
Learning to Schedule Heuristics for the Simultaneous Stochastic Optimization of
Mining Complexes

Yassine Yaakoubi,123* Roussos Dimitrakopoulos12

1COSMO (Stochastic Mine Planning Laboratory) - McGill University, Canada
2GERAD (Group for Research in Decision Analysis), Canada

3Mila (Montreal Institute for Learning Algorithms), Canada
{yassine.yaakoubi,roussos.dimitrakopoulos}@mcgill.ca

Abstract
The simultaneous stochastic optimization of mining com-
plexes (SSOMC) is a large-scale combinatorial optimization
problem that manages the extraction of materials from multi-
ple mines and their processing using interconnected facilities.
Following the work of Zarpellon et al. (2020) and Chmiela
et al. (2021), to the best of our knowledge, this work pro-
poses the first data-driven framework for heuristic scheduling
in a hyper-heuristic-based solver that is fully self-managed
to solve the SSOMC. The proposed learn-to-perturb (L2P)
hyper-heuristic is a multi-neighborhood simulated annealing
algorithm. The L2P selects the heuristic (perturbation) to ap-
ply in a self-adaptive manner using reinforcement learning
(RL) to efficiently explore which local search is best suited
for a particular search point. Several state-of-the-art agents
have been incorporated into the proposed hyper-heuristic to
better adapt the search and guide it towards better solutions.
By learning from data describing the performance of heuris-
tics, a problem-specific ordering of heuristics that collectively
finds better solutions faster is obtained. The L2P is tested
on several real-world mining complexes, with an emphasis
on efficiency, robustness, and generalization capacity. Results
show a reduction in the computational time by 30-45%.

Introduction
Solving a large-scale industrial mining complex problem
is critical for decision-makers in the mining industry. An
industrial mining complex is an engineering system that
manages the extraction of materials from multiple mines,
their processing in interconnected facilities, and multiple
waste sites to generate a set of products delivered to the
customers. Mine scheduling optimization is critical as sub-
optimal scheduling can adversely affect profit. Since mining
complexes have multiple mining sites, the material must be
extracted from the sites simultaneously. This requires the si-
multaneous optimization of mining complexes (Goodfellow
and Dimitrakopoulos 2016). The main objective of the mine
production scheduling problem is to find an approach to ex-
tract the profitable ore blocks (e.g., above a cut-off grade).

Conventional approaches to solving these problems break
down the optimization into separate, sequential, linear op-
timization steps, leading to sub-optimal solutions, ignoring
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the various nonlinear interactions between processing, trans-
portation, and destination policies that also contribute to the
value of mined products. The simultaneous stochastic opti-
mization of mining complexes (SSOMC) overcomes these
limitations by incorporating all components of the mining
complexes into a single mathematical model. The model
maximizes the Net Present Value (NPV) of the mining com-
plexes and includes geological uncertainty to manage the as-
sociated risk. As exact methods are impractical to use for the
SSOMC with more than a few thousand blocks, researchers
have also employed meta-heuristics and hyper-heuristics to
address these large-scale global optimization problems.

Meta-heuristics are problem-independent algorithms that
use a search algorithm to find a near-optimal solution by de-
veloping heuristics (Talbi 2009; Glover and Kochenberger
2006). They combine these (problem-specific) heuristics in
a more general framework, as in Khan and Niemann-Delius
(2015) where the authors use particle swarm optimization
(PSO) to schedule open-pit mines. Most notably, a simulated
annealing approach was proposed by Goodfellow and Dimi-
trakopoulos (2016), resulting in COSMO Suite (Goodfellow
and Dimitrakopoulos 2019), a software package capable of
integrating the various components of the mining complexes
and solving the optimization problem in a reasonable time.
However, early performance might dominate recent perfor-
mance in that the score function only uses a combination of
past performance to sample the perturbations to be applied.

A recent development to meta-heuristic optimization
is hyper-heuristics. For example, Chatterjee and Dimi-
trakopoulos (2019) combine several existing methods to
find a solution. Lamghari, Dimitrakopoulos, and Senécal
(2021) combine machine learning (ML), exact algorithms,
and heuristic methods to solve the SSOMC. The authors
show that using neural networks as a surrogate model for the
downstream sub-problem instead of solving it to optimality
reduces computational time significantly.

