

For a fair comparison, we use the same dataset to fit as ours for these scaling laws. Each formula is
applied without modification and parameters are optimized on identical experimental results under
the same settings. This ensures that any differences arise solely from the functional forms. In
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addition, we also fit other MoE scaling law (Ludziejewski et al., 2025; Clark et al., 2022), but their
performance is likewise inferior to ours. This is likely because our formulation incorporates a more
comprehensive set of MoE factors—D,N,Na, G, S—and is applied over a broader range of MoE
settings. Furthermore, our fitting carefully accounts for marginal effects while leveraging Occam’s
razor to simplify both hyperparameters and functional forms.

J LIMITATIONS

Our work has several limitations. In this work, we mainly focus on the classical MoE architecture.
The analysis has not been validated at extremely larger scales or with alternative MoE architectures /
training objectives due to the resource limit. In addition, we focus primarily on MoE-related factors
and do not examine other components of LLMs that may also impact the performance of MoE, such
as the attention layers and their interactions. Future work should extend the analysis to broader
architectures and assess robustness.

K VARIATION OF DIFFERENT FACTORS

In our study, the core factors, including Na, N , G, and S, are varied in strict adherence to the
principle of controlling variables. We have already discussed the methods used to control these
factors during the experiments in Appendix C. To clarify the experimental procedure, we provide a
series of illustrations in Figure 17 that demonstrate how each variable is systematically adjusted:

L DETAILED SETTINGS OF EXPERIMENTS

We show the detailed configurations of our experiments as follows. Precisely, the value ranges
of various factors in the experimental setup are as follows: for fitting data points, G ∈ (1, 20],
S ∈ [0.0, 0.8], Na ∈ [30M, 2.2B], N ∈ [133M, 3.4B] and D ∈ [10B, 50B]; for validation data
points, G ∈ (1, 40], S ∈ [0.0, 0.7], Na ∈ [453M, 6.6B], N ∈ [2.4B, 30B] and D ∈ [10B, 100B].

We should highlight that our joint MoE scaling law is designed to accommodate practical experimen-
tal configurations. Therefore, the MoE configurations are more focused on the relatively practical
settings, with partial of extreme settings to reveal the marginal effect of different factors. For the
validation data, we adopt larger model/data sizes and broader ranges of factors to evaluate the ef-
fectiveness of our scaling law. For some uncommon and impractical experimental setups, such as
those with extremely large G and exceptionally high Na/N ratios simultaneously (whose efficiency
is unsatisfactory in the view of MoE models), perfect fitting is not pursued by our MoE scaling law.
The detailed configurations are given in Table 8.

Table 8: All configurations of experiments. The last column is Label, where ✓ indicates that the
data point is used for validation and ✗ indicates that the data point is used for fitting or for observing
marginal patterns.

Na N D G S Label Na N D G S Label

0 48M 247M 10B 2.5 0.2 ✗ 1 48M 247M 10B 5 0.2 ✗
2 48M 247M 10B 10 0.2 ✗ 3 48M 247M 10B 15 0.2 ✗
4 48M 247M 10B 20 0.2 ✗ 5 48M 247M 20B 2.5 0.2 ✗
6 48M 247M 20B 5 0.2 ✗ 7 48M 247M 20B 10 0.2 ✗
8 48M 247M 20B 15 0.2 ✗ 9 48M 247M 20B 20 0.2 ✗

10 48M 247M 50B 2.5 0.2 ✗ 11 48M 247M 50B 5 0.2 ✗
12 48M 247M 50B 10 0.2 ✗ 13 48M 247M 50B 15 0.2 ✗
14 48M 247M 50B 20 0.2 ✗ 15 99M 496M 10B 2.5 0.2 ✗
16 99M 496M 10B 5 0.2 ✗ 17 99M 496M 10B 10 0.2 ✗
18 99M 496M 10B 15 0.2 ✗ 19 99M 496M 10B 20 0.2 ✗
20 99M 496M 20B 2.5 0.2 ✗ 21 99M 496M 20B 5 0.2 ✗
22 99M 496M 20B 10 0.2 ✗ 23 99M 496M 20B 15 0.2 ✗

Continued on next page
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Table 8 continued from previous page
Na N D G S Label Na N D G S Label

