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Abstract

Large language models (LLMs), even when001
specifically trained to process long input con-002
texts, struggle to capture relevant information003
located in the middle of their input. This phe-004
nomenon has been known as the lost-in-the-005
middle problem. In this work, we make three006
contributions. First, we set out to understand007
the factors that cause this phenomenon. In008
doing so, we establish a connection between009
lost-in-the-middle to LLMs’ intrinsic attention010
bias: LLMs exhibit an U-shaped attention bias011
where the tokens at the beginning and at the012
end of its input receive higher attention, re-013
gardless of their relevance. Second, we miti-014
gate this positional bias through a calibration015
mechanism, found-in-the-middle, that allows016
the model to attend to contexts faithfully ac-017
cording to their relevance, even though when018
they are in the middle. Third, we show found-019
in-the-middle not only achieves better perfor-020
mance in locating relevant information within021
a long context, but also eventually leads to im-022
proved retrieval-augmented generation (RAG)023
performance across various tasks, outperform-024
ing existing methods by up to 10 percentage025
point. These findings open up future directions026
in understanding LLM attention bias and its027
potential consequences.028

1 Introduction029

Effective prompting of large language models030

(LLMs) (Brown et al., 2020; Anil et al., 2023; Tou-031

vron et al., 2023) has enabled a variety of user-032

facing applications, including conversational in-033

terfaces (chatbots) (Thoppilan et al., 2022), search034

and summarization (Min et al., 2024), open-domain035

question answering (Izacard and Grave, 2021), tool036

usage (Hsieh et al., 2023), fact checking (Asai et al.,037

2023), and collaborative writing (Lee et al., 2019).038

Some of these applications, such as search and sum-039

marization (Ji et al., 2023; Min et al., 2023; Asai040

Figure 1: (a) Lost-in-the-middle refers to models’ U-
shape RAG performance as the relevant context’s (e.g.,
a gold document containing the answer to a query) po-
sition varies within the input; (b) We observe mod-
els exhibit U-shape attention weights favoring leading
and ending contexts, regardless of their actual contents;
(c) Models do attend to relevant contexts even when
placed in the middle, but are eventually distracted by
leading/ending contexts; (d) We propose a calibration
mechanism, find-in-the-middle, that disentangles the
effect of U-shape attention bias that allows models to
attend to relevant context regardless their positions.

et al., 2023), require the ability to retrieve informa- 041

tion from external knowledge sources. As a result, 042

retrieval-augmented generation (RAG) has become 043

a powerful solution. RAG fetches relevant docu- 044

ments (e.g. structured tables (Wang et al., 2024) 045

and API documentation (Karpukhin et al., 2020)) 046

from external knowledge sources and makes them 047

available in the LLMs’ input prompt (Khandelwal 048

et al., 2020; Borgeaud et al., 2022; Izacard et al., 049

2022b; Xu et al., 2023a). Despite the widespread 050

utility of RAG (Li et al., 2023a; Xiong et al., 2023; 051

OpenAI, 2022; Gemini Team, 2023), recent ex- 052

periments highlight a striking deficiency: LLMs 053

struggle to locate relevant documents when they 054

are placed in the middle of their input prompts (Liu 055

et al., 2023; Li et al., 2023a). They call this the 056
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lost-in-the-middle phenomenon.057

