ChromFound: Towards A Universal Foundation
Model for Single-Cell Chromatin Accessibility Data

Yifeng Jiao'%, Yuchen Liu?, Yu Zhang?, Xin Guo'?, Yushuai Wu?, Chen Jiang'?,
Jiyang Li2, Hongwei Zhang!?, Limei Han'2, Xin Gao®>**$, Yuan Qi*% Yuan Cheng!?'
! Artificial Intelli gence Innovation and Incubation Institute, Fudan University
2Shanghai Academy of Artificial Intelligence for Science
3Computer, Electrical and Mathematical Sciences and Engineering Division, KAUST
4Center of Excellence for Smart Health, KAUST
SCenter of Excellence on GenAl, KAUST
Zhongshan Hospital, Fudan University
Correspondence to: {jiaoyifeng,guoxin} @sais.org.cn, {cheng_yuan,qiyuan} @fudan.edu.cn

Abstract

The advent of single-cell Assay for Transposase-Accessible Chromatin using se-
quencing (scATAC-seq) offers an innovative perspective for deciphering regulatory
mechanisms by assembling a vast repository of single-cell chromatin accessibility
data. While foundation models have achieved significant success in single-cell
transcriptomics, there is currently no foundation model for scATAC-seq that sup-
ports zero-shot high-quality cell identification and comprehensive multi-omics
analysis simultaneously. Key challenges lie in the high dimensionality and sparsity
of scATAC-seq data, as well as the lack of a standardized schema for representing
open chromatin regions (OCRs). Here, we present ChromFound, a foundation
model tailored for scATAC-seq. ChromFound utilizes a hybrid architecture and
genome-aware tokenization to effectively capture genome-wide long contexts and
regulatory signals from dynamic chromatin landscapes. Pretrained on 1.97 mil-
lion cells from 30 tissues and 6 disease conditions, ChromFound demonstrates
broad applicability across 6 diverse tasks. Notably, it achieves robust zero-shot
performance in generating universal cell representations and exhibits excellent
transferability in cell type annotation and cross-omics prediction. By uncover-
ing enhancer-gene links undetected by existing computational methods, Chrom-
Found offers a promising framework for understanding disease risk variants in
the noncoding genome. The implementation of ChromFound is available via
https://github.com/JohnsonKlose/ChromFound.

1 Introduction

The human genome harbors an extensive repository of open chromatin regions (OCRs) responsible for
orchestrating precise spatial and temporal gene expression patterns [31]. Identifying OCRs at single-
cell level is pivotal for understanding the regulatory landscape of individual cells, offering profound
insights into cellular diversity and dynamic mechanisms of gene regulation [14} [10]. The single-cell
Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) [4] stands as the most
prevalent genome-wide technique to enable the identification of OCRs at single-cell resolution. Its
principal applications span cancer research, immunological studies, and neuroscience [52},163} 161} [79].
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Furthermore, with initiatives such as the Human Cell Atlas [55]] and other significant studies [17} 83],
the scale of scATAC-seq data is expanding rapidly, opening new possibilities and presenting novel
challenges in the exploration of OCRs at the same time.

Pretrained language models (PLMs) have achieved great success in deciphering the complex language
of single-cell RNA sequencing (scRNA-seq) data [64, [11, 27, [77], validating their capabilities of
fine-tuning for a variety of downstream tasks. Nevertheless, the development of generalizable
foundation models for scATAC-seq remains under-explored, posing significant challenges for cellular
representation learning and multi-task transfer. Here, we identify and discuss three major challenges.

(1). scATAC-seq data are inherently high-dimensional and sparse, with single cells spanning over
millions of OCRs but typically less than 1% showing accessibility. This sparsity complicates the
utilization of Transformer [67]] adopted in transcriptomics [64} 11,2770, (18} [77]]. Other methods such
as transforming accessibility into gene activity [22,|59]], filtering highly variable OCRs [22} 162, 201,
or binarizing accessibility [28, [13}81] always cause substantial information loss [60 43 16]].

(2). scATAC-seq data are not formatted in a standardized feature space. Dynamic chromatin
landscapes across diverse sources and platforms make dictionary-based tokenization for genes and
nucleotides unsuitable for OCRs. All deep learning models for scATAC-seq [[73. [72} [12} [81] require
dataset-specific training, leading to poor zero-shot performance.

(3). current methods lack a unified integration of genomic information with chromatin ac-
cessibility profiles. Both genomic information defining regulatory loci and chromatin accessibil-
ity profiles revealing their activity are essential in scATAC-seq data. However, VAE-based mod-
els [[73 72} [12] process accessibility matrices independently, while models like scBasset, CellSpace,
and SANGO [81}, 162} |82] predict binary accessibility from genomic sequences. These methods
struggle to generalize across diverse downstream tasks.

To address these challenges, we present ChromFound, a universal foundation model for single-
cell chromatin accessibility data. Its hybrid architecture integrates a Mamba block for efficient
long-range sequence processing with a self-attention block to capture local regulatory dependencies
within +200 kb of transcriptional start sites, aligning with the typical range of enhancer-promoter
interactions identified by Hi-C analysis [2]. ChromFound incorporates biologically informed OCR
tokenization encoding genomic coordinates and non-binary accessibility profiles. This component
ensures scalability and alignment across diverse scATAC-seq datasets from varied tissues, platforms,
and protocols. Pretrained on over 1.97 million single cells from more than 30 organs or tissues and 6
major disease categories (e.g., Alzheimer’s, Parkinson’s, leukemia, glioma), ChromFound leverages
1.86 trillion training tokens, surpassing the scale of existing models such as Geneformer [64],
scGPT [[L1], and scFoundation [27], all of which use fewer than 1 trillion tokens.

To validate the effectiveness of ChromFound, we conduct comprehensive evaluations across multiple
tasks and datasets. In cell representation, ChromFound outperforms baselines instead of additional
training, achieving an average ARI improvement of 17.02% across 8 scATAC-seq datasets from 4
tissues. Additional results demonstrate its robustness to denoise technical effect in zero-shot settings.
For cell type annotation, ChromFound significantly improves accuracy and macro F1 score across all
evaluated datasets and tissues. In cross-omics prediction, it accurately infers gene expression from
chromatin accessibility, surpassing all baselines across 5 datasets. Furthermore, in the K562 cell line,
ChromFound effectively identifies gene-enhancer relationships and regulatory perturbation effects,
highlighting its potential for interpretable cis-regulatory modeling.

Our main contributions can be summarized as follows:

(1) ChromFound, the first scATAC-seq foundation model, employs a genome-wide architecture along
with a genome-aware tokenization and is pretrained on a large corpus with 1.97 million single cells.

(2) ChromFound provides a strong zero-shot cell representation from an epigenetic perspective, as
well as showing consistent robustness to data sparsity and batch effect.

(3) ChromFound shows great transfer learning capabilities in cell annotation and cross-omics predic-
tion, validating biological significance in inferring enhancer-gene links and perturbation responses.



2 Related Work

Single-cell foundation models for scRNA-seq data have seen significant advancements, supporting
tasks such as gene function prediction, cell annotation, and drug response modeling. Geneformer [64],
scGPT [L1]], and scFoundation [27] are trained by large-scale datasets, while scBERT [77] and
CellPLM [70] focus on specific objectives based on pre-training language models such as imputation
and cell communications. However, existing models are predominantly tailored for scRNA-seq data
and fail to model scATAC-seq data effectively. GET [[L8] achieves a level of predictive precision
comparable to experimental replicates. It does so by integrating chromatin accessibility data and
genomic sequence information in a pseudo-bulk format, rather than relying on single-cell resolution.

Deep learning has been widely applied to scATAC-seq data analysis for cell clustering and annota-
tion. PeakVI [1] and PoissonVI [44]] extend VAE-based frameworks, with the former disentangling
biological from technical variation for batch correction and the latter introducing a Poisson likelihood
to preserve quantitative accessibility. SCALE [73]] and SCALEX [72]] employ VAEs for latent repre-
sentation learning and multi-omics integration, while CASTLE [12] enhances cell-type annotation
via self-supervised learning. Beyond VAE-based methods, SnapATAC?2 [|84] scales to millions of
cells using latent semantic indexing and spectral embedding, and Signac [59] provides a Seurat-based
workflow for dimensionality reduction and multimodal integration. scBasset [81] links genomic
sequences with accessibility profiles, and Cellcano [42] together with SANGO [82] employ two-step
MLPs for cell-type annotation. Despite their advances, these models remain limited by architectural
constraints and data scarcity, restricting scalability and generalization.

3 Methods

3.1 OCR Tokenization

To encode chromatin accessibility data, we treat each OCR as a token by three essential components:
chromosome embedding, positional embedding for genomic coordinates, and continuous accessibility
embedding. The tokenization integrates these components to form a comprehensive representation
of each OCR. Our unified token representation is designed to address two fundamental challenges.
First, by encoding start and end genomic coordinates through sinusoidal positional embeddings,
ChromFound captures the full extent of each OCR, accommodating varying fragment lengths. Second,
by avoiding reliance on a fixed OCR vocabulary, ChromFound flexibly represents tissue-specific
or novel OCRs, thereby mitigating misalignment and dropout across tissues. In the following, we
describe the encoding strategy for each component in detail.

Chromosome Embedding: Chromosome identity is encoded using a learnable embedding lookup
table. The size of the chromosome embedding lookup table is 25, with 24 corresponding to the
number of human chromosomes and 1 designated for the padding token. We define the learnable
embedding matrix W, € RI¢/Xdmei and the chromosome index c; of OCR j. ChromFound maps the
c;j to E. ; by the following equation:

Ecj = Welej, 1. ey

Positional Embedding for Genomic Coordinates: Since some studies [36] [76] have noted that
state space models inherently handle sequential information through their recurrent nature, we use
positional embedding to encode genomic coordinates instead of the sequence order. Specifically, the
embedding of the starting position and the ending position for the OCR j is computed as:

e (temp-mooo%/dmodel) E¢ . — S (temp-mooo%/dmml) 2)

p.J cos(——Pi___ \|’ p.J cos(——Pi___
temp-100002*/ dmodel temp-100002*/ @model

where p? and pf represent the starting and end position for the OCR j on the GRCh38 reference
genome, temp is a hyperparameter set to 100000 in ChromFound, and dyoqel is the dimension of the
embedding layer. The index & spans {0, 1, ..., dmode1/2}, With sine and cosine functions alternately
assigned to even and odd dimensions of the embedding vector.