24 99M 496M 20B 20 0.2 ✗ 25 99M 496M 50B 2.5 0.2 ✗
26 99M 496M 50B 5 0.2 ✗ 27 99M 496M 50B 10 0.2 ✗
28 99M 496M 50B 15 0.2 ✗ 29 99M 496M 50B 20 0.2 ✗
30 181M 907M 10B 2.5 0.2 ✗ 31 181M 907M 10B 5 0.2 ✗
32 181M 907M 10B 10 0.2 ✗ 33 181M 907M 10B 15 0.2 ✗
34 181M 907M 10B 20 0.2 ✗ 35 181M 907M 20B 2.5 0.2 ✗
36 181M 907M 20B 5 0.2 ✗ 37 181M 907M 20B 10 0.2 ✗
38 181M 907M 20B 15 0.2 ✗ 39 181M 907M 20B 20 0.2 ✗
40 181M 907M 50B 2.5 0.2 ✗ 41 181M 907M 50B 5 0.2 ✗
42 181M 907M 50B 10 0.2 ✗ 43 181M 907M 50B 15 0.2 ✗
44 181M 907M 50B 20 0.2 ✗ 45 48M 133M 10B 10 0.2 ✗
46 48M 247M 10B 10 0.2 ✗ 47 48M 473M 10B 10 0.2 ✗
48 48M 926M 10B 10 0.2 ✗ 49 48M 133M 20B 10 0.2 ✗
50 48M 247M 20B 10 0.2 ✗ 51 48M 473M 20B 10 0.2 ✗
52 48M 926M 20B 10 0.2 ✗ 53 48M 133M 50B 10 0.2 ✗
54 48M 247M 50B 10 0.2 ✗ 55 48M 473M 50B 10 0.2 ✗
56 48M 926M 50B 10 0.2 ✗ 57 99M 269M 10B 10 0.2 ✗
58 99M 496M 10B 10 0.2 ✗ 59 99M 949M 10B 10 0.2 ✗
60 99M 1855M 10B 10 0.2 ✗ 61 99M 269M 20B 10 0.2 ✗
62 99M 496M 20B 10 0.2 ✗ 63 99M 949M 20B 10 0.2 ✗
64 99M 1855M 20B 10 0.2 ✗ 65 99M 269M 50B 10 0.2 ✗
66 99M 496M 50B 10 0.2 ✗ 67 99M 949M 50B 10 0.2 ✗
68 99M 1855M 50B 10 0.2 ✗ 69 181M 492M 10B 10 0.2 ✗
70 181M 907M 10B 10 0.2 ✗ 71 181M 1738M 10B 10 0.2 ✗
72 181M 3399M 10B 10 0.2 ✗ 73 181M 492M 20B 10 0.2 ✗
74 181M 907M 20B 10 0.2 ✗ 75 181M 1738M 20B 10 0.2 ✗
76 181M 3399M 20B 10 0.2 ✗ 77 181M 492M 50B 10 0.2 ✗
78 181M 907M 50B 10 0.2 ✗ 79 181M 1738M 50B 10 0.2 ✗
80 181M 3399M 50B 10 0.2 ✗ 81 48M 247M 10B 10 0.0 ✗
82 48M 247M 10B 10 0.1 ✗ 83 48M 247M 10B 10 0.2 ✗
84 48M 247M 10B 10 0.4 ✗ 85 48M 247M 20B 10 0.0 ✗
86 48M 247M 20B 10 0.1 ✗ 87 48M 247M 20B 10 0.2 ✗
88 48M 247M 20B 10 0.4 ✗ 89 48M 247M 50B 10 0.0 ✗
90 48M 247M 50B 10 0.1 ✗ 91 48M 247M 50B 10 0.2 ✗
92 48M 247M 50B 10 0.4 ✗ 93 99M 496M 10B 10 0.0 ✗
94 99M 496M 10B 10 0.1 ✗ 95 99M 496M 10B 10 0.2 ✗
96 99M 496M 10B 10 0.4 ✗ 97 99M 496M 20B 10 0.0 ✗
98 99M 496M 20B 10 0.1 ✗ 99 99M 496M 20B 10 0.2 ✗

