ASMAD: Adaptive Sparse Communication Topology Multi-Agent Debate
Framework with Opinion Dynamics

Anonymous ACL submission

Abstract

Large language models (LLMs) still face chal-
lenges in complex reasoning within multi-agent
debate (MAD) systems due to high compu-
tational costs in fully-connected structures.
While existing methods use static sparse topolo-
gies to reduce computation, they neglect seman-
tic relationships and dynamic opinion evolu-
tion. To solve this challenge, we propose AS-
MAD, an adaptive sparse topology framework
that synergizes sociophysical opinion dynamics
with LLMs through two innovations: (1) proba-
bilistic semantic-guided attention gates for dy-
namic opinion visibility control; (2) a hybrid
paradigm combining adaptive trust-boundary
regulation and opinion synchronization. Exper-
iments show ASMAD reduces token costs to
around 33% across GSM8K and MMLU bench-
marks while maintaining competitive accuracy
with 4-bit quantized 7-9B size models.

1 Introduction

In recent years, the rapid development of large
language models (LLM) has greatly promoted the
progress of several natural language processing
(NLP) tasks (Touvron et al., 2023; Zhao et al., 2023;
Naveed et al., 2023; Jiang et al., 2024; Achiam
et al., 2023; GLM et al., 2024; Guo et al., 2025).
However, performance of LLM in reasoning and
logical reasoning tasks is still limited (Zhu et al.,
2022; Gou et al., 2023).

To address complex reasoning challenges, var-
ious approaches has been developed, including
Chain-of-Thought (CoT) (Wei et al., 2022), self-
consistency (SC) mechanisms (Wang et al., 2022)
with self-correction strategies (Liang et al., 2023).
Recent advances in multi-agent debate (MAD) sys-
tems have demonstrated superior performance in
complex reasoning tasks (Liang et al., 2023). In-
spired by the human discussion mechanism (Hill
et al., 2015; Liang et al., 2023), MAD systems
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Figure 1: Adaptive topology of ASMAD (Top) and com-
parison of accuracy (Middle) and token consumption
(Bottom)

employ multiple LLM agents to communicate and
iteratively argue with each other in a structured de-
bate. However, MAD systems face computation
cost problem due to fully-connected communica-
tion topology, where every agent interacts with all
peers, which incurs quadratic computational com-
plexity that becomes prohibitively expensive for
real-world applications (Du et al., 2023).

Existing attempts to address this efficiency chal-
lenge focus on either static sparse topologies (e.g.,
ring or star structures) that reduce token costs
through predetermined connection patterns (Du
et al., 2023; Sun et al., 2023; Li et al., 2024) or
group discussion method that adopts a hierarchi-



cal structure by clustering agents into smaller de-
bate groups to exchange intermediate results (Liu
et al., 2024; Zeng et al., 2025). However, exist-
ing approaches face two fundamental limitations:
(1) Task-semantic blindness: fixed topologies can-
not adapt to problem difficulty, potentially prun-
ing critical debate pathways; (2) Coarse adaptation
granularity: fixed grouping patterns cannot capture
nuanced opinion evolution dynamics.

To address these limitations, we propose a adap-
tive sparse topology framework (ASMAD) that syn-
ergies sociophysical opinion dynamics with mod-
ern LLM architectures. Our key insight stems from
two observations: First, human consensus forma-
tion naturally evolves communication networks
through confidence-bound adaptation, suggesting
that artificial debate systems should similarly adjust
interaction patterns based on semantic convergence
states. Second, semantic similarity between tex-
tual opinions provides a more reliable signal for
trust boundary calculation than numerical differ-
ence metrics. Building upon this foundation, we
propose a dual-regulation debate mechanism that
hybridizes two classical models: The Hegselmann-
Krause model (Rainer and Krause, 2002) inspired
adaptive trust boundary allows agents to dynami-
cally adjust their openness to divergent views based
on real-time semantic proximity, while the Def-
fuant model (Deffuant et al., 2000) derived syn-
chronization protocol coordinates opinion aggrega-
tion through gradient descent in the semantic space.
The system’s core innovation lies in its visibility
control module, which implements selective opin-
ion exposure through attention-based gates. By
projecting discrete argument exchanges onto the
semantic manifold, the module prioritizes informa-
tion flow along dimensions of highest convergence
potential. We evaluate ASMAD across GSM8K
(Cobbe et al., 2021) and MMLU (Hendrycks et al.,
2021) benchmarks' using 4-bit quantized versions
of LLaMA-8B (Touvron et al., 2023), ChatGLM-
9B (GLM et al., 2024) and Deepseek-7B (Guo
et al., 2025). Experiments show ASMAD reduces
token costs by 65.7-67.3% across GSM8K and
MMLU benchmarks while maintaining competi-
tive accuracy (8% decreasing on GSMS8K, 10%
improving on MMLU).