Machine learning has shown promise in tackling small-
scale operations research (OR) tasks such as using graph
convolutional neural networks to learn branch-and-bound
variable selection policies (Gasse et al. 2019) and using
hybrid architectures for efficient branching on CPU ma-
chines (Gupta et al. 2020), as well as guiding OR algorithms
on large-scale tasks such as using neural networks (Yaak-
oubi, Soumis, and Lacoste-Julien 2019, 2020) and struc-



tured convolutional kernel networks (Yaakoubi, Soumis, and
Lacoste-Julien 2021) to solve airline crew scheduling (Yaak-
oubi 2019). Furthermore, recent research goes a step further
by proposing data-driven methods that can guide OR algo-
rithms to solve combinatorial optimization problem. Indeed,
given the complexity of these problems, state-of-the-art al-
gorithms rely on specific heuristics for making decisions
that are otherwise computationally expensive or mathemat-
ically not well-defined. As a result, ML presents itself as
a fitting predictive tool to make such heuristic-scheduling
decisions in a more principled and optimized way (Ben-
gio, Lodi, and Prouvost 2020). While Zarpellon et al. (2020)
presents a novel imitation learning framework and hypothe-
size that parameterizing the state of the Branch-and-Bound
search tree can aid in solving mixed-integer linear program-
ming problems (MILPs), Chmiela et al. (2021) propose the
first data-driven framework for scheduling heuristics in an
exact mixed-integer programming (MIP) solver, where they
obtain a problem-specific schedule of heuristics that collec-
tively find many solutions at minimal cost by learning from
data describing the performance of primal heuristics. The
authors are able to significantly outperform the then state-of-
the-art methods for “learning to branch” by allowing better
generalization to unseen problems.

We follow this line of work by proposing, to the best of
our knowledge, the first data-driven framework for heuris-
tic scheduling in a hyper-heuristic-based solver that is fully
self-managed. Indeed, in most of the literature on the use of
data-driven AI for OR methods, authors assume structural
knowledge of the scheduling problem (e.g., optimal solu-
tions, decisions made by strong branching, etc.). This as-
sumption allows them to apply ML to provide fast approxi-
mations to these decisions. Little research has been done to
solve large-scale combinatorial optimization problems such
as the SSOMC where no structural knowledge pre-exists.
In this case, ML models can be deployed to discover the
structure of the problem. This is called policy learning and
is an application of reinforcement learning (RL). In the
current manuscript, the use of hyper-heuristics is justified
by the extremely large size and complex constraints of the
SSOMC and the demonstrated success of simulated anneal-
ing (Metropolis et al. 1953; Kirkpatrick, Gelatt, and Vecchi
1983) and hyper-heuristics (Godoy 2003; Kumral 2013) in
solving the SSOMC. Indeed, following the work of Good-
fellow and Dimitrakopoulos (2016, 2017); Lamghari, Dim-
itrakopoulos, and Senécal (2021), a new approach is pro-
posed to improve the search strategy by using past experi-
ence to better guide the exploration. A self-learning hyper-
heuristic called L2P (learn-to-perturb) is proposed, using a
multi-neighborhood simulated annealing algorithm, where
the selection of a perturbation is self-adaptive using RL. By
defining a neighborhood structure, the RL agent learns how
to guide the search over the solution space landscape to find
better solutions during the optimization process.

The paper makes the following novel contributions: (1)
proposing a self-managed hyper-heuristic for solving the
SSOMC based on a multi-neighborhood simulated anneal-
ing algorithm with adaptive neighborhood search; (2) using
RL to adapt the search and guide it towards better solutions;

(3) testing on several real-world mining complexes with em-
phasis on efficiency, robustness, and generalization capac-
ity. To test the proposed methodology, three policy-based
agents are proposed: advantage actor-critic (A2C) (Mnih
et al. 2016), proximal policy optimization (PPO) (Schul-
man et al. 2017), and soft actor-critic (SAC) (Haarnoja et al.
2018). Results demonstrate L2P’s effectiveness on a range
of real-world mining complexes, where the proposed solu-
tion process takes only minutes, while CPLEX solves the
linear relaxation in days or weeks. Using RL further reduces
the computational time by 30-45%

Problem Statement
A mathematical formulation of the SSOMC motivated
from Lamghari and Dimitrakopoulos (2016) and Goodfel-
low and Dimitrakopoulos (2016) is briefly discussed, along
with the implementation details of COSMO Suite, which the
proposed L2P hyper-heuristic is implemented on. The ob-
jective function maximizes the expected NPV of the mining
complex (total expected discounted profit generated from
processing ore) and minimizes the expected recourse costs
incurred whenever the stochastic (scenario-dependent) con-
straints are violated. The solving of the SSOMC needs to
take into account the deterministic (scenario-independent)
and stochastic (scenario-dependent) constraints.

