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ABSTRACT

Long-tailed visual recognition encounters difficulties in feature learning, partic-
ularly for tailed classes. Recently, fine-tuning visual prompt of pre-trained large
models with powerful feature extraction capabilities for long-tailed data has been
investigated. Although the result is promising, visual prompts are easily affected
by semantically irrelevant parts of images, resulting in diminished effectiveness.
To address this issue, we propose a Long-tailed Decoupling Prompt Tuning (LT-
DPT) method for long-tailed visual recognition. LT-DPT explicitly decouples vi-
sual prompts into foreground-related prompts and background-related prompts,
respectively. Specifically, foreground-related prompts emphasize saliency regions
of the image which includes the most discriminative information for classification
while background-related prompts capture common background features shared
across classes, regardless of their category. In comparison with the state-of-the-art
methods, extensive experiments demonstrate that the proposed method achieves
better performance on long-tailed visual recognition benchmark datasets.

1 INTRODUCTION

In visual recognition, data sets may exhibit a long-tailed distribution (Van Horn et al., 2018; Yang
et al., 2022), where a small number of classes (head classes) occupy most samples, while abundant
classes (tail classes) contain only a few samples. Networks trained on such data typically exhibit
poor generalization in tail classes (Zhang et al., 2023). To address this problem, a number of long-
tailed visual recognition methods have been proposed in recent years, including data distribution re-
balancing (Li et al., 2021; Park et al., 2022; Shi et al., 2023), loss adjustment-based methods (Kang
et al., 2019; Li et al., 2022b; Tao et al., 2023), and representation improvement (Du et al., 2024;
Jin et al., 2023). These approaches mitigate the challenges of long-tailed learning through diverse
perspectives by improving training-from-scratch methods.

Instead of training-from-scratch methods, fine-tuning a pre-trained visual model, e.g., visual trans-
former (ViT) (Dosovitskiy et al., 2020), has been proposed to achieve efficient visual recogni-
tion (Chen et al., 2022; Hu et al., 2022). Along this line, visual prompt tuning (VPT) (Jia et al., 2022)
has been exploited and shown to be promising for image classification, which freezes the pre-trained
model and learns a small set of prompt parameters on the given data. Based on VPT, (Dong et al.,
2023) introduced long-tailed prompt tuning (LPT), which learns class-shared and group-specific
prompts to increase long-tailed learning performance. (Li et al., 2024) proposed a Gaussian neigh-
borhood minimization prompt tuning method (GNM-PT) from an optimization perspective to im-
prove the generalization of long-tailed learning.

Although these methods increase the ability of the pre-trained visual model for long-tailed visual
recognition, the learned prompt is easily influenced by background information unrelated to the
image content. For instance, we demonstrated the heatmaps obtained through Grad-CAM (Selvaraju
et al., 2017) using the trained models by GNM-PT and our algorithm, respectively. As shown in Row
2 of Fig 1, prompt tuning in GNM-PT fails to focus on some areas with salient content. In contrast,
attending to semantically significant parts (within red box in Row 3) can improve classification
accuracy, e.g., 88.3% for GNM-PT vs 89.0% for Ours on CIFAR100-LT. Therefore, it is critical
to guide visual prompts toward semantically relevant regions during fine-tuning, particularly for
long-tailed visual recognition where discriminative cues are often subtle for some classes.
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Figure 1: The heatmaps obtained through Grad-CAM using model trained by GNM-PT and our
method, respectively. (a) The first row is original image; (b) The second row is the heatmaps ob-
tained from GNM-PT; (c) The last row is the heatmaps obtained from ours. The red boxes show that
our method focuses more on semantically related areas.