Accessibility Embedding: The accessibility value for the jth OCR, denoted as X, is a continuous
scalar processed by the procedures detailed in Appendix[D] To project the value X; into the hidden
dimension, we use a linear transformation as E, ; = Linear(X}).
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Figure 1: An overview of ChromFound architecture. The methods of ChromFound are listed in
Section%OCR tokenization are described in Section[3.1} The hybrid encoder layer is described in
Section Other pretraining details of datasets and implementation are included in Section[3.3] All
evaluation results are detailed in Section 4

OCR Representation: The unified representation Eocg ; € R'*D of the jth OCR is obtained by
adding the previous embeddings together:

Eocr,j = Ec¢; + E, ; + E} ; + Eq ;. 3)

3.2 Hybrid Encoder Layer

The ChromFound encoder layer transforms the OCR representation Egcr € REXD into a latent
space, where L denotes the sequence length and D is the embedding dimension. As illustrated in
Fig.[T} ChromFound incorporates a self-attention module (Section [3.2.T) to effectively capture local
dependencies among OCRs, and integrates a Mamba layer (Sectio to handle ultra-long OCR
sequences. This architecture is motivated by biological insights, recognizing that both short- and
long-range interactions among OCRs are critical to gene regulatory mechanisms [30} 151} 54].

3.2.1 Window Partition Self-Attention (WPSA)

Due to its computational complexity O(L?), the vanilla attention mechanism [67] is not directly ap-
plicable to scATAC-seq data containing millions of OCRs. To address these challenges, ChromFound
introduces an optimized self-attention layer named Window Partition Self-Attention (WPSA), which
applies the attention mechanism within local windows of size W, where W < L.



Window Partition: Given the OCR representation Eocg € RE*P, L may not be a multiple of W. We

define the number of windows N = {%W and pad Epcr with zeros up to N x W along the dimension

L. As aresult, the padded sequence Efcg € RVW)XD s reshaped as Efjqg € RV*W*D,

Self-Attention: In practice, we set the window size to W = 256, which approximately spans 200 kb
upstream and downstream of transcriptional start site (TSS). This setting is consistent with the scope
of enhancer-promoter interactions suggested by high-resolution Hi-C analysis [2].

Window Restore: After applying self-attention within each window, we merge outputs of each
window E{- back into Eypg,:

Ewpsa = concat [Egc&l, .. ,ESCR}N] € RWW)xD, 4)

Furthermore, we remove all zero padding tokens in Ewpsa and get the WPSA output Eys, € RLxD,

3.2.2 Mamba Block

Mamba [24] is capable of processing extended sequences due to the linear-time complexity of
state space models (SSMs) [26] 25], making it particularly well suited for modeling high-resolution
scATAC-seq data. When combined with the WPSA module, which amplifies local signals within
predefined windows, the Mamba block enables effective integration of both short- and long-range
dependencies among OCRs across the genome. This hybrid architecture mitigates the degradation of
long-range information typically caused by relying solely on zero-order discretization [50,[80]. To
reduce parameter count and refine representations, we project Eyps, to a lower-dimensional space
RLEXDiow and then back, which is defined as:

Edown = EwpsaWdown» Emamba = Mamba(Edown)a Eup = EmambaWupa (5)

where Waown € RP*Piow (D)o, < D) and Wy, € RPiowxD,

3.2.3 Overall Workflow
The overall workflow of the encoder layer is illustrated in Fig. [T]and proceeded as:

Eouw = Eocr + Wy - Mamba(Waown - WPSA(RMSNorm(Eqcr))) ©6)

3.3 Pre-training

Datasets: We assemble a large-scale scATAC-seq dataset comprising over 2.64 million cells detailed
in Table[6] For model pretraining, we select a representative subset of 1.97 million cells from more
than 30 distinct organs and tissues. To rigorously evaluate the generalization ability of ChromFound,
we additionally compile a benchmark dataset containing 0.67 million cells from diverse sources,
including tissues such as bone and retina excluded from pretraining.

Implementation: ChromFound is trained for 5 epochs over 80 hours on a compute cluster comprising
4 machines with a total of 32 NVIDIA A100 GPUs. The effective batch size is set to 128. We use the
AdamW optimizer [39] with a maximum learning rate of 5 x 10~5. The embedding dimension and
the hidden size of WPSA D are set to 128, while dimension D)., of the Mamba block is set to 32.
The model architecture consists of 4 stacked encoder layers in total.

Training objective: Due to the high sparsity of scATAC-seq data, ChromFound adopts a masking
strategy that simultaneously targets both zero and non-zero OCR values. Inspired by xTrimoGene [21]],
the setting encourages the model to predict non-binary chromatin accessibility across the entire profile,
mitigating the risk of learning representations dominated by zero entries. Poisson/ZINB losses often
cause unstable optimization due to gradients dominated by nonzero entries. Instead, mean squared
error (MSE) loss on log-transformed, normalized signals ensures stability. The MLP layer is employed
as the decoder to reconstruct the original input X;. The reconstruction output of cell ¢ is denoted as

X;. The pretraining objective is the MSE loss computed over the masked positions M; in each cell i:

Lo = T 3 (% ) ™



Table 1: Results of cell clustering tasks. Result style: best, second best, relative gains.

Dataset | Tissue | Model | ARI(T) FMI(T) NMI(1) AMI(1)
PeakVI [1] 0.4558+0.0038  0.6286£0.0022  0.6964+0.0012  0.6940+0.0012
PoissonVI [44] 0.3673+£0.0028  0.5673+0.0018  0.5878+0.0001  0.5845+0.0001
SneépATACZ [84] | 0.5118+0.0315  0.6740+0.0145  0.7202+0.0041  0.7179+0.0042
] ignac [59] 0.5013+0.0507  0.7035+0.0177  0.5580+0.0160  0.5534+0.0165
Morabito130K [48] Cortex SCALE [73] 0.546020.0074 68960. 0.7282+0.0016  0.7275+0.0016
(batch 1) SCALEX [72] 49300, 0.6505+0.0013 16958%0.0001 16949+0.0001
CASTLE [12] 0.4425+0.0029  0.6109+0.0019  0.7086+0.0012  0.7077+0.0012
scBasset [81] 0.5039£0.0039  0.6747+0.0022  0.6674+0.0005  0.6647+0.0005
ChromFound 0.6890+0.0387  0.7943x0.0144  0.7779+0.0037  0.7760+0.0038
Gains(%) 26.20 15.17 6.81 6.66
Peak VI [1] 0.551240.0016  0.6394+0.0032  0.7050+0.0006  0.7028+0.0006
PoissonVI [44] 0.5334+0.0052  0.6388+0.0033  0.6004+0.0001  0.5983£0.0001
SnapATAC2 [84] | 0.5325+0.0072  0.6380+0.0045  0.7038+0.0018  0.7015+0.0018
) ) Signac [39] 0.5069+0.0123  0.6478+0.0064  0.5888+0.0032  0.5851+0.0033
Morabito130K [48] Cortex SCALE [73] 0.5306+0.0048  0.6394£0.0032  0.6221+0.0007  0.6200+0.0007
(batch 2) SCALEX [72] 0.3905+£0.0041  0.5252+0.0027  0.5361+0.0028  0.5336+0.0029
CASTLE [12] 0.3743+0.0016  0.5087+0.0010  0.4636+0.0021  0.4608+0.0022
scBasset [81] 0.5373£0.0024  0.6424+0.0015  0.6659+0.0003  0.6641+0.0003
ChromFound £ 0.7156+0.0025  0.7321+0.0016  0.7299:+0.0016
Gains(%) 16.83 10.47 3.84 3.86
PeakVI [1] 0.4159£0.0007  0.543420.0006  0.6024+0.0005  0.6000+0.0006
PoissonVI [44] 0.3969+0.0005  0.5232+0.0004  0.5717+0.0001  0.5688+0.0001
SnapATAC2 [84] | 0.4571+0.0099  0.5564+0.0064  0.6625+0.0013  0.6502+0.0013
Signac [39 3123%0. 0.4601%0.0028 327220, 0.5238+0.0029
Ku;gpew% 331 Heart SCALE [73] 0.4475£0.0015  0.5654+0.0011  0.6005+0.0003  0.5978+0.0003
(donar av3) SCALEX [72] 0.3819£0.0007  0.5061£0.0005  0.4829+0.0000  0.4797+0.0000
CASTLE [12] 0.3886+0.0017  0.5118+0.0110  0.4765+0.0001  0.4729+0.0001
scBasset [81] 0.4553+0.0022  0.5729+0.0016  0.6539+0.0006  0.6516+0.0006
ChromFound 0.5828+0.0052 E 0.7207£0.0008 =
Gains(%) 27.75 17.94 8.78 10.31
Peak VI [1] 0.4301+0.0030  0.6383+0.0021  0.6149+0.0022  0.6144+0.0022
PoissonVI [44] 0.3606+0.0054  0.5929+0.0027  0.4472+0.0066  0.4464+0.0066
SnapATAC2 [84] | 0.5515+0.0312  0.7285+0.0124  0.6867+0.0060  0.6863+0.0060
i Signac [59 0.1159+0.0112  0.50930.0053 2294%0. 22810,
Kuppe 139K [33] Heart SCALE [73] 0.4517£0.0087  0.6596+0.0040  0.5397+0.0041  0.5391%0.0041
(donar av10) SCALEX [72] 0.4742+0.0105  0.6770£0.0055  0.5040+0.0079  0.503320.0080
CASTLE [12] 0.4739£0.0000  0.6786£0.0000  0.5204+0.0000  0.5197+0.0000
scBasset [81] 0.5823+0.0111  0.74594£0.0050  0.6780+0.0001  0.6776+0.0001
ChromFound £ E 0.7369+0.0137  0.7365+0.0138
Gains(%) 16.34 8.71 7.31 7.31
Peak VI [T] 0.2885+0.0024  0.5543+0.0019  0.5644+0.0019  0.5638+0.0019
PoissonVI [44] 0.3162+0.0025  0.5766+0.0017  0.6081+0.0017  0.6076+0.0017
SnapATAC2 [84] | 0.5606+0.0569  0.7207+0.0199  0.7045+0.0085  0.7041+0.0085
] ) Signac [39] 55380. 0.7451+0.0095  0.4931+0.0535  0.4919+0.0538
Liang154K [35] Retina SCALE [73] 0.5512+0.0386  0.7285£0.0075  0.7172+0.0051  0.716820.0051
(sample D026_13) SCALEX [72] 0.5069+0.0048  0.7241+0.0022  0.675920.0005  0.675520.0005
CASTLE [12] 0.2424+0.0032  0.5136+0.0022  0.5298+0.0033  0.5292+0.0033
scBasset [81] 0.4330+£0.0049  0.6699+0.0029  0.6903+0.0015  0.6898+0.0015
ChromFound 0.6668+0.0500  0.8149+0.0169  0.7644+0.0093  0.7641:0.0093
Gains(%) 18.94 9.37 6.59 6.60
PeakVI [T] 0.4702+0.0061  0.6318+0.0037  0.7229+0.0024  0.7224+0.0025
PoissonVI [44] 0.4978+0.0122  0.6527+0.0065  0.7400+0.0028  0.7395+0.0028
SnapATAC2 [84] | 0.5814+0.0019  0.7173+0.0010  0.7881+0.0011  0.7877+0.0011
] ] Signac [39! 0.5146+0.0532  0.7339+0.0119  0.5235+0.0307  0.5222+0.0309
Liang154K [35] Retina SCALE [73] 0.6129+0.0131  0.7465+0.0113  0.7981+0.0020  0.7993+0.0058
(sample D19D008) SCALEX [72] . +0. . +0. X +0. X +0.
CASTLE [12] 0.427240.0052  0.5982+0.0034  0.6614+0.0034  0.6608+0.0034
scBasset [81] 0.6027+0.0139  0.7313£0.0066  0.7881+0.0010  0.7878+0.0010
ChromFound 0.6688+0.0264  0.7767+0.0123  0.8183+0.0032  0.8179+0.0032
Gains(%) 9.12 4.05 2.53 2.34
PeakVI [T] 0.5417£0.0022  0.6340+0.0015  0.6639+0.0009  0.6627+0.0009
PoissonVI [44] 0.6314£0.0027  0.7073+0.0018  0.7353+0.0012  0.7343+0.0012
SnapATAC2 [84] 62460, 0.7085+£0.0067  0.7551£0.0023  0.7541+0.0023
. Signac [59. 0.1832+0.0136  0.4543%0.0043  0.3064+0.0198  0.3027+0.0201
PBMCI169K [15] PBMC SCALE [73] 0.6158+0.0048  0.6959+0.0031  0.7632+0.0010  0.7623%0.0010
(batch VIB_10xv1_1) SCALEX [72] 0.6121£0.0048  0.6927+0.0015  0.7593+0.0008  0.7584+0.0008
CASTLE [12] 0.5530£0.0018  0.6439£0.0012  0.7263+0.0004  0.7252+0.0004
scBasset [81] 0.6240+0.0001  0.7019£0.0001  0.7660+0.0000  0.7651+0.0000
ChromFound 0.6953+0.0035  0.7601x0.0023  0.7860£0.0007  0.7852%0.0008
Gains(%) 10.12 7.28 2.61 2.62
Peak VI [T] 0.2915+0.0005  0.5041+0.0004  0.4623+0.0004  0.4615+0.0005
PoissonVI [44] 0.4103£0.0045  0.5994+0.0028  0.5656+0.0035  0.5649+0.0035
SnapATAC2 [84] | 0.4126+0.0318  0.6149+0.0149  0.5761+0.0071  0.5754+0.0071
) Signac [39 0.1885+0.0097  0.5249+0.0056  0.2852%0.0040  0.2839£0.0040
PBMCI169K [15] PBMC SCALE [73] 0.4359+0.0181  0.6250£0.0101  0.5594+0.0045  0.5587+0.0045
(batch BIO_ddseq_1) SCALEX [72] 0.4087+0.0197  0.6063£0.0106  0.5519+0.0066  0.5512+0.0066
CASTLE [12] 0.3504+0.0042  0.5555+0.0026  0.5512+0.0013  0.5506+0.0013
scBasset [81] 0.4362+0.0012  0.6223+0.0008  0.5577+0.0008  0.5571+0.0008
ChromFound %0, 0.6604£0.0042  0.5950£0.0036  0.5944+0.0036
Gains(%) 10.84 5.66 3.28 3.30




