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GAGrasp: Geometric Algebra Diffusion for Dexterous Grasping

Tao Zhong' and Christine Allen-Blanchette!-

Abstract— We propose GAGrasp, a novel framework for
dexterous grasp generation that leverages geometric algebra
representations to enforce equivariance to SE(3) transforma-
tions. By encoding the SFE(3) symmetry constraint directly
into the architecture, our method improves data and param-
eter efficiency while enabling robust grasp generation across
diverse object poses. Additionally, we incorporate a differen-
tiable physics-informed refinement layer, which ensures that
generated grasps are physically plausible and stable. Extensive
experiments demonstrate the model’s superior performance in
generalization, stability, and adaptability compared to existing
methods. Additional details at gagrasp.github.io

I. INTRODUCTION

Dexterous grasping remains a fundamental challenge in
robotics, especially in unstructured environments where
objects are encountered in diverse poses. Most existing
datasets [1-3] contain grasps in canonical poses, which
constrains learning-based grasp prediction methods to either
predict grasps in the object frame [4, 5] or require non-
trivial data augmentation [6, 7] to generate grasps in diverse
environments. This limitation significantly hampers their
applicability and scalability in real-world scenarios, where
robots must interact with objects in arbitrary orientations,
necessitating a robust approach to grasp generation that can
generalize beyond the training data.

Recent advancements in diffusion models [4, 5] have
shown promising results in generating high-quality dexterous
grasps. However, these models often assume a canonical
pose to reduce training effort, making them susceptible
to out-of-distribution issues when applied to varied object
orientations. Addressing this limitation requires an approach
that inherently understands and leverages the symmetries
present in the dexterous grasping problem.

Objects manipulated by robots typically undergo transfor-
mations described by the special Euclidean group SE(3),
(i.e. 3D rotations and translations). An ideal grasp generation
model should exhibit equivariance to these transformations,
meaning the probability of generating a successful grasp
should remain invariant under any SE(3) transformation
of the object and the hand’s base pose. Furthermore, the
mapping from the object representation to the hand joint
configurations should be invariant under SFE(3), ensuring
consistent grasp quality regardless of object orientation.

In this context, geometric algebra emerges as a powerful
and necessary tool. Given that a significant amount of data
in robotics applications is geometric in nature, geometric
algebra provides a unified framework [8, 9] for handling
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Fig. 1: Symmetries in robotic grasping. The figure shows how
our model leverages SFE(3) symmetries. Starting with an object
observation O, the model generates a grasp g. After an SE(3)
transformation to O’, the probability of generating the correspond-
ing transformed grasp g’ remains invariant: P(g|O) = P(g'|0’).
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such data. It offers a comprehensive language for describ-
ing geometric transformations and relationships, enabling
the direct encoding of symmetry properties into the neural
network architecture. By leveraging geometric algebra, we
can achieve the desired equivariance and invariance more
naturally and efficiently than with traditional methods.

In this work, we propose a novel framework that integrates
geometric algebra to achieve the desired equivariance and
invariance properties. Building on the principles outlined
by Brehmer et al. [10], we develop a symmetry-aware diffu-
sion model for grasp generation that can effectively handle
the diverse poses encountered in everyday manipulation
tasks. This approach enhances our model’s generalizability
and improves data efficiency by embedding symmetry knowl-
edge directly into the neural network architecture.

To ensure that the generated grasps are not only geometri-
cally feasible but also physically plausible, we incorporate a
differentiable physics loss within a differentiable simulation
engine. Existing vision-based grasp generation frameworks
often require a refinement layer during inference to satisfy
physical constraints. These methods often achieve this by
incorporating an additional loss term to penalize physical
violations [5] or an adversarial loss term [4] to identify
plausible grasps. Inspired by the classifier guidance used
in diffusion models [11], our differentiable physics loss
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function allows for the direct optimization of grasps. This
approach ensures that the generated grasps adhere to physical
constraints and are also stable and contact-rich.

Our contributions are threefold: (1) We introduce a
symmetry-aware diffusion-based grasp generation framework
that leverages geometric algebra for equivariance under the
broader Euclidean E(3) group. (2) We incorporate a dif-
ferentiable physics loss to directly optimize the physical
plausibility of generated grasps. (3) We demonstrate the
effectiveness of GAGrasp through extensive experiments,
showing improved generalization and data efficiency com-
pared to existing methods.