To address this issue, we propose a new visual prompt tuning method, namely long-tailed decou-
pling prompt tuning (LT-DPT), by decoupling visual prompts into foreground-related prompts and
background-related prompts. Specifically, the foreground-related prompts are guided by saliency
maps to attend to the most discriminative areas of the image, enabling the model to focus on fea-
tures that are crucial for accurate classification. Conversely, we introduce a set of group prompts and
construct the background-related prompts from them. The background-related prompts are encour-
aged to share context or common patterns present across different classes by the inverse saliency
maps, which helps mitigate the negative impact of background bias and enhances the generalization
ability of the model. Through the complementarity of two types of prompts, our method not only
interacts with the shared background features among all classes, but also amplifies the influence of
semantically meaningful features, thus reducing confusion between head and tail classes. Extensive
experiments on benchmark datasets demonstrate that our method has great generalization ability on
long-tail data, surpassing existing methods. The main contributions of this paper are summarized
as follows: (1) we identify how self-attention in prompt tuning models is distributed across salient
foreground and irrelevant background regions, uncovering its critical impact on long-tailed recogni-
tion; (2) we propose a method including foreground-related and background-related prompts, which
use saliency-guided bias in self-attention to capture semantically related foreground and irrelevant
background; (3) Comprehensive experiments demonstrate that our method outperforms its counter-
parts.

2 RELATED WORKS

2.1 LONG-TAILED VISUAL RECOGNITION

Extensive research has been conducted to address the negative effect of the long-tailed data distribu-
tion (Alshammari et al., 2022). The methods can be categorized into the following three directions:
re-balancing methods, loss adjustment-based methods, and representation improvement methods.
Data distribution re-balancing methods aim to mitigate class imbalance by balancing the training
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data distribution, including specially designed balanced samplers (Cui et al., 2019; Kang et al., 2019)
and data augmentation techniques (Wang et al., 2024; Shao et al., 2024), which are intuitive meth-
ods to fix the class gap with different sizes. However, these methods may cause overfitting or inject
noisy samples, which therefore degrade overall model performance. Another popular technique is
loss adjustment-based method, which improves the separability of different classes by re-weighting
the loss function (Ren et al., 2020; Chen et al., 2023) or re-margining the margins for different
classes (Wang et al., 2023; Zhao et al., 2022) according to their sample numbers. These methods
adjust the output logits of the model to make it favor tail classes (Cao et al., 2019). Representation
improvement methods (Li et al., 2022a;c) focus on increasing the quality of feature extraction, espe-
cially tail classes, to improve the generalization of the network. For example, balanced contrastive
learning (Zhu et al., 2022; Du et al., 2024) improves model feature learning by comparing pair-
wise samples. Ensembling learning (Wang et al., 2021) aggregates diverse expert models to form
complementary feature representations. Despite these advances, training-from-scratch method on
long-tailed data remains challenging due to insufficient feature extraction and poor generalization
for tail classes. Thus, leveraging pre-trained models and efficient fine-tuning strategies has become
an active research direction.

2.2 EFFICIENT PROMPT TUNING

Efficient prompt tuning has emerged as a promising way to take advantage of the feature extraction
power of large-scale pre-trained Transformer (Vaswani et al., 2017), as exemplified by ViT (Dosovit-
skiy et al., 2020) and CLIP (Radford et al., 2021). Instead of fine-tuning the entire model, pre-trained
models achieve excellent performance in downstream tasks through fine-tuning a few trainable pa-
rameters (Houlsby et al., 2019; Zhou et al., 2022; Shi et al., 2024). In this paper, we focus on
visual prompt tuning, which is a popular visual fine-tuning paradigm using ViT backbone with
self-attention strategy (Lin et al., 2017). Inspired by prompt-based techniques in natural language
processing, VPT first adapts visual prompts to the ViT pre-trained on ImageNet dataset (Deng et al.,
2009) for image classification. By inserting learnable prompts into each layer, VPT allows the ViT
backbone to extract task-relevant features while preserving its pre-trained knowledge. VPT has
demonstrated strong performance with few trainable parameters and improved generalization for
balanced visual recognition. Recognizing the challenges posed by long-tailed data distributions,
LPT (Dong et al., 2023) explored visual prompt tuning in highly imbalanced training data and pro-
posed a two-phase framework to improve long-tailed image classification performance. In LPT, a
shared prompt learns general features and to adapt a pre-trained model into the target domain, while
capture fine-grained differences among similar samples to improve discrimination ability. Different
from LPT, GNM-PT (Li et al., 2024) designed a Gaussian neighborhood minimization optimizer for
long-tailed visual prompt tuning from the perspective of the loss landscape, which improves model
generalization while minimizing computational overhead.