In summary, our work contributes as following:

* We developed dynamic visibility control
mechanisms for agent opinions, decreasing
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the communication cost and accelerating con-
sensus formation in MAD.

* We extended classical opinion dynamics to
LLM-based MAD systems where a tunable
debate paradigm was proposed by integrat-
ing Deffuant model’s adaptive trust-boundary
regulation with Hegselmann-Krause model’s
synchronized opinion aggregation.

* We introduced a methodology replacing con-
ventional numerical difference metrics with
SentenceTransformer-based semantic vector
encoding and similarity matrix construction
as a potential workaround of effective han-
dling unstructured textual opinions in LLM
multi-agent systems.

2 Methodology

2.1 Dynamic Opinion Exchange Framework

Multi-agent debate (MAD) with large language
models presents unique challenges that traditional
frameworks struggle to address. This work re-
frames the MAD process through the theoretical
lens of opinion dynamics, treating each LLM as an
agent with bounded rationality, whose willingness
to incorporate external viewpoints varies dynami-
cally based on semantic proximity and confidence
levels. Drawing from both HK and Deffuant mod-
els, we implement: Simultaneous Updates: All
agents update their states based on visible infor-
mation, Probabilistic Interaction: Probabilities
and strength of pairwise interaction determined by
adaptive weights.

Unlike classical opinion dynamics that operate
in numerical spaces, our framework extends into
rich semantic embeddings where agent states com-
prise both reasoning processes and discrete conclu-
sions. We introduce the agent state as st = (r!, c!),
where r! € R¢ represents the semantic embedding
of agent ’s reasoning at time ¢, and c?f denotes its
conclusion. This richer state space enables more
nuanced modeling of debate dynamics while pre-
serving the mathematical tractability of opinion
evolution.

2.2 Adaptive Debate Protocol

As detailed in Figure 3, the proposed protocol
orchestrates multi-agent debate through distinct
phases that progressively refine agent opinions
while maintaining diversity and efficiency.

Independent Initialization Each agent indepen-
dently generates its initial response to the given



problem without access to other agents’ outputs.
Formally, att = 0, agent i produces state s =
(19, V), where ¥ represents its reasoning embed—
ding and ¢! its 1n1t1al conclusion. This indepen-
dence in initialization is crucial for establishing

diverse starting points in the solution space.

Confidence Boundary Determination Follow-
ing initialization, we adopt the bounded confidence
mechanism from classical opinion dynamics mod-
els (Deffuant et al., 2000; Rainer and Krause, 2002).
A confidence radius R(t) = Ry + A (%) deter-
mines whether agents can consider opinions from
each other, where R is the initial radius and \
controls its temporal evolution. Two agents ¢ and j
can potentially interact only if their semantic dis-
tance falls within this radius: Et =I(d(st,st) <

J
R(t)), where d(st,st) denotes the distance be-
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tween agents’ state aild I(-) is the indicator func-
tion. This bounded confidence mechanism helps
prevent premature convergence while allowing the
interaction scope to gradually expand as the debate

progresses.

Weighted Opinion Exchange For agent pairs
within confidence bounds, we compute influence
weights based on both semantic similarity and an-
swer conclusion consistency (See C.3). The overall
influence weight incorporates this similarity mea-
sure along with agent-specific attributes:

uly = o+ 61 () (1ot sim(st ) (1)

where [ is the base confidence level, 31 is the
growth rate corresponding to debate progress, -y is
the stability influence factor, o} denotes the agent’s
stability score and sim(s, s j) is the similarity score
betweem agents’ state.

These weights serve both topology and influ-
ence strength in regulating inter-agent interactions.
Visibility of agent j’s response to 7 is sampled ac-
cording to the weight w (w if ¢ to j), acting as
the probability. Such adaptlve d1recti0nal topology
effectively reduces communication token overhead
while preserving essential information flow paths.