The scenario-independent constraints include:

• Reserve constraints ensure that each block is mined at
most once during the horizon.

• Slope constraints guarantee that each block can only be
mined after all its predecessor blocks have been mined.

• Mining constraints limits the maximum rate of mining.

The scenario-dependent constraints include:

• Processing constraints impose a minimum and maxi-
mum amount of material to be processed by each proces-
sor per period.

• Stockpiling constraints balance the flow at each stock-
pile and impose a maximum amount of material of ore to
be stockpiled for each stockpile per period.

We build the proposed L2P approach into the COSMO
Suite framework. More specifically, Goodfellow and Dimi-
trakopoulos (2016, 2017) proposed a generic modeling ap-
proach resulting in COSMO Suite (Goodfellow and Dim-
itrakopoulos 2019) to overcome the extreme size that the
model can reach and allow the modeling of varying mining
complexes. In COSMO Suite, a “material” describes a prod-
uct extracted from a mine or generated via blending, sepa-
ration, or processing. An “attribute” describes a material’s
property of interest. Attributes may be primary (variables
are passed from one location to another, e.g., the metal ton-
nage) or hereditary (not forwarded between locations, e.g.,
costs). In COSMO Suite, (non-)linear equations can be as-
signed to these hereditary attributes and are evaluated dy-
namically during optimization. The simultaneous stochastic
optimizer can modify three types of decision variables:

1. Production scheduling decisions define whether or not
a certain block is extracted in a certain period.
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Figure 1: Illustration of the learn-to-perturb (L2P) hyper-heuristic.

2. Destination policy decisions decide where each group/-
cluster (of similar grade) is sent per period. More specifi-
cally, as an extension to the robust cut-off grade policies,
multivariate distribution clustering divides blocks into
groups based on multiple elements (e.g., grades) within
each material type. The optimizer is tasked with deciding
where each group (cluster) is sent per period.

3. Processing stream decisions define the proportion of a
product sent from a location to a destination.

Proposed Methodology
This section presents the learn-to-perturb (L2P) solu-
tion approach that employs simulated annealing, Tabu
search (Glover and Laguna 1998), and RL to solve the
SSOMC. The proposed self-learning hyper-heuristic is con-
structed by hybridizing a multi-neighborhood simulated an-
nealing algorithm with RL. A probabilistic approach works
towards identifying a global optimum by identifying neigh-
boring states with a lower energy state or nearer to an opti-
mal solution over the solution space landscape.

General Structure
Rather than solving an optimization problem directly, the
hyper-heuristic tries to identify the best heuristic for a given
problem state and compensate for various heuristic meth-
ods’ weaknesses through simultaneous optimization. In-
deed, while a set of low-level heuristics (perturbations) work
on finding optimality simultaneously, a high-level heuris-
tic schedules their sequencing (ordering), ensuring that the
most optimal solution is found by combining the perturba-
tions. The proposed hyper-heuristic is illustrated in Figure 1
and is divided into three components that are used simulta-
neously (rather than in sequential order):
• Problem domain: includes the problem representation,

evaluation function, initialization procedure, and set of
low-level heuristics. This is delineated in the bottom
block of Figure 1.

• Simulated annealing algorithm: composed of a
stochastic heuristic selection mechanism, an acceptance
criterion, and a sampling function.

• RL algorithm: to predict the heuristics’ future perfor-
mance to guide the search towards better solutions.



Figure 2: The left plot shows an illustration of a typical mining complex. The right plot shows an interaction between the RL
agent and the environment (Sutton and Barto 2018).

As in boxes 1-3 of Figure 1, at each iteration, the approach
attempts to improve the current solution x by iterating be-
tween heuristic selection and move acceptance. More specif-
ically, once a heuristic is selected (see box 1), a candidate so-
lution x is modified into a new solution using said heuristic
(see box 2). The heuristic is chosen based on its past perfor-
mance and the RL agent’s predicted performance. Simulated
annealing handles the heuristic selection mechanism and the
acceptance criterion.