3 PRELIMINARIES

3.1 VISUAL PROMPT TUNING.

VPT introduces np prompt tokens P = [p1,p2, . . . ,pnp
] ∈ Rnp×D, where D is the dimension

of tokens in the pre-trained ViT. The learned prompt tokens encode the specific information in
downstream tasks by collaborating with frozen patch representations obtained from ViT blocks.
Depending on the number of Transformer layers involved, VPT has two versions: VPT-Shallow,
which inserts prompt tokens at the first block only, and VPT-Deep, which inserts prompt tokens at
every block. In this paper, we focus on VPT-Deep. The l-th layer B of VPT-Deep is expressed as:

[zl
cls,Z

l] = Bl([zl−1
cls ,Zl−1,P l−1]) (1)

where zcls is the class token and Z = [z1, z2, . . . ,zm] are the m patch tokens, respectively. The
colors blue and red represent the frozen and learnable parameters, respectively.

In VPT, the prompts are able to extract task-relevant features from the patch tokens by self-attention
mechanism. Ideally, the self-attention mechanism should guide prompts to aggregate information
from the most discriminative patch tokens. We briefly introduce the self-attention mechanism below.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The framework of the proposed Long-tailed Decoupling Prompt Tuning (LT-DPT),
where snow means frozen parameters and fire means trainable parameters. (a) LT-DPT consist of
foreground-related prompts and background-related prompts. (b) Foreground-related prompts focus
on the saliency regions; (c) Background-related prompts are selected from a group of prompts and
emphasize the background regions.

3.2 SELF-ATTENTION MECHANISM.

In each layer of the model, the prompt token learns by interacting with the patch tokens through the
self-attention mechanism. Specifically, each token is associated with a query, a key, and a value,
which together facilitate information exchange. Self-attention can be described as mapping a query
and a set of key-value pairs to an output. Given a prompt token pi with a corresponding query Qpi

and an arbitrary token t characterized by a key Kt and a value Vt, the attention output of pi is a
weight sum of the value calculated as:

Attention(pi) = Softmax(
Qpi

Kt√
D

)Vt, (2)

As shown in equation 2, pi pays more attention to the tokens whose keys are more similar to its
query. However, if the query of prompt token does not align closely with the keys corresponding
to semantically significant or highly discriminative patch tokens, the resulting attention weights
will not emphasize these regions. Consequently, the prompt token may fail to focus on the most
informative or salient areas within the image, instead distributing its attention more uniformly or
towards less relevant patches, thereby reducing model’s discriminative ability.

4 PROPOSED METHOD

4.1 FRAMEWORK

The analysis in section 3.2 inspires us design a long-tailed visual prompt tuning method encouraging
some prompt tokens focus on semantically significant patch tokens. Therefore, we propose a long-
tailed decoupling prompt tuning method, which decouples the prompt tokens to two complementary
parts. In our proposed method, one part of prompt tokens specializing to foreground regions and the
other focusing more on background areas.