II. RELATED WORK

Vision-based Grasp Prediction aims to learn a mapping
from visual inputs to grasps by training on a dataset of
positive examples. Traditional methods [3, 12—15] typically
employ a two-stage approach by first generating a con-
tact heatmap on the object’s surface and then running an
optimization algorithm [16] to fit the hand to the con-
tact heatmap. Recent works have focused on end-to-end
learning frameworks that can predict grasps directly using
GANSs [6, 7, 17, 18], VAEs [19], or direct regression [20, 21].
More recently, diffusion models have been explored for
grasp generation [4, 5, 22] due to their ability to generate
high-quality samples from complex distributions. Despite
these advancements, most existing methods [4, 5] assume
a canonical pose for objects and grippers, which limits
their applicability in real-world scenarios where objects can
be encountered in arbitrary orientations. To address this,
previous works have explored various data augmentation
techniques [6, 7, 17] to simulate diverse object poses during
training. However, this approach always increases the compu-
tational burden and complexity of the training process. These
limitations highlight the need for more robust approaches that
can generalize to varied real-world conditions.

Diffusion Models have recently emerged as a powerful
tool in the field of generative modeling, with applications
spanning various domains, including robotics and grasping.
In the context of robotics, diffusion models have been applied
to tasks such as motion planning [23-26], navigation [27],
and manipulation [28-30]. Specifically for grasping, Urain
et al. [22] propose a method for generating parallel-jaw
grasp poses using diffusion models, demonstrating the ef-
fectiveness of diffusion processes in exploring the high-
dimensional space of grasp configurations. Building on this
foundation, Huang et al. [5] and Weng et al. [4] introduce
diffusion-based approaches for generating dexterous grasps.
The use of diffusion models in grasp generation offers several
advantages for their stable training dynamics and ability
to produce high-quality samples. Moreover, their iterative
nature allows for the incorporation of various constraints
and guidance mechanisms during the generation process,
making them well-suited for complex tasks like dexter-
ous grasping. However, challenges remain in ensuring the
physical plausibility of generated grasps and handling out-
of-distribution poses. Addressing these challenges requires

further research and the development of more sophisticated
models and training techniques.

Equivariant Neural Networks learn representations that
transform in a predictable way in response to specific
transformations of the input. When these transformations
are symmetries of the task, equivariant neural networks
have been shown to both empirically [31, 32] and theoret-
ically [33, 34] improve model generalization performance.
Group equivariant convolutional neural networks [35, 36]
are a popular approach to equivariant neural network design.
While this framework has been used to enforce equivariance
to rotations [31, 37], similarity transformations [32, 38], and
(special) Euclidean transformations [39, 40], it is restrictive
in allowable input types and networks architectures [41].
Recent works circumvent these limitations by representing
network inputs and task symmetries using geometric alge-
bra [8, 10]. In our work, we use the geometric algebra frame-
work to enforce the equivariance of grasp configurations
to SE(3) transformations of the input, yielding improved
generalization performance in the presence of previously
unseen input transformations.

Differentiable Physics in Grasping provides a promising
way to ensure the physical plausibility of grasp configu-
rations. Vision-based methods often incorporate heuristic-
based refinement steps during inference to encourage con-
tact [6, 17] or enforce constraints such as non-penetration
or force-closure [4, 5]. However, these approaches can be
computationally expensive and may not guarantee optimal
results. The integration of differentiable physics into grasp
generation frameworks is well-explored in the area of dif-
ferentiable grasp synthesis [1, 3, 21, 42, 43]. Although
these methods provide a more formal guarantee of physical
plausibility, they are typically significantly slower and more
computationally expensive than learning-based frameworks.
In our work, we adapt and incorporate the differentiable
metric proposed by Turpin et al. [1, 43] as a guidance
signal during the generation process to allow for the direct
optimization of grasp configurations. This approach ensures
that the generated grasps are not only geometrically feasible
but also adhere to physical constraints, resulting in stable and
contact-rich grasps.

III. PRELIMINARIES
A. Geometric Algebra

Geometric algebra (GA) provides a unified framework
for representing geometric objects and transformations. It
extends traditional vector algebra by introducing multivec-
tors, which can represent points, lines, planes, and higher-
dimensional geometric entities.

A multivector in 3D GA Gg3 o is expressed:
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where x,, x;, x;j, and x93 are real coefficients, and e; are
basis vectors. In the context of our work, we leverage the
projective geometric algebra Gz, following Ruhe et al.



Transformation Geometric Objects G301 Element

Identity Scalar Scalar
Reflection Plane Vector
Rotation / Translation Line Bivector
Roto / Transflection Point Trivector
Screw Pseudoscalar Quadvector

TABLE I: Embeddings of group elements in E(3) and common
geometric objects in Ggs,1. Each transformation or geometric
object can be represented by components of the multivector.