The algorithm begins with one state and then moves to
a neighboring state in search of a better solution. This pro-
cess is repeated until no significant improvement is possible.
Each time a heuristic hi (i = 1, . . . , n, where n is the num-
ber of low-level heuristics), is used the algorithm returns the
resulting change in the objective function value (∆f(hi) as
well as the time required (T (hi)). Heuristics are all tested
once in the first stage, and ∆f(hi) and (T (hi) are used to
calculate the initial score function S1(hi) as in Eq. (1).

S1(hi) =


∆f(hi)

T (hi)
if ∆f(hi) > 0

1

∆f(hi)T (hi)
otherwise.

(1)

In the second stage, the heuristic selection is performed
based on the heurisitcs’ tabu status and performance. Each
time, a heuristic is chosen. If it does not improve the current
solution, it becomes tabu and is temporarily removed from
the selection set. Rather than using a fixed-length tabu list,
the heuristic is made tabu for γT iterations where γT is ran-
domly generated in the interval [Γmin,Γmax]. Each non-tabu
heuristic hi is associated with a selection probability pi com-
puted by normalizing the score function pi =

SF (hi)∑
k:Hk

SF (Hk)
.

As in box 6 of Figure 1, the score function is updated every
ζ iterations, and two measures π1(hi) and π2(hi) are calcu-
lated for each heuristic hi, as in Eq. (2)-(3), respectively.

π1(hi) =

π1(hi) +
∆f(hi)

T (hi)
if ∆f(hi) > 0

π1(hi) otherwise.
(2)

π2(hi) =

π2(hi) +
1

∆f(hi)T (hi)
if ∆f(hi) < 0

π2(hi) otherwise.
(3)

Every ζ iterations, the score function S1 is updated using
Eq. (4), where η(hi) is the number of times the heuristic
hi has been selected in the last ζ iterations, and α and β
are two weight adjustment parameters in [0, 1] defining the
importance given to recent performance and to improving
heuristics, respectively. The value of β is initialized to 0.5
and is modified every ζ iterations (based on whether a new
best solution has been found during the last ζ iterations).
All the heuristics’ score measures for the last Lw rounds are
provided to the RL agent as an input st (in the form of a 3D
matrix). As in box 5 of Figure 1, the agent outputs the action
at = πθ(st), normalized and referred to as S2, where πθ is
the agent’s policy that is parameterized by the weights θ.

S1(hi) =

{
SF (hi) if η(hi) = 0

(1− α)SF (hi) + α
βπ1(hi) + (1− β)π2(hi)

η(hi)
otherwise.

(4)
Then, a voting mechanism (box 6 of Figure 1) is used to

calculate the final score function SF based on S1 and S2, as
in Eq. 5, where λRL is the contribution of the RL agent to-
wards the final score function. The voting mechanism com-
bined with sampling typically promotes exploration in RL
to ensure the most viable outcome.

SF (hi) = (1− λRL)S1(hi) + λRLS2(hi). (5)
Finally, using the updated score function, a heuristic is se-

lected (box 1). A new solution x′ is obtained using normal-
ized SF (box 2). The probability of accepting x′ is based on
the distribution in Eq 6, where ∆f(hi) is the difference in
the objective function value before and after the perturbation
hi (between x and x′, respectively).

p(hi(x)) =

1 if ∆f(hi) > 0

exp

(
−∆f(hi)

Temp

)
otherwise.

(6)



Once the solution vector is updated, the change in the
objective function value ∆f(hi) and the time of execution
T (hi) are calculated. The reward r for the agent taking the
action S2 is ∆f(hi). As in box 4 of Figure 1, the agent stores
past experience in a replay buffer to be used when updat-
ing its weights θ. This process is repeated until a predefined
stopping condition is met and only problem-independent in-
formation flow is allowed between the problem domain and
hyper-heuristic layers.

Reinforcement Learning
Reinforcement learning starts from an initial state and works
its way up to an optimal policy that gives the best possi-
ble performance. In what follows, policy is referred to as
π, states as s, actions as a, and rewards as r. We incorpo-
rate three state-of-the-art policy-gradient agents into the RL
framework: advantage actor-critic (A2C) (Mnih et al. 2016),
proximal policy optimization (PPO) (Schulman et al. 2017),
and soft actor-critic (SAC) (Haarnoja et al. 2018). Policy-
gradient is a robust methodology that uses RL to solve prob-
lems. By modeling and improving the policy, the end goal
of this method is to follow an optimized strategy path to get
maximum rewards. The policy is modeled using a parame-
terized function to obtain the long-term cumulative reward
by exploiting the gradient descent algorithm.

