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Abstract

The stochastic multi-arm bandit problem has been extensively studied under stan-
dard assumptions on the arm’s distribution (e.g bounded with known support,
exponential family, etc). These assumptions are suitable for many real-world prob-
lems but sometimes they require knowledge (on tails for instance) that may not
be precisely accessible to the practitioner, raising the question of the robustness
of bandit algorithms to model misspecification. In this paper we study a generic
Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical
indices computed with re-sampling of the arms’ observations and a data-dependent
exploration bonus. We show that different variants of this strategy achieve provably
optimal regret guarantees when the distributions are bounded and logarithmic regret
for semi-bounded distributions with a mild quantile condition. We also show that a
simple tuning achieve robustness with respect to a large class of unbounded distri-
butions, at the cost of slightly worse than logarithmic asymptotic regret. We finally
provide numerical experiments showing the merits of DS in a decision-making
problem on synthetic agriculture data.

1 Introduction

The K-armed stochastic bandit model is a decision-making problem in which a learner sequentially
picks an action among K alternatives, called arms, and collects a random reward. In this setting, all
rewards drawn from an arm are independent and identically distributed. Hence, we can formally
associate each arm k ∈ {1, . . . ,K} with its reward distribution νk, with mean µk. The objective
of the learner is to adapt her strategy (At)t∈[T ] in order to maximize the expected sum of rewards
obtained after T selections (where T is the horizon, unknown to the learner). This is equivalent
to minimizing the regret, defined as the difference between the expected total reward of an oracle
strategy always selecting an arm with largest mean and that of the algorithm, which is equal to

RT = E

[
T∑
t=1

µ? − µAt

]
=

K∑
k=1

∆kE [Nk(T )] . (1)

Here, Nk(T ) =
∑T
t=1 1(At = k) denotes the number of selections of arm k after T time steps,

µ? = maxj∈{1,...,K} µj and ∆k = µ?−µk is called the gap between arm k and the largest mean. To
assess the performance of a bandit algorithm, one naturally studies the best guarantees achievable by
a uniformly efficient algorithm, i.e with sub-linear regret on any instance of a given class of problems.
This guarantee was first provided by Lai and Robbins (1985) for 1-dimensional parametric families
of distributions, and then extended by Burnetas and Katehakis (1996) for more general families. It
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states that any algorithm that is uniformly efficient1 on a family of distributions F must satisfy

lim inf
T→∞

RT
log(T )

≥
∑

k:∆k>0

∆k

KFinf(νk, µ
?)
, KFinf(νk, µ

?) = inf
G∈F
{KL(νk, G) :EG(X)>µ?} . (2)

A bandit algorithm is then called asymptotically optimal for a family of distributions F when its
regret matches this lower bound. When F is a Single-Parameter Exponential Family (SPEF), KFinf is
simply the Kullback-Leibler divergence between the distribution of mean µk and that of mean µ?
in F , making for a theoretically appealing setting. The quantity KBinf , corresponding to the family
F[−∞,B] of distributions supported in (−∞, B] is also often considered in the literature, see e.g
(Honda and Takemura, 2010, 2015; Cappé et al., 2013).

Overview of existing strategies An efficient strategy faces the classical exploration/exploitation
dilemma: it needs to obtain enough information from arms that have not been sampled a lot (ex-
ploration), but also to sample arms that are well-performing sufficiently often (exploitation). Many
algorithms have been proposed for the multi-armed bandits problem (see Lattimore and Szepesvári
(2020) for a survey), and we propose in the following a non-exhaustive list of such methods. A first
category contains the deterministic index policies, built on the concept of Optimism in Face of Uncer-
tainty, the most celebrated of which being the Upper Confidence Bound (UCB) algorithms (Agrawal,
1995; Auer et al., 2002). These algorithms can obtain a logarithmic regret under classical hypothesis
on the distributions (e.g bounded, sub-gaussian, sub-exponential, . . . ), and the strongest guarantees
have been achieved by kl-UCB Cappé et al. (2013), DMED (Honda and Takemura, 2010), and IMED
(Honda and Takemura, 2015), which share a common pattern of solving a convex optimization prob-
lem at each round. To be asymptotically optimal, these algorithms require either 1) the knowledge of a
specific SPEF for each arm, or 2) a known upper bound on the support of each arm. A second general
category is that of randomized bandit algorithms, which has been formulated for instance in (Kveton
et al., 2019b) as General Randomized Exploration (GRE). The common feature of these methods
is that, at each time step and for each arm, the algorithm draws an index from a distribution that
depends on 1) the rewards observed from the arm, and 2) some knowledge on the arms distributions
and chooses the arm with the largest index. Thompson Sampling (TS) (Thompson, 1933; Agrawal
and Goyal, 2012) belongs to this category, and a proper choice of Bayesian prior/posterior ensures
optimality of TS in SPEF (Korda et al., 2013). Different algorithms using Bootstrapping schemes
have also been proposed (Osband and Roy, 2015; Kveton et al., 2019a,b; Wang et al., 2020; Riou and
Honda, 2020): they share the idea of computing a noisy mean for empirical samples, enhanced by
some exploration aid appropriately tuned to the family of distributions they consider. A last category
contains the methods based on sub-sampling Baransi et al. (2014); Chan (2020); Baudry et al. (2020,
2021b), that achieve asymptotic optimality in SPEF without knowing which family, when all arms
share the same. However the proofs heavily rely on properties of the tails of SPEF so the results seem
difficult to generalize outside these families.