4 Experiments

To systematically evaluate the performance of ChromFound, we conduct experiments on various
tissues and datasets. We first assess its zero-shot representation capabilities, demonstrating strong
robustness to both data sparsity and batch effects. We then evaluate the transferability in downstream
tasks, including cell type annotation and cross-omics prediction. Finally, we validate the biological
utility of ChromFound by accurately inferring gene-enhancer regulatory links and gene expression
responses to enhancer perturbations. All scATAC-seq datasets used in experiments are preprocessed
according to the procedures detailed in Appendix D]

4.1 Cell representation

ChromFound generates low-dimensional cell representations by applying PCA to the encoder outputs
after the pooling layer. Details of the implementations are provided in Appendix [B.T} For comparison,
we include scBasset [81] and three VAE-based models [73 72, [12], which require self-supervised
learning on each specific dataset. We conduct experiments on eight datasets from four tissue types
and evaluate performance using four clustering metrics to ensure a fair and reliable comparison.

All results presented in Table |1|reveal that ChromFound outperforms existing SOTA methods in
all tissues and metrics, with average improvements of 17.02%, 10.39%, 6.72% and 6.69% in ARI,
FMI, NMI and AM], respectively. The greater improvements observed in ARI compared to NMI and
AMI infer the robustness of ChromFound to technical noise such as low read depth and batch effects,
as ARI is particularly sensitive to local structures within the cell representation space. We discuss
ChromFound’s ability to denoise low count and batch effect as below.

Denoising low count: Some studies [6l 34} 62] have acknowledged that the prevalence of missing
signals in scATAC-seq makes standard analyses challenging. Although all datasets in Table|l|already
exhibit high sparsity (~99%), we further simulate increasingly sparse conditions by downsampling
accessible OCRs to 10%, 20%, 30%, 40% and 50% of their original counts. We adopt the same
benchmarking methods and clustering metrics as listed in Table[T} As shown in Fig. 2] ChromFound
consistently maintains stable performance across all levels of downsampling, with its advantage
over baseline methods becoming increasingly pronounced as the sparsity intensifies. Furthermore,
we observe that ChromFound performs better on the retina dataset under stronger downsampling.
This improvement likely reflects protocol-specific artifacts, as retina data contain more frequently
accessible OCRs, introducing redundancy and noise. Random downsampling suppresses these
excessive signals, enhances the signal-to-noise ratio, and yields the observed performance gain.

Gain (%)

Gain (%)

Gain (%)

PR R 2 P P S RO

R BRI

—@~ ChromFound (Ours) - SCALE (Nature Communicat tions) —A- SCALEX (Nature Comi jons) &~ CASTLE (Nature Computational Science) —#— scBasset (Nature Methods) 1 Gains (%) over the second best]

Figure 2: Results of denoising low count. The left y-axis shows the absolute metric values (scatter
plot) and the right y-axis indicates the relative gains (%) over the second-best methods (bar plot).



Denoising batch effect: Denoising batch effects remains a major challenge in scATAC-seq analy-
sis [46,162,41]. We evaluate ChromFound on datasets from 4 tissues using biological conservation
metrics [41] consistent with scGPT [[11]]. In addition to Peak VI [1]], PoissonVI [44], SCALEX [72]
and scBasset [81], we include five specialized batch integration methods [38 29, 32| (74} 37] for
comparison. As shown in Table[2] ChromFound in zero-shot settings outperforms existing methods
by more effectively mitigating batch effects while better preserving biologically significant variation.

Table 2: Results of denoising batch effect. Result style: best, second best, relative gains. AvgBIO
is the average of ARI., NMl.; and ASW¢. measuring biological consistency. AvgBATCH is
computed as the average of ASWy,h, and GraphConn to summarize the batch mixing performance.

Bone To326K [65] Heart Kuppel39K [33] PBMC 169K [15] Cortex Morabito130K [48]
Model batch 43/44 donar av3/av10 HAR ddseq 1/2 batch 1/2
AvgBIO(T) AvgBATCH(1) | AvgBIO(T) AvgBATCH(T) | AvgBIO(T) AvgBATCH(T) | AvgBIO(T) AvgBATCH(T)

scVI 38 0.3713 0.9026 0.7303 0.8448 0.6101 0.7932 0.7238 0.9217
Peak VI [1] 0.2981 0.9173 0.5657 0.7564 0.6172 0.7889 0.7256 0.9254
PoissonVI [44] 0.2936 0.9178 0.5621 0.7719 0.6029 0.8081 0.7240 0.9279
Scanorama [29 0.4386 0.8722 0.5320 0.7779 0.6036 0.7964 0.6895 0.9243
Harmony [32] 0.3789 0.8558 0.5119 0.8390 0.6232 0.7923 0.7152 0.9101
SCANVI [74] 0.4351 0.8479 0.6810 0.8401 0.6028 0.8035 0.7185 0.9208
Liger [37] 0.1992 0.6471 0.7286 0.8019 0.6051 0.8009 0.6822 0.9208
SCALEX [72] 0.1778 0.9177 0.7596 0.8415 0.5989 0.8004 0.4789 0.8728
scBasset [81] 0.3650 0.9208 0.6216 0.8591 0.6024 0.8014 0.7045 0.9301
ChromFound 0.6408 0.9289 0.8180 0.8679 0.6443 0.8217 0.7440 0.9565

Gain(%) | 46.07 0.88 | 7.69 1.03 | 3.37 2.25 | 2.78 2.84

4.2 Cell Type Annotation

Computational cell type identification is a fundamental task in single-cell omics analysis. To adapt
ChromFound for this task, we introduce a feature projection head followed by MLP layers as
described in Appendix [B:2] Our methods are compared to three strong baseline models designed for
cell type annotation of scATAC-seq, Cellcano [42], EpiAnno [[7] and SANGO [82]. The variant of
ChromFound trained from scratch is also included to assess the contribution of pretraining. Fig.[3]
highlights that ChromFound consistently outperforms all benchmark methods, achieving the highest
performance in macro F1 score and demonstrating its ability to accurately annotate diverse cell
types. The confusion matrices on PBMC169K [[15]] for ChromFound and CellCano [42] are shown in
Fig. [0 The results indicate that Cellcano struggles to correctly classify rare cell types such as natural
killer cells, CD16* monocytes, and dendritic cells, likely due to their low abundance. In contrast,
ChromFound significantly improves the classification accuracy for these cell types, enabling a more
precise understanding of immune cell composition and dynamics.
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Figure 3: Results of cell type annotation, evaluated by Accuracy (left) and macro F1 Score (right).

4.3 Cross-omics Prediction

Although recent advances have enabled the simultaneous profiling of multiple assays, most single-
cell datasets remain isolated, posing significant challenges for effective multi-omics analysis. To
explore the potential of ChromFound in multi-omics prediction, we utilize scATAC-seq data as the
source modality and scRNA-seq data as the target modality. Implementation details are provided in
Appendix[B.3] For comprehensive evaluation, we benchmark on five paired scATAC-seq and scRNA-
seq datasets [|86 165} 140, 5 |87]] using two standard correlation metrics. Three representative baseline



methods [[71} [78, 169] are included with default configurations from the DANCE toolkit [[16]. As
shown in Table[3] ChromFound consistently outperforms all baselines across datasets in both PCC and
CCC, highlighting its strong capability in cross-omics prediction. These results highlight the potential
of ChromFound to facilitate biological analyses such as inferring gene-enhancer relationships and
predicting transcriptional response to enhancer perturbation. The two biological applications are
discussed in detail below.