At each timestamp t, the state st is defined as all the infor-
mation (performance) related to all the perturbations (low-
level heuristics) for the last Lw iterations. Each state is a 3D
matrix of dimensions Lw × 3× n. The first axis (of dimen-
sion Lw) corresponds to the number of iterations from which
useful information is extracted (i.e., the heuristics’ perfor-
mance). The second axis (of dimension 3) corresponds to
the number of features or measures for each heuristic. For
each iteration, the normalized score functions are saved: π1

is defined in Eq. 2, π2 is defined in Eq. 3, and S1 is defined
in Eq. 4. The third axis (of dimension n) corresponds to the
number of the low-level heuristics.

The agent outputs the normalized action (at = πθ(st)),
where π is the agent’s policy parameterized by the weight θ.
We denote by πθ the stochastic policy with parameter θ. The
stochasticity comes from adding a Gaussian noise N(0, σ)
to the outputted (deterministic) action at to obtain the score
function S2. Although σ can be learned during training, it is
used as a hyperparameter in this case to avoid an overconfi-
dent agent (early convergence of the policy).

After calculating the score function S2, a voting mecha-
nism is used to calculate the final score function SF based
on S1 and S2, as formulated in Eq. 5, where λRL denotes
the RL agent’s contribution to the final score function that
will be used for the next optimization iteration. In the fol-
lowing iteration, a heuristic hi is chosen using the calcu-
lated score function SF , and a new (updated) solution vec-
tor is obtained, along with the resulting change in the objec-
tive function value (∆f(hi) and the time required (T (hi)).
The reward for taking action at is defined as rt = ∆f(hi).
Note that in order to permit generalization and make the
agent instance-independent, the calculated returns are stan-
dardized (transformed to have zero mean and unit standard
deviation) before using them to update the agent’s policy.

Problem Domain Component
To produce new solutions, the hyper-heuristic described in
the previous section uses 38 simple perturbative low-level
heuristics referred to as hi where i = 1, . . . , 38. Each heuris-
tic aims to improve the current solution and examines a sub-
set of one of four neighborhood categories:

1. Block extraction sequence perturbations: For each of
the heuristics in this neighborhood, a block is chosen
randomly. Then any potential slope constraints that have
been violated are fixed.

2. Cluster destination policy perturbations: A cluster is
a group of blocks in a mine that can be clubbed together
based on some characteristics. Clusters can be formed by
aggregating blocks with similar geochemical or metallur-
gical parameters. In this case, multiple scenarios are op-
timized simultaneously, each with varying cluster char-
acteristics. In the heuristics of this neighborhood, a clus-
ter destination decision variable is randomly selected and
sent to a different destination (Goodfellow and Dimi-
trakopoulos 2016).

3. Destination policy perturbations: These heuristics will
dynamically vary the cut-off range characteristics of
clusters when cluster-related perturbations happen, al-
lowing for further optimization.

4. Processing stream perturbations: A random normal
number N(yi,j,t,s, 0.1) is employed to modify a ran-
domly selected process stream variable in this model.
Keeping the variance of the normal distribution suffi-
ciently small, it can be ensured that value can facilitate
both global and local search.

Computational Experiments
To assess the efficiency and robustness of the proposed
method, numerical experiments on different instances (of the
SSOMC) of various sizes and characteristics are performed.
The variants of the proposed hyper-heuristic (with and with-
out RL) are compared based on the evolution of the objective
function value with respect to the computational time.

Benchmark Instances and Parameter Setting
Five instances are used to test the proposed method. The
first set consists of three instances (mining complexes) re-
ferred to as I1 − I3, intended to make a first assessment of
the proposed L2P hyper-heuristic with a focus on the gener-
alization capability of the proposed method. the instances
are small-medium size with up to 15,000 blocks for one
mine or up to 4,000 blocks per mine for two mines. I1 con-
tains one copper mine, one processor, and one waste dump.
I2, the mining complex contains two mines with two metal
types (oxides and sulfides) two processors (oxide leach pad
and sulfide processor) and one waste dump. I3 exceeds I2
with a larger number of blocks and a sulfide stockpile. Each
time, the method is initialized, pre-trained on one of the in-
stances, and then tested on all three. The second set con-
sists of two large-scale mining complexes referred to as I4
and I5. It is intended to assess the performance of the L2P
hyper-heuristic in an actual use scenario. First, the method