Motivations While many algorithms achieve optimal regret for bounded distributions with the sole
knowledge of the upper bound, the assumptions needed for algorithms working with unbounded
distributions (e.g SPEF, sub-Gaussian, sub-exponential) generally assume a known parametric model
for the tails. While such assumption entails convenient properties on the theoretical side, the
practitioner may have some difficulty to determine which setting/parameters correspond to her
problem. Furthermore, this uncertainty raises the question of robustness with respect to these
hypotheses. Several works have considered this question: Hadiji and Stoltz (2020) shows that
adapting to an unknown bounded range requires a tradeoff between instance-dependent and worst-
case regret, and recently (Agrawal et al., 2020; Ashutosh et al., 2021) proved the impossibility of an
instance-dependent logarithmic regret for light-tailed distributions without explicit control on the tail
parameters. The root cause for this is the lack of compactness of such families F , which allows mass
to "leak" at infinity so that maximally confusing distributions with mean µ∗ exist arbitrarily close to
νk, meaning KFinf(νk, µ

∗) = 0. The latter work also introduces a robust variant of UCB, that trades
off logarithmic regret for O (f(T ) log(T )), where f essentially tracks the possible mass leakage at
infinity. These results puts into question the usual hypotheses under which bandit algorithms are
designed: considering a parametric control of the tails is indeed sensitive to model mis-specification,
but on the other hand the examples chosen to prove infeasability results seem a bit extreme for the
practitioner. In this paper, we propose simple alternative setups allowing unspecified tail shapes

1That is, for each bandit on F , for each arm k with ∆k>0, then E[Nk(T )]=o(Tα) for all α∈(0, 1].
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but avoiding "mass leakage" to infinity, for instance with mild conditions linking the quantiles and
the means of the distributions. We consider in this paper light-tailed distributions (see definition
in Appendix A.1). This problem is already non-trivial, so we let possible extensions for heavy-tail
distributions for future work (e.g with tools like median-of-means, see (Bubeck et al., 2013)).

Outline In the novel settings we consider, we want algorithms that require the smallest level of
knowledge on the tails of distributions. To this extent, the Non-Parametric Thompson Sampling
(NPTS, Riou and Honda (2020)) algorithm is a good candidate, considering how little knowledge it
requires to reach asymptotic optimality for bounded distributions with known bounds. Furthermore,
the flexibility of this algorithm has been recently demonstrated with its adaptation in a risk-aware
setting (Baudry et al., 2021a). We provide a generalization of NPTS that we call Dirichlet Sampling
(DS): we combine the core elements of NPTS and a duel-based framework inspired by (Chan,
2020), introducing data-dependent exploration bonuses. We present the resulting algorithm and
detail the technical motivations of this approach in Section 2. We then introduce in Section 3 a first
regret decomposition of DS algorithms under general assumptions, and the technical results that
allow to fine-tune the algorithm for different families (see Section 3.1). We provide three instances
of DS algorithms and their regret guarantees in Section 3.2: Bounded Dirichlet Sampling (BDS)
tackles bounded distributions with possibly unknown upper bounds, Quantile Dirichlet Sampling
proposes a first generalization to the unbounded case using truncated distributions. Last, Robust
Dirichlet Sampling (RDS) has a slightly larger than logarithmic regret for any unspecified light-tailed
unbounded distributions, making it a competitor to the Robust-UCB algorithm of Ashutosh et al.
(2021). Finally, we study in Section 4 a use-case in agriculture using the DSSAT simulator (see
Hoogenboom et al. (2019)), which naturally faces all the questions (robustness, model specification)
that motivate this work and shows the merit of DS over state-of-the-art methods for this problem.

2 Dirichlet Sampling Algorithms

In this section we introduce Dirichlet Sampling, a strategy that aims at generalizing the Non-
Parametric Thompson Sampling algorithm of Riou and Honda (2020) outside the scope of bounded
distributions with a known support upper bound. For this purpose, we build an adaptive strategy in a
duel-based framework, already used in sub-sampling based algorithms like SSMC (Chan, 2020).

