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ABSTRACT

Reward inference (learning a reward model from human preferences) is a criti-
cal intermediate step in Reinforcement Learning from Human Feedback (RLHF)
for fine-tuning Large Language Models (LLMs) such as ChatGPT. In practice, re-
ward inference faces several fundamental challenges, including double problem
misspecification, reward model evaluation without ground truth, distribution shift,
and overfitting in joint reward model and policy training. An alternative approach
that avoids these pitfalls is direct policy optimization without reward inference,
such as Direct Preference Optimization (DPO), which provides a much simpler
pipeline and has shown empirical success in LLMs. However, DPO utilizes the
closed-form expression between the optimal policy and the reward function, which
only works under the bandit setting or deterministic MDPs. This paper devel-
ops two RLHF algorithms without reward inference, which work for general RL
problems beyond bandits and deterministic MDPs, and general preference mod-
els beyond the Bradely-Terry model. The key idea is to estimate the local value
function difference from human preferences and then approximate the policy gra-
dient with a zeroth-order gradient approximator. For both algorithms, we establish
rates of convergence in terms of the number of policy gradient iterations, as well
as the number of trajectory samples and human preference queries per iteration.
Numerical experiments in stochastic environments validate the performance of
our proposed algorithms, outperforming popular RLHF baselines such as DPO
and PPO. Our paper shows there exist provably efficient methods to solve general
RLHF problems without reward inference.

1 INTRODUCTION

In the past decade, we have witnessed unprecedented success in applying Reinforcement Learning
(RL) to many applications, such as gaming AI (Knox & Stone, 2008; Warnell et al., 2018), recom-
mendation and search (Zeng et al., 2016; Kohli et al., 2013), autonomous driving (Kiran et al., 2022)
, and large language models (LLM) (Christiano et al., 2017; Wu et al., 2021; Nakano et al., 2021;
Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). RL studies the interaction between
decision-making agents and a dynamic environment that keeps evolving. At each time step, the
agent takes a certain decision (action) given the current state, a reward signal to measure the quality
of that decision is provided by the environment. The agent’s goal is to learn a policy to maximize the
cumulative reward, and the quality of the learned policy will depend on the per-step reward function.
In classic RL, this reward function is usually handcrafted by domain experts to ensure it aligns with
our expectations of the agent’s behavior. However, identifying a “good” reward function, also called
Inverse RL (IRL), is one of the most fundamental problems in RL and is non-trivial. In recent years,
researchers have developed a new approach called Reinforcement Learning from Human Feedback
(RLHF) that uses human preference feedback as a signal to recover a reward function and then train
or fine-tune LLMs (such as ChatGPT) with RL, which has delivered significant success. RLHF fol-
lows the diagram shown in Fig. 1, which includes three major steps (Ouyang et al., 2022): (i) policy
network pre-training, (ii) query human evaluators for preferences over trajectories to train a reward
model that aligns with human feedback, and (iii) use policy-gradient RL algorithms such as PPO to
fine-tune the policy network using the reward model.
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Figure 1: A diagram illustrating classic policy-based RLHF and DPO: classic RLHF involves three
steps: (i) pre-train a policy network (agent), (ii) collect trajectories from the environment using
a behavior policy, query the human comparison for each trajectory pair and train a reward neural
network through maximizing the likelihood under the Bradley-Terry model, and (iii) train the policy
network with reward signals from the reward network. DPO does not train a reward network but
directly optimizes the policy network from human preferences.

Drawbacks of Reward Inference. To train a good reward model, i.e., to infer the underlying per-
step reward function from human feedback (Christiano et al., 2017; Wang et al., 2023), the most
common approach is to assume the feedback is generated based on a preference model such as the
Bradley-Terry model (Bradley & Terry, 1952), and then maximize the log-likelihood of the collected
trajectory comparison dataset accordingly over all possible (parameterized) reward functions. This
procedure is indeed analyzed in most theoretical RLHF papers for both offline (Zhu et al., 2023;
Zhan et al., 2024a) and online settings (Saha et al., 2023; Zhan et al., 2024b; Wu & Sun, 2024;
Wang et al., 2023; Du et al., 2024). However, several challenges occur in practice for reward model
training such as double problem mis-specification, reward model evaluation without ground truth,
distribution shift, and overfitting in joint reward model and policy training (Casper et al., 2023).
These drawbacks are also reflected in the theoretical results, e.g., overfitting of MLE in (Zhu et al.,
2024). Moreover, similar to inverse reinforcement learning (IRL), the reward function that could
explain the human feedback often is not unique, especially when given a limited amount of training
trajectories (Arora & Doshi, 2021; Ng & Russell, 2000). Some reward models may make it difficult
for agents to learn a good RL policy.