Table 3: Cross-omics prediction results. Result style: best, second best, relative gains. ChromFound*
stands for the version of ChromFound without loading the pretrained checkpoint.

Cortex Bone BMMC BMMC Cell lines

Model Zhu45K [86 To326K [65 multiome 2021 [40] atac2gex 2022 [5] Zhul 1K [87
CC(T)  CCC(M) CC(T) CCC(T) | PCC(t) CCC(T) | PCCT  CCC(T) | PCC(T)  CCC(T)
BABEL [71] 0.7975 0.7687 0.8020 0.7223 0.3854 0.3695 0.8901 0.8329 0.9196 0.8608
CMAE [78] 0.7973 0.7525 0.7986 0.6683 0.3435 0.3204 0.8983 0.7990 0.9136 0.8539
scMM [47 0.7793 0.7325 0.7586 0.6513 0.3718 0.2983 0.8321 0.7027 0.8587 0.8062
scMoGNN [69] 0.8001 0.7210 0.7957 0.7233 0.4168 0.3911 0.9124 0.8655 0.7976 0.7263
ChromFound* 0.7864 0.7674 0.7887 0.6919 0.4213 0.3989 0.9279 0.8704 0.8992 0.8501
ChromFound 0.8316 0.8064 0.8304 0.7472 0.4249 0.4032 0.9293 0.8818 0.9449 0.9071

Gain(%) | 410 467 | 354 330 | 194 3.09 | 185 1.88 | 2.67 5.11

Biological Application: Predicting enhancer-gene link and perturbation response

Enhancer elements in the human genome harbor thousands of genetic variants that regulate gene
expression and contribute to the risk of common diseases [85]. In our approach detailed in Ap-
pendix [B.4] we simulate OCR knockdown and estimate the resulting changes in gene expression. The
absolute change reflects the likelihood of an enhancer-gene regulatory link, while the relative change
captures the direction and strength of the transcriptional response. We perform experiments on 141
K562 cells from the test split in Zhul 1K [87]], using the cross-omics model trained as evaluated
in Table 3] Fulco4K [87] provides the ground truth of enhancer-gene links and quantitative effects
through CRISPRi perturbations in K562 human erythroleukemia cells. For clarity, the evaluation
focuses on the COPZ1 and HNRNPA1 genes, which are involved in cancer-related processes such as
stress adaptation and RNA splicing regulation [58| 8]. BABEL [71]] and CMAE [78]] are included as
benchmark methods due to their strong performance in cross-omics prediction in Zhul 1K [87]. As
shown in Fig. f(a)l ChromFound achieves the highest AUC scores with 0.77 for COPZ1 and 0.61 for
HNRNPA, accurately identifying enhancer-gene links. Fig. A(b)|further shows that ChromFound
better predicts transcriptional responses to enhancer perturbations. In contrast, BABEL [71]] and
CMAE [78] filter for the top 10,000 highly variable OCRs [16], leading to zero predictions of most
enhancer perturbations. This limitation is evident in both Fig[(a) and Figli(b)] highlighting the
advantage of ChromFound’s genome-wide modeling to support a more comprehensive understanding
of regulatory mechanisms.
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Figure 4: (a) ROC curves illustrate the performance of enhancer-gene link prediction, where true
positive rates are plotted against false positive rates across varying prediction thresholds. Ground
truth labels are defined based on the significance (FDR < 0.05) of expression changes after enhancer
perturbation. (b) Scatter plots represent a specific enhancer perturbation. The y-axis shows the
predicted scores of average gene responses of enhancer perturbation, while the x-axis represents the
real effects of post-perturbation. Both magnitudes are rescaled to the unit norm.



4.4 Ablation study

In this section, we conduct an ablation study to address three questions using the PBMC169K [15],
sampled from batch VIB_10xv1_1. The results of cell representation are summarized in Table[z_f}

Question 1 : Does our proposed ChromFound architecture contribute to performance?

We evaluate the individual impact of each key module in our model, including genome-aware
tokenization (Section [3.1), the WPSA layer (Section [3.2.1)) and the Mamba block (Section[3.2.2). In
rows 2-4 of Table[d] we observe a clear performance drop in all clustering metrics compared to row 1,
demonstrating that each component contributes complementarily to overall performance.

Question 2 : Does scaling to large-scale data provide performance gains?

As shown in rows 5-6 of Table ] reducing the data size from 1.97 million to 0.2 million and 20
thousand cells leads to consistent degradation in all evaluation metrics, confirming that large-scale
data learning facilitates better generalization.

Question 3 : Is long-context modeling necessary for high-quality representations?
As seen in rows 7-8 of Table[d] reducing the input length by half and by a quarter significantly hurts

performance, highlighting the importance of long-context modeling for dynamic OCR landscapes.

Table 4: Ablation study. Red row indicates the full model of ChromFound. The other colored rows
correspond to the topics discussed in Section{.4]

Genome Datasize #of OCRs FLOPs(10e9)

info WPSA  Mamba (million) per cell per cell ARI(D) FMIC) NMI(T) AMI(T)

4 v v 1.97 440000 19.72 0.6953+£0.0035  0.7601£0.0023  0.7860+0.0007  0.7852+0.0008
v v 1.97 440000 19.72 0.6452+0.0149  0.7095+0.0098  0.7227+0.0021  0.7301+0.0017

v 1.97 440000 19.72 0.5897+0.0086  0.6401+0.0113  0.6419+0.0012  0.6476+0.0015

v 1.97 440000 19.72 0.3075£0.0019  0.3098+0.0011  0.3101+0.0011  0.332620.0013

v v v 0.2 440000 19.72 0.6539+0.0057  0.7261£0.0037  0.7593+0.0012  0.7583+0.0012
v v v 0.02 440000 19.72 0.6142+0.0053  0.6995+0.0034  0.7354+0.0015  0.7345+0.0015
v v v 1.97 220000 9.87 0.4012+0.0047  0.4500£0.0031 0.4535+0.0007  0.4425+0.0007
v v v 1.97 110000 4.93 0.3276+£0.0051  0.3589+0.0048  0.3674+0.0002  0.3668+0.0002

5 Conclusion

In this work, we present ChromFound, to the best of our knowledge, the first foundation model
specifically for scATAC-seq data. To address the inherent challenges of high-dimensionality, sparsity,
and dynamic chromatin landscapes, we utilize a hybrid architecture that integrates short- and long-
range dependencies with a genome-aware tokenization. Trained on 1.97 million single-cell profiles
comprising over 30 human tissue types and 6 disease categories, ChromFound achieves SOTA
performance in 6 downstream tasks, showing great robustness in zero-shot cell representation.
Its biological significance is further demonstrated by its ability to accurately infer transcriptional
responses to enhancer perturbations. In the future, we aim to explore the broader applicability of
ChromFound in the large-scale mapping of enhancer-gene regulatory interactions, a critical yet largely
uncharted component of the cis-regulatory landscape of the human genome.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state ChromFound’s contributions in
advancing single-cell data analysis tasks like cell clustering denoising batch effectd.1],
denoising low count[4.T] cell type annotation[4.2} cross-omics prediction @.3]and predicting
enhancer-gene link 4(a)] and perturbation response f(b)| aligning with the experimental
results presented in experiments section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

The conclusion section[5]highlights that ChromFound’s pretraining data is currently restricted
to human species, with ongoing efforts planned to diversify the training dataset and refine
the methodology to improve cross-species generalizability and widen its applicability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: As an application-driven study in Al for Science, the paper focuses on evaluat-
ing ChromFound through experimental validation across practical single-cell downstream
tasks, such as zero-shot cell clustering, cell type annotation, cross-omics prediction, pre-
dicting enhancer-gene link and perturbation response rather than presenting theoretical
results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

The paper provides comprehensive details in Sections @] [D] [B.1] [G.T} and [B.3] covering data
preprocessing, model architectures, training settings (e.g., 90%-10% train-validation splits,
AdamW optimizer with a learning rate of 5 x 10~%, 20 epochs for cell type annotation),
and evaluation metrics || for cell clustering, cell type annotation, and cross-omics prediction
tasks, ensuring the main experimental results are reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully

might suffice, or if the contribution is a specific model and empirical evaluation, it may

be necessary to either make it possible for others to replicate the model with the same

dataset, or provide access to the model. In general. releasing code and data is often

one good way to accomplish this, but reproducibility can also be provided via detailed

instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We plan to open-source the code and data upon acceptance to ensure full
reproducibility; however, the paper provides comprehensive details in Section (4| and the
appendix [B] [l [D] and [G] to replicate the experiments, ensuring the results are solid and
reproducible.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [3.3]details the pretraining pretrain implementation and details the
training and test settings, including 90%-10% data splits, hyperparameters (e.g., learning rate
of 5 x 10~%), AdamW optimizer, and a 50-step warmup schedule in in cell type annotation
task.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars in Fig[2] Tabled] and Table[I] capturing variance
due to downsampling levels, model component variations, and initialization differences in
noise/sparsity analysis, ablation studies, and zero-shot cell clustering, respectively; these
error bars represent the standard deviation over 20 independent runs, calculated directly
from the sample variance as detailed in the corresponding sections, assuming normally
distributed errors without asymmetric distributions that would lead to out-of-range values.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section [3.3]details that pretraining was conducted on a cluster of 4 machines
with 32 NVIDIA A100 GPUs over 5 epochs over 80 hours, while Sections [G.1] and [B.3]
note that cell type annotation and cross-omics prediction experiments each ran on a single
machine with 4 NVIDIA A100 GPUs for 20 and 10 epochs, respectively; cell clustering in
Section[B.T|required minimal compute as it operates in zero-shot mode; total compute across
all experiments is dominated by pretraining, with additional resources used for preliminary
experiments on 32K cells as noted in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, using publicly available
single-cell datasets with no ethical concerns regarding data collection or usage, as confirmed
in Table

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper highlights positive societal impacts in Section[I] noting that Chrom-
Found’s advancements in single-cell analysis can enhance biological research in fields like
cancer, immunology, and neuroscience; however, it also acknowledges potential negative
impacts, such as the risk of biased outcomes if trained on unrepresentative datasets, which
could affect fairness in medical applications, and the possibility of incorrect predictions
delaying scientific progress, with a suggestion for mitigation through careful dataset curation
and validation as implied in the evaluation protocols of Section ]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: ChromFound and the associated datasets pose no high risk for misuse, as they
are designed for single-cell analysis with publicly available biological data, as noted in
Section 3]