Background Non-Parametric Thompson Sampling is an index strategy where the index of each
arm is a random re-weighting of their observations, augmented by an exploration bonus. The weights
are drawn from the Dirichlet distribution Dn = Dir((1, . . . , 1)) for n data, which is the uniform
distribution on the simplex Pn = {w ∈ [0, 1]n : wt1 = 1} and matches the Bayesian posterior (i.e
Thompson Sampling) for multinomial arms. The exploration bonus is simply the known upper bound
of the support, and avoids under-exploration of potentially "unlucky" good arm. We provide further
explanations on the Dirichlet distribution and NPTS respectively in Appendix C.1 and A.3.

The simplicity of NPTS and its strong theoretical guarantees are appealing for further generalization.
As we fully depart from the Bayesian approach, considering other exploration bonuses, we derive
a new family of algorithms under the name of Dirichlet Sampling. We keep the two principles of
re-weighting the observations using a Dirichlet distribution and the exploration aid, and explore how
to apply them to more general (e.g unbounded) distributions. In particular, we allow in DS some
pre-processing of the observations before re-weighting (see section 3.1 and 3.2) and motivate in
Section 3.1 the use of a data-dependent bonus, that use information from several arms. The complexity
introduced by such bonus in the analysis requires a change of algorithm structure, dropping the index
policy for a leader vs challenger approach (Chan, 2020).

Round-based algorithm We define a round as a step of the algorithm at the end of which a set of
(possibly several) arms are selected to be pulled. Let Ar ⊂ {1, . . . ,K} be the subset of the arms
pulled at the beginning of a round r, we call T -round regret the quantity

RT = E

[
T∑
r=1

K∑
k=1

∆k1(k ∈ Ar)

]
=

K∑
k=1

∆kE[Nk(T )] , (3)

where we slightly change the definition of Nk (compared with 1) to Nk(T ) =
∑T
r=1 1(k ∈ Ar).

We consider the T -round regret for simplicity, as it is a simple upper bound of the regret after T
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pulls. At the beginning of each round we define a reference arm (leader), and then organize pairwise
comparisons called duels between this arm and the other arms (challengers). The leader is chosen as
the arm with largest sample size,

`r ∈ argmax
k∈{1,...,K}

Nk(r) ,

where ties are broken first in favor of the best empirical arm, then with a random choice. A major
motivation for this choice is that the leader will have a sample size that is linear in the number of
rounds, as at least one arm is chosen at each round. This ensures strong statistical properties that we
will exploit to design the exploration bonus of DS strategies. Randomizing the index of the leader
is also unnecessary: it competes against each challenger with its empirical mean. We also dismiss
all the arms k that satisfy Nk(r) = N`(r) with the same argument. These choices have a practical
interest as they avoid the computation time of drawing the largest weight vectors. We believe this can
be an alternative of independent interest to computationally intensive index policies.

Challenger’s index We fix an index that is not dependent on the round, but only on the history of the
challenger and the leader available at this round, that we denote respectively by X = (X1, . . . , Xn),
Y = (Y1, . . . , YN ) for simplicity of notations. We denote by µ : RN → R the function that computes
the average of a set of observations. The duel can includes two steps, and the challenger wins if

1. µ(X ) ≥ µ(Y) (first compare the empirical means), or

2. µ̃(X ,Y) ≥ µ(Y), where µ̃ : RN × RN → R denotes the chosen DS index.

We summarize in Algorithm 1 the steps of Dirichlet Sampling, that we completely detail in Ap-
pendix A.2. We write it for a generic "Dirichlet Sampling index" µ̃ that must be computed by a
re-weighting of the observations augmented by an exploration bonus. As in NPTS, the weights are
drawn with a Dirichlet distribution. For instance, a canonical example of Dirichlet Sampling index
with a data-depend (instead of fixed) bonus B(X ,Y) is

µ̃(X ,Y) =

n∑
i=1

wiXi + wn+1B(X ,Y) , w = (w1, . . . , wn+1) ∼ Dn+1 .

However, the algorithm structure in Algorithm 1 could be combined with any randomized index,
which is of independent interest as we will see in Section 3. In the next section we study the
theoretical properties of Dirichlet Sampling, and discuss the choice of the index µ̃ for different
families of distributions.