DPO. To avoid the drawbacks of the reward inference in RLHF, Rafailov et al. (2023) proposed an
algorithm called Direct Preference Optimization (DPO) which fine-tunes the LLM model directly
from human preferences. Based on the Bradley-Terry preference model and a closed-form expres-
sion of the optimal policy given a reference policy and the reward function, DPO constructs a loss
function directly from human feedback for learning the optimal policy, so avoids reward inference.
This provides a much simpler pipeline and has great empirical performance (Rafailov et al., 2023;
2024a;b). However, the closed-form expression of the optimal policy that DPO builds on is only for
non-parametric policies and its theoretical justification only works for the bandit setting (Rafailov
et al., 2023) or RL problems with deterministic transitions (Rafailov et al., 2024b). It remains an
open question how to solve general RLHF problems without reward inference.

RLHF without Reward Inference. Recently, value-based RLHF algorithms without global reward
inference have been theoretically developed and analyzed (Xu et al., 2020; Zhang et al., 2024a)
based on a dueling bandit approach (Bengs et al., 2021). The results, however, only hold for MDPs
in tabular settings with finite state and action spaces. Chen et al. (2022) studied the function ap-
proximation regime, but their algorithm requires both the true preference model and the transition
kernel to belong to a known function class, which is impractical. The result also depends on the
function class complexity which is usually large for most function approximators in practice. So far,
no provable policy-based algorithm in this category has been developed.

This paper addresses the following important question:

Does there exist a provably efficient RLHF approach that does not require a re-
ward model and works for general RL problems such as stochastic MDPs or infi-
nite state and action spaces?
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1.1 MAIN CONTRIBUTIONS

DPO (Rafailov et al., 2023) establishes a direct connection between human preferences and RL
based on the Bradley-Terry model and the optimal policy in closed form:

π∗(a|x) ∝ πref(a|x) exp
(
1

β
r(x, a)

)
, (1)

where r(x, a) is the reward in state x with action a, πref is a reference policy and π∗ is the optimal
policy. Based on the direction connection, the policy optimization can be formulated as a direct
matching between human preference and the optimal policy with a log-likelihood loss function. In
a recent paper (Rafailov et al., 2024a), it has been further shown that DPO solves a KL-divergence-
constrained policy optimization problem for the deterministic token-level MDP for LLM, where
the next state is deterministic given the current state and action. For general RL problems with
parameterized policies, equation 1 does not hold, and it is often hard if not impossible to obtain a
“global” function like it that connects the optimal policy and the reward (hence human feedback).

This paper exploits the “local” relation between human feedback and policy optimization. In partic-
ular, given a policy πθ and a perturbed version of the policy πθ+v , we use human feedback over the
trajectories generated from both policies to inform the more preferred policy. Intuitively, if one tra-
jectory is preferred over the other, the policy that generates this trajectory is likely to have a higher
value. Then given a preference model such as the Bradley-Terry model, we can further estimate
the value function differences of the two policies, V (πθ+v) − V (πθ), using the population-level
preference, where V (π) is the value function associated with policy π. Finally, the value difference
can be used as an estimator of policy gradient, ∇θV (πθ), following the zeroth-order optimization
approach (Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013) to improve the policy.

Based on this idea, this paper proposes two RLHF algorithms without reward inference: Zeroth-
Order Policy Gradient (ZPG) and Zeroth-Order Block-Coordinate Policy Gradient (ZBCPG), both
from Human Feedback. ZBCPG differs from ZPG in its policy perturbation rule, which has lower
computational complexity and allows parallel optimization since one can sample multiple perturbed
policies to perform policy gradient and combine the estimated gradient. Under mild assumptions,
both algorithms have the following rate of converge to a stationary point:

O

(
Hd

T
+

d2
√
logM√
M

+
Hd

√
d√

N

)
,

where d is the dimension of policy network parameter θ, H is the planning horizon, T is the number
of policy gradient steps, N is the number of policy perturbations each step, and M is the number of
human queries for each pair of trajectories.

