Layer-wise Update Aggregation with Recycling for
Communication-Efficient Federated Learning

Jisoo Kim', Sungmin Kang?, Sunwoo Lee!*
'Inha University
Incheon, Republic of Korea
ZUniversity of Southern California
Los Angeles, CA, USA
starprin3@inha.edu, kangsung@usc.edu, sunwool@inha.ac.kr

Abstract

Expensive communication cost is a common performance bottleneck in Federated
Learning (FL), which makes it less appealing in real-world applications. Many
communication-efficient FL. methods focus on discarding a part of model updates
mostly based on gradient magnitude. In this study, we find that recycling previous
updates, rather than simply dropping them, more effectively reduces the communi-
cation cost while maintaining FL performance. We propose FedLUAR, a Layer-wise
Update Aggregation with Recycling scheme for communication-efficient FL. We
first define a useful metric that quantifies the extent to which the aggregated gra-
dients influence the model parameter values in each layer. FedLUAR selects a
few layers based on the metric and recycles their previous updates on the server
side. Our extensive empirical study demonstrates that the update recycling scheme
significantly reduces the communication cost while maintaining model accuracy.
For example, our method achieves nearly the same AG News accuracy as FedAvg,
while reducing the communication cost to just 17%.

1 Introduction

While Federated Learning has become a distributed learning method of choice recently, there
still exists a huge gap between practical efficacy and theoretical performance. Especially, the
communication cost of model aggregation is one of the most challenging issues in realistic FL.
environments. It is well known that larger models exhibit stronger learning capabilities. The larger
the model, the higher the communication cost. Thus, addressing the communication cost issue is
crucial for realizing scalable and practical FL applications.

Many communication-efficient FL. methods focus on partially ‘dropping’ model parameters and
thus their updates. Quantization-based FL methods reduce communication costs by lowering the
numerical precision of transmitted model parameters, representing each parameter with a lower
bit-width. Pruning-based FL methods directly remove a portion of model parameters to avoid the
associated gradient computations and communication overhead. Model reparameterization-based
FL methods adjust the model architecture using matrix decomposition techniques, reducing the total
number of parameters.While all these approaches reduce the communication cost, they commonly
compromise learning capability by either reducing the number of parameters or degrading the data
representation quality.

In this paper, we propose FedLUAR, a Layer-wise Update Aggregation with Recycling method
for communication-efficient and accurate FL. Instead of dropping the updates for a part of model
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parameters, we consider ‘reusing’ the old updates multiple times in a layer-wise manner. Our study
first defines a useful metric that quantifies the extent to which the aggregated gradients influence the
model parameter values in each layer. Based on the metric, a small number of layers are selected to
recycle their previous updates on the server side. Clients can omit these updates when sending their
locally accumulated updates to the server. This layer-wise update recycling method allows only a
subset of less important layers to lose their update quality while maintaining high-quality updates
for all the other layers. Our study shows that, by carefully choosing the update recycling layers, the
model aggregation cost can be dramatically reduced while maintaining the model accuracy.

Our study provides critical insights into achieving a practical trade-off between communication cost
reduction and the level of noise introduced by any types of communication-efficient FL methods. First,
by introducing noise into layers where the update magnitude is small relative to the model parameter
magnitude, the adverse impact of the noise can be minimized, thus preserving FL performance.
Second, our study empirically demonstrates that the update recycling approach achieves faster loss
convergence compared to simply dropping updates for the same layers. Our theoretical analysis also
shows that FedLUAR converges to a neighborhood of a stationary point when updates are recycled in
a sufficiently small number of layers. We designed our FL. method to leverage these findings and it
can be readily applied to various FL applications to improve scalability.

We evaluate the performance of FedLUAR ° using representative benchmark datasets: CIFAR-10 [19],
CIFAR-100, FEMNIST [4], and AG News [42] We first compare FedLUAR to several state-of-the-art
communication-efficient FL methods: Look-back Gradient Multiplier [2], FedPAQ [31], FedPara [12],
PruneFL [13], FedDropoutAvg [8], and FedBAT [23]. We also compare the performance between
using and not using the recycling method for advanced FL optimizers. Finally, we provide extensive
ablation study results that further validate the efficacy of our proposed method, including performance
comparisons based on the number of layers with recycled updates. These experimental results and our
analysis show that FedLUAR provides a novel and efficient approach to reducing the communication
cost while maintaining the model accuracy in FL environments.

2 Related Work

Structured Model Compression — Several low-rank decomposition-based FL methods have been
proposed, which re-parameterize the model weights to reduce either computational or communication
costs [12, 28, 35]. These methods modify the model architecture in a structured way using various
tensor approximation techniques [18]. The re-parameterization methods often increase the number
of network layers, resulting in higher implementation complexity and higher computational costs.
Moreover, they struggle to maintain model performance when the rank is significantly reduced.
Sketched Model Compression — Quantization-based FL methods have been actively studied to
reduce the number of bits used per parameter [5, 9, 31, 36]. Model pruning methods, such as
PruneFL [13], FedMP [14], FedPruning [22], GossipFL [33], and SpaFL [17], remove a portion
of model parameters to reduce both computational and communication costs. These methods are
categorized under a sketching approach. Although quantization methods reduce communication
overhead, they uniformly degrade the data representation quality of all parameters, overlooking their
varying contributions to the training process. The pruning methods potentially harm the model’s
learning capability since they directly reduce the number of parameters.