Algorithm 1 Generic Dirichlet Sampling
Input: K arms, horizon T , Dirichlet Sampling index µ̃
Init.: t = 1, r = 1, ∀k ∈ {1, ...,K}: Xk = {Xk

1 }, Nk = 1; . Draw each arm once
while t < T do
A = {} ; . Arm(s) to pull at the end of the round
` = Leader((X1, N1), . . . , (Xk, Nk)) ; . Choose a Leader
for k ∈ {1, . . . ,K} : Nk < N` do

if max(µ(Xk), µ̃(Xk,X`)) ≥ µ(X`) then
A = A ∪ {k} ; . Play the duels

Draw arms from |A| if A is non-empty, else draw arm `.
Update t, r, (Nk)k∈{1,...,K}, (Xk)k∈{1,...,K}. ; . Collect Reward(s) and update data

3 Regret Analysis and Technical Results

In this section, we analyze the regret of DS algorithms. We first derive a general regret decomposition
for any index µ̃ that holds thanks to the duel-based structure. We then introduce several properties
of Dirichlet sampling, that theoretically guide proper tuning of a DS index. We finally instantiate
DS for three different problems and provide regret bounds in these settings. Starting with the regret
decomposition, we exhibit general conditions to ensure guarantees that are independent on the index
and the run of the bandit algorithm. Allowing a different family of distribution Fk for each arm k,
the first one concerns the concentration of the mean of each distribution.
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Condition 1 (C1) [Concentration] For all νk ∈ Fk, there exists a good rate function Ik satisfying
Ik(x) > 0 for x 6= µk and for all x > µk, y < µk, and any i.i.d sequence X1, . . . , Xn drawn from
νk

P

(
1

n

n∑
i=1

Xi ≥ x

)
≤ e−nIk(x) , and P

(
1

n

n∑
i=1

Xi ≤ y

)
≤ e−nIk(y) . (4)

This hypothesis is standard in the bandit literature, and is for instance satisfied by any light-tailed
distributions. We refer to (Dembo and Zeitouni, 2010) for techniques to derive such functions.

We now provide an upper bound on the round-regret presented in Section 2 for Algorithm 1. To
simplify the notations we consider that there is only one optimal arm and, without loss of generality,
that ∀k > 1, µk < µ1. Furthermore, for simplicity we write the following theorem for an index
µ̃(X , µ), that only uses the mean of the leader. The same result holds for any index using statistics on
the leader’s history that have concentration properties similar to (C1) (e.g possibly quantiles, variance,
etc) with slight adaptations of the proof.
Theorem 3.1 (Generic regret decomposition of DS). Consider a bandit model ν = (ν1, . . . , νK),
where all distributions in ν satisfy (C1). Then for any DS index the expected number of pulls of each
arm k ∈ {2, . . . ,K} is upper bounded for each ε ∈ [0,∆k) by

E [Nk(T )] ≤ nk(T ) +BkT,ε + Ckν,ε ,

where nk(T ) = E
[∑T−1

r=1 1(k ∈ Ar+1, `
r = 1)

]
, Ckν,ε is independent on T and, denoting Xn the

set of n first observations of arm 1,

BkT,ε =

K∑
j=2

d2 log(T )/I1(µk+ε)e∑
n=1

sup
µ∈[µj−ε,µj+ε]

EXn
[
1 (µ(Xn) ≤ µ)

P(µ̃(Xn, µ) ≥ µ)

]
.

The details of the proof of this result are to be found in Appendix B. The proof follows the general
outline of Chan (2020), and makes all the components of Ckν,ε explicit. This term is related to
deviations of sample means for arms k and 1 and is typically bounded by a (problem-dependent)
constant under light-tail concentration (C1), so it does not depend on µ̃ but only on the rate functions
and the means of each arm. The other two terms of the RHS reflect the exploration strategy. nk(T ) is
the expected number of pulls of arm k when the best arm is the leader; we interpret it as the sample
size required to statistically separate both arms at horizon T . On the other hand, BkT,ε measures the
capacity of the best arm to recover from a bad (small-sized) sample.

Theorem 3.1 is formulated to be as general as possible and can be regarded as a counterpart of
Theorem 1 of Kveton et al. (2019b). We will later analyze instances of Dirichlet Sampling where
the first-order term of the regret is driven entirely by nk(T ). We therefore introduce the following
condition to control the contribution of BkT,ε to the regret.

Condition 2 (C2) For any µ < µ1, and any n1(T ) = o(log T ) it holds that

n1(T )∑
n=1

EXn∼νn1

[
1(µ(Xn) ≤ µ)

Pw∼Dn+1 (µ̃(X , µ) ≥ µ)

]
= o(log T ) .