We remark that (Tang et al., 2024b) proposes a similar approach towards utilizing human feedback
and a zeroth-order gradient descent algorithm from ranking data. However, they assume an error-
free ranking oracle over policies based on their value functions, which makes their problem a de-
terministic optimization problem and does not apply to trajectory preference data like in RLHF and
DPO. This paper studies RLHF with trajectory preferences and quantifies the impacts of stochastic
trajectories and human preferences on the rate of convergence of RLHF without reward inference.

2 PRELIMINARIES

Episodic RL: We consider an episodic RL problem M = (S,A, H,P ,µ0), where S is the state
space and A is the action space (both can be continuous), H is the RL planning horizon, P =
{Ph}Hh=1 is the set of transition kernels, and µ0 is the initial distribution. At the beginning of each
episode, the agent will choose a policy π represented by H functions {πh : S → P(A)}Hh=1, where
P(A) denotes the set of all probability distributions over the action space. Then, an initial state s1
is sampled from the initial distribution µ0. At step h, the agent takes an action ah = πh(sh) after
observing state sh. The environment then moves to the next state sh+1 sampled from the distribution
Ph(·|sh, ah) without revealing any reward feedback. We use τ to denote a trajectory with planing
horizon H , i.e., τ = {(sh, ah)}Hh=1.

Trajectory Reward: we assume the expected reward of each trajectory τ is a general function r(τ)
which maps any trajectory to a value in [0, H] (Zhang et al., 2024a). Without loss of generality,
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we scale the average per-step reward into [0, 1], and the return of the trajectory does not necessarily
need to be the sum of per-step rewards. For any given policy π, we can formulate the initial value
function V π

1 (s) as the expected reward of trajectories starting from s with policy π:

V π
1 (s) =Eπ [r(τ)| s1 = s] = E [r(τ)| s1 = s, {a1, · · · , aH} ∼ π] .

The goal of the RL problem is to find a policy to maximize V (π) = Es∼µ0 [V
π
1 (s)].

Policy Parameterization: to address the large state space S and action space A in most RL prob-
lems, we assume access to a parameterized policy network Nθ : S × [H] → P(A) which takes a
state and a decision-making step as input, and then outputs the probability distribution of the next
action. Here θ ∈ Rd is the policy network parameter vector. Each parameter θ through the policy
network will induce a policy which we slightly abuse the notation and use πθ to denote.

Human Feedback: The agent has access to human feedback that provides a preference based on the
rewards of two trajectories. In each episode, the agent can choose two trajectories τ0 and τ1 to query
human preference: one-bit feedback o ∈ {0, 1}. We assume the preference o is generated according
to a known preference model where the probability of the outcome between two trajectories is de-
termined by the difference in their rewards. Since the difference is not necessarily a value inside the
unit interval, the preference model uses a link function σ : R → [0, 1] to map these differences of
rewards to actual probabilities, i.e.,

P(τ1 ≻ τ0) = σ(r(τ1)− r(τ0)), (2)

where τ1 ≻ τ0 is the event that the human feedback prefers τ1 over τ0. The human feedback o,
therefore, is a random sample from a Bernoulli distribution with P(o = 1) = P(τ1 ≻ τ0). The
notion of link function comes from the dueling bandit literature to model preference with latent
utility between arms, e.g. see Bengs et al. (2021, Section 3.2). This preference model has been
used in dueling bandits (Bengs et al., 2021; Yue & Joachims, 2009; Kumagai, 2017; Ailon et al.,
2014) as well as RLHF (Wang et al., 2023). One can see that one specific link function σ will de-
fine a specific preference model (Azari et al., 2012), i.e., replacing σ(·) with a logistic function, we
recover the Bradley-Terry model (Bradley & Terry, 1952), which is commonly used in RLHF for
both practical (Christiano et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023) and theoretical
works (Du et al., 2024; Zhan et al., 2024a;b). On the other hand, let σ(·) be the cumulative distribu-
tion function of standard normal distribution, we obtain the probit model (Thurstone, 1927) which
has wide application in the study of social choice theory, economy, and psychology (Train, 2009;
Greene, 2000). A detailed discussion on other preference models is provided in the appendix. The
following assumption on the link function is standard in both dueling bandits (Bengs et al., 2021)
and preference-based RL (Wang et al., 2023). One can easily verify that both the Bradley-Terry
model and the probit model satisfies this assumption.

Assumption 1 The link function σ(·) in the preference model in equation 2 is bounded within [0, 1]
and strictly monotonically increasing on [−H,H] with σ(0) = 1

2 .