Construction of agent prompts with varies
with degrees of interaction strength, as practical
workaround of opinion dynamics model in MAD
scenarios. LLMs are prompted with Critical, Ref-
erence and Background categories according to w
if satisfied various thresholds (See C.1).

Consensus Formation The consensus formation
emerges through iterative debate rounds where

agents continuously refine their positions through
structured interactions:

st = fum(si {(wi, )i € M) @)

where /\/f represents the set of visible agents to ¢ at
time ¢, and fi v denotes the language model’s rea-
soning process. After sufficient rounds of debate,
the final conclusion is determined through majority
voting.

3 Experiments

3.1 Tasks and Datasets

We evaluate our framework on two benchmark
datasets: GSMS8K (Cobbe et al., 2021) and MMLU
(Hendrycks et al., 2021),that either require multi-
step reasoning or admit multiple valid solution
paths while maintaining unambiguous answers.
GSMBSK presents grade school math word prob-
lems requiring step-by-step numerical reasoning.
MMLU covers multiple-choice questions across
various domains, where the challenge lies not only
in answer format but in the diversity of valid rea-
soning approaches. We sampled 100 tasks from
each dataset for agents to debate for 5 rounds as
benchmark.

3.2 Model Configuration

To thoroughly evaluate the dynamic aspects and
diversity benefits of our framework, we construct a
heterogeneous agent population using three differ-
ent LLM architectures: LLaMA-3.1-8B-Instruct
(Touvron et al., 2023), ChatGLM-4-9B-chat-
abliterated (GLM et al., 2024) and Deepseek-
math-7b-Instruct (Guo et al., 2025). Each model
type contributes 2 agents, resulting in a debate
group of 6 participants. This configuration en-
sures sufficient diversity in reasoning approaches
while maintaining manageable computational re-
quirements. For practical deployment considera-
tions, all deployed models leverage 4-bit block-
wise quantization with mixed precision (Q4_K_M),
enabling execution on a single NVIDIA GeForce
RTX 3090 GPU. This implementation detail is par-
ticularly noteworthy as it demonstrates the frame-
work’s viability in resource-constrained environ-
ments.

3.3 Baseline and Evaluation Protocol

The primary baseline for comparison is a fully-
connected debate protocol without visibility con-
trol or prompt structuring. This baseline main-
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Figure 2: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

tains complete information exchange between all
agents throughout the debate process, represent-
ing the most straightforward implementation of
multi-agent debate. All experiments maintain con-
sistent hyperparameters for fair comparison. Key
evaluation metrics include: (1) Solution accuracy
across different problem types; (2) Computational
efficiency measured by token consumption.

3.4 Main Results

See Table 1, which presents our experimental re-
sults comparing ASMAD with the baseline MAD
method. On GSMSK, although ASMAD shows
a moderate accuracy drop of 8 percentage points
compared to MAD (80% vs 88%), it achieves a
substantial 65.8% reduction in token cost. For
MMLU, ASMAD demonstrates superior perfor-
mance by improving accuracy by 10 percentage
points (from 49% to 59%) while simultaneously
reducing token consumption by 67.3%. Figure 2
and 4 shows ASMAD accelerates consensus than
MAD in each benchmark, with higher mean value
and lower standard variance in similarity. The
structured interaction framework intrinsic to AS-
MAD facilitates more comprehensive reasoning
processes than mere "majority voting" mechanisms.
The significant reduction in token consumption-
while maintaining or improving performance in-
dicates that ASMAD successfully optimizes the
debate process, eliminating redundant exchanges
while preserving crucial reasoning steps. This ef-
ficiency gain suggests that adaptive structured de-
bate mechanisms can effectively enhance reason-
ing capabilities, through interactions among even
performance-limited quantized models.

Token Cost

Task Method ACC (k/task) Cost Saving
MAD 88%  64.08

OSMBK \SMAD (Ours)  80% 2194 -658%
MAD 49% 5215

MMLU ™ ASMAD (Ours) 59% 1706 -67.3%

Table 1: Performance of MAD and ASMAD (our pro-
posed method) across three tasks. Token cost is calcu-
lated as average of each topic debated. The results show
that while ASMAD achieves comparable or improved
accuracy compared to MAD, it significantly reduces
token cost.