The LHS represents the expected cost in terms of regret of underestimating the optimal arm; intuitively,
it measures the expected number of losing rounds before finally winning one when starting with low
rewards. This is a classic decomposition in bandit analysis, and a counterpart of (C2) holds for most
index policies with provable regret guarantees, e.g Theorem 1 in Kveton et al. (2019b) (GIRO) or
Lemma 4 in Agrawal and Goyal (2012)) (Bernoulli Thompson Sampling). We find it noteworthy
that this regret decomposition depends only on the distribution of the best arm and its randomized
Dirichlet Sampling index when it is a challenger.
Corollary 3.1.1 (Conditions for controlled regret). If condition (C1) and (C2) holds for the DS index
on the families of distribution (Fk)k∈{1,...,K}, the regret of the DS algorithm satisfies

RT ≤
K∑
k=2

∆knk(T ) + o(log T ) .
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Up to this point this result is quite abstract, but this standardized analysis allows us to instantiate
the Dirichlet Sampling algorithm on different class of problems and calibrate it in order to ensure
condition (C2) holds and to make nk(T ) explicit. In particular if nk(T ) = O(log T ), we recover the
logarithmic regret. In the next section, we present technical results to justify calibrations of the DS
index for several kind of families.

3.1 Technical tools: boundary crossing probability of a DS index

In this section, we highlight some key properties of a sum of random variables re-weighted by a
Dirichlet weight vector that help us suggest a sound tuning of the bonus B(X ,Y) for different kind
of families. We then detail such tuning.

Boundary crossing probability (BCP) We consider a set of n+ 1 observation points X =
(X1, . . . , Xn+1) ⊂ Rn+1. (Intuitively, n points are samples from a challenger arm, and one point
corresponds to the added bonus). Then, for any µ ∈ R, we introduce the following “Boundary
Crossing Probability” (BCP) term, conditional on X

[BCP] := Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
,

where we recall that Dn+1 is the Dirichlet distribution with parameter (1, . . . , 1) of size n+1, i.e
the uniform distribution on the (n + 1)-simplex. We emphasize that here X is considered fixed,
and the only source of randomness comes from the weights w. When all observations are distinct
this expression has a closed form, which is unfortunately untractable in the proof, as discussed in
Appendix C.2. This quantity is of much interest as both the growth of nk(T ) and (C2) can be derived
from respectively upper and lower bounds for the BCP. Lemma 14 and Lemma 15 in (Riou and
Honda, 2020) provide such bounds, resorting to classical concentration results and properties of the
Dirichlet distribution that we recall in Appendix C.1 and C.2, and complete with additional technical
results. The lower bounds suggest non-trivial tuning of the bonus. We first exhibit a necessary
condition when the bonus is not allowed to depend on the set of observations X .
Lemma 3.2 (Necessary condition with a data-independent bonus). Consider a fixed bonusB(X , µ) =
B(µ), and a distribution F (with CDF also denoted F ). If Condition (C2) holds then

B(µ) > µ+
1

1− F (µ)
EF [(µ−X)+] .

This result is obtained using a "worst-case" scenario when all observations are below the threshold
µ. Hence, it does not cover all possible trajectories, yet it suggests to investigate the properties of
bonuses with a similar form. Since the right-hand side of the inequality requires a knowledge on the
arms distributions that we would like to avoid, we use an empirical estimator for the expectation.
This suggests to introduce some parameter ρ and data-dependent bonuses of the form

B(X , µ, ρ) = µ+ ρ× 1

n

n∑
i=1

(µ−Xi)
+ . (5)

We interpret ρ as the leverage of the empirical excess gap 1
n

∑n
i=1(µ−Xi)

+ w.r.t the threshold µ.
We then tune ρ assuming an hypothesis on some upper quantile of the arm distribution, which is much
less constraining than assuming knowledge of the shape of the entire tail. In all DS algorithms we
propose (see next section), we use Equation 5 as the basis for defining the appropriate bonus. Finally,
we provide in Lemma 3.3 a novel lower bound on the BCP that reveals that in the general case of
unbounded distributions, without further processing of the data, DS cannot achieve a logarithmic
regret when the maximum of the data tends to +∞ at some rate g(n).
Lemma 3.3 (Lower bound for the BCP). Consider a set X = (X1, . . . , Xn+1) ∈ Rn+1, and assume
that X = max

i∈{1,...,n+1}
Xi ≥ g(n) for some function g. Denoting ∆̄+

n = 1
n

∑n+1

i=1,Xi<X
(µ−Xi)

+ the

empirical positive gap, it holds that

Pw∼Dn+1

(
n+1∑
i=1

wiXi ≥ µ

)
≥ exp

(
−n ∆̄+

n

g(n)− µ

)
.