Other Communication-Efficient FL. Methods — FedLAMA [21] adaptively adjusts model aggre-
gation frequency in a layer-wise manner. Dynamic model aggregation method proposed in [15]
aggregates local models in a decentralized manner. FedKD [37] reduces communication cost by
employing knowledge distillation in place of model aggregation. These methods address the high
communication cost issue in FL. However, they do not consider the possibility of ‘reusing’ previous
gradients. In this work, we focus on recycling previously computed gradients to reduce the com-
munication cost. Bandwidth-aware Compression Ratio Scheduling (BCRS) [34] adjusts the top-k
compression ratio in a network bandwith-aware manner. YOGA [26] adopts a layer-wise aggregation
strategy based on layer priority, which shares conceptual similarities with our proposed method.
However, it assumes a peer-to-peer decentralized FL environment without a central server, which is
not applicable to server-based FL scenarios.

Gradient-Weight Ratio in Deep Learning — A few of the recent works focus on utilizing gradient-
weight ratio. Some researchers adjust learning rate based on the ratio to improve the model per-

*https://github.com/swblaster/FedLUAR



formance [27, 39]. These previous works theoretically demonstrate that the gradient-weight ratio
delivers useful insights that can be utilized to adjust the inherent noise scale of stochastic gradients.
In this study, we propose and employ a similar metric in FL environments: the ratio of accumulated
updates to the initial model parameters at each communication round.

Gradient Dynamics — Depending on the geometry of the parameter space, the gradient may remain
consistent over several training iterations [2]. It has also been shown that the loss landscape becomes
smoother as the batch size increases, and thus the stochastic gradients can remain similar for more
iterations [16, 20, 25]. We explore the possibility of ‘recycling’ such stable gradients multiple times.
By recycling previous updates, clients can avoid update aggregation in some network layers. In the
following section, we will discuss how to safely recycle updates in a layer-wise manner.

3 Method

In this section, we first introduce a layer prioritization metric that can be efficiently calculated during
training. Then, we present a communication-efficient FL. method that recycles updates for layers with
low priority. Finally, we provide a theoretical guarantee of convergence for the proposed FL method.

3.1 Motivation
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nitudes (left) and ratios (right) are shown at the bottom of the charts. The detailed hyper-parameter
settings can be found in Appendix.

The key message from this empirical study is that layers with small gradients do not necessarily
show a small ratio of gradient norm to weight norm. The small ratio can be interpreted as a less
significant impact of the update on changes in parameter value. Even when the gradient is large, if the
corresponding parameter is also large, its effect on the layer’s output will remain minimal. From the
perspective of each layer, therefore, the ratio may serve as a more critical metric than the magnitude
of the gradients alone. This observation motivates us to explore a novel approach to prioritizing
network layers by focusing on the ratio of gradient magnitude to weight magnitude rather than solely
monitoring gradient magnitude.

3.2 Layer-wise Update Recycling

Gradient-Weight Ratio Analysis — We prioritize network layers using the ratio of gradient magnitude
to weight magnitude. Given L layers of a neural network, the prioritization metric s; ; is defined as



Algorithm 1 Layer-wise Update Aggregation with Recycling (LUAR)

1: Input: Al: the latest local updates, Ay_q: the updates used at the previous round, R;: the set of
recycling layers, 0: the number of recycling layers

Clients send out the local updates: u; = [A} ], VI ¢ R,

Server aggregates the updates: u; = % ol

ry = A1),V € Ry

Ay = [r,uy

Update the recycling scores: s; ; > Eq. (1)
p’ «+ Calculate p}, VI € [L] >Eq. (2)
Ri+1 < Random_Choice(|L], 4, p*)

Olltpllt: At, Rt+1

LN kR

follows.

sp=18utl vy vo o p oy ()
12,1l

where A, ; is the accumulated local updates averaged across all the clients at round ¢ for layer [,
and x. ; is the initial model parameters of layer [ at round ¢. Intuitively, this metric quantifies the
relative gradient magnitude based on parameter magnitude. If s; ; is measured large, we expect the
layer’s parameters to move fast in the parameter space making it sensitive to the update correctness.
In contrast, if s; ; is small, the layer’s parameters will not be dramatically changed after each update.
We assign low priority to layer [ if its s;; is small, and high priority if it is large. In this way, all the
L layers can be prioritized based on how actively the parameters are changed after each round.

This metric can be efficiently measured on the server-side. The x; ; is already stored on the server
before every communication round. All FL methods aggregate the local updates after every round,
and thus A, ; is also already ready to be used on the server. Therefore, s, ; can be easily measured
without any extra communications. This is a critical advantage considering the limited network
bandwidth in typical FL environments.

Layer-wise Stochastic Update Recycling Method — We design a novel FL method that recycles the
previous updates for a subset of layers. The first step is to calculate a probability distribution of L
network layers based on the prioritization metric shown in (1). The probability of layer [ to be chosen
is computed as follows:

1/St,l
o 1 se

Each layer has a weight factor % so that it is less likely chosen if its priority is low. Dividing it by

Dtl = ,Vie{0,---,L—1}. 2)

ngol 1/s;,; ensures the sum of all weight factors equals 1, allowing p values to be directly used
as a weight factor of random sampling. Second, our method randomly samples J layers using the
probability distribution p shown in (2). We define those sampled layers at round ¢ as R;. Finally, the
sampled ¢ layers are updated using the previous round’s updates instead of the latest updates. That is,
the clients do not send to the server the local updates for those § layers.