The framework of the proposed method LT-DPT is illustrated in Fig 2. For an L layer model, we in-
sert foreground-related prompts in all layers, while inserting background-related prompts in the last
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H layers. In l-th layer, we introduce a saliency-guided bias to query-key pairs for foreground-
related prompts P l

f = [pl
1,p

l
2, . . . ,p

l
nf
] ∈ Rnf×D (Section 4.2). This bias makes the query

of the prompt closer to the key of the significant patch token. For background-related prompts
P l

b = [pl
1,p

l
2, . . . ,p

l
nb
] ∈ Rnb×D, we design a group-specific prompts mechanism, where the patch

embeddings of each image are associated with their corresponding group-specific prompts (Sec-
tion 4.3). These group-specific prompts are specifically designed to capture the similar background
information shared within each group, thereby enabling the model to more effectively exploit con-
textual cues from background regions.

4.2 FOREGROUND-RELATED PROMPTS

For foreground-related prompts in Fig 2, our objective is to guide these prompts to focus more
effectively on salient regions within the patch tokens, thereby enhancing the prompts to extract
discriminative features. Specifically, given the foreground-related prompts P l

f with its query QP l
f
∈

Rnf×D, and the patch tokens Zl = [zl1, z
l
2, . . . , z

l
m] with key KZl ∈ Rm×D and value VZl ∈

Rm×D, we add the normalized saliency map score (Hou & Zhang, 2007) SZl as bias in the query-
key pairs, which is described as:

Attention(P l
f ,KZl ,VZl) = Softmax(

QP l
f
KZl

√
D

+ αSZl)VZl , (3)

where α is a learnable scale parameter. Notably, saliency map score using (Hou & Zhang, 2007)
provides a value for each pixel in the image, e.g., 32×32 map in CIFAR100-LT. To align the map
with the number of patch tokens used in the backbone, we first divide the saliency map into a grid of
non-overlapping patches, each of fixed size

√
m×

√
m. Then, we use average pooling on each patch

to get a
√
m×

√
m map. Finally, we normalize saliency map score SZl to lie within [0, 1], ensuring

that all bias values are non-negative. By explicitly introducing the normalized saliency information
into the attention computation, we guide the foreground-related prompts to assign higher attention
weights to salient patch tokens.

4.3 BACKGROUND-RELATED PROMPTS

For background-related prompts in Fig 2, we aim to facilitate the sharing of similar background
information among these prompts. Inspired by the group-specific prompts proposed in LPT (Dong
et al., 2023), we introduce G prompt groups P = [P l

1,P
l
2, . . . ,P

l
g] ∈ RG×nb×D, where each group

consists of nb learnable prompts with corresponding nb keys K = [kl
1,k

l
2, . . . ,k

l
nb
] ∈ Rnb×D in the

l-th layer. Given the embedding of the patch of an image Z, the similarity s = [s1, s2, . . . , snb
] ∈

[0, 1]1×nb to the prompts is calculated as the mean cosine similarity between each patch token and
the keys:

Similarity(Z,K) = Mean(< Z,K >), (4)
where < ·, · > is the cosine similarity operator. For the image Z, we assume that the best matched
k similarities of the prompts are s = [s1, s2, . . . , sk], which correspond to P = [P l

b1,P
l
b2, . . . ,P

l
bk].

Then, we set the background-related prompts as P l
b = softmax(s)P, indicating that the

background-related prompts are the weight sum of the most k similar group prompts.

Similarly to the foreground-related prompts, we add normalized inverse saliency map score to the
attention mechanism. For foreground-related prompts P l

b with its query QP l
b
∈ Rnb×D in the l-th

layer, the attention score is for patch tokens Zl is computed as:

Attention(P l
b ,KZl ,VZl) = Softmax(

QP l
b
KZl

√
D

+ β(1− SZl))VZl , (5)

where β is a learnable parameter. As shown in Eq 5, the background-related prompts are more
oriented towards the background patch tokens guided by the normalized inverse saliency map.

To avoid all group prompts being similar and weaken the recognition ability of the model, we op-
timize each group prompt tend towards orthogonality. We design a group prompts orthogonal loss
Lb, minimizing the cosine similarity between each pair of group prompts as:

Lb =

g∑
i̸=j

< Pi,Pj > . (6)
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Finally, we set the overall loss as the weight sum of long-tailed classification loss Llt and group
prompts orthogonal loss Lb:

L = Llt + λLb, (7)

where λ is a balance factor and will be discussed in the following.