[8] and Brehmer et al. [10] which extends the 3D GA
Gs,0,0 with a fourth homogeneous coordinate zgeq, resulting
in a 16-dimensional multivector in the geometric algebra
representation. The metric of G3 1 is defined such that e3 =
0 and €2 = e3 = e2 = 1, allowing for a more comprehensive
representation of geometric objects and transformations [10].

The fundamental operation in geometric algebra is the
geometric product. For arbitrary multivectors x,y, z € Gz g1
and scalar )\, the geometric product satisfies: (i) closure,
ie., zy € Gso1, (ii) associativity, ie., (zy)z = z(yz),
(iii)) commutative scalar multiplication, i.e., Ax = x, (iv)
distributivity over addition, i.e., z(y + z) = xy +xz, and (v)
vectors square to scalars given by a metric norm. It can also
be deduced that the geometric product of two basis vectors
is antisymmetric, i.e., e;e; = —eje; for i # j.

The projective geometric algebra G3 .1 allows us to rep-
resent geometric objects and transformations uniformly, as
described in Table I. For a transformation v and a geometric
object v both represented as multivectors in G3 o 1, the action
of u on v is given by the sandwich product u[v] = uvu=".

For a more comprehensive study of geometric algebra and
its applications, we direct readers to [8—10, 44].

B. Problem Formulation

We consider the problem of generating dexterous grasps
for objects represented by point clouds. Given a full point
cloud observation O € RV*3_ our goal is to sample dex-
terous grasps G that parameterize a dexterous hand stably
grasping the object. Each grasp g € G € R%*¥ is represented
by a tuple [r,p,q], where r € RS, p € R? are the rotation
(as in [45]) and translation of the hand base, respectively,
and q € RF denotes the joint configurations of the hand.
The grasp generation problem can be framed as learning
a distribution p(g | O) = p([r,p,q] | O) over grasps
conditioned on the observed point cloud. Our objective is
to develop a model that can efficiently sample high-quality
grasps from p(g | O).

C. Equivariance and Invariance in Grasp Generation

In the context of grasp generation, SF(3) equivariance
is a desirable property. A function f : X — Y is said
to be equivariant with respect to the transformation group
G if f(px(x)) = py(f(z)) for a group element p and an
input x, where pz denotes the action of the group element p
on the space Z. Invariance can be described as a special
case of equivariance where the group action py is the
identity transformation and can be mathematically defined

as f(px(z)) = py (f(z)) = f(2).

In our grasp generation framework, we require that the
mapping from the object representation to the hand base
pose be equivariant to SF(3) transformations and that the
mapping from the object representation to the hand joint
configurations be invariant to SE(3) transformations. Prob-
abilistically, this can be written as:

p([r,p,d] | O) =p([p- (r,p),d] | prs(0)),  (2)

where p € SE(3), and g-h denotes the composition of group
elements g,and h € G.

IV. METHODOLOGY

In this section, we introduce our framework for generating
dexterous grasps. The framework is composed of a grasp
sampler that leverages a conditional diffusion model, which
is designed to handle the high-dimensional space of dexter-
ous grasps while ensuring robustness to variations in object
poses.

A. Diffusion-based Grasp Generation

Our diffusion-based grasp generation pipeline is designed
to generate high-quality dexterous grasps conditioned on the
observed point cloud of the object. The grasp generator
operates by iteratively refining randomly sampled grasps
through a diffusion process, ensuring the final output is
feasible and optimized for grasp success.

The grasp generator leverages a conditional diffusion
model [46]. The process begins with the forward diffusion
of a successful grasp go = [ro, Po,qo], which includes the
6D rotation vector rg, the 3D position pg, and the hand
joint configurations qg, into Gaussian noise over 7' timesteps.
Formally, the forward diffusion process is defined:

T
q(g1.7 | 80) = HN(gt; V1=Bigi-1,8:1), ()
t=1
where f; is the scheduled noise variance at timestep t.

To recover the original grasp go from the noisy grasp
gr, the model iteratively estimates and removes the added
Gaussian noise using a noise predictor eg, parameterized
by 6. The training objective for the noise predictor is to
minimize the loss:

L. = |leo(ge O.t) — el @
where €, is the ground-truth noise at timestep .
To sample from py(gg | O), the generator performs an
iterative denoising process starting from the noisy grasp gr
and the point cloud O, which can be defined as:

T
po(go:r | O) = p(er) HN(gt—U e, ), )
t=1
where p; = pg(g:, O,t) and X; = 3y(g, O,t) can be
inferred from €y (g, O, t) and the parameters of the diffusion
process.