It is worth noting that the weighted random sampling-based layer selection prevents the updates for
low-priority layers from being recycled excessively. When low-priority layers are not sampled, their
updates will be normally aggregated on the server-side and thus their s; ; values can be updated. We
will analyze the impact of this stochastic layer selection scheme on the overall performance of the
update recycling method in Section 4.

We formally define the update recycling method as follows.

U = [At,lLVl ¢ R 3
ry = [At—l,lLVZ S Rt (4)
Ay = [r,uy], (5)

where u; is the updates for layers not included in R, r; is the recycled updates for ¢ layers in R;,
and A, is the global update composed of u; and r;. Algorithm 1 shows the Layer-wise Update



Algorithm 2 Federated Learning with Layer-wise Update Aggregation with Recycling (FedLUAR)

1: Input: a: the number of active clients per round, 7": the total number of rounds
2: Ry + an empty set.
3: fort € {0,---,T—1} do

4: A = Random_Choice([N], a).

5: Server sends out X;, R, to the clients Vi € [A].

6: Client receives the model: x; , = X;.

7: forje{1,---,7} do '

8: x; ; = Local_Update(x; ; ;).

9: end for 4 ' 4

10: Clients calculate the update A} = x; . — X; .
11: Ay, Ryy1 = LUAR(AL Ay, Ry) > Alg.1
12: Xt+1 = X¢ + At
13: end for

14: Output: xp

Aggregation with Recycling (LUAR) method. Note that the number of layers whose update will
be recycled, ¢, is a user-tunable hyper-parameter. We will further discuss how § affects the model
accuracy as well as the communication cost in Appendix A.4.

Federated Learning Framework — Algorithm

2 shows FedLUAR, a FL framework built upon o= ll4cal
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dAvg as the base federated optimization algo-

rithm for s]mphc]ty However, extending it to Figure 2: Schematic illustration of FedLUAR.
more advanced FL optimizers is straightforward,

as LUAR is agnostic to the choice of optimizer.

Potential Limitations — FedLUAR requires the server to notify active clients about which layer updates
should be omitted when uploading their local updates. This introduces an additional communication
cost compared to other FL. methods. However, this extra overhead is likely negligible, as the list
of recycled layer IDs (§ integers) can be transmitted along with the initial model parameters at the
beginning of each communication round.

3.3 Theoretical Analysis

We consider non-convex and smooth optimization problems:

x€ER?

min F(x) := % ZFi(X),

where F;(x) = E¢,~p,[f(x,§)] is the local loss function associated with the local data distribution
D, of client ¢ and m is the number of clients. Our analysis is based on the following assumptions.
Assumption 1. (Lipschitz continuity) There exists a constant L > 0, such that |V F;(x)—V F;(y)|| <
Ll|x —yl|,vx,y € R andi € [m)].



Assumption 2. (Unbiased local gradients) The local gradient estimator is unbiased such that
Eg,~, [V f(%,&)] = VFi(X), ¥i € [m].

Assumption 3. (Bounded local and global variance) There exist two constants o, > 0 and o > 0,
such that the local gradient variance is bounded by E[||V f(x,&;) — VE;i(x)||]? < 02,Vi € [m), and

the global variability is bounded by E [||VF;(x) — VF(x)|]?] < 02 Vi € [m].

Noise Definition — We define g as a stochastic gradient vector that corresponds to the ¢ layers whose
updates will be recycled. Likewise, the corresponding full-batch gradient is defined as VFE (x). We
quantify the ratio of || VE(x;)||2 to | VF(x¢)||2, which is < 1, as «. By the definition of VE'(x), x
goes to zero if none of the layers recycle their updates. To analyze the impact of the update recycling
in Algorithm 1, we also define the quantity of noise n; as follows.

m 7—1

ng 1= At*At— ZZ Qf kj — gt,]) (6)

21]0

The k in (6) represents the degree of update staleness, which increases as the update is recycled in
consecutive communication rounds. As shown in Algorithm 1, our proposed method does not specify
the upper bound of % and adaptively selects the recycling layers based only on s;; values. Therefore,
we analyze the convergence rate of Algorithm 2 without any assumptions on the & value.

Herein, we analyze the convergence rate of Algorithm 2 (See Appendix for proofs).

Lemma 1. (noise) Under assumption 1 ~ 3, if the learning rate n < é the accumulated noise is
bounded as follows.

Z E {Hnt\ﬂ < AT7%07 + 8T7%0%,

T-1

+ 8k72
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where m is the number of clients.

Theorem 2. Under assumption 1 ~ 3, if the learning rate n < 61\/33; and Kk < 16, we have
T—1 4
E[ VF 2} < (F(xo)- F
> E[IVF0I] < (=g, (Flow) = Flxcr)
4T Ln 9
44+9L 7
e (2 raroct) ot ™
10807 L2372 -
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Remark 1. Lemma 1 shows that the update recycling method ensures the noise magnitude bounded
regardless of how many times the updates are recycled and how many layers recycle their updates
if k is sufficiently small. This result can serve as a foundation that allows users to safely recycle
updates in a layer-wise manner, thereby reducing communication costs.

Remark 2. Algorithm 2 converges to a neighborhood of a stationary point, as the second and third
terms on the right-hand side of (7) do not vanish as T — oo. Furthermore, the term of (4 + 9L£2)o2
is independent of the learning rate ) and remains non-zero even as n — 0. Although it does not
ensure convergence to an exact minimum, this rough guarantee is considered useful in real-world
applications [7, 41].