To overcome this phenomenon, a few mecha-058

nistic strategies have been proposed (Jiang et al.,059

2023; Peysakhovich and Lerer, 2023). These meth-060

ods re-rank the relevance of different documents061

and re-order the most relevant ones to either the be-062

ginning or end of the input context. Unfortunately,063

re-ranking usually requires additional supervision064

or dedicated finetuning for performant RAG perfor-065

mance (Karpukhin et al., 2020; Shi et al., 2023c;066

Sun et al., 2023). Worse, re-ranking methods do067

not fundamentally improve LLMs’ ability to utilize068

and capture relevant information from the provided069

input contexts. The underlying causes of this be-070

havior remains unclear, even though it has been071

observed across multiple decoder-only LLMs (Tou-072

vron et al., 2023; Li et al., 2023a; OpenAI, 2022).073

In this work, we make three contributions: First,074

we set out to understand the potential factors lead-075

ing to the lost-in-the-middle problem. We estab-076

lish a connection between lost-in-the-middle to077

LLMs’ intrinsic attention bias (see Figure 1).078

Specifically, we find that models often demonstrate079

a U-shaped attention distributions, with higher at-080

tention values assigned to the beginning and end081

of the input prompt. This correlates well with082

the U-shaped RAG performance observed in prior083

literature (Liu et al., 2023). Interestingly, this084

focus on the beginning and end also extends to085

content utilization: models preferentially use in-086

formation from the beginning and end of their087

prompts (Ravaut et al., 2023; Peysakhovich and088

Lerer, 2023). This leads us to hypothesize that089

the positional attention bias may contribute to the090

phenomenon, wherein the bias could lead to over-091

reliance on content at the beginning/end of the in-092

put, regardless of its true relevance.093

Second, we verify our hypothesis by intervening094

on this attention bias to determine its impact on095

performance. We propose a mechanism to dis-096

entangle positional bias from model’s attention.097

We first esitmate this bias through measuring the098

change in attention as we vary the relative posi-099

tion of a fixed context in the LLM’s prompt. By100

quantifying and then removing this bias from the101

attention scores for a given query, we can obtain102

the calibrated attention scores across the retrieved103

documents. This calibrated attention proves to be104

better correlated to the ground truth relevance of the105

document to a user query. In open-domain question106

answering tasks (Kwiatkowski et al., 2019), our107

proposed calibrated attention outperforms popular108

existing approaches for ranking the relevance of 109

retrieved documents (up to 0.44 Recall@3 points). 110

This finding challenges the recent belief that LLMs 111

struggle to capture relevant context embedded in 112

the middle of inputs, suggesting they may indeed 113

be capable of doing so, but are only hindered by 114

the overwhelming positional bias. 115

Third, we operationalize our calibration mech- 116

anism as a solution for this phenomenon, nam- 117

ing our attention intervention found-in-the-middle. 118

We show that calibrating the attention leads 119

to improvements across two popular LLMs 120

with different context window lengths on two 121

RAG tasks. Our experiments demonstrate im- 122

provements over standard model generation by 123

up to 10 percentage point on NaturalQuestion 124

dataset (Kwiatkowski et al., 2019). We hope the 125

work opens up future directions in understanding 126

LLM’s attention biases and their effect on down- 127

stream tasks. 128

2 Positional attention bias overpowers 129

mid-sequence context 130

Recent work has produced language models ca- 131

pable of handling increasingly long input con- 132

texts (Xiong et al., 2023; Li et al., 2023a). However, 133

many of these models struggle to locate relevant 134

information placed in the middle of the input se- 135

quence (Liu et al., 2023), a phenomenon known 136

as the “lost-in-the-middle” problem. While this 137

problem is widely recognized, the potential fac- 138

tors contributing to this behavior remain poorly 139

understood. In this work, we seek to deepen our 140

understanding of the problem through a suite of 141

exploratory qualitative and quantitative studies. 142

Setup. We adhere to the original experimental 143

setup outlined in Liu et al. (2023), utilizing an open- 144

domain question answering task (Kwiatkowski 145

et al., 2019) for our exploratory study. In the lost- 146

in-the-middle setup (Liu et al., 2023), a model is 147

tasked to answer a user query xq using a set of 148

k related documents retrieved from an external 149

data source D = {xgold, xdistract1 , . . . , xdistractk−1 }, 150

where only the gold document xgold contains 151

the correct answer. The question and docu- 152

ments are typically serialized as an input sequence 153

xprompt = [xq, xdoc1 , ..., xdock , xq], prompting a lan- 154

guage model to generate the final answer1. Obser- 155

1We repeat the question before and after the documents so
that the model can better attend to relevant contexts (Liu et al.,
2023; Xu et al., 2023b).
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Figure 2: Left and Middle: Qualitatively, the model’s response exhibits a strong bias towards the docu-
ment at the first position (red). This persists whether the input documents retain their original order (left: gold
document at the 10th position) or are randomly shuffled (middle: gold document at the 13th position). Model
responses are shown in green, with the gold answer highlighted in yellow. Right: Our attention calibration
method enables the model to find relevant context even when placed in the middle.

Figure 3: Quantitatively, the model’s response
strongly depends on the document at the first po-
sition. This dependence persists even after randomly
shuffling the document order, irrespective of its rele-
vance to the query. We measure this dependence by
computing the TF-IDF similarity score between the re-
sponse and each document (gold document originally
at position 10).

vations indicate that model performance signifi-156

cantly decreases when xgold is placed within the157

middle of the input prompt (i.e., xdocbk/2c), compared158

to scenarios where xgold is placed at the beginning159

or end. Here, we reproduce lost-in-the-middle phe-160

nomenon with a LLaMA-2-7B-chat model (Tou-161

vron et al., 2023) to gain deeper insights into the162

characteristics of the model’s errors. We focus our163

error analysis on the setting where we have a total164

of 20 documents (K = 20). We specifically look165

at the examples where the model makes incorrect166

predictions when the gold document is placed at167

the middle (10-th) position.168

2.1 U-shaped attention bias169

We first examine responses generated when gold170

documents are placed in the middle of input171

Figure 4: Average attention weights reveal a U-
shaped positional bias in the model. Documents at
the beginning and end receive greater attention, regard-
less of order (gold document originally at position 10).
Attention is averaged across different decoder layers
and attention heads.