100 99M 496M 20B 10 0.4 ✗ 101 99M 496M 50B 10 0.0 ✗
102 99M 496M 50B 10 0.1 ✗ 103 99M 496M 50B 10 0.2 ✗
104 99M 496M 50B 10 0.4 ✗ 105 181M 907M 10B 10 0.0 ✗
106 181M 907M 10B 10 0.1 ✗ 107 181M 907M 10B 10 0.2 ✗
108 181M 907M 10B 10 0.3 ✗ 109 181M 907M 10B 10 0.4 ✗
110 181M 907M 10B 10 0.5 ✗ 111 181M 907M 10B 10 0.6 ✗
112 181M 907M 10B 10 0.7 ✗ 113 181M 907M 20B 10 0.0 ✗
114 181M 907M 20B 10 0.1 ✗ 115 181M 907M 20B 10 0.2 ✗
116 181M 907M 20B 10 0.3 ✗ 117 181M 907M 20B 10 0.4 ✗
118 181M 907M 20B 10 0.5 ✗ 119 181M 907M 20B 10 0.6 ✗
120 181M 907M 20B 10 0.7 ✗ 121 181M 907M 50B 10 0.0 ✗
122 181M 907M 50B 10 0.1 ✗ 123 181M 907M 50B 10 0.2 ✗
124 181M 907M 50B 10 0.3 ✗ 125 181M 907M 50B 10 0.4 ✗
126 181M 907M 50B 10 0.5 ✗ 127 181M 907M 50B 10 0.6 ✗
128 181M 907M 50B 10 0.7 ✗ 129 240M 1209M 10B 10 0.0 ✗
130 240M 1209M 10B 10 0.1 ✗ 131 240M 1209M 10B 10 0.2 ✗
132 240M 1209M 10B 10 0.3 ✗ 133 240M 1209M 10B 10 0.4 ✗

Continued on next page

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 8 continued from previous page
Na N D G S Label Na N D G S Label