20


https://neurips.cc/public/EthicsGuidelines

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: A comprehensive data table in Table [f] paper lists all single-cell datasets used,
including their sources, download links, and citations to the original creators, ensuring

proper crediting; all datasets are publicly available and open-source, with their licenses
respected as confirmed by their accessibility through the provided references and links.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not generate new data as assets; however, ChromFound’s
model weights are a new asset and while not released at submission time, they will be
available with complete documentation after acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects,
focusing solely on computational analysis of single-cell datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing, as it focuses on
computational methods for single-cell data analysis.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods of ChromFound do not involve LLMs; the research focuses
on computational methods for single-cell data analysis without LLM components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion of comparing OCR tokenization with other peak-calling
algorithms

Traditional scATAC-seq pipelines often rely on a fixed OCR vocabulary (e.g., from a reference atlas)
to harmonize datasets, which ensures alignment consistency but introduces two major limitations:
(1) aloss of OCR length information, which encodes accessibility strength and resolution, and (2)
reduced generalizability, as tissue-specific or novel OCRs are often excluded. ChromFound addresses
these issues through a genomic-coordinate—based tokenization strategy that encodes each OCR by its
actual genomic start and end positions using sinusoidal positional embeddings (Section 3.1). This
position-aware representation naturally accommodates variable-length OCRs and preserves their
spatial relationships, enabling the model to capture regulatory heterogeneity across tissues.

We perform an experiment to directly compare ChromFound with VAE-based models trained on
reference-peak-aligned data. Specifically, we adopt the cPeaks reference set [45]], which defines
1,657,194 peaks across the human genome. We use a 20,000-cell PBMC subset (same as in Table ]
Row 6) as the training data. After mapping peaks to the cPeaks reference and filtering out peaks and
cells with all-zero values, we obtain a training set of 306,784 peaks and approximately 18,000 cells.

We train four VAE-based baselines [73| 72, [1,44] on the aligned data and compare their performance
on zero-shot cell clustering (Table [1)) against ChromFound trained on the same aligned data. Evalu-
ation metrics and datasets follow Tabld]] all aligned to 306,784 peaks. Results are summarized in
Table

This comparison yields two key observations. First, reference-based alignment substantially limits
cross-tissue generalization: only 30% of peaks in retina, 35% in cortex, and 70% in heart overlap with
the cPeaks-aligned PBMC training peaks, leading to markedly lower performance of the baseline
VAE:s on unseen tissues. Second, ChromFound, though robust even when trained on the reference-
aligned data, performs best when using its native OCRs, suggesting that fixed-peak harmonization
fails to capture novel or shifted OCRs arising from tissue heterogeneity, disease-specific variation, or
batch effects.

B Experiments details

B.1 Cell clustering

Since ChromFound is configured in a zero-shot mode for the cell clustering task, no additional fine-
tuning architecture or training parameters need to be specified. We directly propagate the data through
the encoder structure of ChromFound, extracting the encoder output as the final representation. After
performing a pooling layer on the hidden dimension, we apply Principal Component Analysis (PCA)
to reduce the dimensionality of the output to 50. Based on this, we compute the metrics for cell
clustering and generate the UMAP clustering visualization. The benchmark methods are implemented
with the default parameters provided by their source codes.

We compute the inference speed of ChromFound on a node equipped with 32 CPU cores, 256 GB
of memory, and one NVIDIA A100 GPU. The input scATAC-seq dataset with 232,354 OCRs. The
maximum CPU memory usage is 23.9 GB and the maximum GPU memory consumption is 12.7 GB
out of 80 GB available. The inference speed with batch size 4 is 0.97 seconds per batch.

B.2 Cell type annotation

Building upon our four-layer pretrained model, we extract the encoder output as a general-purpose
representation for downstream cell type annotation. To align the model with this task, we incorporate
additional fine-tuning layers. Specifically, the hidden dimension produced by ChromFound’s encoder
is expanded from 128 to 256 before being projected down to a single dimension, resulting in a pooling
tensor. Subsequently, additional multilayer perceptron (MLP) layers are employed to predict the
logits corresponding to cell types. We freeze the decoder parameters from pretraining while enabling
gradient flow through the rest of the pretrained backbone so that it can adapt to the new classification
objective. Dropout mitigates overfitting by randomly zeroing hidden units, while LayerNorm helps
stabilize and accelerate fine-tuning. The benchmark methods are implemented with the default
parameters provided by their source codes.
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Table 5: Results of VAE-based models with cPeaks-aligned training against ChromFound. Result
style: best, second best

Dataset | Model | VAE | cPeaks | ARI(1) FMI(1) NMI(1) AMI(T)
SCALE [73] v v | 02932 05050 04127  0.4081
SCALEX [72] | ¢ v | 04230 06078 05543  0.5513
Cortex(batch 1) peak V1 [1] v v | 03690 05643 05023  0.4983
poissonVI [44] | v v | 03364 05408 04636 04594
ChromFound v | 05858 0.7244 0.7519  0.7499

ChromFound 0.6475  0.7503 0.7701 0.7689

SCALE [73] 4 4 0.2484  0.4052 0.3657  0.3609
SCALEX [72] 4 4 0.4481 0.5679 0.5742  0.5710
Cortex(batch 2) peak VI [1] v v 0.3610 0.5035 0.4876  0.4835
poissonVI [44] 4 4 0.2820 04374 0.4104  0.4058
ChromFound 4 0.5751  0.6720 0.7145  0.7123
ChromFound 0.6092 0.7015  0.7276  0.7259
SCALE [73] 4 v 0.3543 04817 0.5228  0.5195
SCALEX [72] v v 0.2795 0.4150 04787  0.4752
Heart(av 3) peakVI [1] 4 4 0.3023  0.4437 04816 04779
poissonVI [44] 4 4 0.3778 0.5025 0.5446  0.5414
ChromFound 4 0.5400 0.6347  0.6588  0.6567

ChromFound 0.5642 0.6601  0.6981  0.6953

SCALE [73]] 4 4 0.4051 0.6506 0.4461  0.4453
SCALEX [72] 4 4 0.3013  0.5685 0.4199  0.4191
Heart(av 10) peak VI [1] v v 0.3966  0.6080  0.5018  0.5011
poissonVI [44] 4 4 0.3939  0.5997 0.5010  0.5003
ChromFound 4 0.6150 0.7695  0.6968  0.6963

ChromFound 0.6432 0.7869  0.7220 0.7223

SCALE[T3] | v | ¢ | 03065 05771 04447 04440

SCALEX[72] | v | v | 02430 05149 04127 04117

. peak VI [I] v | v | 02514 05260 04651 04644
Retina(D026_13) poissonVI [4d] | v v | 02347 05122 04063 04055
ChromFound (4 0.4888  0.7081 0.7241 0.7238

ChromFound 0.5802 0.7549  0.7410  0.7403

SCALE[T3] | ¢ | ¢ | 03143 05092 04220 04210

SCALEX[72] | v | « | 0249 04542 03920 03909

. peakVI [T] v | v | 02664 04693 04745 04736
Retina(D19D003) poissonVI [44] | v/ v | 02396 04473 03937 03926
ChromFound v | 05368 06839 07664 0.7660

ChromFound 0.5956 0.7202 0.7832 0.7868

SCALE[13] | v | ¢ | 05769 06756 07066 0.7057
SCALEX[72] | v | v | 05718 06514 07205 0719
peak VI [1] v | v | 05306 06249 07057 07046
PBMC(VIB_10xvl_D) | o cconvi [34) | v v | 05593 06479 06742  0.6732
ChromFound v | 05999 06827 07434 07424

ChromFound 0.6142 0.6995 0.7354  0.7345

SCALE[13] | v | ¢ | 04031 05797 05380 0.5374
SCALEX[72] | v | v | 03326 05430 05465 0.5458
peakVI [T] v | v 0380 0584 05737 05731
PBMC(BIO_ddseq_1) | ot cconVI [@d] | v v | 0395 05917 05509  0.5503
ChromFound v | 04347 06237 0587 05861
ChromFound 04579 0.6421 05902 0.5910

24



For experimental settings, we divide the training data into 90% for training and 10% for validation.
We train for 20 epochs using the AdamW optimizer with an initial learning rate of 5 x 10~* and a
linear warm-up schedule of 50 steps. The best model is chosen based on validation set performance
and evaluated on the test set to obtain the reported accuracy and macro F1 score. All experiments are
conducted on a single machine equipped with four NVIDIA A100 GPUs.

B.3 Cross-omics prediction

We employ a two-layer Multilayer Perceptron (MLP) to perform the modality prediction task, with
the hidden layer size set to 1024. The learning rate is configured at 1e-4, and AdamW is utilized as the
optimizer. A total of 10 epochs are conducted for training. All benchmark methods are implemented
with the default parameters in the DANCE package [16]. All experiments are conducted on a single
machine equipped with four NVIDIA A100 GPUs. We divide the whole dataset into 80% for training,
10% for evaluation, and 10% for testing.

B.4 Biological application

To validate the biological relevance of predicted enhancer-gene interactions, we simulate enhancer
knockdown using our cross-omics model trained on the Zhul1K dataset [87]]. Specifically, we select
141 K562 cells from the test split and iteratively set the accessibility of each candidate enhancer
to zero, mimicking CRISPRi-mediated repression. The model then infers post-perturbation gene
expression, and the change relative to the unperturbed state is computed and averaged across all cells.
The absolute magnitude of this change indicates the likelihood of a regulatory interaction, while the
signed change reflects its direction and strength.

We focus on two cancer-related genes, COPZ1 and HNRNPA 1, which are extensively characterized
in the Fulco4K CRISPRI dataset [87]. Each gene is associated with 117 candidate enhancers, among
which 6 (COPZ1) and 10 (HNRNPA1) are experimentally validated. To resolve discrepancies in
genomic coordinates between Fulco4K [[19] and Zhul1K [87]], we perform enhancer mapping using
bedtools [53]]. In total, the simulation spans 230,819 enhancers and 17,476 genes.