In general, as the degree of non-IIDness increases, the global variance tends to grow due to greater

discrepancies among local datasets. As shown in the final term on the right-hand side of (7), recycling
2,2 2

updates in more layers increases the coefficient %, which in turn amplifies the final term.

Consequently, the model is expected to converge more slowly. This suggests using smaller learning

rate as the degree of non-IIDness increases to maintain the convergence rate.



3.4 Memory Usage Analysis

In FedAvg, server should receive local mod-

els from all active clients. Consequently, the Memory

. . . Dataset (Model) Algorithm 5 .
maximum memory footprint is a - d, where Footprint (MB)
a is the number of active clients and d is the CIFAR-10 (ResNet20) FedAvg i 33.49

. . - esINel
model size. By contrast, FedLUAR receives lo- FedLUAR 10 1523
cal models from active clients except ¢ layers. N
S pt J lay CIFAR-100 (WRN28-10)  FedAve 4,462.80

Thus, the memory footprint is @ - (d — k), where FedLUAR 14 2,604.88
k is the size of 0 layers. Instead, the previ- FedAvg - 806.11

X FEMNIST (CNN)
ous global update should be kept in the mem- FedlUAR 2 20473

ory space for the § layers, consuming k space FedAvg - 829418
only. Therefore, FedLUAR’s memory footprint FedlUsR 30 182542
isa-(d—k)+k<a-d.

To support our analysis, we actually measured
the memory footprint of FedAvg and FedLUAR
during training. First, the total number of clients
is 128 and only randomly selected 32 clients are activated at each communication round. We use
MPI to run FL on 2 GPUs. Thus, each process locally train 16 models and then all the locally
trained models are aggregated using MPI_Allreduce(). Table 1 shows the memory footprint of
each process, observed during training under this setting. We can clearly see that FedLUAR uses less
memory space than FedAvg. This advantage is directly related to the reduced communication cost,
which will be discussed in Section 4.3.

AG News (DistillBERT)

Table 1: Comparison of memory usage observed during
training.

4 Experiments

Experimental Settings — All experiments are conducted on a GPU cluster which has 2 NVIDIA
A6000 GPUs per machine. We use TensorFlow 2.15.0 for training and MPI for model aggregations.
All experiments were performed at least 3 times, and the average accuracies are reported.

Datasets — We evaluate the performance of our proposed method on representative benchmarks:
CIFAR-10 (ResNet20 [10]), CIFAR-100 (Wide-ResNet28 [40]), FEMNIST (CNN), and AG News
(DistillBert [32]). When tuning hyper-parameters, we conduct a grid search with a sufficiently small
unit size (e.g., 0.1 for learning rate). To generate non-IID datasets, we use label-based Dirichlet
distributions with & = 0.1, which indicates highly non-IID conditions.

Data Heterogeneity — For IID datasets, we simulate non-IID settings using Dirichlet distributions.
The concentration coefficient « is set to 0.1 for CIFAR-10/100 and 0.5 for AG News.

4.1 Comparative Study

We first present an accuracy comparison among SOTA communication-efficient FL methods below.

* LBGM (Low-rank Approximation) [2] e PruneFL (Pruning) [13]
¢ FedPAQ (Quantization) [31] » FedDropoutAvg (Dropping) [8]
* FedPara (Reparameterization) [12] ¢ FedBAT (Binarization) [23]

Table 2 shows the performance comparison (See Appendix for the detailed settings). The total number
of clients is 128 and randomly chosen 32 clients participate in every communication round. Note
that the FL methods cannot have exactly the same communication cost due to differences in their
mechanisms. To ensure fair comparisons, we find algorithm-specific settings that achieve accuracy
reasonably close to the baseline (FedAvg) while minimizing communication costs, and then compare
the validation accuracy across algorithms.

Overall, FedLUAR achieves accuracy comparable to the baseline while significantly reducing commu-
nication costs across all four benchmarks. Notably, for FEMNIST and AG News, it matches FedAvg’s
accuracy with less than 20% of the communication cost. Our method also outperforms all other
SOTA methods. While FedPAQ and FedBAT reduce communication cost, they suffer from noticeable
accuracy drops. Regardless of the dataset, FedLUAR consistently delivers the highest accuracy among
communication-efficient FL. methods. These results demonstrate that LUAR effectively finds less
critical layers and recycles their updates, minimizing the communication cost without sacrificing
performance.



CIFAR-10 CIFAR-100 FEMNIST AG News
Method (ResNet20) (WRN-28) (CNN) (DistillIBERT)
Accuracy Comm Accuracy Comm Accuracy Comm Accuracy Comm

FedAvg 61.27 £ 0.7% 1.00 59.88 £ 0.8% 1.00 71.01 £ 0.4% 1.00 82.66 £+ 0.2% 1.00
LBGM 54.87 £ 0.5% 0.65 57.13 £ 0.2% 0.87 69.83 £ 1.0% 0.71 77.96 £ 0.1% 0.23
FedPAQ 57.42 + 0.2% 0.50 36.15+ 0.1% 0.50 71.54 £ 0.1% 0.25 82.72+0.1% 0.25
FedPara 55.16 + 0.1% 0.51 46.14 £ 0.1% 0.61 67.69 + 0.1% 0.22 75.22 + 0.1% 0.69
PruneFL 56.76 £ 0.1% 0.51 59.40 + 0.1% 0.69 69.42 + 0.4% 0.19 77.25 +0.1% 0.22
FDA 56.54 + 0.3% 0.50 51.25 £ 0.1% 0.60 70.61 £ 0.1% 0.25 64.94 £ 0.1% 0.50
FedBAT 39.56 £ 0.1% 0.03 47.24 +£0.1% 0.03 68.27 £ 0.1% 0.03 76.38 £ 0.1% 0.57
FedLUAR 60.15 + 0.7% 0.47 59.73 + 0.6% 0.61 73.17 £ 0.1% 0.18 82.80 +0.1% 0.17

Table 2: Classification performance comparison. Comm denotes the communication cost relative to FedAvg.
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Figure 3: Number of model aggregations per layer. FedLUAR significantly reduces aggregation frequency across
all benchmarks. The gap from FedAvg indicates how often updates were recycled (i.e., communications skipped).