134 240M 1209M 10B 10 0.5 ✗ 135 240M 1209M 10B 10 0.6 ✗
136 240M 1209M 10B 10 0.7 ✗ 137 240M 1209M 20B 10 0.0 ✗
138 240M 1209M 20B 10 0.1 ✗ 139 240M 1209M 20B 10 0.2 ✗
140 240M 1209M 20B 10 0.3 ✗ 141 240M 1209M 20B 10 0.4 ✗
142 240M 1209M 20B 10 0.5 ✗ 143 240M 1209M 20B 10 0.6 ✗
144 240M 1209M 20B 10 0.7 ✗ 145 240M 1209M 50B 10 0.0 ✗
146 240M 1209M 50B 10 0.1 ✗ 147 240M 1209M 50B 10 0.2 ✗
148 240M 1209M 50B 10 0.3 ✗ 149 240M 1209M 50B 10 0.4 ✗
150 240M 1209M 50B 10 0.5 ✗ 151 240M 1209M 50B 10 0.6 ✗
152 240M 1209M 50B 10 0.7 ✗ 153 476M 2404M 10B 10 0.0 ✗
154 476M 2404M 10B 10 0.1 ✗ 155 476M 2404M 10B 10 0.3 ✗
156 476M 2404M 10B 10 0.4 ✗ 157 476M 2404M 10B 10 0.5 ✗
158 476M 2404M 10B 10 0.6 ✗ 159 476M 2404M 10B 10 0.7 ✗
160 476M 2404M 20B 10 0.0 ✗ 161 476M 2404M 20B 10 0.1 ✗
162 476M 2404M 20B 10 0.3 ✗ 163 476M 2404M 20B 10 0.4 ✗
164 476M 2404M 20B 10 0.5 ✗ 165 476M 2404M 20B 10 0.6 ✗
166 476M 2404M 20B 10 0.7 ✗ 167 476M 2404M 50B 10 0.0 ✗
168 476M 2404M 50B 10 0.1 ✗ 169 476M 2404M 50B 10 0.3 ✗
170 476M 2404M 50B 10 0.4 ✗ 171 476M 2404M 50B 10 0.5 ✗
172 476M 2404M 50B 10 0.6 ✗ 173 476M 2404M 50B 10 0.7 ✗
174 240M 1209M 10B 5 0.0 ✗ 175 240M 1209M 10B 5 0.2 ✗
176 240M 1209M 10B 5 0.4 ✗ 177 240M 1209M 10B 5 0.6 ✗
178 240M 1209M 10B 5 0.8 ✗ 179 240M 1209M 20B 5 0.0 ✗
180 240M 1209M 20B 5 0.2 ✗ 181 240M 1209M 20B 5 0.4 ✗
182 240M 1209M 20B 5 0.6 ✗ 183 240M 1209M 20B 5 0.8 ✗
184 240M 1209M 50B 5 0.0 ✗ 185 240M 1209M 50B 5 0.2 ✗
186 240M 1209M 50B 5 0.4 ✗ 187 240M 1209M 50B 5 0.6 ✗
188 240M 1209M 50B 5 0.8 ✗ 189 476M 2404M 10B 5 0.0 ✗
190 476M 2404M 10B 5 0.2 ✗ 191 476M 2404M 10B 5 0.4 ✗
192 476M 2404M 10B 5 0.6 ✗ 193 476M 2404M 10B 5 0.8 ✗
194 476M 2404M 20B 5 0.0 ✗ 195 476M 2404M 20B 5 0.2 ✗
196 476M 2404M 20B 5 0.4 ✗ 197 476M 2404M 20B 5 0.6 ✗
198 476M 2404M 20B 5 0.8 ✗ 199 476M 2404M 50B 5 0.0 ✗
200 476M 2404M 50B 5 0.2 ✗ 201 476M 2404M 50B 5 0.4 ✗
202 476M 2404M 50B 5 0.6 ✗ 203 476M 2404M 50B 5 0.8 ✗
204 31M 247M 10B 20 0.2 ✗ 205 31M 247M 20B 20 0.2 ✗
206 31M 247M 30B 20 0.2 ✗ 207 31M 247M 50B 20 0.2 ✗
208 64M 496M 10B 20 0.2 ✗ 209 99M 496M 10B 20 0.2 ✗
210 170M 496M 10B 20 0.2 ✗ 211 312M 496M 10B 20 0.2 ✗
212 453M 496M 10B 20 0.2 ✗ 213 64M 496M 20B 20 0.2 ✗
214 99M 496M 20B 20 0.2 ✗ 215 170M 496M 20B 20 0.2 ✗
216 312M 496M 20B 20 0.2 ✗ 217 453M 496M 20B 20 0.2 ✗
218 64M 496M 30B 20 0.2 ✗ 219 99M 496M 30B 20 0.2 ✗
220 170M 496M 30B 20 0.2 ✗ 221 312M 496M 30B 20 0.2 ✗
222 453M 496M 30B 20 0.2 ✗ 223 64M 496M 50B 20 0.2 ✗
224 99M 496M 50B 20 0.2 ✗ 225 170M 496M 50B 20 0.2 ✗
226 312M 496M 50B 20 0.2 ✗ 227 453M 496M 50B 20 0.2 ✗
228 116M 907M 10B 20 0.2 ✗ 229 181M 907M 10B 20 0.2 ✗
230 310M 907M 10B 20 0.2 ✗ 231 570M 907M 10B 20 0.2 ✗
232 829M 907M 10B 20 0.2 ✗ 233 116M 907M 20B 20 0.2 ✗
234 181M 907M 20B 20 0.2 ✗ 235 310M 907M 20B 20 0.2 ✗
236 570M 907M 20B 20 0.2 ✗ 237 829M 907M 20B 20 0.2 ✗
238 116M 907M 30B 20 0.2 ✗ 239 181M 907M 30B 20 0.2 ✗
240 310M 907M 30B 20 0.2 ✗ 241 570M 907M 30B 20 0.2 ✗
242 829M 907M 30B 20 0.2 ✗ 243 116M 907M 50B 20 0.2 ✗
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Table 8 continued from previous page
Na N D G S Label Na N D G S Label