In particular, we see in this expression that g(n) may hinder the exponential rate in n. In the next
section we discuss three examples of DS algorithms and their theoretical guarantees.
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3.2 Theoretical guarantees for Dirichlet Sampling algorithms

Building on the results from previous the section, we now instantiate the DS algorithms for three
bandit problems. We first prove that optimal guarantees can be derived for DS with bounded
distributions under a non-standard definition of the problem (i.e unknown upper bound but alternative
assumptions), motivated by practical considerations. Then, we consider a natural extension to
unbounded distributions using a simple truncation mechanism, ensuring logarithmic regret under
assumptions on some quantile of the distributions. Finally we consider a simple DS algorithm,
securing slightly larger-than-logarithmic regret for the entire family of light-tailed distributions. In
the following we denote by B(X , µ, ρ) the bonus defined in Equation 5 for a set X , a mean µ and
some parameter ρ. For simplicity we will keep a generic µ in our exposition, while its value is in
practice the empirical mean of the leading arm. We detail each algorithm and their components in
Appendix A.2 and the proofs of the three theorems in Appendix D. In all cases, the proof consists in
showing that (C1) and (C2) hold for each proposed algorithms in the settings they tackle and deriving
an expression for nk(T ).

Optimality for bounded distributions Let F[b,B] be the set of distributions supported in [b, B],
and consider a bandit ν = (ν1, . . . , νK) with νk ∼ F[bk,Bk] for some Bk ∈ R. If we assume that
Bk is known (case 1), then simply defining Bk as the exploration bonus ensures an asymptotically
optimal regret, with a direct adaptation of the proof of NPTS (Riou and Honda, 2020). However, the
precise knowledge of the upper bound for each arm is sometimes inaccessible to the practitioner (e.g
if the environment is new, or if no expert is available to provide an estimate of the bound). We propose
an alternative setting, with the family Fγ,pB = {∃B : ν ∈ F[b,B],Pν([B − γ,B]) ≥ p} ⊂ F[b,B].
Bk is unknown but we assume it is detectable in the sense that we will observe a sample from its
neighborhood [Bk − γ,Bk] with a reasonable probability of at least p, with known γ, p (case 2). In
this case we propose the following bonus, allowing to obtain theoretical results in this setting,

B(X , µ) := max{X+γ,B(X , µ, ρ)} , where X̄ = max{x : x ∈ X}. (6)

Theorem 3.4 (Optimality of BDS). If ∀k ∈ {2, . . . ,K} , νk ∼ Fγ,ρB , choosing the exploration
bonus of Equation 6 with ρ ≥ −1/ log(1− p) ensures that

E[Nk(T )] ≤ log(T )

KBρ,γinf (νk, µ1)
+O(1) ,

where Bρ,γ = max (B + γ, µ1 + ρEνk [(µ1 − µk)+])).

This setting is a first example of the interest of data-dependent bonuses. It makes sense in practice
by avoiding for instance distributions with a small mass arbitrarily far from the rest of their support,
which may not be likely in a real-world application. We now consider the unbounded case.

Unbounded distributions: truncating the upper tail Let consider the family F[b,+∞] for some
unknown b ∈ R. A natural way to extend algorithms designed for F[b,B] (where B < +∞) is to
truncate the upper tail of the distributions. We propose a simple way to do this, by considering
(as a parameter of the algorithm) a quantile 1 − α, denoted by q1−α(ν) for a distribution ν, and
a truncation operator Tα that (1) do not change a distribution below its 1 − α quantile, and (2)
"summarizes" its upper tail by its expectation, known as Conditional Value at Risk (CVaR). Formally,
we obtain Tα(ν)(A) = ν(A) for any A ⊂ [b, q1−α(ν)] and Tα(ν) ({x}) = α1(x = Cα(ν)) for any
x > q1−α(ν), with Cα(ν) = E[X|X > q1−α(ν)]. We then propose Quantile Dirichlet Sampling
(QDS), that computes the index of a challenger (say arm k, with observations Xk) during a duel
as follow: (1) apply Tα to the empirical distribution, (2) compute the bonus B(Xk, µ, ρ), and (3)
re-sample the truncated empirical distribution with weights drawn according to Dir(1, . . . , 1, nα)
where parameter nα is for the weight used with the empirical CVaR, and is simply the number of
observations used to compute it (to avoid a bias in the re-sampled mean). We can obtain theoretical
guarantees with this method by considering the subset of distributions

Fα[b,+∞) = {ν ∈ F[b,+∞) : ∀µ > Eν(X),KF[b,+∞)

inf (ν, µ) ≥ KMk

inf (Tα(ν), µ)} ,

where Mq
k = max{q1−α(νk), µ1 + ρEνk [(µ1 −X)+]}, and the second Kinf is taken on the family

F[b,Mq
k] (using previously introduced notations). Although technical, this condition essentially states
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that the bandit problem taken on the complete family F[b,+∞) is no harder than an alternative bandit
problem considering the truncated distributions and a bounded family, with an upper bound depending
on the 1− α quantile and the leverage ρ of the exploration bonus.
Theorem 3.5 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν1, . . . , νK) satisfying
∀k, νk ∈ Fα[b,+∞) for some b > −∞ (lower-bounded support) and a known α > 0. Then, for any
ε0 > 0 small enough QDS with any parameters α′ < α and ρ ≥ (1 + α′)/α′2 satisfies

E[Nk(T )] ≤ log T

KMC
k

inf (Tα(νk), µ1)− ε0

+O(1) ,

with MC
k = max{Cα(νk), µ1 + ρEν [(µ1 −X)+], and Tα is the truncation operator we defined.