Problem Formulation: Our goal is to find policy network parameter θ that maximizes the value
function, i.e., maxθ∈Rd V (πθ).

Notations: For a scalar a, we use trim[a|∆] to represent min{max{a,∆}, 1−∆}. For a vector v,
trim[v|∆] represents the vector after applying the trim operator to each element respectively. Let
ei ∈ Rd represent the unit vector with all zero elements but 1 on the i-th coordinate.

3 ZEROTH-ORDER POLICY GRADIENT ALGORITHMS FOR RLHF

In this section, we propose two RLHF algorithms without reward inference, motivated by the relation
between preference and zeroth-order gradient. We first present ZPG, which is a stochastic gradient
descent algorithm and then ZBCPG, which is a stochastic block-coordinate descent algorithm.

3.1 ZPG: ZEROTH-ORDER POLICY GRADIENT FROM HUMAN FEEDBACK

Our first algorithm Zeroth-Order Policy Gradient from Human Feedback (ZPG) consists of the fol-
lowing five steps in each policy gradient iteration:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Zeroth-Order Policy Gradient from Human Feedback
Parameters: initial parameter θ0, learning rate α, trim size ∆, perturbation distance µ.

1 for t = 1 : T do
2 sample vt uniformly from a unit sphere Sd−1 =

{
v ∈ Rd

∣∣ ∥v∥2 = 1
}

;
3 obtain a perturbed policy πθt+µvt

;
4 for n = 1 : N do
5 sample trajectory τn,0 ∼ πθt

;
6 sample trajectory τn,1 ∼ πθt+µvt ;
7 query M human evaluators with (τn,1, τn,0) and obtain feedback [on,1, · · · , on,M ];

8 estimate comparison probability pt,n = trim
[∑M

m=1
on,m

M

∣∣∣∆];
9 estimate the policy gradient: ĝt = d

µ

∑N
n=1 σ−1(pt,n)

N vt;
10 update θt+1 = θt + αĝt;

• From the current policy πθt
, it first obtained a perturbed policy πθt+µvt

(line 2-3).

• Sample N pairs of trajectories under the two policies πθt
and πθt+µvt

(lines 5-6).

• For each trajectory pair, say (τn,1, τn,0), obtain M independent human preferences (line 7)
and estimate the probability that τn,1 is preferred over τn,0 (line 8), denoted by pt,n.

• Use the N estimates {pt,n}n and link function σ(·) to estimate the gradient ĝt (line 9).

• Update the current policy to a new policy θt+1 using gradient ascent (line 10).

The pseudo-code is presented in Alg. 1. As we mentioned earlier, our approach uses human feedback
in a way different from both the classic reward inference in RLHF and DPO. The reward inference
uses human preferences to recover the global reward function and DPO relates the human preference
generation mechanism to the optimal policy. We view the human feedback as local information that
points to the direction of a more preferred policy, i.e., the policy gradient direction. Some online
RLHF algorithms such as online DPO also exploit similar local estimation viewpoints, i.e., using
new trajectories of current policy to locally improve the estimation of DPO loss and then proceed.
However, we want to emphasize that the relation between the DPO loss and the optimal policy is still
global is limited to deterministic MDPs, which shows the novelty of our approach. The algorithm we
propose has two key components: (i) a value function difference estimator from human preference
and (ii) a policy gradient estimator from value function difference.

Policy Gradient Approximation: At each iteration of the algorithm, it first samples a d dimensional
vector vt from a unit sphere and then perturbs the policy network parameter θt along the direction of
this sampled vector. Then, it uses the inner for loop to construct an estimation of the value function
difference between the original policy and the perturbed policy, i.e., V (πθt+µvt

) − V (πθt
). We

then plug it in the zeroth-order SGD algorithm proposed in (Ghadimi & Lan, 2013) to construct a
zeroth-order approximate to the policy gradient, i.e.,

∇θV (πθt
) ≈ Evt

[
d

µ
(V (πθt+µvt

)− V (πθt
))vt

]
.

We remark that the random vector vt for each iteration can also be drawn from a normal distribu-
tion (Nesterov & Spokoiny, 2017), but the unit sphere is more numerically stable.