To evaluate performance, we compute the area under the ROC curve seen in Table fi(a)] between
the absolute expression change and the binary labels of enhancer-gene links tested with a statistical
significance on gene expression at a false discovery rate (FDR) < 0.05 [19]. ChromFound achieves
the highest accuracy, with AUCs of 0.77 for COPZ1 and 0.61 for HNRNPA1, demonstrating its
ability to identify functional regulatory links. Additionally, we calculate the Pearson correlation
between signed responses and CRISPRi-measured quantitative effects plotted in Table [4(b)]

The Benchmark methods BABEL [71] and CMAE [78]] are included for comparison due to their
strong cross-omics performance on Zhul 1K. However, both rely on filtering the input scATAC-seq
profiles to the top 10,000 highly variable OCRs [16]], which excludes the majority of candidate
enhancers from Fulco4K. As a result, these methods often fail to produce meaningful predictions
for enhancer perturbations, yielding near-zero expression changes in most cases. This limitation is
evident in both the ROC and scatter plots, underscoring the advantage of ChromFound’s genome-wide
modeling in capturing fine-grained regulatory effects at scale.

C Details of datasets

We collect a large-scale human scATAC-seq dataset that includes more than 2.65 million cells and
1.75 trillion tokens. ChromFound for pretraining is based on two fundamental datasets, the human
atlas [83]] and the fetal atlas [[17]], which contribute 1.32 million cells spanning multiple human organs
and serve as the primary sources for pretraining ChromFound. We accept the CRCh38 as reference
genome across all datasets to maintain uniformity, converting datasets originally in hg19 to hg38
when necessary. The resources of all datasets are detailed in Table[6]

D Pre-processing of scATAC-seq data

We develop a preprocessing pipeline for scATAC-seq data to address sparsity and high dimensionality,
ensuring high-quality cells and OCRs for model pretraining and downstream analyses. Preprocessing
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is applied after train/test splitting to avoid information leakage, and all datasets are stored in .h5ad
format with genomic OCR coordinates in the var schema.

Quality Control: We filter out cells with non-zero counts below 1,000 or above 60,000 and remove
OCRs with non-zero counts present in less than 5% of all cell types to preserve heterogeneity among
rare populations. For unlabeled datasets, pseudo labels are inferred using TF-IDF followed by LSI

for OCR filtering.

Cell aggregation: To mitigate sparsity, we aggregate neighboring cells identified through Latent
Semantic Indexing (LSI) and cosine similarity. LSI extracts n components after removing technical
noise (the first component), and cosine similarity determines the 10 nearest neighbors for aggregation.

Normalization and Log Transformation: To stabilize variance and scale the data, we apply total
count normalization followed by log transformation.

Table 6: Dataset Information

Dataset Tissue Disease Cell Numbers OCR Numbers Genome GSE/GSM ID
HumanAdlas [83] Atlas Health 615,998 1,154,611 hg38 GSE184462
FetalAtlas [17] Atlas Health 707,043 1,154,646 hg38 GSE149683
PBMCBenchmark [15] P"gﬁ’)};’za‘ Health 169,047 412,490 he38  GSE194028
Cortex 130K [48] Cortex Alsheimer's 130,419 219,070 he38  GSE174367
1sease
Cortex2K [49] Cortex Health 2,174 292,156 hg38 GSE174226
Zhud5K [86] Cortex Health 45,549 304,034 hg38 GSE204684
PBMCOK [23] Pe];‘f:)f;‘zral Leukemia 9,215 108,344 he38  GSE139369
BMMCI11K [23] Bone Marrow Health 11,384 452,004 hgl9 GSE194122
Rubin [56] Epidermis Health 288 94,633 hg19 GSE116428
7,202 87,851 GSM4798906
Xul2K [75] Breast Breast cancer 5.642 76.850 hg38 GSM4798907
6,284 79,730 GSM4119513
129 1,169 GSM4119514
: . A 5213 210,434 GSM4119515
Wang23K [68] Brain Glioma 5519 183.847 hg38 GSM4119516
2,229 40,907 GSM4119517
3,628 93,121 GSM4119518
Buenrostro3K [3] Bone Marrow Health 2,953 491,437 hgl9 GSE96769
Corces0.5K [0] Bone Marrow/ | o jemia 576 590,650 hgl9 GSE74310
Peripheral Blood
Corces70K [I0] Brain Alzheimer'sand 70 631 444,747 hg38  GSE147672
Parkinson’s diseases
Bone Marrow Health 63,882 571,400
Satpathy 1 10K [57] P eg‘f(’fgfiml Health 4,146 238,616 hgl9  GSE129785
Peripheral Health 4,786 152,367
Blood
TME Cancer 37,818 580,789
Ziffra77K [88] Forebrain Health 77,354 459,953 hg38 GSE163018
Kuppe139K [33] Heart Myocardial 139,835 429,828 hg38 -
infarction
Liang154K [35] Retina Health 154,775 264,833 hgl9 GSE226108
To326K [63] Bone Health 326,532 530,751 hg38 -
Zhul 1K [87] Cell Line N/A 11,632 258,044 hgl9 GSE118912
10,247 90,686 10k vI.1
9,688 144,023 10k v2.0
10x PBMC Datasets Peripheral Blood Health 4,623 135,377 hgl9 S5k v2.0
1,004 82,579 Tk v2.0
484 65,908 500 v2.0
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E Supplementary results of ablation study

E.1 Hyperparameter sensitivity

We evaluate the hyperparameter sensitivity on the cell clustering task using PBMC169K (batch
VIB_10xv1_1) dataset.

Positional embedding temperature: This parameter controls the frequency of sinusoidal position
encodings and can be viewed as a proxy for "genomic resolution". As shown in Table /| performance
slightly drops when temp is within 10e3 to 10e5, and degrades more substantially when temp is too
large, likely due to loss of relative position sensitivity.

Table 7: Results of hyperparameter temp sensitivity experiment.

temp | ARI(Y) NMI(1) AMI(1) FMI(1)
1000 0.6535 0.7764  0.7755  0.7259
10000 0.6512  0.7709  0.7701  0.7243

100000 (Ours) | 0.6953 0.7860  0.7852  0.7601
1000000 0.6036  0.7344  0.7334  0.6860
10000000 0.5852 0.7269  0.7258  0.6714

Mamba projection dimension: This parameter controls the compression within the Mamba block.
As shown in Table [8] D;,,, = 32 achieves a strong balance between performance and efficiency.
Our choice of 32 is primarily motivated by the trade-off between performance and computational
efficiency. Larger values lead to marginal gains but significantly increase FLOPs and memory, with
Doy = 128 exceeding the memory limits on A100 80G GPUs.

Table 8: Results of Mamba projection dimension D;,,, sensitivity experiment.

Diow | #Parameter | FLOPs (10ell) | Inference Speed (s) | VRAM (GB) | ARI(1)

16 422,593 7.41 3.4027 48.8 0.6158

32 (Ours) 450,305 7.89 3.4624 60.7 0.6953
64 518,785 9.09 4.0053 72.3 0.6927
128 707,969 12.4 OOM OOM OOM

E.2 Comparison on Transformer-only architectures

Training a vanilla Transformer on scATAC-seq inputs containing nearly one million peaks is prac-
tically infeasible due to its quadratic scaling in memory and computation. To approximate a pure
Transformer baseline under practical settings, we train two representative single-cell foundation mod-
els, Geneformer and scGPT, on the same pretraining corpus with increasing peak lengths (4k—32k)
and the same hyperparameters as WPSA. The results of comparison on the cell clustering task using
the PBMC169K (batch VIB_10xv1_1) dataset are detailed in Table[9}

Table 9: Results of comparison on Transformer-only architectures.

Method | OCRs Length | ARI(1)
Geneformer 4096 0.0451
16384 0.0457
32768 0.0460
scGPT 4096 0.3075
16384 0.3774
32768 0.3868

ChromFound | 440,000 | 0.6953
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F Supplementary results of denoising batch effect

We show the plots of the denoising batch effect as below. The results on To326K [65] from the Bone
tissue are plotted in Fig. [5| The results on Kuppel139K [33] from the Heart tissue are plotted in
Fig.[6] The results on Morabitol130K [48]] from the Cortex tissue are plotted in Fig.[7] The results on
PBMC169K [15] from the PBMC tissue are plotted in Fig. 8| In addition, the results of all metrics
are listed in Table

Table 10: Comparison of Batch Correction and Biological Conservation Metrics Across Datasets.
The best performance for each metric within each dataset is highlighted in bold.

Dataset Method Batch Correction Metrics Biological Conservation Metrics

ASWbmch GraphConn ASWCCH ARlceu NMICCH

scVI [38] 0.8863 0.8595 0.5199  0.4537 0.4631

Peak VI [1] 0.9135 0.9373 0.6022  0.8021 0.7725

Cortex PoissonV1 [44] 0.9205 0.9353 0.6021  0.7991 0.7707

Morabi . Scanorama [29] 0.9391 0.9211 0.5318 0.8234 0.7585
orabito130K [48] :

batch 1/2 Harmony [32] 0.9174 0.9262 0.5793  0.8032 0.7892

scANVI [74] 0.8790 0.9697 0.6585 0.6185 0.7916

Liger [37] 0.8605 0.9598 0.5689  0.7899 0.7870

SCALEX [72] 0.9143 0.9274 0.5791  0.7896 0.7869

scBasset [81] 0.8052 0.9784 0.6361  0.6876 0.7230

ChromFound 0.9323 0.9808 0.6408  0.7531 0.8380

scVI [38] 0.9073 0.9283 0.4891  0.0070 0.0374

Peak VI [1] 0.9088 0.9259 0.5145 0.1634 0.2167

PoissonVI [44] 0.9098 0.9259 0.5006 0.1634 0.2167

Bone To326K [65] Scanorama [29] 0.8836 0.9580 0.5115 0.2325 0.3513

batch 43/44 Harmony [32] 0.8508 0.9544 0.5539  0.2535 0.3066

scANVI [74] 0.7939 0.9506 0.5721  0.2835 0.4604

Liger [37] 0.8244 0.8874 0.5535 0.2167 0.3668

SCALEX [72] 0.7452 0.9506 0.5616  0.2835 0.4604

scBasset [81] 0.5163 0.7781 0.4339  0.0603 0.1035

ChromFound 0.8694 0.9885 0.6027  0.6426 0.6772

scVI [38] 0.8128 0.8704 0.6247  0.8186 0.8355

Peak VI [1] 0.9149 0.5980 0.5215  0.6076 0.5680

Heart PoissonVT [44] 0.9460 0.5980 0.5106  0.6076 0.5680

Kuppe139K [33] Scanorama [29] 0.9378 0.7804 0.4707  0.6869 0.7072

donar av3/av10 Harmony [32] 0.8490 0.8407 0.5546  0.8066 0.8298

scANVI [74] 0.7844 0.7715 0.4337  0.5070 0.6553

Liger [37] 0.8374 0.8407 0.4196  0.4875 0.6287

SCALEX [72] 0.8638 0.8164 0.5424  0.7296 0.7711

scBasset [81] 0.7756 0.8282 0.6387  0.8055 0.7417

ChromFound 0.8589 0.8770 0.6155  0.9406 0.8980

scVI [38] 0.7452 0.8557 0.5794  0.5286 0.6888

Peak VI [1] 0.7511 0.8266 0.6054  0.5456 0.7005

PoissonVI [44] 0.7895 0.8266 0.5626  0.5456 0.7005

PBMC 169K [15] Scanorama [29] 0.7964 0.8066 0.5613  0.5456 0.7005

HAR ddseq 1/2 Harmony [32] 0.7745 0.8120 0.5711  0.5525 0.7069

scANVI [74] 0.7480 0.8448 0.6223 0.5114 0.6773

Liger [37] 0.7755 0.8091 0.6197  0.5481 0.7020

SCALEX [72] 0.8221 0.7850 0.5534  0.5549 0.7003

scBasset [81] 0.7753 0.8266 0.5695  0.5456 0.7005

ChromFound 0.7923 0.8511 0.6443 0.5730 0.7156

G Analysis of Cell Type Annotation

G.1 Metric Value of Cell Type Annotation

To adapt ChromFound for cell type annotation, we leverage its four-layer pretrained model, extracting
the encoder output as a general-purpose representation. The encoder’s hidden dimension is expanded