This result is of particular interest as it captures the continuum between bounded and light-tailed
distributions. In our opinion, it sheds new light on the interpretation of infeasability results of e.g
Ashutosh et al. (2021): logarithmic regret can be achieved without specifying the tail with precise
parameters, but a simple quantile condition is required to avoid pathological distributions that makes
little sense in practice (e.g very small mass at a very large value). We further discuss this condition in
Appendix E and provide examples of families for which it holds (exponential, Gaussian).
Remark 3.6. The restriction to the semi-bounded case b > −∞ is due to our proof technique, based
on a discretization of the support of the truncated distribution (see Appendix D). Note that the actual
value of b is not known by the algorithm. This is intuitive sinceKF−∞,Binf = KFb,Binf for all b, B ∈ R, as
proved in Theorem 2 of (Honda and Takemura, 2015). Different theoretical tools could allow to prove
a logarithmic regret for QDS in the doubly unbounded case, possibly with a symmetric treatment of
the two tails. We leave this extension for future work.

One may wonder whether the couple quantile condition/truncation is necessary to achieve theoretical
results as well as good practical performance. Our last algorithm investigates this issue.

Robust regret for light-tailed distributions We call Robust Dirichlet Sampling (RDS) the algo-
rithm with bonus B(X , µ, ρn), where the leverage ρn is a function of the sample size n = |X |. We
prove that while being very simple, RDS achieves a robust sub-linear regret bound when each arm
comes from any unknown light-tailed distribution, that we define as the family

F` = {ν ∈ F(−∞,+∞) : ∃λν > 0,∀λ ∈ [−λν , λν ],Eν [exp(λX)] < +∞} .

Theorem 3.7 (Robust regret bound for RDS). Let ν = (ν1, . . . , νK) a bandit model satisfying
νk ∈ F` for all k. Consider any increasing sequence (ρn)n∈N with ρn → +∞, ρn = o(n). Then,
for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded
by

E[Nk(T )] ≤ nη,ε0k (T ) +O(1) ,

where for any η ∈ (0, 1], ε0 > 0, nη,ε0k (T ) is the sequence satisfying

nη,ε0k (T ) =
log T

η(∆k−ε0)
(Mk,n

η,ε0
k (T )−µ) , with Mk,n=max

{
F−1
k

(
exp

(
− 1

n2(log n)2

))
, ρn

}
.

In particular, if ρn = O(log n) then E[Nk(T )] = O(log(T ) log log(T )) for any light-tailed distribu-
tion νk ∈ F`.

The sequence Mk,n is a large probability upper bound of the maximum of n observations from Fk,
that we discuss in Appendix D. For light-tailed distributions, it holds that Mk,n = O(log n) (using
Jensen inequality as in the proof of Theorem 2.5 in Boucheron et al. (2013)). Hence, choosing
ρn = O(log n) we can further obtain the simpler upper bound inO(log(T ) log log(T )). This slightly
larger-than-logarithmic rate is a consequence of Lemma 3.3. In our opinion this is a small cost
compared to the adaptive power of RDS. We call the algorithm robust because these theoretical
guarantees are obtained on the broad class of light-tailed distributions, without any additional
assumption. We recommend the leverage function ρn = O(

√
log(1+n)), which corresponds to the

growth rate of the maximum of sub-Gaussian samples and is empirically validated (see Appendix F).
We emphasize that RDS thus avoids all hyperparameter tuning, a desirable feature for the practitioner
with little information on the problem she faces. Furthermore, in the next section we show that this
algorithm performs very well in practice despite its non-logarithmic asymptotic guarantees.
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4 Application in a crop-farming environment

We consider a practical decision-making problem using the DSSAT2 simulator (Hoogenboom et al.,
2019). Harnessing more than 30 years of expert knowledge, this simulator is calibrated on historical
field data (soil measurements, genetics, planting date...) and generates realistic crop yields. Such
simulations are used to explore crop management policies in silico before implementing them in
the real world, where their actual effect may take months or years to manifest themselves. More
specifically, we model the problem of selecting a planting date for maize grains among 7 possible
options, all else being equal, as a 7-armed bandit. The resulting distributions incorporate historical
variability as well as exogenous randomness coming from a stochastic meteorologic model. We
illustrate this in Figure 1 with the histogram of four of these distributions, computed on 106 samples.
They are typically right-skewed, multimodal and exhibit a peak at zero corresponding to years of
poor harvest, hence they hardly fit to a convenient parametric model (e.g SPEF/sub-Gaussian. . . ).