Tgap=1% (in minutes) LR
Testing Instance Training Instance L2P–Baseline L2P–A2C L2P–SAC L2P–PPO

I1 8.5 (2.4) 14.2 (1.7) 9.8 (1.3)
I1 I2 18.3 (1.2) 10.0 (2.8) 14.8 (1.7) 11.1 (1.5) 2100

I3 9.6 (3.0) 14.6 (1.9) 11.3 (1.5)
I1 32.7 (6.7) 53.4 (3.2) 38.2 (3.0)

I2 I2 65.2 (1.9) 29.3 (5.9) 51.9 (2.8) 34.1 (2.7) 6480
I3 30.4 (5.8) 53.9 (2.9) 33.8 (2.7)
I1 59.2 (12.2) 96.1 (5.7) 68.9 (5.4)

I3 I2 117.8 (3.7) 52.9 (10.8) 93.8 (5.1) 61.6 (4.8) 8400
I3 54.8 (10.5) 97.4 (5.3) 61.2 (4.9)

Table 1: Result summary (mean and standard deviation) of the computational time Tgap=1% (in minutes) to achieve a solution
that is 1% far from the linear relaxation

is initialized, pre-trained on I4, and tested on the same in-
stance. Then, the weights are transferred, and the method is
tested on the instance I5. The instance I4 is similar to I1
except it has 14X more blocks and imposes a lower process-
ing bound. The instance I5 is similar to I3 except it contains
75X more blocks. For fast execution and efficient memory
and GPU allocation, while the simulation and the simulated
annealing algorithm are implemented in C++, the RL agents
are written in Python using the Pytorch library (Paszke et al.
2019). The experiments are carried out on a standard Win-
dows machine with an 8-core CPU, 32 GB of RAM, and a
GPU (4GB of GDDR6 memory).

Numerical Results
In what follows, we report numerical results for the two
stages of testing. L2P–Baseline refers to the hyper-heuristic
with λRL = 0 (not using RL). L2P–A2C, L2P–PPO, and
L2P–SAC refer to the hyper-heuristic using A2C, PPO, and
SAC as RL agents, respectively. All variants use λRL = 0.5.

First Stage of Testing To study the performance, robust-
ness, and generalization capacity of the proposed approach,
the first stage of testing is done using three instances L1-
L3 where L2P is trained for one instance then trained on all
three instances. Since L2P starts with a random initial so-
lution and the heuristic selection mechanism is stochastic,
all experiments are run 10 times and the following results
are reported in the form of mean and standard deviation. To
compare different methods, linear relaxation of the model is
used, leading to a weak bound on the objective value of the
optimal solution. A time limit of four weeks is set to solve
the linear relaxation (LR) of each instance using CPLEX
12.10 (IBM 2020). Using the value of the obtained LR, we
report in Table 1 the execution time (Tgap=1), required the
variants to obtain a solution that has an objective function
value 1% far from the LR value. The last row of Table 1 re-
ports the time required by CPLEX to solve the LR. Results
show that all RL-based hyper-heuristics outperform L2P–
Baseline. L2P–A2C outperforms the other variants of the
hyper-heuristic, reducing the execution time by 45%-55%.
L2P-PPO and L2P-SAC reduce the execution time by 38%-
48% and 17%-22% respectively.

Although the training is done on the heuristic space rather

than the solution space, the choice of heuristic and the per-
formance may vary slightly from one instance to another,
which is a good indicator of the generalization capacity of
the proposed method, especially since the weights are not
updated in real-time at this stage of testing. Also, L2P–A2C
is not as consistent in performance from execution to another
as L2P–PPO (the second best-performing variant). The stan-
dard deviations (for Tgap=1%) for L2P–A2C are larger than
that for L2P–PPO. This may be explained by the fact that
PPO makes much smaller steps to update its policy, and thus
presents a more stable strategy than A2C (albeit a less per-
forming one). Furthermore, the standard deviation of L2P–
Baseline is smaller than the standard deviation of all other
variants. This is because although the heuristics choice is the
result of a sampling process, the score function S1 is strictly
biased towards the most-performing heuristics, and S2 might
be more biased towards exploration, especially if the state
given by recent performance has not been seen before. Thus,
using the score function solely S1 can yield a more “deter-
ministic” behavior. Due to the large size of the instances in
question, CPLEX takes much more time (×150-250 times)
to solve the linear relaxation than any of the L2P hyper-
heuristic variants take to solve the instances. In short, the
best performing variant of the hyper-heuristic is L2P–A2C,
both for the instance on which it was trained and for the in-
stances on which it was not trained, and the least-performing
RL–based variant is L2P–SAC.