28



UMAP by Batch

UMAP by Cell Trpe

Schwann
s
K PR
@ 4 Meningeal Dura”
N 4
iy s g

o a%hwann
P St

Scanorama

UMAP by Cell Trpe UMAP by Batch

L

UMAP by Cell Tpe: UMAP by Batch

*
Meningea Burd 5 5
~ld
-
L d . » o
. .
Harmony

UMAP by Batch

scVI

Figure 5: The plots illustrate ChromFound’s superior performance in denoising batch effect on Bone

To326K [63].

UMAP by Coll ype Unap by Baten

orc ) S
el
ChromFound

UMp by Coll Hpe UMAP by Donor

Atrial Cardiomyocyte

Scanorama

UMAP by Donor

UMAP by Cell ype

UMAP by Cal Type. NP by Baten

et
e

.;vs.w\%

Harmony

by Cell ype AP by Donor

wyelold

Comphest <ol

Atral Cardiomyocyte

scVi

UtaAP by Doner

AP by Cell Type

Atral Cardiomyocyte.

L Lymen,

AR et

scANVI

Figure 6: The plots illustrate ChromFound’s superior performance in denoising batch effect on

Heart Kuppel139K [33]].

29



b by Cell ype UMAP by Danor MG by cal Type UMAP by Donor

avrial Cardiomyocyte
Adigieyte Aatrial Cardlomyocyte

o8 et otiace
o, Adigacyte

- pcn =S .
[ i ,%‘}8’ Wesothetal cll Mystoia
ChromFound Harmony
w, Ao,
e
Scanorama

AP by Call Type

LIGER sCANVI

Figure 7: The plots illustrate ChromFound’s superior performance in denoising batch effect on
Cortex Morabitol 130K [48]].

UMAP by Cell Trpe UMAP by Batch UMAP by cell e UMAP by Bach

cDat 7ot

¢ . coas Teell

ChromFound Harmony

UMap by cell Tpe AP by Baten Umap by cell e UMAp by Batch

coax Tean

Scanorama scVI

UMAP by Cell Type UMAP by Batch UMAP by Cell Type UMAP by Batch

&

> S, s
i : coniean

LIGER SCANVI

Figure 8: The plots illustrate ChromFound’s superior performance in denoising batch effect on
PBMC 169K [13].

30



from 128 to 256 and projected to a single dimension, forming a pooling tensor. This tensor is
then processed by additional multilayer perceptron (MLP) layers to predict cell type logits. During
fine-tuning, the pretrained decoder parameters are frozen, while gradients flow through the rest of the
backbone to align with the classification objective. Dropout and LayerNorm are applied to mitigate
overfitting and stabilize training, respectively. Benchmark methods are implemented using their
default parameters as provided in their source codes.

For the experimental setup, we split the training data into 90% for training and 10% for validation.
Training is conducted over 20 epochs using the AdamW optimizer with an initial learning rate of
5 x 10~* and a 50-step learning rate warmup schedule. The model is selected based on validation
performance and evaluated on the test set to compute accuracy and macro Fl-score. For certain
configurations, such as training on EPF_hydrop_2 and testing on VIB_10xv1_1, the learning rate
is reduced to 2.5 x 10~ to ensure stable convergence. All experiments are performed on a single
machine with four NVIDIA A100 GPUs.

G.2 Confusion Matrix of Cell Type Annotation

In the cell classification task where EPF_hydrop_3 served as the training set and VIB_10xv1_2
as the test set, ChromFound achieves a 4.71% improvement in accuracy and a 14.69% increase in
macro F1 score compared to the previous SOTA method, CellCano. To further elucidate the specific
advancements of ChromFound, we present the confusion matrices of both methods for a more detailed
comparative analysis.

Here are some biological insights from the comparison of confusion matrices:

(1) The observed misclassification rate of natural killer cells as cytotoxic T cells by the Cellcano
model (19.35%) and its significant reduction by ChromFound (2.22%) highlights the importance of
accurately distinguishing these functionally related yet distinct immune cell populations. Natural
killer cells and cytotoxic T cells share cytotoxic properties, as both can mediate target cell lysis
through perforin and granzyme pathways. However, they differ fundamentally in their ontogeny,
activation mechanisms, and immune regulation.

(2) The high misclassification rate of CD16+ monocytes as CD14+ T cells by Cellcano (91.91%),
and its substantial reduction by ChromFound (66%), underscores the challenge of accurately dis-
tinguishing myeloid from lymphoid lineages in cell type annotation based on scATAC-seq. CD16+
monocytes, a subset of non-classical monocytes, exhibit distinct chromatin accessibility patterns
associated with Fc receptor signaling, inflammatory responses, and patrolling behavior, whereas
CD14+ T cells, a less well-characterized subset, retain a predominantly lymphoid epigenetic signature.
The improved classification by ChromFound suggests a refined ability to resolve lineage-specific
regulatory elements, likely by better capturing differential enhancer accessibility and transcription
factor binding landscapes unique to myeloid versus lymphoid cell fate.

(3) Cellcano misclassifies dendritic cells as CD14+ monocytes at a rate of 65.7% while ChromFound
reduces this misclassification to 53.33%. The misclassification of dendritic cells as CD14+ monocytes
is particularly interesting because both cell types share similar transcriptional signatures, especially
in immune responses. dendritic cells and monocytes both play critical roles in antigen presentation
and inflammation, which may lead to similarities in the chromatin accessibility profiles captured
by scATAC-seq. From a biological perspective, this reduction in misclassification also underscores
the importance of distinguishing between functionally distinct but phenotypically similar immune
cell subsets. Dendritic cells, being key mediators of immune tolerance and initiation, have distinct
regulatory networks compared to monocytes, which are more directly involved in inflammatory
responses. By refining the accuracy of cell type annotation, ChromFound enables a more precise
understanding of immune cell dynamics, particularly in the context of immune responses and disease
progression.

H Benchmark Methods for Downstream Tasks

This section describes the benchmark methods used for evaluating the performance of ChromFound
across various downstream tasks. These methods are selected based on their established effectiveness
in single-cell data analysis, spanning cell clustering, cell type annotation, and cross-omics modality
prediction.
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Figure 9: Confusion matrix for cell type annotation task with a comparison of Cellcano and Chrom-
Found.

H.1 Cell Clustering

Cell clustering methods aim to group single-cell data into meaningful clusters, often leveraging deep
learning and generative models to handle the high dimensionality and sparsity of scATAC-seq data.

H.1.1 SCALE

SCALE [73] is a deep generative framework that employs probabilistic Gaussian Mixture Models to
analyze high-dimensional scATAC-seq data. It outperforms existing tools in clustering by effectively
capturing latent structures in the data.

H.1.2 SCALEX

SCALEX [72] is a deep learning method designed for integrating single-cell data. It projects cells
into a batch-invariant embedding space in an online manner, enabling robust cell representation and
achieving excellent clustering performance.

H.1.3 CASTLE

CASTLE [12] is a deep generative model tailored for single-cell epigenomic data. It uses a vector-
quantized variational autoencoder framework [[66]] to extract discrete latent embeddings, excelling in
cell clustering tasks by addressing the challenges of high dimensionality and sparsity.

H.1.4 scBasset

scBasset [81] is a sequence-based convolutional neural network method designed for modeling
single-cell ATAC-seq data. By utilizing DNA sequence information from accessibility peaks and the
expressive power of neural networks, scBasset achieves superior performance in tasks such as cell
type identification and data integration across single-cell ATAC-seq and multiome datasets.

H.1.5 PeakVI

PeakVI [1] is a variational autoencoder (VAE)-based probabilistic model for single-cell chromatin
accessibility data. It captures both biological and technical variation through a hierarchical generative
process, enabling effective batch correction and denoising. The learned latent representation supports
diverse downstream tasks such as clustering and differential accessibility analysis, providing a strong
probabilistic baseline for scATAC-seq modeling.
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H.1.6 PoissonVI

PoissonVI [44] extends the VAE framework by modeling raw accessibility counts with a Poisson
likelihood instead of binarized inputs. This design preserves quantitative accessibility information
and improves sensitivity to subtle regulatory differences. PoissonVI achieves robust performance
across clustering and integration tasks while maintaining a clear probabilistic interpretation.

H.1.7 SnapATAC2

SnapATAC?2 [84] is a scalable framework for large-scale scATAC-seq analysis. It represents each cell
by a high-dimensional accessibility profile and applies diffusion- and spectral-based dimensionality
reduction to reveal chromatin structure. With optimized memory management, parallel I/O, and GPU
acceleration, SnapATAC?2 efficiently handles datasets with millions of cells and serves as a strong
non—deep learning baseline.

H.1.8 Signac

Signac [39] is an R package built on the Seurat ecosystem for single-cell chromatin accessibility
analysis. It integrates preprocessing, feature selection, dimensionality reduction, and visualization
within a unified workflow, and supports multimodal integration with scRNA-seq data. Owing to its
usability and reproducibility, Signac remains a widely adopted toolkit for exploratory and integrative
single-cell epigenomic analysis.

H.2 Denoising Batch Effect

Batch effect removal methods aim to align single-cell data across different batches while preserving
biological signals, addressing technical variations that can obscure true biological differences. In
this evaluation, we also benchmark SCALEX [[72]], previously introduced for cell clustering, and
scBasset [81]], noted for its sequence-based modeling, alongside other methods. These are included
in the comparison for batch effect correction within their respective frameworks, with their detailed
definitions provided in prior sections.