prompts. Qualitatively, the model’s response ex- 172

hibits a strong bias towards the document at the 173

first position, regardless of the gold document’s 174

location (Figure 2). This bias persists whether the 175

input documents retain their original order or are 176

randomly shuffled. 177

The strong correlation between the model’s out- 178

put and the first document could suggest that they 179

are highly relevant, distracting the model (Shi et al., 180

2023a). However, quantitatively, the model’s re- 181

sponse strongly depends on the document at the 182

first position (Figure 3). This dependence persists 183

even after randomly shuffling the document order, 184

irrespective of its relevance to the query. We mea- 185

sure the dependence by computing the TF-IDF sim- 186

ilarity between the response and each document 187

(gold document originally at position 10). 188

To investigate the potential origins of posi- 189
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tional bias, we visualize the model’s self-attention190

weights, as the weights has been shown to corre-191

late with models’ generations, although not nec-192

essarily causal (Dong et al., 2021; Zhang et al.,193

2023). More formally, given an input prompt con-194

sisting of K documents xprompt = [xdoc1 , ..., xdocK ],195

where each document xdock = {xdock,i }
Nk
i=1 contains196

Nk tokens, let Attn : X × N→ R denote a func-197

tion that computes the average attention weights198

assigned to document xdock as Attn(xprompt, k) =199 ∑Nk
i=1 attn(x

doc
k,i )/Nk, where attn(xdock,i ) is the at-200

tention weight value allocated to token xdock,i when201

predicting the next |xprompt|+ 1 token.202

Specifically, we visualize the average self-203

attention weights assigned to each document across204

all tokens, decoder layers, and heads. We investi-205

gate how these weights vary based on document206

position within the input prompt. Interestingly, Fig-207

ure 4 (blue curve) reveals a U-shaped attention208

pattern. Documents near the beginning and end209

of the input receive higher weights, while those210

in the middle receive lower weights. Crucially,211

the U-shaped pattern persists even after randomly212

shuffling document order (Figure 4, orange curve),213

suggesting that this bias does not depend on the214

documents’ actual content.215

2.2 Does attention favor relevant context?216

Observation 1: Model prioritizes relevant con-217

texts from the same position. In Figure 4, we218

observe a significant difference in attention values219

at xdoc10 when comparing examples with original220

document order (blue) and randomly shuffled or-221

der (orange). Specifically, the attention value is222

notably higher when when xdoc10 is controlled to be223

xgold. This contrasts with instances where xdoc10 is224

uncontrolled, suggesting that apart from U-shaped225

positional bias, the model exhibits an ability to226

prioritize relevant context.227

Observation 2: Model prioritizes highly-228

weighted documents for generation. Based on229

these observations, we hypothesize that positional230

attention bias significantly influence the model’s231

tendency to rely heavily on the first documents232

during output generation. Specifically, the mod-233

els are more likely to incorporate the document234

receiving the highest attention (often the first) into235

its output. To validate this, for each of the exam-236

ples of interest, we divide their documents into first237

half receiving higher model attention and second238

half receiving lower attention. We then count the239

Table 1: Number of examples where the most likely
used document in the model’s generation falls within
the first half of documents receiving higher model at-
tention or second half receiving lower attention. We
see that there is a strong correlation where documents
receiving higher attention are more likely to be used in
model’s response.

Most Likely Used

# of examples %

Highest Half Attention 490 71%
Lowest Half Attention 200 29%

number of examples in which the first or second 240

half contains the document that is most likely used 241

in the model’s generation (i.e., having the highest 242

TF-IDF score with model’s response). In Table 1, 243

we show that documents receiving higher attention 244

positively correlates with them being used in the 245

model’s generation. 246

From the above studies, we see that not only 247

the model exhibits a U-shape positional attention 248

bias, but this bias also correlates strongly with the 249

model’s biased tendency in using documents placed 250

at certain positions in forming its response. We thus 251

conjecture that lost-in-the-middle happens because 252

of the dominating force of positional bias. 253

3 Find-in-the-middle: modeling and 254

isolating positional attention bias 255

Ideally, a model should leverage contexts in 256

the input prompts—faithfully according to their 257

relevance—for generating the response, instead of 258

biasing towards contexts placed at certain positions 259

within the input. Towards this goal, we are inter- 260

ested in modeling the positional attention bias and 261

mitigating it such that model attention can reflect 262

the true relevance of the input context and ulti- 263

mately improve models’ effective utilization of the 264

full context window. 265

3.1 Two main factors in model attention 266

In Sec. 2, we find that there are two main forces 267

driving the model attention assigned to different 268

documents of an input prompt: (a) where the doc- 269

ument locates within the entire input, and (b) the 270

relevance of the document. 271

Our hypothesis. We thus consider modeling the 272

observable attention weights allocated to the k-th 273

document of an input xprompt as: 274

Attn(xprompt, k) = f(rel(xdock ),bias(k)), (1) 275
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Table 2: High correlations between model attention
with document relevance and positional bias supports
our hypothesized model.