4.2 Harmonization with Other FL Methods

The proposed FL method does not have any dependencies on the local training algorithm. To demon-
strate this, we apply LUAR to several advanced FL methods, including FedProx [24], MOON [29],
FedOpt [30], FedMut [1 1], FedACG [6], and PruneFL [13], and analyze its effect on model accuracy.
Table 3 shows CIFAR-10 and FEMNIST accuracy comparisons (See Appendix for details). LUAR
maintains the validation accuracy while significantly reducing the communication cost across all
three benchmarks. Comm denotes communication cost relative to full model averaging. For instance,
FedPAQ reduces communication to 50% of FedAvg, while LUAR further reduces it to 22% of FedPAQ,
just 11% of FedAvg, without compromising accuracy. These results show that LUAR can effectively
complement advanced FL algorithms and is readily applicable to real-world scenarios.

4.3 Communication Cost Analysis

FedLUAR enables clients to skip uploading updates for less important layers, thereby reducing com-
munication costs. Figure 3 shows the number of communications for each layer. The communication
count charts indicate that FedLUAR requires significantly fewer communications than vanilla FedAvg,
while achieving comparable model accuracy. An interesting observation is that, in FEMNIST and AG
News, the layer with the largest number of parameters tends to be recycled most frequently, resulting
in a substantial reduction in total communication cost. However, this trend is not observed in the
CIFAR-10 and CIFAR-100 benchmarks. Thus, we conclude that the proposed method is independent
of layer size and specific model architectures, as it adaptively identifies the least significant layers
regardless of the model design.

4.4 Ablation Study

To further validate the effectiveness of the proposed metric shown in (1), we conduct an ablation
study as follows. Fixing the number of layers to recycle updates, §, we measure model accuracy using
different layer selection metrics. By comparing these accuracies, we can determine which metric
is most effective in identifying the least critical layers in terms of their contribution to the global



Periodic Averaging LUAR (Proposed) Comm § Periodic Averaging LUAR (Proposed) Comm §

FedProx ~ 61.74+0.1%  61.20£0.1%  0.54 FedProx  71.94+0.1%  73.45+0.1%  0.09
FedPAQ ~ 57.424+0.2%  57.40+£0.2% 0.33 FedPAQ  71.54+0.1%  71.15+0.1% 0.11
FedOpt 62.424+0.1%  62.284+0.2%  0.50 FedOpt 72.34£0.1%  71.91+£0.1% 0.22
MOON 62.33+1.2%  61.65+0.1% 0.51 10 MOON 71.55+0.1%  71.634+0.1% 0.24 2
FedMut  61.27+0.1%  60.42+0.1% 0.56 FedMut  71.91+0.1%  72.31+0.1% 0.26
FedACG  65.024+0.1%  64.28£0.1% 0.55 FedACG  72.16 £0.1%  71.94+£0.1% 0.21
PruneFL ~ 56.76 £0.1%  55.43£0.1%  0.49 PruneFL  69.42+0.1%  69.11+0.1% 0.11
(a) CIFAR-10 (ResNet20) (b) FEMNIST (CNN)

Table 3: CIFAR-10 and FEMNIST performance comparison between before and after applying LUAR. LUAR is
applied to half of the model layers for both datasets, using ResNet20 for CIFAR-10 and a CNN for FEMNIST.
The Comm column shows the ratio of LUAR’s cost to the FedAvg’s cost.

CIFAR-10 FEMNIST AG News

Layer Selection Scheme Acc. (%) Comm. Acc. (%) Comm. Acc. (%) Comm.

Random 53.94% 048 71.10% 051 80.27% 0.23
Top (input-side) 56.03% 0.73 N/A 79.71%  0.21
Bottom (output-side) 45.02% 024  69.54% 0.13  81.14% 045
Gradient norm 55.88% 055 70.91% 0.70 75.06% 0.22
Deterministic recycling  48.47% 020 69.08%  0.02 80.22%  0.15
LUAR(Proposed) 60.15% 047 73.17% 0.18 82.80% 0.17

Table 4: Performance comparison with different layer selection schemes. For CIFAR-10 and FEMNIST, half
the layers were reused; for AG News, 30 layers. Comm. denotes communication cost normalized to FedAvg.
Selecting top layers in FEMNIST leads to early-stage divergence.

model training. In particular, we compare the classification performance between the most popular
gradient-based layer selection and our proposed LUAR. Table 4 shows the performance comparisons.

This ablation study provides several key insights. First, LUAR outperforms uniform random sampling,
demonstrating that our proposed metric (1) effectively identifies less critical layers. Second, even
with the same metric, a deterministic selection strategy yields lower accuracy. Persistently recycling
updates for layers with low s; ; values can cause them to be too much outdated, introducing excessive
noise that degrades model performance. Third, LUAR consistently outperforms the gradient norm-
based method, supporting our earlier observation (Fig. 1) that gradient magnitude alone is insufficient
to assess update importance. We thus conclude that the gradient-to-weight ratio best captures update
quality, achieving the highest accuracy while significantly reducing communication costs.