244 181M 907M 50B 20 0.2 ✗ 245 310M 907M 50B 20 0.2 ✗
246 570M 907M 50B 20 0.2 ✗ 247 829M 907M 50B 20 0.2 ✗
248 304M 2404M 10B 20 0.2 ✗ 249 476M 2404M 10B 20 0.2 ✗
250 820M 2404M 10B 20 0.2 ✗ 251 1508M 2404M 10B 20 0.2 ✗
252 2196M 2404M 10B 20 0.2 ✗ 253 304M 2404M 20B 20 0.2 ✗
254 476M 2404M 20B 20 0.2 ✗ 255 820M 2404M 20B 20 0.2 ✗
256 1508M 2404M 20B 20 0.2 ✗ 257 2196M 2404M 20B 20 0.2 ✗
258 304M 2404M 30B 20 0.2 ✗ 259 476M 2404M 30B 20 0.2 ✗
260 820M 2404M 30B 20 0.2 ✗ 261 1508M 2404M 30B 20 0.2 ✗
262 2196M 2404M 30B 20 0.2 ✗ 263 304M 2404M 50B 20 0.2 ✗
264 476M 2404M 50B 20 0.2 ✗ 265 820M 2404M 50B 20 0.2 ✗
266 1508M 2404M 50B 20 0.2 ✗ 267 2196M 2404M 50B 20 0.2 ✗
268 22M 121M 10B 1 0.0 ✗ 269 22M 121M 10B 2 0.0 ✗
270 22M 121M 10B 3 0.0 ✗ 271 22M 121M 10B 4 0.0 ✗
272 22M 121M 10B 8 0.0 ✗ 273 22M 121M 10B 16 0.0 ✗
274 22M 121M 20B 1 0.0 ✗ 275 22M 121M 20B 2 0.0 ✗
276 22M 121M 20B 3 0.0 ✗ 277 22M 121M 20B 4 0.0 ✗
278 22M 121M 20B 8 0.0 ✗ 279 22M 121M 20B 16 0.0 ✗
280 22M 121M 50B 1 0.0 ✗ 281 22M 121M 50B 2 0.0 ✗
282 22M 121M 50B 3 0.0 ✗ 283 22M 121M 50B 4 0.0 ✗
284 22M 121M 50B 8 0.0 ✗ 285 22M 121M 50B 16 0.0 ✗
286 30M 93M 10B 1 0.0 ✗ 287 30M 93M 10B 2 0.0 ✗
288 30M 93M 10B 3 0.0 ✗ 289 30M 93M 10B 4 0.0 ✗
290 30M 93M 10B 8 0.0 ✗ 291 30M 93M 10B 16 0.0 ✗
292 30M 93M 20B 1 0.0 ✗ 293 30M 93M 20B 2 0.0 ✗
294 30M 93M 20B 3 0.0 ✗ 295 30M 93M 20B 4 0.0 ✗
296 30M 93M 20B 8 0.0 ✗ 297 30M 93M 20B 16 0.0 ✗
298 30M 93M 50B 1 0.0 ✗ 299 30M 93M 50B 2 0.0 ✗
300 30M 93M 50B 3 0.0 ✗ 301 30M 93M 50B 4 0.0 ✗
302 30M 93M 50B 8 0.0 ✗ 303 30M 93M 50B 16 0.0 ✗
304 30M 175M 10B 1 0.0 ✗ 305 30M 175M 10B 2 0.0 ✗
306 30M 175M 10B 3 0.0 ✗ 307 30M 175M 10B 4 0.0 ✗
308 30M 175M 10B 8 0.0 ✗ 309 30M 175M 10B 16 0.0 ✗
310 30M 175M 20B 1 0.0 ✗ 311 30M 175M 20B 2 0.0 ✗
312 30M 175M 20B 3 0.0 ✗ 313 30M 175M 20B 4 0.0 ✗
314 30M 175M 20B 8 0.0 ✗ 315 30M 175M 20B 16 0.0 ✗
316 30M 175M 50B 1 0.0 ✗ 317 30M 175M 50B 2 0.0 ✗
318 30M 175M 50B 3 0.0 ✗ 319 30M 175M 50B 4 0.0 ✗
320 30M 175M 50B 8 0.0 ✗ 321 30M 175M 50B 16 0.0 ✗
322 30M 340M 10B 1 0.0 ✗ 323 30M 340M 10B 2 0.0 ✗
324 30M 340M 10B 3 0.0 ✗ 325 30M 340M 10B 4 0.0 ✗
326 30M 340M 10B 8 0.0 ✗ 327 30M 340M 10B 16 0.0 ✗
328 30M 340M 20B 1 0.0 ✗ 329 30M 340M 20B 2 0.0 ✗
330 30M 340M 20B 3 0.0 ✗ 331 30M 340M 20B 4 0.0 ✗
332 30M 340M 20B 8 0.0 ✗ 333 30M 340M 20B 16 0.0 ✗
334 30M 340M 50B 1 0.0 ✗ 335 30M 340M 50B 2 0.0 ✗
336 30M 340M 50B 3 0.0 ✗ 337 30M 340M 50B 4 0.0 ✗
338 30M 340M 50B 8 0.0 ✗ 339 30M 340M 50B 16 0.0 ✗
340 41M 239M 10B 1 0.0 ✗ 341 41M 239M 10B 2 0.0 ✗
342 41M 239M 10B 3 0.0 ✗ 343 41M 239M 10B 4 0.0 ✗
344 41M 239M 10B 8 0.0 ✗ 345 41M 239M 10B 16 0.0 ✗
346 41M 239M 20B 1 0.0 ✗ 347 41M 239M 20B 2 0.0 ✗
348 41M 239M 20B 3 0.0 ✗ 349 41M 239M 20B 4 0.0 ✗
350 41M 239M 20B 8 0.0 ✗ 351 41M 239M 20B 16 0.0 ✗
352 41M 239M 50B 1 0.0 ✗ 353 41M 239M 50B 2 0.0 ✗
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Table 8 continued from previous page
Na N D G S Label Na N D G S Label