Hypothesis test rel(xdoc) bias(k) % of valid pairs

Condition 1 Fixed Varying 82%
Condition 2 Varying Fixed 75%

where rel(·) measures the relevance of an input276

document, bias(·) characterizes the positional at-277

tention bias, f(·) is some unknown monotonically278

increasing function w.r.t. to both rel(xdock ) and279

bias(k). For ease of exposition, in the remainder of280

the paper, we overload Attn(xdoc, k) to denote the281

attention value assigned to document xdock placed at282

the k-th position within an input prompt containing283

K documents.284

Corroborating our assumed model. Here, we285

conduct a suite of controlled experiments using286

NaturalQuestion with K = 20 and a LLaMA-2-287

7B-chat model to corroborate our assumed model.288

Specifically, for Eq. 1 to hold, it implies that:289

Condition 1: When the relevance term is fixed,290

model attention increases as positional bias in-291

creases. That is, given two documents xdoc1 and292

xdoc2: if Attn(xdoc1, k) > Attn(xdoc1, l), then293

Attn(xdoc2, k) > Attn(xdoc2, l).294

Condition 2: Similarly, when the document295

position k is fixed, model attention increases296

as the relevance of the document increase:297

if Attn(xdoc1, k) > Attn(xdoc2, k), then298

Attn(xdoc1, l) > Attn(xdoc2, l).299

We validate Condition 1 and 2 on 100 randomly300

sampled examples from NaturalQuestion dataset,301

each with K = 20 documents. For validating Con-302

dition 1, given a pair of documents (xdoc1, xdoc2)303

and positions (k, l), we can compute whether the304

relationship holds across all possible pairs. We can305

similarly test for Condition 2. In Table 2, we see306

that the percentage of valid example pairs are de-307

cently high, 82% and 75% respectively, for both308

conditions, providing supports to our hypothesis.309

Recall that our goal is to disentangle positional310

attention bias from model attention such that the311

model can faithfully attend to relevant contexts,312

independent from their positions. So far, while we313

have established the monotonic increasing nature314

of f in Eq. 1, we have yet characterize the actual315

form of f to remove the positional bias term from316

model attention.317

To approximate f , we consider simple linear318

models by following machine learning principles319

(a.k.a. Occam’s razor), for robust estimation: 320

Attn(xdoc, k) = rel(xdoc) + bias(k) + ε, (2) 321

where ε is a noise. 322

To test how the model captures the underlying 323

relationship, we compute Spearman’s rank correla- 324

tion between Attn(xdoc1, k)−Attn(xdoc2, k) and 325

Attn(xdoc1, l)−Attn(xdoc2, l)) over quadruplets 326

of (xdoc1, xdoc2, k, l) collected from NaturalQues- 327

tion. A high correlation indicates small discrep- 328

ancy between Attn(xdoc1, k)−Attn(xdoc2, k) and 329

Attn(xdoc1, l)−Attn(xdoc2, l)). From our study, 330

the linear model results in decently high correla- 331

tion, 0.763, suggesting its effectiveness despite the 332

simplicity. We therefore adopt Eq. 2 as our model 333

and leave other alternatives with more degree of 334

freedoms as future work 2. 335

3.2 Disentangling positional attention bias 336

Most notably, having a simple form of f allows us 337

to isolate the effect of positional bias from model 338

attention. Specifically, following from Eq. 2, we 339

can first obtain a reference model attention value 340

with a dummy document xdum by: 341

Attn(xdum, k) = rel(xdum) + bias(k) + ε. (3) 342

By subtracting Eq. 2 and Eq. 3, we can offset the 343

bias term and obtain: 344

rel(xdoc) (4) 345

= Attn(xdoc, k)−Attn(xdum, k) + rel(xdum) 346

Consider using a consistent dummy document 347

xdum which has a constant rel(xdum), we are then 348

able to obtain the true relevance of different docu- 349

ments xdoc, free from the positional bias. We refer 350

to Attn(xdoc, k)−Attn(xdum, k) as calibrated at- 351

tention as it removes the baseline attention. 352

Calibrated attention finds relevant contexts in 353

the middle. Eq. 4 allows us to leverage calibrated 354

attention to estimate and rank the relevance of dif- 355

ferent documents within an input prompt. To val- 356

idate the effectiveness of our model, we evaluate 357

using calibrated attention to re-rank documents in 358

an input prompt w.r.t. a given query. We eval- 359

uate on NaturalQuestion where we focus on the 360

most challenging setting when the gold document 361

in placed in the middle of the input prompt. We 362

compare our model to: 363

2In Appendix C, we also explore log-linear models, which
results in competitive 0.76 rank correlation.
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Table 3: Calibrated attention outperforms existing
methods in ranking the relevance of retrieved contexts
given a user query. We report Recall@3 on Natu-
ralQuestion when gold documents are placed in the
middle of input context.