Value Function Inference: The inner for loop of Alg. 1 aims to estimate the value function differ-
ence between the perturbed policy πθt+µvt and current policy πθt . The algorithm samples multiple
trajectory pairs with both policies and for each pair, it queries humans multiple times to obtain pair-
wise preferences [on,1, · · · , on,M ]. It then uses the preferences to construct a robust estimator pt,n to
approximate the probability of comparison P(τn,1 ≻ τn,0), which is further converted to an estimate
of the value function difference based on the preference model in equation 2 as follows:

V (πθt+µvt
)− V (πθt

) ≈ 1

N

N∑
n=1

σ−1(pt,n). (3)

5
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Algorithm 2: Zeroth-Order Block Coordinate Policy Gradient from Human Feedback
Parameters: initial parameter θ0, learning rate α, trim size ∆, perturbation distance µ,

coordinate batch size K.
1 for t = 1 : T do
2 sample a set of K coordinates it = [it,1, it,2, · · · , it,K ] from {1, 2, · · · , d};
3 sample a set λt = [λt,1, λt,2, · · · , λt,K ] where each λt,j is uniformly sampled from

{−1, 1};
4 construct the perturbation vector: vt =

1√
K

∑K
j=1 λt,jeit,j ;

5 for n = 1 : N do
6 sample trajectory τn,0 ∼ πθt ;
7 sample trajectory τn,1 ∼ πθt+µvt ;
8 query M human evaluators with (τn,1, τn,0) and obtain feedback [on,1, · · · , on,M ];

9 estimate comparison probability pt,n = trim
[∑M

m=1
on,m

M

∣∣∣∆];
10 estimate the policy gradient: ĝt = d

µ

∑N
n=1 σ−1(pt,n)

N vt;
11 update θt+1 = θt + αĝt;

Querying humans multiple times ensures an accurate estimation of the reward gap between two
trajectories. The reward gap of two trajectories is a random sample of the value function difference
so we sample multiple trajectories to ensure the average trajectory reward gap converges to the
value function difference. To ensure finite variance after applying σ−1(·) function, we trim pt,n
with a small constant which can be set to min{σ(−H), 1− σ(H)} in this case.

3.2 ZBCPG: ZEROTH-ORDER BLOCK-COORDINATE POLICY GRADIENT FROM HUMAN
FEEDBACK

In high-dimensional optimization problems, it is usually memory and operation inefficient to ap-
proximate the full gradient and update all the parameters in the policy network at the same iteration
step (Malladi et al., 2023; Zhang et al., 2024b), which motivates parameter efficient fine-tuning
(PEFT). The stochastic (block) coordinate descent approach naturally arises because of its ease of
implementation, low memory requirements, and adaptability to distributed settings (Nesterov, 2012;
Lu & Xiao, 2015). The same advantage also applies to RLHF when the number of parameters in
the policy network is too large. Therefore, we propose a block coordinate version of ZPG, called
Zeroth-Order Block Coordinate Policy Gradient (ZBCPG), which is summarized in Alg. 2. The key
difference between ZBCPG and ZPG is the choice of the perturbation direction.

Zeroth-Order Block Coordinate Gradient Approximation: Instead of sampling from a sphere,
which perturbs all parameters of the policy network, ZBCPG separates the sampling procedure into
two simple parts: first sample a minibatch of coordinates and then sample a zero-centered Bernoulli
random variable for each coordinate, which still results in a valid gradient estimator.

∇θV (πθt) ≈ Eit,λt

[
d

Kµ
(V (πθt+µvt)− V (πθt))vt

]
.

The block-coordinate approach allows us to (i) perturb a subset of parameters at each iteration,
e.g., a specific layer of the policy network for fine-turning, and (ii) have a parallel implementation
where we have multiple gradient estimators ĝt when updating the policy. We will later show that
both algorithms have similar provable convergence guarantees but the analysis of ZBCPG is more
challenging due to the perturbation mechanism.

4 THEORETICAL ANALYSIS: RATE OF CONVERGENCE

In this section, we provide theoretical performance guarantees for both ZPG and ZBCPG. We first
provide technical assumptions on the preference generation model, the policy network, and the value
function landscape, which is necessary for deriving theoretical insights.
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4.1 ASSUMPTIONS

In order to infer the local reward difference from human preference probability through link function
σ(·), we impose the following assumption which is satisfied by the Bradley-Terry model. A slightly
weaker assumption is also adopted by Wang et al. (2023) and justified as a minimal requirement to
learn the optimal policy. We use ∆ = min{σ(−H), 1− σ(H)} as the trim constant.

Assumption 2 The inverse link function σ−1(·) is L-Lipchitz continuous on [∆, 1−∆].