Additionally, we compare the classification

performance of update dropping and recy- Dataset Dropping Recycling Comm. Cost &
cling schemes. Many existing communication-  CIFAR-10 46.89 & 0.1% 50.07 + 1.6% 0.30 16
efficient FL. methods merely drop a subset of up-  FEMNIST 64.69 & 0.2% 73.17 £1.1% 0.18 2

dates. Table 5 presents the performance compar- _AGNews  77.054£0.1% 8§2.804£0.1% 017 30

isons. Here, Dropping refers to the case where  yple 5: Benchmark performance comparison between
the (5 1eaSt Critical layers are Selected using LUAR update dropping and upda[e recycling schemes.

and their updates are dropped instead of being

recycled. As expected, Dropping achieves the same communication cost reduction as Recycling, but
its accuracy is significantly lower than that of Recycling. This ablation study clearly demonstrates the
superior performance of our proposed update recycling scheme.

How much does it accelerate? — Figure 4 shows the learning curves for CIFAR-10 and AG News.
The x-axis represents the communication cost relative to FedAvg. To highlight the difference clearly,
we selectively present comparisons among four methods only. The comparison clearly shows that
FedLUAR achieves similar accuracy to FedAvg much faster than other SOTA communication-efficient
FL methods. Since our method incurs little to no additional computational cost, the same performance
gain can be expected in terms of the end-to-end training time in realistic FL environments. In our
empirical study, we observed the same performance gains across many different FL. benchmarks. See
Appendix for more curve charts and the detailed experimental settings.



FedAvg FedPAQ FedPAQ FedAvg FedAvg FedPAQ FedLUAR LBGM FedAvg
= LBGM FedLUAR FedLUAR LBGM = LBGM FedLUAR
S 12 < ; g 12 3
g & 2 [}
w g w >
g g
0 < 7] <
g 0.6 .5 § 0.6 f:’
2 £ 2 £
€ 03 S £ 03 ]
g 0 0.5 10 = 0 0.5 1.0 g 0 0.5 1.0 = 0 0.5 1.0
Communication Cost Communication Cost Communication Cost Communication Cost
(Relative to FedAvg) (Relative to FedAvg) (Relative to FedAvg) (Relative to FedAvg)
(a) CIFAR-10 (b) AG News

Figure 4: Learning curves for CIFAR-10 (ResNet20) and AG News (DistillBERT), with communication cost
(x-axis) normalized to FedAvg. Four representative methods are shown for clarity.

5 Conclusion

In this paper, we demonstrated that selectively recycling updates in specific layers can reduce
communication costs in FL while preserving model accuracy. In particular, our study empirically
proved that the gradient-to-weight magnitude ratio can serve as a practical metric for identifying the
least significant layers. This layer-wise partial model aggregation scheme is expected to facilitate
the development of efficient FL applications and promote the partial model training paradigm across
various deep learning fields. We consider developing a communication-efficient Large Language
Model fine-tuning method based on the update recycling scheme as a promising direction for future
work. A discussion of the broader impact of this work is provided in Appendix A.1.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe our main contributions, including
the proposed layer-wise update recycling method and its communication efficiency benefits,
which are consistent with the results shown in Section 4 and 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We give the limitations in Section 3 and Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The theoretical results are fully supported with all assumptions explicitly stated
in Section 3.3. Complete and correct proofs are provided in Appendix A.2.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report all settings and details necessary to reproduce the main experimental
results in Section 4 and Appendix A.3.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is publicly available at https://github.com/swblaster/
FedLUAR, and the repository link is also provided at the bottom of page 2 of the paper
for reference.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report all settings and details of experiments in Section 4 and Appendix
A3.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars, as each experiment was repeated 3 times and the
mean result is presented.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 and Appendix A.3 provide sufficient information on the computer
resources required to reproduce the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We report broader impacts in Appendix A.1.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of any pretrained models, data, or
systems that carry a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We will make the code public upon acceptance of the paper, and the models
and datasets used are all publicly available, so no licenses are required.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any human subjects and therefore does not require
IRB approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not use LLMs in any important, original, or non-standard way
as part of the core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

The appendix is structured as follows:

 Section A.1 briefly announce broader impacts of this study.
* Section A.2 provides problem definition, assumptions, and proofs of our theoretical analysis.
» Section A.3 presents detailed experimental settings.

 Section A.4 presents additional experimental results and analyses.

A.1 Broader Impacts

We do not anticipate any negative societal impact from our research. The proposed method accelerates
neural network training in the context of Federated Learning. Faster training implies that target model
accuracy can be achieved with fewer training iterations. As a result, it contributes to lower power
consumption and a reduced carbon footprint.

A.2 Theoretical Analysis

We consider non-convex and smooth optimization problems as follows.

Z Fy(x), ®)

where F;(z) = E¢,.p,[f(z,&)] is the local loss function associated with the local data distribution
D; of client 7 and m is the number of clients.

Our analysis is based on the following assumptions.

Assumption 1. (Lipschitz continuity) There exists a constant L > 0, such that |V F;(z) — VF;(y)|| <
Lz — y|,Vz,y € RY andi € [m).

Assumption 2. (Unbiased local gradients) The local gradient estimator is unbiased such that
Ee,~p,[Vf(2,&)] = VFi(z),Vi € [m].