5 EXPERIMENTS

5.1 DATASETS

CIFAR100-LT The original CIFAR-100 (Krizhevsky et al., 2009) is a computer vision dataset con-
sisting of 60,000 images in 100 classes. The dataset includes 50,000 images for training and 10,000
for validation. In this paper, we follow the settings of Cao et al. (2019) to down-sample training
samples per class while the validation dataset remains unchanged. The imbalanced ratio is calcu-
lated as the ratio between the numbers of samples in the most and least frequent classes. In our
experiments, we set the imbalanced ratio as 200, 100, 50, and 10 for CIFAR-100-LT, respectively.

iNaturalist2018 INaturailist2018 (Van Horn et al., 2018) is a large-scale fine-grained dataset in the
real world that inherently exhibits a long-tailed distribution. The dataset consists of 437.5K training
images in 8,142 classes with an imbalanced ratio of 512. The validation set contains 24.4K with 3
images per class. We follow the official splits of the dataset in our experiments.

Places365-LT Places365-LT (Liu et al., 2019) is a long-tailed version of the large-scale dataset
Places365 (Zhou et al., 2017). Places365-LT consists of 62.5K training samples in 365 classes with
an imbalanced ratio of 996 and 36.5K validation images.

ImageNet-LT Following (Liu et al., 2019), the long-tailed version of the large-scale dataset Ima-
geNet (Russakovsky et al., 2015), called ImageNet-LT, is sampled from the original dataset using
the Pareto distribution with a power parameter α set as 6. The ImageNet-LT contains 115.8K train-
ing images of 1,000 classes with an imbalanced ratio of 256. The validation set contains 50 images
per class.

5.2 COMPARISON METHODS

We consider two types of state-of-the-art (SOTA) comparison methods: training-from-scratch meth-
ods and visual prompt tuning methods.

Training-from-scratch methods. We compare the SOTA training-from-scratch methods with the
backbone ResNet (He et al., 2016). (1) Loss adjustment methods, i.e., LA (Menon et al., 2021),
and GCL (Li et al., 2022b); (2) two-stage methods, i.e., LDAM-DRW (Cao et al., 2019), and Mis-
LAS (Zhong et al., 2021); (3) Representation improvement methods, i.e., GPaCo (Cui et al., 2023),
ProCo (Du et al., 2024), and PRL (Zhao et al., 2024b). Also, we consider the training-from-scratch
method with the backbone ViT, i.e., LiVT (Xu et al., 2023).

Visual prompt tuning methods. We also compare the long-tailed visual prompt tuning meth-
ods with the backbone ViT, including the baseline VPT (Jia et al., 2022), the SOTA approaches
LPT (Dong et al., 2023), and GNM-PT (Li et al., 2024).

5.3 IMPLEMENTATION DETAILS

Following (Dong et al., 2023), we use ImageNet-21K pre-trained ViT-B/16 (Dosovitskiy et al., 2020)
and VPT-Deep for visual prompt tuning. We set GCL (Li et al., 2022b) as the classification loss
function and use a cosine classifier. For the optimizer, we use SGD with GNM (Li et al., 2024)
with a batch size of 128, a learning rate of 0.005, weight decay 0.01, and a momentum of 0.9,
respectively. For our LT-DPT, the hyperparameter H is set to 6 and the balance factor λ is set to
0.5. Consistent with the long-tail visual prompt tuning, we utilize Deferred Re-Weighting (DRW) to
achieve classifier re-balancing. For CIFAR100-LT, ImageNet-LT, iNaturalist2018, we fine-tune the
model for 70 epochs, with the final 10 epochs for DRW. For Places365-LT, we use 100 epochs for
fine-tuning and the last 40 epochs for DRW.
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5.4 EXPERIMENTAL RESULTS

We adopt Top-1 accuracy on test sets as the performance metric. We also provide accuracy measure-
ments for three class splits based on the number of training data: Head (> 100 images), Medium
(Med for short, 20∼100 images), and Tail (≤ 20 images).