B. Equivariant Model Architecture

As shown in [47-50], if p(gr) is invariant and the neural
network denoising model pg(gi—1 | g, O) is equivariant,
then the marginal distribution py(go | O) of the denoising
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Fig. 2: Overview of the GAGrasp architecture. The point cloud O and grasp configuration g: are embedded using Gz 0,1, processed
through GATr blocks ensuring SE(3) equivariance, with down-sampling to enhance efficiency. A cross-attention mechanism uses the
embedded grasp and diffusion step ¢ to predict the updated grasp g:—1.

Fig. 3: The GATr Block processes
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model will be an invariant distribution, satisfying the desired
symmetries in Eq. 2. Building on this principle, we leverage
the primitives defined by Brehmer et al. [10] acting on
multivectors to incorporate symmetries into the model archi-
tecture, ensuring that the grasp generation process respects
the geometric transformations of the input data. Figure 2
illustrates our model architecture. At each iteration, we first
embed all data into multivector representation in Gs ;.
The multivectors are then processed through equivariant
layers operating on multivector inputs, as shown in Figure 3.
Finally, we extract the desired geometric quantities from the
geometric features for loss calculation and backpropagation.
Below, we detail the construction of the equivariant modules.

Equivariant Linear Layers are fundamental components
that ensure the geometric properties of the input data are
preserved through transformations. Brehmer et al. [10] show
that a linear map ¢ : G391 — Gg3,0,1 is equivariant if it is
of the form:

1 3
$(x) =Y wilw)i + Y vkeo(a)k,
k=0 k=0

where (x), is the grade projection that isolates the k-grade
components of the multivector x, and wy, and vy, are learnable
parameters.

Geometric Bilinears Layers handle interactions between
multivectors, which combine the geometric product and the
join operation. The geometric product zy allows for the mix-
ing of different grades, and the join operation Join(x,y) =
(z* Ay*)*, where z* is the dual of x and x A y denotes the
exterior (wedge) product between = and y, is necessary for
constructing meaningful geometric features. Combining the
geometric product and the join, the geometric bilinear layer
is defined:

Geometric(x, y; z) = Concat(xy, zo123(z" A y*)™),

(6

(N
where zp123 is the pseudoscalar component of a reference
multivector z calculated from the network inputs.

Equivariant Attention Layers extend the standard dot-
product attention to operate on multivectors while respecting
the SE(3) symmetry. Given multivector-valued query, key,
and value tensors (Q, K, V') with n; tokens and n. channels,
the attention mechanism computes the attention scores using
the inner product in G3 g 1:

ZC<Q7Z’C’7 Kic’)

Attention(Q, K,V );ror = Z Softmax ( 3
- Tec
T

) Vier, (8

where i, 4" index the tokens, ¢, ¢’ index the channels, and (-, -)
denotes the invariant inner product of the multivectors, which
is the regular dot product on the 8 of the 16 dimensions that
do not contain eg. Cross-attention and multi-head attention
are calculated using this mechanism in the usual way [51].
Equivariant Nonlinearities and Normalization For non-
linear transformations, we follow Brehmer et al. [10] and use
scalar-gated GELU (Gaussian Error Linear Unit) nonlineari-
ties [52], defined as: GatedGELU(z) = GELU(z1)x, where
x1 is the scalar component of the multivector x.
Normalization is achieved through an E(3)-equivariant

LayerNorm, defined as:
T

Ec[(z,z)]
where the expectation E. of the inner product is taken over
the channels.

Down-Sampling Layers are inspired by the Transition
Down module from PointTransformer [53]. While the origi-
nal GATr framework [8] maintains identical input and output
sizes, this approach can lead to computational inefficiency,
particularly in large-scale applications. To address this, we
integrate a down-sampling mechanism that reduces the car-
dinality of the point set, improving computational efficiency.

The Down-sampling module begins with farthest point
sampling (FPS) in the xyz space to select a well-distributed
subset of points. We then construct a k-nearest neighbors
(kNN) graph to pool features from the original point set
onto the down-sampled subset. The max pooling operation
is performed on the scalar component of the multivectors,
selecting the multivector with the largest scalar component,
which is then propagated forward.