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

Figure 1: Distribution of simulated dry grain yield (kg/ha) for four out of seven different planting
dates. Reported on the x-axis are the distribution minimum, mean and maximum values. The optimal
arm is the third one (mean 3630 kg/ha).

Benchmarks A natural choice for the learner would be to use algorithms adapted for bounded
distributions with known support. Indeed, one could argue that crop yields are fundamentally bounded
by a very large value, that can be provided with some expert knowledge. However this method may
have limits when the upper bound cannot be estimated accurately (few data, new environment, . . . ),
as a conservative bound can have a cost on the regret. For this reason, we believe that the novel
Dirichlet Sampling algorithms we introduce in Section 3.2 are a good alternative choice for this
problem. In particular, the three algorithms we propose in this paper are relevant in this setting:
BDS keeps the bounded-support hypothesis but introduces the possible uncertainty on the bound,
while the light-tailed hypothesis of RDS and the quantile condition of QDS look reasonable. In
Figure 2 we compare DS algorithms to empirical IMED (Honda and Takemura, 2015) and NPTS
(Riou and Honda, 2020), with two upper bounds: 1) the "exact" upper bound is provided looking at
the maximum of all historical data collected (left figure), and 2) the algorithms use a conservative
estimate with a value 1.5 times larger than the previous one (right figure). To avoid cluttering, we
only report the performance of IMED and NPTS as they were the most competitive baselines on this
problem, but report figures with other competitors (e.g UCB1, Bernoulli TS, SDA) in Appendix F.

Tuning For BDS we choose the parameters ρ = 4, γ = 3500, corresponding to p ≈ 20% in the
hypothesis of Theorem 3.4, which is conservative in our example. For QDS, we set ρ = 4 to be able
to compare with BDS and a quantile 95%. Finally for RDS, we choose ρn =

√
log (1+n), which

enters into the theoretical framework of Theorem 3.7.

Results Our results show that Dirichlet Sampling algorithms achieve similar or slightly lower regret
to their competitors when the latter are allowed to use the "exact" upper bound, and compare favorably
when they use a conservative estimate (1.5 times larger, right), see Figure 2. In particular, RDS is the
overall winner in both experiments. We think this demonstrates the merits of trading-off logarithmic
regret (albeit only by a factor O (log log T )) for finite-time adaptation to the tail behaviour via the
leverage ρn. As a side remark, note that our round-based implementation is more efficient than NPTS
as it does not draw random weights for the leader, which is the most costly operation at each round.
The code to reproduce the experiments is available in this github repository.

2Decision Support System for Agrotechnology Transfer is an open-source project maintained by the DSSAT
Foundation, see https://dssat.net/
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Figure 2: Average regret on 5000 simulations and horizon T = 104. Dashed lines correspond to
5%-95% regret quantiles. Empirical IMED and NPTS are run with exact upper bounds around
1.5× 104 kg/ha (left) and the conservative upper bound 1.5× 104 kg/ha (right).

Other experiments To further illustrate the properties of DS algorithms, we perform additional
experiments on synthetic examples. Due to space limits, we present our results in Appendix F. First,
we test the sensitivity of DS w.r.t its hyperparameters, and check that their impact on the performance
of the algorithms is moderate. Then, we show the merits of RDS in case of model misspecification,
following the robustness experiments of Ashutosh et al. (2021). Finally, we consider the case of
Gaussian mixtures, a common tool to model nonparametric distributions via kernel density estimation,
and show that they fit the scope of DS but not that of usual bandit algorithms.

5 Conclusion

In this paper, we introduced a new framework for randomized exploration in stochastic bandits
based on resampling of the reward history and a data-dependent bonus, which generalizes an opti-
mal Thompson Sampling strategy for bounded distributions to light-tailed families. We proposed
three instances of such Dirichlet Sampling (DS) algorithms, corresponding to different modeling
assumptions. In our opinion, these new algorithms are appealing for the practitioner because 1) our
theoretical results show strong guarantees under different settings, 2) DS algorithms are simple to
implement despite the technically challenging analysis and achieve strong practical performances,
and 3) they provide alternative robust ways to tackle unbounded distributions in bandit problems.
Interesting future directions include extending the DS framework to heavy tail distributions, and
tightening the analysis of Boundary Crossing Probabilities of Section 3.1 to design sharper bonuses
for general families of distributions motivated by real use-cases. Moreover, we believe the duel-based
structure associated with the generic regret decomposition of Theorem 3.1 opens up new perspectives
to design exploration strategies in bandits. In particular, they allow to analyze policies using the
history of two arms in the computation of a single index.
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