Comparison on CIFAR100-LT. We show the comparison results of Top-1 accuracy on CIFAR100-
LT with different imbalance ratios in Table 1. For CIFAR100-LT, our proposed LT-DPT get sig-
nificant improvements over previous methods, especially the training-from-scratch methods, across
most cases of different imbalance ratios. We gain +0.7%, +0.3%, and +0.5% on CIFAR100-LT
with imbalance ratios of 200, 100, and 50 compared to GNM-PT, respectively. Also, our LT-DPT
also achieves good result when the imbalance ratio is 10, which gets the second-best among all
compared algorithms.

Table 1: Comparison results on CIFAR100-LT
with different imbalanced ratios in terms of Top-1
accuracy(%), where the best and second-best re-
sults are highlighted in bold and underline, and
bold, respectively

Imb Ratio Backbone 200 100 50 10

Training-from-scratch

LA ResNet - 43.9 47.0 57.7

GCL ResNet 44.8 48.6 53.6 -

LDAM-DRW ResNet 38.9 42.0 46.6 58.7

MisLAS ResNet 43.5 47.0 52.3 63.2

GPaCo ResNet - 52.3 56.4 65.4

ProCo ResNet - 52.8 57.1 65.5

PRL ResNet - 52.8 57.3 65.6

LiVT ViT - 58.2 - 69.2

Visual Prompt Tuning

VPT ViT 72.8 81.0 84.8 89.6

LPT ViT 87.9 89.1 90.0 91.0

GNM-PT ViT 88.3 90.1 90.5 91.7

LT-DPT ViT 89.0 90.4 91.0 91.6

Table 2: Comparison results on ImageNet-
LT in terms of Top-1 accuracy(%), where
the best and second-best results are high-
lighted in bold and underline, and bold, re-
spectively

Method Head Med Tail Overall

Training-from-scratch

LA 65.8 53.2 34.1 55.4

GCL 63.0 52.7 37.1 54.5

LDAM-DRW 60.4 46.9 30.7 49.8

MisLAS 62.9 50.7 34.3 52.7

GPaCo 67.4 57.1 41.2 58.9

ProCo 68.2 55.1 38.1 57.8

PRL - - - 60.8

LiVT 73.6 56.4 41.0 60.9

Visual Prompt Tuning

VPT 79.5 76.5 72.8 77.2

GNM-PT 80.6 81.1 78.2 80.4

LT-DPT 85.8 84.1 78.4 84.0

Comparison on ImageNet-LT. We present the compared results of Top-1 accuracy on ImageNet-LT
with three class splits in Table 2. As shown in Table 2, our proposed LT-DPT achieves superior per-
formance, attaining an 84% Top-1 classification accuracy, outperforming VPT and GNM-PT with a
notable margin of 7.8% and 3.6%, respectively. Notably, our method also achieves significant im-
provements across the head, medium, and tail classes, i.e., +5.2%, +3.0%, and 0.2%, respectively,
demonstrating its outstanding performance.

Comparison on iNaturalist2018. Table 3 shows the performance of all the methods on iNatural-
ist2018. The proposed LT-DPT achieves a top-1 classification accuracy of 76.9%, surpassing both
training-from-scratch methods and visual prompt tuning methods. Compared to visual prompt tun-
ing methods, LD-DPT improves the performance of head, medium and tail classes, especially the
medium classes.