Symmetry Breaking All the modules described above are
equivariant to E/(3) transformations of the hand and object
and permutations S, of the object point cloud. However, full
E(3) symmetry may introduce unnecessary inductive biases.
In grasping problems, we are more interested in SFE(3)
symmetries because of the hand morphology. To resolve
unnecessary inductive biases, we include symmetry-breaking
mechanisms. For example, we break the chirality symmetry

LayerNorm(z) = ©)



by introducing pseudoscalar features to encode handedness,
enabling the model to better adapt to specific tasks.

C. Differentiable Physics-Informed Refinement Layer

To ensure the physical plausibility and stability of the gen-
erated grasps, we integrate a differentiable physics-informed
refinement layer into our framework. Inspired by Turpin
et al. [1, 43], the refinement layer uses gradients obtained
from a differentiable physics simulation engine [54, 55] to
iteratively adjust the grasp configuration during the denoising
process.

Given a grasp g = [r,p,q], the optimization process
aims to minimize a physics-informed loss function Lphys
calculated in a differentiable physics simulator, which en-
capsulates the aforementioned constraints. Specifically, we
set an initial object velocity Py,;(0) and test whether contact
with the static grasp set to g can dampen it. The object
is initialized in the pose (Iobj(0), Poy;(0)) from the dataset.
We simulate Ty, timesteps in a physics engine and com-
pute the object’s final translational and angular velocities
(i‘obj(Tsim)mobj (Tsim)). To comprehensively evaluate stabil-
ity, we perform this test across a batch of simulations with
different initial velocities p;(0),.. The stability loss we are
trying to optimize is then given by:

M
1 . .
leability - M Z (Hpobj(ﬂlm)muz + Hrnbj(ﬂim)mHg) (10)
m=1

where M is the total number of simulations, each with a
different initial velocity.

Besides the stability test, we also include two additional
loss terms to encourage the joint configurations to stay within
the joint limits:

2

; Limi = max(q—q"?, 0)+-max(q—q'™*,0)
’ (1)
where q*? and ¢'°V denote the upper and lower limits of the
joints, respectively.

The overall objective function is Lpnys = Lstabiliy +
o1 Lyange + a2 Lgimi, where o = 0.01 and ap = 10 are
hyperparameters. We follow the simulation and optimization
techniques outlined in Turpin et al. [1] to address the issues
of contact sparsity and local flatness of triangular meshes.

We then modify the denoising process to incorporate the
gradient-based adjustments at each timestep. Specifically, the
process iteratively refines the grasp configuration using fi; =
e+ AV g Lonys where py is defined as in Equation 5, and A
is a scaling factor that controls the influence of the physics-
based optimization.

qup + qlow
2

Lrange = Hq -

V. EXPERIMENTS

In this section, we investigate the effectiveness of
GAGrasp through a series of experiments designed to address
the following research questions: (1) Does the use of GA
representation enhance data and parameter efficiency? (2)
How does GAGrasp perform on unseen data with random
SE(3) transformations applied to test data but not training
data? (3) How much does the physics-informed refinement
layer contribute to grasp quality and stability?

A. Experimental Setup

Dataset We follow Huang et al. [5] to use the Shadowhand
subset of the MultiDex [3] dataset, which includes 16,069
dexterous grasping poses for 58 daily objects. The dataset
is split into 48 training objects and 10 unseen test objects.
The grasp configuration of the Shadowhand is represented
by g = [r,p,q] € R3, where r € R, p € R? are the
rotation and translation of the hand base, respectively, and
q € R?* denotes the joint configurations of the hand. Objects
are represented by their point cloud O € R?048x3 sampled
with 2,048 points.

Metrics We evaluate models based on the success rate
of the sampled grasps in IssacGym [56] following the setup
from Li et al. [3]. Specifically, we test if a grasp is successful
in the simulation by applying external forces in 6 directions
along the +xyz axis to the object and measuring its move-
ment. A grasp is considered successful if it withstands all
six tests without moving more than 2cm after applying a
consistent 0.5m/s® acceleration over 60 simulation steps. We
use a friction coefficient of 10, an object density of 10,000,
and IsaacGym’s built-in positional controller to achieve the
target joint configuration. We also report the diversity score
as the mean standard deviation among all revolute joints.

Baseline Models We compare our method with a
diffusion-based model SceneDiffuser [5], a cVAE-based
method FFHNet [7], and a version of our model without
the physics-informed refinement layer.