Second Stage of Testing As the second stage of testing,
the agents are trained and tested on the instance I4. CPLEX
was unable to solve the linear relaxation of the instance I4
within the time limit (four weeks) so the objective value of
the best solution found (after multiple trials) is used as a
comparison. This is referred to as Z∗. All variants of the L2P
hyper-heuristics will be compared based on the evolution of
the objective function value (w.r.t. Z* in %) as a function of
the number of iterations and the execution time (in minutes),
in the form of confidence intervals for the estimated P10,
P50, and P90 quantiles.

As illustrated in Figure 1, L2P–A2C is by far the best per-
forming variant of the L2P hyper-heuristic, reducing the ex-
ecution time by 40–75%. L2P—PPO reduces the execution
time by 40–65%. Compared to the other variants, L2P–PPO
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Figure 3: Evolution of the objective function value (in %) for the Instance I4 (left) and I5 (right) with respect to the execution
time (in minutes).

has the smallest standard deviation in terms of the number of
iterations and the execution time. L2P–SAC is the least per-
forming variant, showing that SAC is not a good fit for the
current environment. This may be explained by two reasons.
First, SAC uses entropy regularization to prevent premature
convergence. This can make SAC take much longer to learn
compared to A2C and PPO. Second, the trade-off between
exploration and exploitation within SAC is controlled by the
coefficient αH , which needs to be changed from one envi-
ronment to another and requires careful tuning. This makes
SAC difficult to include in a ready-to-use solver with little
to no pre-tuning and pre-training.

In the third stage of testing, the agents that have already
been trained on I4 are used to solve I5. As in Figure 3, L2P–
A2C outperforms all other variants, reducing the execution
time by 45–50%, when compared to L2P–Baseline. L2P–
PPO reduces the execution time only by 15–20%. Note that
during the optimization, L2P–Baseline outperforms L2P–
SAC by providing a better solution. This can be explained
by the fact that SAC’s policy is not optimal and differentiates
minimally between the states during optimization. Thus, the
use of L2P–SAC in a real-life scenario seems impractical.

Discussion and Future Research
Reinforcement learning has been shown to adapt the search
better and guide it towards better solutions. This opens mul-
tiple directions for future research. First, because the pro-
posed score function produced by the RL agent is more
adapted both to the current state and future states, updating
the score function does not need to be done at each iteration.
Thus, the solution can be evaluated only after a pre-fixed or
dynamic number of iterations. This is similar to generating
multiple columns instead of generating only one column at a
time in a column generation algorithm. Second, the input of
the RL agent can be further expanded and augmented, and
more state-of-the-art agents can be integrated into the hyper-
heuristic framework to study further how to better predict the
heuristics’ future performance based on past performance.
Third, a particular architecture can be used within the RL

agent to harness the spatiotemporal architecture of the in-
put. Fourth, a multi-agent framework can be developed us-
ing a synchronized replay buffer to accelerate the learning
phase of the RL agents.

Since the SSOMC is similar to other scheduling problems,
exploring more efficient methods for solving such prob-
lems becomes even more justified. Indeed, unlike problem-
specific heuristics, the presented solution method can be
generalized to other problems as in airlines (airline crew
scheduling), bus (shift scheduling), trucking (routing prob-
lems), and rail industries. The only requirement would be
to implement a set of low-level heuristics, none of which
would need to be well-tuned. The hyper-heuristic will guide
the search towards a better solution while sampling towards
the most promising heuristics.

Conclusion
This paper proposes a solution method to solve the SSOMC
problem that is of particular interest to the mining indus-
try. The proposed learn-to-perturb (L2P) hyper-heuristic in-
corporates various state-of-the-art RL models to guide the
search towards better solutions and results show its effec-
tiveness on multiple case studies, reducing the computa-
tional time by 30-45%. Decision-makers can take advantage
of such hyper-heuristics harnessing reinforcement learning
to guide the search for a better solution when solving large-
scale optimization problems since the proposed approach is
not limited to mine scheduling.
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