354 41M 239M 50B 3 0.0 ✗ 355 41M 239M 50B 4 0.0 ✗
356 41M 239M 50B 8 0.0 ✗ 357 41M 239M 50B 16 0.0 ✗
358 476M 1301M 10B 10 0.2 ✓ 359 476M 2404M 10B 10 0.2 ✓
360 476M 4604M 10B 10 0.2 ✓ 361 476M 9008M 10B 10 0.2 ✓
362 476M 1301M 20B 10 0.2 ✓ 363 476M 2404M 20B 10 0.2 ✓
364 476M 4604M 20B 10 0.2 ✓ 365 476M 9008M 20B 10 0.2 ✓
366 476M 1301M 50B 10 0.2 ✓ 367 476M 2404M 50B 10 0.2 ✓
368 476M 4604M 50B 10 0.2 ✓ 369 476M 9008M 50B 10 0.2 ✓
370 793M 3964M 10B 10 0.0 ✓ 371 793M 3964M 10B 10 0.1 ✓
372 793M 3964M 10B 10 0.2 ✓ 373 793M 3964M 10B 10 0.3 ✓
374 793M 3964M 10B 10 0.4 ✓ 375 793M 3964M 10B 10 0.5 ✓
376 793M 3964M 10B 10 0.6 ✓ 377 793M 3964M 10B 10 0.7 ✓
378 793M 3964M 20B 10 0.0 ✓ 379 793M 3964M 20B 10 0.1 ✓
380 793M 3964M 20B 10 0.2 ✓ 381 793M 3964M 20B 10 0.3 ✓
382 793M 3964M 20B 10 0.4 ✓ 383 793M 3964M 20B 10 0.5 ✓
384 793M 3964M 20B 10 0.6 ✓ 385 793M 3964M 20B 10 0.7 ✓
386 793M 3964M 50B 10 0.0 ✓ 387 793M 3964M 50B 10 0.1 ✓
388 793M 3964M 50B 10 0.2 ✓ 389 793M 3964M 50B 10 0.3 ✓
390 793M 3964M 50B 10 0.4 ✓ 391 793M 3964M 50B 10 0.5 ✓
392 793M 3964M 50B 10 0.6 ✓ 393 793M 3964M 50B 10 0.7 ✓
394 1441M 7255M 10B 10 0.2 ✓ 395 1960M 7255M 10B 10 0.2 ✓
396 2479M 7255M 10B 10 0.2 ✓ 397 3517M 7255M 10B 10 0.2 ✓
398 6632M 7255M 10B 10 0.2 ✓ 399 1441M 7255M 20B 10 0.2 ✓
400 1960M 7255M 20B 10 0.2 ✓ 401 2479M 7255M 20B 10 0.2 ✓
402 3517M 7255M 20B 10 0.2 ✓ 403 6632M 7255M 20B 10 0.2 ✓
404 1441M 7255M 50B 10 0.2 ✓ 405 1960M 7255M 50B 10 0.2 ✓
406 2479M 7255M 50B 10 0.2 ✓ 407 3517M 7255M 50B 10 0.2 ✓
408 6632M 7255M 50B 10 0.2 ✓ 409 453M 3964M 10B 2 0.5 ✓
410 453M 3964M 10B 4 0.5 ✓ 411 453M 3964M 10B 6 0.5 ✓
412 453M 3964M 10B 8 0.5 ✓ 413 453M 3964M 10B 10 0.5 ✓
414 453M 3964M 10B 12 0.5 ✓ 415 453M 3964M 20B 2 0.5 ✓
416 453M 3964M 20B 4 0.5 ✓ 417 453M 3964M 20B 6 0.5 ✓
418 453M 3964M 20B 8 0.5 ✓ 419 453M 3964M 20B 10 0.5 ✓
420 453M 3964M 20B 12 0.5 ✓ 421 453M 3964M 50B 2 0.5 ✓
422 453M 3964M 50B 4 0.5 ✓ 423 453M 3964M 50B 6 0.5 ✓
424 453M 3964M 50B 8 0.5 ✓ 425 453M 3964M 50B 10 0.5 ✓
426 453M 3964M 50B 12 0.5 ✓ 427 566M 3964M 10B 3 0.33 ✓
428 566M 3964M 10B 6 0.33 ✓ 429 566M 3964M 10B 9 0.33 ✓
430 566M 3964M 10B 12 0.33 ✓ 431 566M 3964M 20B 3 0.33 ✓
432 566M 3964M 20B 6 0.33 ✓ 433 566M 3964M 20B 9 0.33 ✓
434 566M 3964M 20B 12 0.33 ✓ 435 566M 3964M 50B 3 0.33 ✓
436 566M 3964M 50B 6 0.33 ✓ 437 566M 3964M 50B 9 0.33 ✓
438 566M 3964M 50B 12 0.33 ✓ 439 476M 2404M 10B 2.5 0.2 ✓
440 476M 2404M 20B 2.5 0.2 ✓ 441 476M 2404M 50B 2.5 0.2 ✓
442 793M 3964M 100B 10 0.2 ✓ 443 476M 2404M 10B 20 0.2 ✓
444 476M 2404M 20B 20 0.2 ✓ 445 476M 2404M 50B 20 0.2 ✓
446 3070M 30249M 50B 20 0.2 ✓ 447 181M 907M 10B 40 0.2 ✓
448 181M 907M 20B 40 0.2 ✓ 449 181M 907M 50B 40 0.2 ✓
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(a) Illustration of the variation of G.