We further require the landscape of the value function and the policy network to be “regular”, and
impose the following assumption, which is a standard assumption used in nonconvex optimization
literature (Liu et al., 2019; Bernstein et al., 2018; Reddi et al., 2018).

Assumption 3 The value function V (πθ) for the policy network parameters θ is L-smooth on Rd.

Since a trajectory reward is bounded in [0, H], V (πθ∗) < ∞, where θ∗ is the global optimal solution.
For simplicity, we assume L is the constant that both assumptions above are satisfied.

4.2 CONVERGENCE RATE AND SAMPLE COMPLEXITY

In this section, we present the theoretical guarantees for both ZPG and ZBCPG under all three
assumptions above. We aim to learn an ϵ-stationary policy, i.e., a policy πθ with ∥∇θV (πθ)∥22 ≤ ϵ,
and study the convergence rate and sample complexity of the value function gradient.

Theorem 1 Choose the perturbation distance to be µ2 = Θ
(
max

{
1√
M
, H√

dN

})
and learning

rate to be α = Θ(d−1). If M = Ω(H2) and we randomly pick θR uniformly from the trajectory
{θ0,θ1, · · · ,θT−1}, then the convergence rate of ZPG satisfies:

E
[
∥∇θV (πθR

)∥22
]
= O

(
Hd

T
+

d2
√
logM√
M

+
Hd

√
d√

N

)
.

Theorem 2 Choose the perturbation distance to be µ2 = Θ
(
max

{
1√
M
, H√

dN

})
and learning

rate to be α = Θ(d−1). If M = Ω(H2) and we randomly pick θR uniformly from the trajectory
{θ0,θ1, · · · ,θT−1}, then the convergence rate of ZBCPG satisfies:

E
[
∥∇θV (πθR

)∥22
]
= O

(
Hd

T
+

d2
√
logM√
M

+
Hd

√
d√

N

)
.

The complete proof of both theorems is presented in the appendix. Here we first provide insights
into the choice of hyper-parameters and convergence rate results in both theorems, and then we
discuss the challenges and technical novelties of our proof.

Insights behind the Convergence Rate: Both ZPG and ZBCPG have the same rate of convergence
which consists of three components: the zeroth-order gradient descent rate, the preference estimation
error, and the value function approximation error

Hd

T︸︷︷︸
Zeroth-Order GD

+
d2
√
logM√
M︸ ︷︷ ︸

Preference Estimation

+
Hd

√
d√

N
.︸ ︷︷ ︸

Value Function Approximation

The second represents the error that occurs when using multiple human preferences [on,1, · · · , on,M ]
to approximate the population-level human preference probability for given two trajectories, i.e.,
P(τn,1 ≻ τn,0). This error will further result in a bias term after being plugged into the inverse
link function σ−1(·) to construct an estimation of the value function difference. The third term
comes from the variance of using multiple trajectory rewards to approximate the value function of
a policy. The first term representing the error resulting from zeroth-order stochastic gradient de-
scent or blocked coordinate descent, which matches the state-of-the-art analysis result O(d/T ) for

7
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non-convex smooth function optimization (Nesterov & Spokoiny, 2017). Even though the final con-
vergence rates are the same and we both use constant learning rates, how we choose the perturbation
distance to obtain the rate differs from (Ghadimi & Lan, 2013). Specifically, they chose a small per-
turbation distance with µ2 = O(d/T ) to make sure the zeroth order approximation error is of lower
order. However, this choice will not work for us, because our gradient estimate is biased due to the
non-linear nature of the link function in preference estimation. If we choose the perturbation dis-
tance µ to be too small, the preference estimation error will be amplified by d/µ due to the formula
of zeroth-order approximation ĝt. This phenomenon adds complication to our theoretical analysis.
Our method is to use a moderate perturbation distance µ. Moreover, this moderate perturbation
distance also balances the preference estimation and the value function approximation errors.

Based on the two theorems above, we have the following corollary that characterizes the sample
complexity of our proposed algorithms.

Corollary 1 To learn an ϵ-stationary policy, the required number of human preference queries of
ZPG and ZBCPG with proper hyper-parameters satisfies

TMN = O
(
d8H3

ϵ5
log

(
d

ϵ

))
.