Number of total documents

Method K = 10 K = 20

Vanilla attention 0.3917 0.1340
Query generation 0.6474 0.5378
Relevance generation 0.5152 0.3578
Calibrated attention 0.7163 0.5706

• Vanilla attention: Using uncalibrated atten-364

tion Attn(xprompt, k) to rank the documents.365

• Query generation (Sun et al., 2023): Using366

likelihood of the model in generating the367

query based on the document.368

• Relevance generation (Sun et al., 2023):369

Prompting the model to answer whether a doc-370

ument is relevant to a query.371

In Table 3, we compare Recall@3 of different372

methods where we vary the total number of doc-373

uments retrieved. We see that the proposed cali-374

brated attention consistently outperforms vanilla375

attention by a large margin, and also shows su-376

perior performances when compared to the other377

two re-ranking metrics. The results validate that378

our proposed modeling approach is effective, and379

that if calibrated appropriately, language models380

can locate relevant information even when they are381

hidden in the middle of the input.382

4 Improving long-context utilization with383

attention calibration384

Having validated that calibrated attention through385

find-in-the-middle is effective in locating relevant386

information within a long input context, we are387

ultimately interested in leveraging it to tackle lost-388

in-the-middle problem and practically improve a389

model’s RAG performance.390

4.1 Attention calibration391

To allow the model to attend to contexts without be-392

ing dictated by positional bias, we propose to inter-393

vene the model’s attention based on the proposed394

calibrated attention. Specifically, given an input395

xprompt, instead of allocating rel(xdock ) + bias(k)396

attention to the k-th document, our ideal model at-397

tention Attncalibrated(x
doc
k ) would reflect only the398

relevance of the context rel(xdock ).399

To achieve this, we propose to redistribute the 400

attention values assigned to {xdock }Kk=1 according 401

to rel(xdock ). Specifically, for each document xdock , 402

we propose to rescale the attention values on the 403

tokens within the document, {xdock,i }
Nk
i=1, by: 404

attncalibrated(x
doc
k,i ) = (5) 405

αk

Attnoriginal(x
doc
k )
· attnoriginal(xdock,i ) · C, 406

where αk = Softmax(rel(xdock ), t), t is the tem- 407

perature hyperparamter, and C is a normalization 408

constant to ensure the total attention
∑

k,i x
doc
k,i re- 409

mains unchanged. With the rescaling, we effec- 410

tively make the final attention on xdock : 411

Attncalibrated(x
doc
k ) ∝ Softmax(rel(xdock ), t),

(6) 412

where higher attention is allocated to more relevant 413

context, and t controls the disparity level. 414

4.2 Calibrated v.s. uncalibrated attention 415

We evaluate the performance of the proposed at- 416

tention calibration method. We conduct experi- 417

ments on two multi-document question answer- 418

ing tasks (more details in Appendix A), Natu- 419

ralQuestion (Kwiatkowski et al., 2019) and Syn- 420

thWiki (Peysakhovich and Lerer, 2023), with 421

two models supporting different context win- 422

dow length: LLaMA-2-7B-chat (LLaMA) (Tou- 423

vron et al., 2023) and Vicuna-7b-v1.5-16k (Vi- 424

cuna) (Li et al., 2023a) with 4k and 16k context 425

window respectively. For each dataset, we consider 426

two settings with different number of retrieved doc- 427

uments, K = {10, 20}. We leave further imple- 428

mentation details in Appendix B. 429

Attention calibration improves long-context uti- 430

lization across various datasets and models. 431

In Figure 5, we see that our proposed calibrated- 432

attention intervention method consistently outper- 433

forms the uncalibrated baseline by a large mar- 434

gin (up to 10 percentage point (pp) improvement) 435

across different tasks and models. On the most chal- 436

lenging scenario when the gold document is placed 437

mid-sequence, attention calibration consistently of- 438

fers improvements from 6-10 pp. Notably, we see 439

that attention calibration’s performance curve lies 440

entirely above the vanilla baseline curve, validat- 441

ing the effectiveness of our method in improving 442

models’ long context utilization. 443
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Figure 5: Attention calibration effectively improves models’ context utilization ability, with its performance
curves lying above standard vanilla attention. Top/Bottom row: 10/20-doc. Numbers shown in Table 5.