Assumption 3. (Bounded local and global variance) There exist two constants oy, > 0 and o > 0,
such that the local gradient variance is bounded by E[||V f(z,&;) — VF;(2)||]? < 02,Vi € [m], and
the global variability is bounded by E [|V F;(z) — VF (z)||?] < 0%,Vi € [m].

Herein, we analyze the convergence properties of FedAvg as follows. First, the following Lemma is a
slightly refined version of Lemma 3 in [30]. This Lemma is also used as Lemma 2 in [38].

Lemma 3. (model discrepancy) For any step-size satisfying n < Mﬁ’ we have the following
result:

m

1 )
— > Ellxi, —xil’] < 50°07 +30mn° 0% + 30rn°E[[[VF (x,)||]

=0
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Proof. For any clienti € [m],t € [T — 1], and k € [7], we have
Elllx; 5 — xel|*] = Elllxt 51— x¢ = ngi 51 [1%]
= E[llx} 51— %0 =1 (i 41 = VEI(X 1) + VFi(x1 1) = VE(xi) + VEFi(x) = VF(x) + VF(x0)) [|]
=E[lln (9151 — VFi(x; 1)) IY)
+2E[(n (9141 — VEi(x1 1)) Xt g1 — X =1 (VFi(Xi 1) = VFi(xe) + VFi(x0) = VF (%) + VF(xy)))]
+E[lx; 5oy = xe =1 (VEi(x; 1) = VEi(xe) + VFi(x) = VF (%) + VF (%)) ||?]

= E[lln (91 5-1 — VFi(Xp 1)) Y] &)
+E[lx; 51— xe =1 (VEi(x; 1) = VE(x0) + VFi(x) = VF (%) + VF(x1)) ||?]
< n’of + Ellxi o1 = xe =0 (VEi(x; 1) = VEFi(xe) + VFi(x¢) = VF(xt) + VF (%)) ||]

51 ) Ellas - il (10)
+ 2|V E;(x} 1) — VF;(x¢) + VFi(x;) — VF(x;) + VF(x)|?]
1 i
<vfap + (14 57 ) Elldass - il
+ 67 (EIIVE (b 1) — VE G2 + BNV EGr) — VF )] + E[IVE (o))
1 i
<vfap+ (14 5 ) Ellass - il

+ 600, + 6T L*E[||x; .y — %¢|*] + 670 E[|[ VF (3,) |°]

<n?o% + <1+

1
2r -1
where (9) is because E[g; , ;] = VFi(x] ). The (10) is based on the fact that

— 20l + 6ro% + (1 SR 6m2L2) Ellixi 1 — x| + 6m? B[V (x0) 2,

1
la+b* < (14 =)fall* + (1 +a)|b||*
for any o > 0.

Next, if n < Mﬁ the above bound can be simplified as follows.

Efllx; 5 — x|

< 1202 + Brifod + (1 SR 6m2L2) Ellxi oy — x:[1%] + 6rn?E[|VE(x0)]1]

21 —1

1 i
<ot +omipo + (14 1 ) Ellxis - xll) + 6riPBIF )L
Then, by unrolling the recursion until £ — 1 goes to 0, we have

k-1 j
i 1
Bllxts 2 < X (14 727 ) (1P + 6miPot + 6riPB VRG]
=0

1
T—1

< (7= )+ )7~ 1) (P} + 60702 + 6rPE[IVE(x) )

<(r=1)((1+

VL2 1) (1903 + 6702 + 6 E[| VE (x,) )

< 5mn%0r + 307200 + 3070 E]| VF (x)||?]. (11)

where (11) is because that the maximum value of (7 — 1)((1+ =15)7™ — 1) is 12 when 7 = 3. Finally,
because the right-hand side of (11) is independent of m, we have

1 & ,
o ZE[IIXZ;,k —x¢|?] <507 + 30770 0 + 30T Bl VE (x) |17
=0
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Based on the proposed update recycling method, the noise n; is defined as follows.

m 17—1
1

ng = E Z Z (ngk,j - gi,j) )

i=1 j=0

where g indicates the gradient vector that has non-zero gradients only at the layers where their updates
will be recycled.

Lemma 4. (noise) Under assumption 1 ~ 3, if the learning rate n < % the accumulated noise is
bounded as follows.

T—1 T-1
SE [||nt||2] < 4T7%0% + 8T7%0% + 8x7> Y E [HVF(xt)H?}
t=0

t=0
87'L2 T—-1 m 7-1 ‘ )
+ PIPIEA[HEE (12)
M S0 i =0
where k is the ratio of |V F(x;)||? to ||V F(x:)||%
Proof.
2
1 m 7—1
2 e e
E {HntH } =E EZ (Qt—k,j _gt,j)
i=1 j=0
- ) ,
1 m T7—1 ) 1 m T—1
< 2E EZ Gikjl| | +2E EZ gi
=1 j=0 i=1 j=0
o7 m T—1 » 9 27 m T—1 y 5
= EZ E[ Girsll } T ZE{ 9.4l }
i=1 j=0 i=1 j=
2 m T—1 . . , . ' 9
= YO E [ Gtk — VEXi_p ) + VE(X ) ‘ }
i=1 j=0
2 m T—1 . A 4 A 4 9
+ 20558 ot - V) + V)]
i=1 j=
27 A " L 2 . 2
==y (E { Gy~ VEG )| } +E [vax;k,j)H D (13)
i=1 j=0
m 71
2 ) P 2 . 2
=D (E{ Gy~ VA& } +E [HVFi(X;j)H D
i=1 j=0

|
L

m m 7—1
9 . ) 2 2 7 ] 2
<oo}+ TN SR U\vm(x;_k,j)H } +2r%0] + 3 E [HVFZ(X%)H ] :
— £ i=1 j=0
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where (13) is based on the fact that E[||x||?] = E[||x — E[x]||?] + ||E[x]||*. Then, the right-hand side
can be further bounded as follows.