Comparison on Places365-LT. From the Table 3, we can observe that LT-DPT shows an over-
all second-best performance on Places365-LT, is only inferior to GNM-PT. Compared to LPT, our
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Table 3: Comparison results on iNaturalist2018 and Places365-LT in terms of Top-1 accuracy(%),
where the best and second-best results are highlighted in bold and underline, and bold, respectively

Method
iNaturalist2018 Places365-LT

Head Med Tail Overall Head Med Tail Overall

Training-from-scratch

GCL - - - 72.0 38.6 42.6 38.4 40.3

MisLAS 73.2 72.4 70.4 71.6 39.6 43.3 36.1 40.4

GPaCo 73.0 75.5 75.7 75.4 - - - 41.7

ProCo 74.0 76.0 76.0 75.8 - - - -

PRL - - - 75.1 - - - 41.6

LiVT 78.9 76.5 74.8 76.1 48.1 40.6 27.5 40.8

Visual Prompt Tuning

LPT 62.1 76.2 79.3 76.1 47.6 52.1 48.4 49.7

GNM-PT 61.5 77.1 79.3 76.5 46.6 53.3 49.4 50.1

LT-DPT 62.7 77.7 79.5 76.9 46.9 52.6 49.2 49.9

method can balance the head, medium, and tail classes, improving the performance of the medium
and tail classes.

5.5 ABLATION STUDY

Effects of Different Components. We consider the different impact of different components, i.e.,
general prompts without saliency score bias (G-prompts for short), foreground-related prompts (FR-
prompts for short), and background-related prompts (BR-prompts for short). We also present the
VPT as a baseline. We show the comparison performances of overall, head, medium, and tail classes
on CIFAR100-LT with an imbalance ratio 200 in Table 4. In Table 4, method (A) is GNM-PT which
differs from VPT in that it uses the GNM optimizer and long-tailed loss function. As observed in
Table 4, foreground-related prompts, i.e., method (B), can effective improve the performance of head
classes, leading an overall improvement of the results. In addition, it shows that the performances
of the medium and tail classes get slight decrease. This is because foreground-related prompts focus
more on the foreground, which leads to the model paying more attention to the dominant foreground
of the head classes. By adding the background-related prompts, i.e., method (C), some common
information can be shared within the samples, regardless of the classes. Therefore, all types of
classes and the overall performance has been increased as shown in Table 4.

Table 4: Ablation studies of the different effects of each components on CIFAR100-LT with the
imbalance ratio 200 in terms of Top-1 accuracy(%). The best and second-best results are highlighted
in bold and underline, and bold, respectively.

Method G-prompts FR-prompts BR-prompts Head Med Tail Overall

VPT - - - 72.8

(A) 89.7 89.6 84.5 88.3

(B) 90.4 89.5 84.5 88.4

(C) 91.0 90.1 85.2 89.0
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Table 5: Ablation studies of the different pre-trained model sizes on CIFAR100-LT with the imbal-
ance ratio 200 in terms of Top-1 accuracy(%).

Backbone
GNM-LT LT-DPT

Head Med Tail Overall Head Med Tail Overall

ViT-T 28.6 32.0 21.5 28.7 32.3 31.7 21.2 28.8

ViT-S 78.3 77.0 61.2 73.0 78.6 77.9 60.2 73.3

ViT-B 89.7 89.6 84.5 88.3 91.0 90.1 85.2 89.0

Table 6: Ablation studies of the different balance factor λ in overall loss fuction on CIFAR100-LT
with the imbalance ratio 200 in terms of Top-1 accuracy(%).

λ 0 0.1 0.2 0.5 1.0 2.0

Acc 88.6 88.6 88.7 89.0 88.9 89.0

Different Pre-trained Model Sizes. We compare different pre-trained model sizes on CIFAR100-
LT with the imbalance ratio 200 to verify the compatibility of our LT-DPT. Besides ViT-B/16 we
used before, we utilize two smaller ImageNet-21K pre-trained ViT backbone, i.e., ViT-T/16 and
ViT-S/16, respectively. We select the second-best algorithm, i.e., GNM-PT, on CIFAR100-LT as
comparison method. As shown in Tab 5, all LT-DPT with different sizes exhibit overall better
performance compared to GNM-LT, i.e., get a performance gain of +0.1%, +0.3%, and +0.7%,
respectively.