4 Conclusion

This work introduces ASMAD, a novel framework
that synergizes sociophysical opinion dynamics
with multi-agent debate systems through two key
innovations: (1) probabilistic semantic-guided at-
tention gates that dynamically regulate opinion vis-
ibility based on textual reasoning similarity, and
(2) a hybrid paradigm integrating adaptive trust-
boundary regulation with opinion synchronization
mechanisms. By adaptively compute numerical
semantic similarity and topology, ASMAD enables
efficient consensus formation through structured
sparse interactions. The framework establishes a
principled bridge between opinion dynamics the-
ory and practical LLM coordination, demonstrat-
ing that semantic-aware topology adaptation can
simultaneously optimize communication efficiency
and reasoning quality. Future work will explore
extensions to larger-scale debates and automated
parameter adaptation strategies.

Limitations

Our work, while demonstrating promising results,
has several limitations worth acknowledging. Com-



putational resource constraints led us to conduct ex-
periments using relatively modest-sized language
models (parameters < 10B) with 4-bit quantization.
Though this choice enables practical deployment
in resource-constrained settings, it inevitably faces
an upper bound on the reasoning capabilities our
agents can achieve. The potential of our framework
when powered by more advanced language mod-
els remains to be explored. The effectiveness of
our adaptive debate protocol currently hinges on
several key hyperparameters, including confidence
radius, growth rates, and similarity thresholds. Re-
inforcement learning approaches could potentially
tune these parameters dynamically, adapting them
to the specific context and demands of each debate
scenario. Beyond these technical constraints, our
initial validation of adaptive control mechanisms
have promised in moderate-sized agent groups (6
agents). The dynamics and efficacy of our frame-
work in larger debate clusters - particularly the
interplay between maintaining diverse perspectives
and achieving efficient consensus - represents an in-
triguing direction for future investigation. We also
acknowledge potential risks associated with our
work. While our adaptive debate framework aims
to enhance reasoning capabilities, it could poten-
tially amplify biases present in individual language
models through the consensus formation process.
The selective information exchange mechanism,
though efficient, might inadvertently create echo
chambers where agents reinforce each other’s mis-
conceptions. Additionally, the framework’s ability
to generate more convincing outputs through struc-
tured debate could be misused to produce more
persuasive misinformation.

Ethical Considerations

In this research, Claude 3.5 Sonnet and Deepseek-
R1 models are used as copilot, partially engaging
in writing (sentence-level generations and grammar
checking) and coding (fuzzing test and code-style
polishing).
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A Related Works

Topology in MAD Due to the diversity of hu-
man discussion strategies (Liang et al., 2023; Chan
et al., 2023; Du et al., 2023), researchers adjust the
visibility of interactions between agents and their
historical records as well as among the agents them-
selves, by employing different multi-agent topolo-
gies, ultimately reducing token cost or enabling
operation in resource-constrained environments (Li
et al., 2024; Liu et al., 2024).

Regarding historical records, Du et al. (2023)
process information from a centralized topology
by summarizing agent outputs at the end of each
round, whereas Sun et al. (2023) introduces a for-
getting mechanism in which agents can only see
the outputs from the previous round. In addition,
Zhang et al. (2023) proposes a debate-reflection
mechanism in which agents can only review their
own past outputs during reflection.

Several studies focus on the topology of inter-
agent information exchange. For instance, S-MAD



(Lietal., 2024) employs a sparse topology, limiting
information exchange to adjacent agents. GroupDe-
bate (GD) (Liu et al., 2024) adopts a hierarchical
structure by clustering agents into smaller debate
groups to exchange intermediate results. Further-
more, S?-MAD (Zeng et al., 2025) utilizes a sparse
topology based on grouping and a decision mech-
anism: agents initially generate independent opin-
ions within groups, and only engage in information
exchange within and between groups if a decision
mechanism identifies differences in opinions.

Opinion Dynamics In the study of opinion dy-
namics, the Deffuant model and Hegselmann-
Krause (HK) dynamics (Deffuant et al., 2000;
Rainer and Krause, 2002) serve as foundational
consensus models where a group of agents strive
to reach the same objective. The Deffuant model
posits that agents update their opinions based on a
bounded confidence mechanism: two agents adjust
their opinions only when their difference falls be-
low a predefined threshold (Deffuant et al., 2000,
2002; Lorenz, 2007). This model has been exten-
sively applied to investigate opinion convergence
and polarization phenomena in social networks
(Zhang et al., 2017; Marconi and Cecconi, 2020;
Zarei et al., 2023).