4.3 Attention calibration in practice444

In practice, to avoid the lost-in-the-middle effect,445

one commonly adopted workaround is to reorder446

the document positions, where documents consid-447

ered more relevant are placed towards the begin-448

ning (or end) of the input. While these methods449

have led to performance improvements over the450

baseline without reordering, without handling the451

model’s intrinsic bias, reordering-based methods’452

performance relies heavily on the correct ranking453

of the documents. We are thus interested in vali-454

dating whether attention calibration can be applied455

on top of re-ordering methods to provide another456

layer of improvements.457

Attention calibration improves existing RAG458

pipelines. We continue using NaturalQuestion459

and SynthWiki for evaluation. We compare to ex-460

isting reordering methods including:461

• Prompt reordering (Sun et al., 2023; Liang462

et al., 2023): Reorder documents based on463

relevance score generated through prompting.464

• LongLLMLingua-rk (Jiang et al., 2023): Re-465

order documents using query generation as466

the reranking metric.467

• Attention sorting (Peysakhovich and Lerer,468

2023): Reorder documents using vanilla469

model attention assigned to the documents.470

In Figure 6, we note that LongLLMLingua-rk471

and prompt reodering are invariant to the gold doc-472

ument’s position since they compute the relevance473

of each document independently. First, we see that474

reordering methods do alleviate lost-in-the-middle475

problem where models’ performances increase476

when gold documents is placed mid-sequence. Fur- 477

thermore, by applying attention calibration on top 478

of a reodring mechanism (LongLLMLingua-rkin 479

this case), LongLLMLingua-rk with calibration 480

consistently achieve the highest performance 481

across datasets and models, suggesting a way to 482

further improve current RAG pipeline. 483

5 Related work 484

Retrieval augmented generation. While LLMs 485

exhibit strong capabilities (Gemini Team, 2023; 486

OpenAI, 2022), their knowledge is inherently 487

limited in its pretraining data, and they are ob- 488

served to struggle in handling knowledge intensive 489

tasks (Petroni et al., 2020). To tackle this, retrieval 490

augmented generation (RAG) is an effective frame- 491

work that retrieves relevant information from exter- 492

nal knowledge sources to aid and ground language 493

models’ generation (Lewis et al., 2020; Khandel- 494

wal et al., 2020; Borgeaud et al., 2021; Izacard and 495

Grave, 2021; Izacard et al., 2022b). 496

Although RAG has powered many recent 497

language model applications from question- 498

answering (Izacard and Grave, 2021) to automatic 499

task completion (Shen et al., 2023), recent work 500

show that LLMs tend to lost-in-the-middle, signif- 501

icantly hindering the full potential of RAG (Liu 502

et al., 2023). In this work, we take a step further 503

to understand the lost-in-the-middle problem from 504

the viewpoint of attention bias. Moreover, we pro- 505

pose a remedy through attention calibration, which 506

improves upon existing RAG frameworks. 507

Long-context utilization in language models. 508

There is a rich literature on enabling LLMs to han- 509

dle longer input contexts, including designing effi- 510

cient training and finetuning schemes (Dao et al., 511
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Figure 6: Attention calibration can be applied on top of reordering-based methods to provide further per-
formance boost. Top/Bottom row: 10/20-doc. Numbers shown in Table 5.