4.3 TECHNICAL CHALLENGES AND PROOF NOVELTIES

In this section, we first overview the proof of zeroth-order stochastic gradient descent used
in (Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017; Gao et al., 2018; Liu et al., 2019) from
a Lyapunov drift optimization perspective. We then show the major technical difficulties in applying
such a framework to analyze both ZPG and ZBCPG, i.e., the gradient estimator is biased due to
stochastic human preference. Then, we demonstrate our novel analysis techniques to resolve them.

Classic Proof of Zeroth-Order Optimization: to illustrate the procedure of the analysis of zeroth
order gradient estimate, we suppose we can query V (πθ) for any θ. This procedure makes use of
the randomized smoothing function Vµ(θ) (Ghadimi & Lan, 2013; Gao et al., 2018):

Vµ(πθ) = Ev′ [V (πθ+µv′)] ,

where the random vector v′ follows a uniform distribution over the unit Euclidean ball. It is shown
in (Gao et al., 2018) that the zeroth-order gradient estimator used in ZPG, constructed from sampling
vt uniformly over a sphere, is an unbiased estimator of the smoothing function gradient, i.e.,

∇θVµ(πθ) = Ev

[
d

µ
(V (πθ+µv)− V (πθt

))v

]
,

where v is sampled from a unit sphere. Clearly, the gradient of the smoothing function is not equal
to the original value function, as well as the function it self, but it can be shown that they are close
as long as µ is small (Liu et al., 2018b):

|Vµ(πθ)− V (πθ)| = O
(
µ2
)
; ∥∇θVµ(πθ)−∇θV (πθ)∥2 = O (µd) . (4)

The standard proof uses the randomized smoothing function Vµ(πθ) as the Lyapunov function and
then bounds the drift given the stochastic gradient descent update rule when α = Θ(1/d). Neglect-
ing problem-independent constants, we have:

Vµ(πθt
)−Vµ(πθt+1

)

≤− α ∥∇θVµ(πθt)∥22︸ ︷︷ ︸
NegDrift

+α ⟨∇θVµ(πθt
),∇θVµ(πθt

)− ĝt︸ ︷︷ ︸
1st Order: GradBias

⟩+ α2 ∥ĝt −∇θVµ(πθt
)∥22︸ ︷︷ ︸

2nd Order: GradVar≈µ2d2

.

Note the gradient estimator ĝt is unbiased and bounded, and the gradient of Vµ(πθ) is close to
V (πθ), taking a conditional expectation over the filtration before time t will result in:

E[Vµ(πθt)|Ft]−E[Vµ(πθt+1)|Ft]

≤− α∥∇θVµ(πθt)∥22 + α⟨∇θVµ(πθt),E[∇θVµ(πθt)− ĝt]⟩+ α2µ2d2

≤− α∥∇θV (πθt
)∥22 + αµ2d2 + α2µ2d2,

8
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where the last step uses equation 4 and the fact that the gradient is unbiased. Let us choose a small
learning rate α = Θ(1/d) and take an expectation with a telescoping sum to obtain:

E[Vµ(πθ0
)]− E[Vµ(πθT

)]

T︸ ︷︷ ︸
O(H/T )

≲ −αE

[∑T
t=1 ∥∇θV (πθt

)∥22
T

]
︸ ︷︷ ︸

Target

+αµ2d2.

A little manipulation will lead to the following bound, which can be made small when µ ≈
√

1/dT .

Target = O
(

H

Tα
+ µ2d2

)
= O

(
Hd

T
+ µ2d2

)
= O

(
Hd

T

)
.

Amplified Gradient Biases for ZPG: If we directly apply the steps above to ZPG, we immediately
run into the issue that our gradient estimator ĝt in expectation is biased even compared to smoothing
function gradient due to preference estimation. Moreover, the gradient variance on the second-order
term will also be larger since we used trajectory reward to estimate the value function. Through
concentration inequalities, we will be able to obtain a bound on the error of using preference to
estimate the value function difference as:∣∣E [σ−1(pt,n)

]
− (V (πθt+µvt

)− V (πθt
))
∣∣ ≤ Õ

(
1√
M

)
,

where Õ hides logarithmic terms. This bias term will be amplified by d/µ and then added to the
gradient estimation bias in the first-order drift term if plugged into the analysis:

E[Vµ(πθt
)|Ft]− E[Vµ(πθt+1

)|Ft] ≤ −α∥∇θV (πθt
)∥22 + αµ2d2︸ ︷︷ ︸

Same Drift as Before

+α
d∥∇θVµ(πθt

)∥2
µ
√
M︸ ︷︷ ︸

Additional Bias

.