The Hegselmann-Krause (HK) dynamics as-
sumes that agents interact exclusively with peers
whose opinions lie within their confidence bounds
(Rainer and Krause, 2002; Etesami and Basar,
2015). In its synchronous variant, agents simultane-
ously update opinions by averaging those of neigh-
bors within their confidence interval (Rainer and
Krause, 2002; Etesami et al., 2013; Etesami and
Basar, 2015), whereas the asynchronous version up-
dates one agent at a time (Rainer and Krause, 2002;
Touri and Langbort, 2014; Etesami and Basar,
2015). These consensus models provide critical
frameworks for understanding opinion formation
and evolution in social systems, particularly in an-
alyzing how local interactions drive collective be-
haviors.

B Process Pipeline Figure

As is shown in Figure 3, the processing pipeline of
proposed ASMAD is shown, which includes three
stages. Out key innovation is in the Stage 2, which
adopts a opinion dynamics based sparse topology
generation mechanism. In detail, the sparse topol-
ogy generation includes three sub-steps.

C Implementation Details

C.1 Structured Information Exchange

The computed weights determine not only the influ-
ence strength but also how information is presented
to each agent. We implement a three-tier prompt
structure:

[Critical] if wfj > 0.40
[Reference] if ng > 0.25 3)
[Background] if wfj > 0.10

o
P =

This structured presentation helps agents prioritize
information based on computed influence weights,
while maintaining the natural language interaction
paradigm of LLMs.

C.2 Self-confidence Evolution

The self-confidence of each agent evolves accord-
ing to:

. t .
wly =<tp(f + 5 (7, ) (1 200 st ),

Wmin s wmax)
where:

* Bo: base confidence level (0.3 in our imple-
mentation)

* [31: growth rate (0.5)

* ~: stability influence factor (0.2)

* o!: agent’s stability score
C.3 Hybrid Similarity Computation
We introduce a novel similarity measure that com-
bines reasoning process similarity and answer
agreement:

sim(i, j) = A-cos(r4,75)+(1=X)-I(c; = ¢;) (4)
where:

* cos(r;, r;j): cosine similarity between reason-

ing embeddings
* I(¢; = ¢;): indicator function for answer
agreement

* )\: balancing parameter (0.5)
C.4 Stability Mechanism

The stability score for agent ¢ at round ¢ is:

ot =1- Dol 5)
! t—1

This score influences both self-confidence and

inter-agent weights through the mechanisms de-

scribed above.



(" Initial question prompt: Can you answer the following question? ) /Sparse Topology Generation Mechanism with \

To close an expansionary gap: Opinion Dynamics at Round ¢

A) demand curve to the right. B) demand curve to the left.
\_ C) supply curve to the right. D) supply curve to the left. )| Step l’ Confidence Boundary Determination

® \ ) Confidence Neighbor Set: N}
(Stage 1: Initial response round Stage 2: Adaptive Sparse Debate )
\/I Y Radlus Update HK-model
[An expansionary gap L @ | Step 1: Similarity Calculation . \ R(t) = Ro+ A\ (t/T)
i |
oceurs ... Answer is D. ‘. o ]T- Step 2: Opinion Exchange Welght Calculation

@4“16 demand should be | . ‘
educed ... Answer is B | Step 2: Sparse Topology Generatlon sim(st, 8;){ Stability Score

To meet the existing L . Debate Rate
[dernand - Answer is A, l ) l Step 3: Consensus Formation w;,j € NY

b
| Step 3: Probabilistic Interaction ltlffponse Update: Deffuant Prompt
________________________ s = Jrom(sh, {(w] Wijs ])}) [Info level: Critical/...]
\_ Stage 3: Majority Voting .... # Final Decision: B~ Kt jEN! .Other agent’s answer: /

Figure 3: The process pipeline of ASMAD. Following S2-MAD (Zeng et al., 2025), we adopts three stages in total.
In the first stage, all agents gives the initial response. In the second stage, with proposed sparse topology generation
mechanism, the agents are organized to debeta with each other. In the last stage, the final decision is obtained via

majority voting.
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Figure 4: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

C.5 Row Normalization

To ensure balanced influence distribution, we apply
row normalization to the weight matrix:

wt,

~t iJ
2k Wi
This normalized weight matrix W governs the
information flow and influence dynamics in each
round of debate.

C.6 Consensus formation

ASMAD enables agents to arrive at consensus
faster. Figure 2 and Figure 4 show the dynamics of
agent opinions through metrics of similarity.
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