H.2.1 Harmony

Harmony [32] is a prominent batch correction technique in single-cell analysis, designed to harmonize
datasets from diverse experimental batches. It employs an iterative strategy to align cells into a shared
low-dimensional embedding, optimizing the similarity of cell types across batches while retaining
biological variability, making it highly effective for downstream analyses in single-cell genomics.

H.2.2 scVI

scVI [38] is a package for end-to-end analysis of single-cell omics data. The package is composed of
several deep generative models for omics data analysis.

H.2.3 Scanorama

Scanorama [29]] is designed to be used in scRNA-seq pipelines downstream of noise-reduction
methods, including those for imputation and highly-variable gene filtering. The results of Scanorama
integration and batch correction can then be used as input to other tools for clustering, visualization,
and analysis of scRNA sequences.

H.2.4 scANVI

scANVI [74] (single-cell ANnotation using Variational Inference; Python class SCANVI) is a semi-
supervised model for single-cell transcriptomics data. In a sense, it can be seen as a scVI [3§]]
extension that can leverage the cell type knowledge for a subset of the cells present in the data sets
to infer the states of the rest of the cells. For this reason, sScANVI can help annotate a data set of
unlabelled cells from manually annotated atlases.
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H.2.5 Liger

Liger [37]] (Linked Inference of Genomic Experimental Relationships) integrates multi-omics single-
cell data via integrative non-negative matrix factorization (iNMF) to define shared cell identities
across protocols/species.

H.3 Cell Type Annotation

Cell type annotation methods focus on supervised learning approaches to assign cells to predefined
classes, leveraging advanced neural network architectures for improved accuracy.

H.3.1 Cellcano

Cellcano [42] utilizes gene expression scores as input and employs a dual-phase training framework
to achieve enhanced accuracy in cell type annotation across diverse datasets.

H.3.2 EpiAnno

EpiAnno [7] implements a probabilistic generative model with a Bayesian neural network. It delivers
remarkable performance in cell type annotation, particularly when applied to diverse single-cell
datasets.

H.4 Cross-omics Prediction

Cross-omics modality prediction methods aim to infer one modality (e.g., ATAC-seq) from another
(e.g., RNA-seq), often using integrative neural network frameworks to model the relationships
between modalities.

H.4.1 BABEL

BABEL [71] leverages an interoperable neural network model to translate between the transcriptome
and chromatin profiles of individual cells, enabling effective cross-omics prediction.

H4.2 CMAE

CMAE [78]] learns a probabilistic coupling between different data modalities using autoencoders. It
provides a robust framework for integrating and translating between single-cell data modalities.

H.4.3 scMoGNN

scMoGNN [69], an official winner in the overall ranking of modality prediction from the NeurIPS
2021 Competition, presents a general Graph Neural Network framework to facilitate multimodal
single-cell data analysis, demonstrating superior performance in cross-omics prediction tasks.

H4.4 scMM

scMM [47] is a novel deep generative model-based framework for single-cell multi-omics data
analysis (e.g., transcriptome and chromatin accessibility). It employs a mixture-of-experts multimodal
approach to extract interpretable joint representations and enable cross-modal generation, achieving
end-to-end learning by modeling raw count data with modality-specific probability distributions.

H.5 Biological Application: Predicting Enhancer-Gene Link and Perturbation Response

This section outlines the benchmark methods evaluated for the biological application of predicting
enhancer-gene links and perturbation responses using ChromFound. This task leverages single-cell
data to infer regulatory relationships and responses to perturbations, with a focus on maintaining
biological relevance. BABEL [71] and CMAE [78]], the second best models in cross-omics prediction
tasks, are included in this application aim to model the regulatory interactions between enhancers and
genes,
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I Evaluation Metrics for Downstream Tasks

This appendix details the evaluation metrics used for the downstream tasks in our study, organized by
task. Each metric is defined mathematically to ensure clarity and reproducibility, with ranges and
performance interpretations provided where applicable.

I.1 Cell Clustering

Cell clustering is an unsupervised learning task that groups single-cell data into clusters. When
ground-truth labels (e.g., cell types) are available, we evaluate clustering performance using the
following metrics.

I.1.1 Adjusted Rand Index (ARI)

The Rand Index (RI) measures the proportion of correctly grouped sample pairs:

B TP + TN

~ TP+ TN + FP + FN’

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives, and
false negatives, respectively, based on whether pairs are correctly grouped together or apart in both the

clustering and ground-truth labels. The Adjusted Rand Index (ARI) corrects for chance by adjusting
the expected RI under random labeling:

RI

RI - E[R]]
max(RI) — E[R]]’

ranging from —1 to 1, where higher values indicate better agreement between clustering results and
ground-truth labels.

ARI =

1.1.2 Fowlkes-Mallows Index (FMI)

The Fowlkes-Mallows Index (FMI) combines precision and recall for clustering:
\/ TP TP
FMI = . ,
TP +FP TP+ FN

where TP, FP, and FN are defined as above. It ranges from 0 to 1, with higher values indicating better
clustering performance.

I.1.3 Normalized Mutual Information (NMI)

NMI quantifies the shared information between clustering C' and ground-truth Y
2-1(Y;C)
H(Y)+ H(C)’

where I(-; ) is mutual information and H (-) is entropy. It ranges from 0 to 1, with higher values
indicating greater alignment between the clustering and ground-truth labels.

NMI(Y, C) =

I.1.4 Adjusted Mutual Information (AMI)

AMI adjusts NMI for chance by accounting for expected mutual information under random labeling:
1(Y;C) —E[I(Y;C)]
max(I(Y;C)) — E[I(Y;C)]’

ranging from O to 1, where higher values indicate a more robust agreement between clustering and
ground-truth, especially in datasets with many clusters.

AMI =

1.2 Denoising Batch Effect

Denoising Batch Effect aligns single-cell data across batches while preserving biological signals. We
evaluate performance using biological conservation and batch mixing metrics implemented in [41]].
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I.2.1 Biological Conservation Metrics

We use the following metrics to assess the preservation of biological signals, where C' denotes the set
of cell types.

Normalized Mutual Information (NMI)

2-1(Y;C)

NMLeei (Y, C) = HY) + H(C)’

where I(-; ) is mutual information and H (-) is entropy. It ranges from 0 to 1, with higher values
indicating better alignment with ground-truth cell types.

Adjusted Rand Index (ARIy)

ARl _ _ RIZERI
™ nax(RI) — E[RI]’
where RI = ——12+IN___ and TP, TN, FP, FN are defined as in the clustering section. It ranges from

- TPHTIN+FPFN 70 + 5 : :
—1 to 1, with higher values indicating better clustering agreement with cell types.

Average Silhouette Width (ASW_y)

_ L~ b)—ai)
ASchll - N lz max(a( ) b( ))

where a(i) is the average distance of cell 7 to others in its cell type, and b(7) is the smallest average
distance to another cell type. It ranges from —1 to 1, with higher values indicating better preservation
of biological clustering.

Average Biological Score (AvgBIO)
ARIcell + NMIcell + ASchell
3 7

averaging the biological conservation metrics, ranging from 0 to 1, with higher values indicating
better preservation of biological signals.

AvgBIO =

L.2.2 Batch Mixing Metrics

We assess batch mixing using the following metrics, where B denotes the set of batches.

Inverse Average Silhouette Width (ASWya¢ch)

Z\H

b(é) — a(i)
ASWiyeh =1 —
batch ; max(a( b( ))
where a(7) and b(¢) are computed with respect to batch labels, with a(7) as the average distance to
other cells in the same batch and b(7) as the smallest average distance to cells in another batch. It
ranges from O to 1, with higher values indicating better batch mixing.

Graph Connectivity (GraphConn)
1 LCC(GXNN
GraphConn = @ E w7

where LCC(GX™N) is the size of the largest connected component in the k-nearest neighbors (kNN)
graph of cells in cell type ¢, and NN, is the number of cells in c. It ranges from 0 to 1, with higher
values indicating better connectivity across batches.
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Average Batch Score (AvgBATCH)
ASWyaen + GraphConn
2 )
averaging the batch mixing metrics, ranging from 0 to 1, with higher values indicating better batch
correction.

AvgBATCH =

L3 Cell Type Annotation

Cell type annotation is a supervised task that assigns cells to ground-truth cell type. We use the
following metrics to evaluate performance.

I.3.1 Accuracy

Accuracy measures the proportion of correctly classified cells:
ZCEC tp c
ZCEC Ne ,

where tp,. is the number of true positives for cell type ¢, and IV, is the total number of cells in c. It
ranges from O to 1, with higher values indicating better classification performance.

Accuracy =

1.3.2 Macro F1 Score

The Macro F1 Score averages the F1 scores across all cell types:
2 Precision, - Recall,

Macro F1 = F1 =
Il Z o Fle Precision, + Recall,. ’
ceC
where Precision, = > ti“fp and Recall, = ; y +fn , with fp, and fn. as false positives and false

negatives for cell type c. It ranges from 0 to 1, with higher values indicating better balanced
performance across classes.

I.4 Cross-Omics Prediction

Cross-omics prediction infers one modality (e.g., ATAC-seq) from another (e.g., RNA-seq). We
evaluate performance using correlation-based metrics.

1.4.1 Pearson Correlation Coefficient (PCC)

PCC measures the linear correlation between predicted (z;) and true (y;) values:
N _ _
Zi:l(mi —Z)(yi — Y)

VEX -2 S -

where Z and ¥ are the means of the predicted and true values, respectively. It ranges from —1 to 1,
with higher (closer to 1) values indicating stronger positive linear correlation.

PCC =

1.4.2 Concordance Correlation Coefficient (CCC)

CCC extends PCC by accounting for bias and scale differences:
2-p-0y-0y
0%+ 07+ (e — 1)
where p is the PCC, o, and o, are the standard deviations of the predicted and true values, and fi,

and i, are their means. It ranges from —1 to 1, with higher (closer to 1) values indicating better
agreement in both correlation and scale.

CCC =

I.5 Predicting Enhancer-Gene Links and Perturbation Response

These tasks involve predicting regulatory relationships or perturbation outcomes, often treated as
classification problems. We use the following metrics.
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I.5.1 Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

The Receiver Operating Characteristic (ROC) curve plots the True Positive Rate (TPR) against the
False Positive Rate (FPR) at various classification thresholds:

TP FP
=—— FPR= —m—
TP + FN FP + TN
where TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives,
respectively. The Area Under the ROC Curve (AUC-ROC) quantifies the overall performance across

all thresholds, ranging from 0 to 1, with higher values indicating better classification performance,
where 1 represents perfect classification and 0.5 represents random guessing.

TPR
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