2022; Li et al., 2023b,a; Shi et al., 2023b) and512

inference-time methods that extend an LLM’s con-513

text length (Press et al., 2021; Ratner et al., 2023;514

Xiao et al., 2023; Bertsch et al., 2023). Nonetheless,515

even models specifically trained for long-context516

suffer lost-in-the-middle problem (Liu et al., 2023;517

Li et al., 2023a).518

To improve LLMs’ performance on handling519

long contexts, recent methods design better prompt-520

ing techniques and pipelines that mechanically521

work around the lost-in-the-middle problem (Chen522

et al., 2023; Jiang et al., 2023; Peysakhovich and523

Lerer, 2023; Junqing et al., 2023). For instance, to524

avoid having the models process long input con-525

texts, (Chen et al., 2023; Junqing et al., 2023) pro-526

poses to split long inputs into shorter contexts for527

models to better understand. To avoid relevant con-528

text being missed by the model, (Jiang et al., 2023;529

Peysakhovich and Lerer, 2023) proposes to rank530

the relevance of different parts of the input and531

re-order the most important parts to either the be-532

ginning or end of the entire input, where the models533

tend to focus more.534

While these existing solutions lead to improved535

model performances by manipulating the input con-536

texts, they do not fundamentally improve LLMs’537

underlying long-context utilization capability. In538

contrast, we set out to directly improve LLMs’539

long-context utilization capability to mitigate lost-540

in-the-middle problem.541

Self-attention and attention bias. The attention542

mechanism is initially introduced in RNN-based543

encoder-decoder architectures (Bahdanau et al.,544

2015; Luong et al., 2015). Building upon the self-545

attention mechanism, transformers (Vaswani et al.,546

2017) have achieved state-of-the-art performance 547

in various domains (Devlin et al., 2018; Dosovit- 548

skiy et al., 2020). Self-attention has also been 549

widely used as a proxy to understand and explain 550

model behaviors (Clark et al., 2019; Hao et al., 551

2021; Vashishth et al., 2019). 552

However, the relationship between the lost-in- 553

the-middle problem and LLM’s self-attention has 554

been under-explored. As an initial trial, “attention 555

sorting” (Peysakhovich and Lerer, 2023) sorts doc- 556

uments multiple times by the attention they receive 557

to counter lost-in-the-middle. Recently, He et al. 558

(2023) construct a dataset for training LLMs to fo- 559

cus on the most relevant documents among long 560

contexts. Unlike the method, which necessitate 561

significant investment in data collection and LLM 562

tuning, our method offers an efficient solution by 563

mitigating lost-in-the-middle problem with off-the- 564

shelf LLMs. 565

6 Discussion 566

In this work, we understand and address the lost- 567

in-the-middle phenomenon, by establishing a con- 568

nection between the phenomenon and models’ po- 569

sitional attention bias. We mitigate the bias by 570

attention calibration which directly modifies the 571

model’s attention mechanism, enabling LLMs to 572

more faithfully attend to contexts based on their 573

relevance, rather than their position. Experiments 574

show that attention calibration improves the perfor- 575

mance compared to its uncalibrated counterpart es- 576

pecially when relevant context occurs in the middle 577

of the input. We additionally show attention cali- 578

bration can be applied on top of existing reordering 579

pipelines to further improve models’ performance. 580
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Limitations581

While our study presents significant advances in582

addressing the "lost-in-the-middle" problem and583

improving RAG performance in LLMs, several lim-584

itations are noteworthy:585

Simplification of the mechanism behind posi-586

tional attention bias. We proposed a simple hy-587

pothesis to model the positional attention bias, as588

shown in Eq. 1. However, the intrinsic mecha-589

nisms that drive this bias could be more intricate590

and dynamic than our current model accounts for.591

It is possible that some aspects of attention bias592

are learnable or adaptive, responding to subtle as-593

pects of the data or training process that our current594

approach does not consider.595

Computational overhead. Our method of cal-596

ibrating positional attention bias, while effec-597

tive, introduces additional computational overhead.598

Specifically, we require extraO(K) model forward599

passes to calibrate attention at each position, com-600

pared to vanilla model generation. However, in this601

study we aim to discover and calibrate the posi-602

tional attention bias from a scientific perspective.603

We expect that our discovery can enable future re-604

search into developing more calibration methods605

with lower computational overhead.606

Positional attention bias may be beneficial.607

Our method aims to completely remove positional608

attention bias. However, it is important to note that609

this positional bias might actually be beneficial in610

certain contexts. In some specific tasks or scenar-611

ios, the natural tendency of models to focus more612

on the beginning and end of inputs could align well613

with the structure of the task or the nature of the614

data. Therefore, understanding the tasks and the ap-615

plications is required before adopting our proposed616

calibration method.617

The root cause of attention bias is unclear. In618

this work, we aim to discover and understand the619

connection between the lost-in-the-middle problem620

and LLMs’ intrinsic attention bias. However, our621

work does not definitively pinpoint the root cause622

of attention bias in LLMs. The cause of such a bias623

could be attributed to the distribution of pretraining624

corpora, the transformer model architecture, and625

the optimization process. Future research needs to626

delve deeper into the origins of this phenomenon.627

Ethical Statement 628

In our research, we focus on enhancing the per- 629

formance of large language models using existing 630

public datasets, ensuring that no personal or sensi- 631

tive data was collected or utilized. Our attention 632

calibration method is aimed at improving the effi- 633

ciency and accuracy of retrieval-augmented genera- 634

tion, with potential benefits across various domains 635

including search engines, question-answering sys- 636

tems, and other text-based applications. It is impor- 637

tant to acknowledge that as our technique builds 638

upon pre-trained language models, it may inadver- 639

tently inherit and propagate existing biases inher- 640

ent in these models. Apart from this significant 641

concern, we do not identify any other immediate 642

risks arising from the methodologies or findings 643

presented in our paper. 644
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A Multi-doc QA datasets950