Effects of Balance Factor λ. The balance factor λ is used to trade off between the long-tailed
classification loss and group prompts learning during model training. To further investigate its effect,
we examined model performance under different values of λ. Table 6 reports the Top-1 accuracy
on CIFAR100-LT with an imbalance ratio of 200 under various settings of the balancing factor.
As shown in Table 6, the performance of the balance factor on CIFAR100-LT is stable. A small
balance factor can easily lead to redundancy in group-specific prompts, resulting in performance
drop. The extreme case is λ = 0, meaning that no group-specific prompts constraint is employed.
However, the performance is still better than the GNM-PT, i.e., 88.6% vs 88.3%. This indicates that
our complementary prompts are effective in long-tailed recognition.

6 CONCLUSION

In this paper, we have analyzed that the existing long-tailed prompt tuning methods tend to overlook
semantically significant regions through self-attention mechanism. Based on this, we have pro-
posed LT-DPT, which introduced two complementary prompts, i.e., foreground-related prompts and
background-related prompts. Foreground-related prompts leverage normalized saliency map score
as bias in query-key pairs to guide prompt focus on semantically related patch tokens. By contrast,
background-related prompts are constructed by aggregating group-specific prompts with orthogo-
nality constraint according to the similarity between patch tokens and learned prompt keys. With
the guidance from a normalized inverse saliency map, the background-related prompts emphasize
background regions. We have conducted extensive experiments and ablation studies to demonstrate
the effectiveness of the proposed method and each component.

Limitations and Future Works. Although LT-DPT has been shown to be effective, it is not ex-
empt from limitations. Recently, studies on visual prompt tuning with linguistic data have been
proposed (Long et al., 2022; Zhao et al., 2024a). Therefore, how to use additional linguistic in-
formation to help guide prompt learning in our approach remains a challenge. Our future work
will focus on the use of text information to guide prompt attention to important patch tokens in an
effective way.
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A APPENDIX A. EFFECTS ON BACKGROUND-RELATED LAYER NUMBER
H .

We compare the effects on different layers H of background-related prompts in Tab 7. The Tab 7
shows that an excessively large number of layers, i.e., H=12, leads to degradation of model per-
formance, meanwhile requiring a large tuning parameters. Also, it shows that an small number of
layers, i.e., H=3, lead a poor performance.

Table 7: Ablation studies of the different effects of each components on CIFAR100-LT with the
imbalance ratio 200 in terms of Top-1 accuracy(%). The best and second-best results are highlighted
in bold and underline, and bold, respectively.

H Tuned Params Head Med Tail Overall

3 0.55M 90.7 89.3 83.1 88.1

12 1.94M 90.7 89.9 85.0 88.9
6 1.01M 91.0 90.1 85.2 89.0

B APPENDIX B. SALIENCY DETECTION

We introduce the saliency detection method used in this paper. Given a gray image I(x, y), the
saliency map is calculated in the following step.

First, performing Fourier transform F(·) on the image as:

M(x, y)ejP (x,y) = F(I(x, y)), (8)

where M(x, y) is the amplitude spectrum, and P (x, y) is the phase spectrum, respectively.

Then, the spectral residual R(x, y) is defined by:

L(x, y) = logM(x, y), (9)

A(x, y) = h(x, y) ∗L(x, y), (10)
R(x, y) = L(x, y)−A(x, y), (11)

where h(x, y) is the filer, which we used a convolution filer in this paper.

Finally, the saliency map S(x, y) is computed as:

S(x, y) = g(x, y) ∗ F−1[exp(R(x, y) + P (x, y))]2 (12)

where g(x, y) is a Gaussian filer, and F−1 is the Inverse Fourier Transform, respectively.
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