Input hidden layer

Router

⨁

Output hidden layer

𝑠! 𝑠" 𝑟"𝑟! 𝑟#

expert dim: 384

Shared Expert

Routed Expert

Input hidden layer

Router

⨁

Output hidden layer

𝑠! 𝑟! 𝑟#𝑟" 𝑟$

expert dim: 384

(b) Illustration of the variation of S.

Input hidden layer

Router

Output hidden layer

𝑠! 𝑟! 𝑟" 𝑟# 𝑟$ 𝑟% 𝑟& 𝑟'𝑟( 𝑟)

expert dim: 192 ⨁

Shared Expert

Routed Expert

Input hidden layer

Router

⨁

Output hidden layer

𝑠! 𝑟! 𝑟"𝑟# 𝑟$

expert dim: 384

(c) Illustration of the variation of Na.
Shared Expert

Routed Expert

Input hidden layer

Router

Output hidden layer

𝑠! 𝑟! 𝑟"𝑟# 𝑟$ 𝑟%

⨁

…

Input hidden layer

Router

⨁

Output hidden layer

𝑠! 𝑟! 𝑟"𝑟# 𝑟$

expert dim: 384 expert dim: 384

(d) Illustration of the variation of N .

Figure 17: Illustration of the variation of factor G, S, Na and N under controlled conditions.
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Figure 18: Distribution histograms of N , Na, D, G, and S for fitting data and validation data.
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