We use NaturalQuestions (Kwiatkowski et al.,951

2019)3 (released in Apache-2.0 license) and Synth-952

Wiki (Peysakhovich and Lerer, 2023)4 to conduct953

the experiments. Both datasets contains question-954

answer pairs, a gold document contains the answer,955

and K − 1 distractor documents, where K = 10956

and 20.957

The NaturalQuestions dataset is the subset with958

2655 queries selected by Liu et al. (2023)5 where959

the annotated long answer is a paragraph. The k−1960

distractor passages are Wikipedia chunks retrieved961

by Contriever (Izacard et al., 2022a) that are most962

relevant to the query but do not contain any of963

the annotated answers in NaturalQuestions. The964

distractor documents are presented in the context965

in order of decreasing relevance.966

The SynthWiki dataset (Peysakhovich and Lerer,967

2023) is a synthetic multi-doc QA dataset with 990968

entries. All the documents in SynthWiki are GPT-4969

generated Wikipedia paragraphs for fictional peo-970

ple, thus it can minimize the knowledge contamina-971

tion issue from pre-training and ensure the LLMs972

can only use information from the provided context.973

The distractor documents are randomly sampled974

and randomly ordered in SynthWiki.975

NaturalQuestions is collected from public En-976

glish Wikipedia articles and SynthWiki is collected977

by GPT-4 automatic generation of English fake978

Wikipedia articles. These two dataset should not979

contain any information that names or uniquely980

identifies individual people or offensive content.981

We ensure that the use of these two datasets was982

consistent with their intended purpose for academic983

research and in accordance with their specified li-984

censing agreements.985

B Implementation details986

In our experiments, we utilize LLaMA-2-7B-chat987

and Vicuna-7b-v1.5-16k as the base models.988

Both models consist of 32 decoder layers, each989

with 32 attention heads. In applying attention cal-990

ibration method to intervene model attention, we991

apply only to the last 16 decoder layers (and all992

of their attention heads). We find that interven-993

ing early layers may lead to unstable generation.994

3https://github.com/google-research-datasets/
natural-questions

4https://github.com/adamlerer/synthwiki
5https://github.com/nelson-liu/

lost-in-the-middle

We leave finding the best set of attention heads to 995

intervene as future directions (Zhang et al., 2023). 996

In the experiments, we find attention calibration 997

to be robust to the temperature term t in Eq. 5. We 998

set t = 5e−5 for all experiments. 999

C Additional experiment results 1000

Different model formulations. To approxi- 1001

mate (1), in addition to linear models as shown 1002

in (2), we also investigate log-linear models, which 1003

is defined as 1004

log Attn(xdoc, k) = rel(xdoc)+bias(k)+ε, (7) 1005

where ε is a noise. We compute rank correlation as 1006

described in Sec. 3. The result is shown in Table 4. 1007

The log-linear model and linear are competitive 1008

to each other, which all result in rank correlation 1009

above 0.76. 1010

Table 4: Rank correlations of linear and log-linear mod-
els.

Model form of f Rank correlation

Linear 0.7633
Log-linear 0.7605

Experiment tables. Table 5 shows the exact 1011

numbers in our experiments. 1012

D Compute and inference details 1013

In the experiments, we use the Huggingface Trans- 1014

former package6 with the two models: LLaMA- 1015

2-7B-chat7 and Vicuna-7B-v1.5-16k8 both con- 1016

tains 7B parameters. We run the experiments with 1017

two NVIDIA A100 GPUs. The inference time is 1018

roughly 1 to 3 hours on both datasets. We run our 1019

experiments with all greedy decoding without any 1020

non-deterministic factor, so we only need to run 1021

the experiments for once. Our method is a pure 1022

inference method, so there is no need to do training 1023

or hyperparameter searching. 1024

6https://github.com/huggingface/transformers
7https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
8https://huggingface.co/lmsys/vicuna-7b-v1.

5-16k
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Table 5: Our proposed attention intervention by calibrated attention stably improves models’ RAG performances
compared to existing re-ordering based baselines.

Gold position in 10 documents Gold position in 20 documents

Dataset Model Method 1st 5th 10th Avg. 1st 10th 20th Avg.

NaturalQuestion

LLaMA

Vanilla attention 62.78 48.85 50.01 53.88 57.40 36.27 49.83 47.83
Calibrated attention 63.91 54.91 60.00 59.61 58.34 43.01 61.35 54.23
Attention sorting 52.27 50.96 53.10 52.11 40.90 40.3 42.71 41.30
Prompt reordering - - - 51.00 - - - 40.41
LongLLMLingua-rk - - - 52.92 - - - 44.56
LongLLMLingua-rk + Cal. - - - 57.06 - - - 48.24

Vicuna

Vanilla attention 74.35 54.83 52.01 60.39 71.93 47.34 50.65 56.64
Calibrated attention 70.84 62.61 55.78 63.07 66.40 56.19 51.75 58.11
Attention sorting 72.54 59.54 63.12 65.06 69.37 56.91 62.41 62.89
Prompt reordering - - - 64.63 - - - 58.68
LongLLMLingua-rk - - - 63.95 - - - 59.92
LongLLMLingua-rk + Cal. - - - 66.17 - - - 62.22

SynthWiki

LLaMA

Vanilla attention 33.33 68.08 98.18 66.53 66.46 65.25 87.97 73.22
Calibrated attention 41.21 72.92 97.67 70.60 63.43 72.22 95.45 77.03
Attention sorting 89.19 88.98 96.46 91.54 74.64 73.83 87.71 78.73
Prompt reordering - - - 98.18 - - - 85.65
LongLLMLingua-rk - - - 97.87 - - - 86.96
LongLLMLingua-rk + Cal. - - - 97.57 - - - 95.25

Vicuna

Vanilla attention 65.15 48.68 68.58 60.80 53.73 43.63 60.20 52.52
Calibrated attention 68.58 53.83 74.14 65.52 57.77 51.21 68.78 59.25
Attention sorting 67.37 64.14 67.57 66.36 60.60 51.55 61.31 57.82
Prompt reordering - - - 70.20 - - - 62.22
LongLLMLingua-rk - - - 70.50 - - - 62.42
LongLLMLingua-rk + Cal. - - - 73.43 - - - 66.96
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