B. Geometric Algebra Representation Efficiency

To assess data and parameter efficiency conferred by the
GA representation, we train our model and baseline models
with varying amounts of training data, measuring grasp
success rate across different data regimes. As shown in the
left plot of Figure 4, our model consistently outperforms
the baselines, particularly in low-data regimes, where data
efficiency is critical. Even with limited training samples,
our method achieves a higher success rate, indicating that
the GA representation enables more effective learning. Our
method also generates more diverse grasps due to the use
of a diffusion-based approach, as evidenced by the diversity
scores in the middle plot. Despite having approximately 20%
of the learnable parameters of FFHNet [7], our model, with-
out the physics-informed refinement layer, performs on par
with it and consistently outperforms SceneDiffuser [S] across
all training sample sizes. Notably, the slight performance
drop observed with larger datasets can be attributed to the
generative nature of our method, which keeps success rates
robust while increasing grasp diversity, and to the variance
in the physical simulation-based evaluation.

C. Performance on Data with Out-of-Distribution Poses

To evaluate the model’s robustness to data with unseen
poses, we apply random S E(3) transformations to the test set
objects, simulating scenarios where objects are encountered
in poses not seen during training. As shown in the right
plot of Figure 4, our method significantly outperforms both
SceneDiffuser [5] and FFHNet [7] on this challenging task.
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Our model generates stable
grasps for unseen objects. As
the physics-informed refine-
ment weight A increases (left
to right), the model produces
more stable power grasps,
while a smaller A\ results
in precision fingertip grasps,
showing adaptability in grasp

Ours SceneDiffuser [5]
without Refinement 61.42 60.47
with Refinement 67.89 65.31

TABLE II: Comparison of the grasp success rate with and without
physics-informed refinement layer for our model and SceneDiffuser.
SceneDiffuser [5] performs the worst because it is trained
with objects in a canonical pose, making it less adaptable to
new orientations. FFHNet [7] performs better than SceneD-
iffuser [5] but still falls short of our model, as it relies on a
data augmentation strategy that spawns objects with random
positions and orientations. In contrast, our model achieves
higher success rates due to the inherent robustness provided
by the equivariant architecture.

D. Impact of the Physics-Informed Refinement Layer

To quantify the contribution of the physics-informed re-
finement layer, we compare the performance of our full
model with a version lacking this component. From the
results in Figure 4, we observe that the refinement layer
significantly enhances grasp stability and diversity. This im-
provement is due to the layer’s ability to guide the grasping
process with gradients calculated from a physics simulator,
ensuring the generated grasps are not only physically plau-
sible but also SE(3) equivariant. Additionally, as shown in
Table II, the refinement layer can act as a plug-in for any
iterative generative model, boosting performance by 5%-10%
in terms of grasp success rate.

E. Qualitative Analysis

We present qualitative results to further assess the ef-
fectiveness of our method in generating stable grasps for
unseen objects. As shown in Figure 5, our method suc-
cessfully produces stable and diverse grasps for objects not
encountered during training. The figure also demonstrates the
impact of the physics-informed refinement weight \ on the

types.

Stronger Physics-Informed Refinement Weight

type of grasp generated. With a stronger A, our model tends
to generate more stable power grasps suitable for holding
objects securely. On the other hand, with a smaller A, the
model favors precision fingertip grasps, which are more
delicate and precise. This flexibility highlights the model’s
ability to adapt to different grasping scenarios by tuning the
refinement weight A to control how much the refinement can
affect the reverse diffusion process.

VI. DISCUSSION

In this work, we introduce a symmetry-aware, diffusion-
based framework for dexterous grasp generation leveraging
geometric algebra. Our approach significantly improves gen-
eralization to data with OOD poses, enhances data and pa-
rameter efficiency, and produces physically plausible grasps
through a physics-informed refinement layer. The model’s
robustness and flexibility make it well-suited for real-world
robotic manipulation tasks, demonstrating substantial im-
provements over existing methods.

Limitation and Future Works While our GA-based
architecture improves generalization and data efficiency, it
imposes a notable training overhead. On an NVIDIA RTX
A6000 GPU, our model takes roughly 7 days to train
and consumes 2-3x more GPU memory than comparable
non-equivariant diffusion-based methods. Additionally, the
physics-refinement layer depends on watertight mesh recon-
structions, which may fail with noisy normals to produce
invalid contact points. We have also observed failure cases
when the object’s size is significantly smaller than what was
encountered during training.

Despite these constraints, the core architecture could be
adapted to other tasks where SFE(3) symmetries are crucial.
Future work could investigate more efficient GA representa-
tions to alleviate the current computational demands while
broadening the scope of possible manipulation tasks.
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