Using the same perturbation distance as before, the additional bias will lead to an Õ(
√
T/M) term

in the final bound, which is small only when M is much larger than T and is much looser compared
with ours. For example, letting M = T 2, the above bound is Õ(1/

√
T ) while ours is Õ(1/T ).

Our approach to avoid this term in the final result is to make use of the gradient value ∇θV (πθt
)

in the first-order term to cancel out the additional bias on certain occasions. Specifically, we divide
the trajectory of θt into two sets, one with a relatively large gradient and one with a relatively small
gradient. For θt with a large gradient, we use a part of the negative drift to cancel out the additional
bias, since the negative drift is the square of the gradient ∇θV (πθt) which is even larger. For θt with
a small gradient, we know the bias term will be small and thus can provide a refined drift bound.
Combining this analysis with a slightly larger perturbation distance µ, we will be able to balance the
additional bias with gradient variance to cancel out the Õ(

√
T/M) term and obtain the final result.

Implicit Smoothing Function for ZBCPG: Due to the choice of blocked perturbation vector sam-
pling procedure, it is difficult to obtain the exact analytical expression of the smoothing function
Vµ(πθ) whose gradient is the expectation of gradient estimation ĝt for ZBCPG. This prohibits us
from continuing to use Vµ(πθ) as the Lyapunov function, as it is hard to analyze the gradient bias
and the variance without an explicit target format. However, if we rethink why we introduce the
smoothed function in zeroth-order optimization, what we hope for is the gradient of the smoothed
function will be unbiased to cancel out the first-order positive drift. However, this is already not true
in the analysis of ZPG since we have gradient estimation bias from human feedback, but it is small
enough on average and we can control it. If the gradient difference between the smoothed function
Vµ(πθ) and the vanilla value function V (πθ) is smaller than this additional bias, then we can use
the original value function V (πθ) as the Lyapunov function at the cost of an additional bias besides
preference estimation. Fortunately, this can be achieved through a carefully chosen perturbation
distance µ to balance these two errors.

5 EXPERIMENTS

In this section, we study the empirical performance of proposed algorithms in a stochastic GridWorld
environment, to validate the consistency with theoretical results. The details of the experiment setup

9
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Figure 2: GridWorld Experiment: ZPG, ZBCPG, and RLHF baselines. The (expected) reward of
each policy iteration is averaged over 1000 trajectories. Solid lines indicate moving averages and
shaded areas indicate confidence regions.

can be found in Appendix. F. Our GridWorld environment is slightly different from classic ones
in that the actions chosen by the agent may be reversed with certain probability due to imperfect
control or environment disturbances. We compare ZPG and ZBCPG to the following baselines: (1)
RM+PPO (Ouyang et al., 2022), (2) DPO for token-level MDP (Rafailov et al., 2024b), and (3)
Online DPO for token-level MDP (Dong et al., 2024; Guo et al., 2024). All algorithms collected
the same number of trajectories and human queries to ensure fair comparison. The comparison of
the average cumulative reward (return) for each policy update is presented in Fig. 2(a). Both ZPG
and ZBCPG perform better than baselines. Compared to PPO, our algorithms converge to a better
policy due to the error of the reward model. The vanilla DPO has a significantly worse performance
due to two reasons. First, the DPO loss is valid only in deterministic MDP, and second, DPO is
constrained to the neighborhood of the reference policy, which is sub-optimal. The online DPO
algorithm improves over vanilla DPO but still has inferior performance due to the error of DPO
loss. Moreover, it converges much slower, partly because the DPO loss landscape becomes flat and
hard to optimize when the weight of the KL constraint is small for better exploration. In Fig. 2(b),
we also compare ZPG to distributed implementations of ZBCPG, where the human panel is also
separated into small groups for parallelization. It is shown that as the number of blocks increases,
ZBCPG converges faster to a stationary policy. However, the number of human queries per pair of
trajectories in each parallelization also decreases, which introduces a larger gradient bias and leads
to a sub-optimal policy. Therefore, parallelization and human accuracy should be traded off.

6 CONCLUSION

In this paper, we proposed two RLHF algorithms without reward inference based on a zeroth-order
policy gradient called ZPG and ZBCPG, which train the policy network directly from human pref-
erences without a global reward model. Both algorithms are shown to have a provable polynomial
sample complexity to learn a stationary policy under mild conditions and exhibit nice empirical
performances in environments with stochastic transitions, outperforming popular RLHF baselines.
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