=1 j=0 =1 j=0
m T—1
- 2
= A7 JLJrZZ]E{HVF xi ki) VF(Xt k) + +VF, i (Xe k)”]
i=1 =0
m 7—1
ZZEMVF (xi,) = VEi(x:) + VE(x)| }
=1 5=0
Ar m 17—1 R ) ) 2 Ar m T—1 ) 2
<4ro} + RZZE {HvFi(xi—k,j) - VFi(Xt—k)H ] + EZZE [HVFi(Xt—k)H }
i=1 j=0 i=1j=0

35 e v - v+ 35w v

i=1 7 1=1 j7=0
4 L m T—1 4 m T—1 R 9
< 47'20L . Z E [th kg = Xt— kH } ETZ E [HvFi(th)H ]
=1 j7=0 =1 j7=0
4 L2 m 7—1 ) 4 m 7—1 . 9
jn ZZ (It ; = xil|”] +IY>E [HVFZ-(xt) }
i=1 j=0 i=1 j=0
m T7—1 4TL2 m T7—1 . 9
S S B [l ]+ T SR [ - ]
i=1 j=0 =1 j=0

m 7—1
4T

=D
m

=1 j=
T

> & |90 - D) + T

= i E {HVF (x¢) — VE(x,) + VE(x; H }

=1 5=0

m 17—1 L2m7-1

2,2 ZZE“Xt kj — Xt k”} Z]ZOE“XU XtH}

pur e pas
+gzm: ]EMVFZ-(th)—VF(Xtk)HQ]-i-i:i:T EMVF(XM)M

T—1 —1

i=1 j= i=1 j=0
4 m T— 9 4 m T—1 R 2
Yy ]E MVF (x¢) — VE(x) } + %Z > E U VE(x) ]
=1 j=0 =1 5=0
= 47202 + 87%02% + 47°E MVF Xy k)H } 4R [ vF(xt)H2] (14)
47'L . ; 0] 4TI A . 2
—> D E “Xt—m | } —> D E [||Xt,j — x| }
i=1 j=0 i=1 j=0
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where (14) follows | VF(-)||2 < || VF(-)||2. By summing up E[||n,]|] across T rounds, we have

T-1 T-1 . 2 -1 . 2
SE [||nt||2} < ATr%0% +8T7%0% +47° Y E |:HVF(th)H } +472 3 E [HVF(xt) }
t=0 t=0 t=0
4TL2 T—1 m 7-—1 . 9 4’7’L2 T—1 m 7-—1 .
=D > ]E[thfk,j—xtka } +— ZZZE[HXt,j—XtH
t=0 i=1 j=0 t=0 i=1 j=0
T-1 T—1

T—-1
< ATr%0% 4+ 8T7%0% + 877 Y E Mvﬁ(xt)
t=0

t=0 i=1 j=0
T-1 87‘L2 -1 m 7-1

<ATT?0% +8Tr20% + 8n7% S E[|IVF(x)|*| + = E[|lx,
t=0 t=0 i=1 j=0

where « is the ratio of the recycled update norm to the full update norm. Because all the gradients at
the layers not recycled are zeroed out, the ratio « lies between O and 1; 0 < k < 1. O

Lemma 5. (framework) Under assumption 1 ~ 3, if the learning rate n < é we have

T—1

) P 0T (L , 16T
3 < _ _e (B y o
2 E {HVF(X”“ } =1 —16r)yr (Fx0) = Flxr)) + 5, (m TR Lt 6,0

T-1 T—

182 - ;
T 1om)mr ZO DBl -]

t=0 i=1 j=

—

where & is the ratio of the norm of the recycling layers’ gradients: |V E(x;)|? to that of the full
model gradients: |V F(x;)]|%.

Proof. We first define the following notations for convenience.

T—1 T—1
AL=D gl =Y VIxi; &)
j=0

Jj=0

J AN
Ay izangi-f-nt’
=

where f} is a random sample drawn from the local dataset ¢ at the local step 7 and n; is a noise caused
by the update recycling.

Based on Assumption 1, taking expectation of F'(x;41), we have:
L 2
E[F(xer1)] < F(xe) + (VE(xe), Elxerr = xe]) + SE[[xe1 — x¢]7]
L
= F(x0) + (VF(x0), E[=nAd]) + SE[InA ]

= F(x¢) + (VF(x0), E[-nAs + n7VEF (%) = 7V EF(x)]) + gE[IInAtIIQ]

= F(x:) = 7| VE(x)|* + (VF(x0), E[=nA: + g7V (x)]) + g]E[HnAtHz]-
——

T1 T2
(15)

Now, let us bound 77 and 75 separately as follows.
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Bounding 73.
= (VF(x;),E[- nAt +nTVF(x4)])

m 7—1
1
VF(x —n (mZthjJrnf) +nTVF(x)

VF(x f% ; . g;j +nTVEF(x) — nng

VF(x —

<VF _%i VFz’(Xi,jH'%iT_ VFz‘(Xt)—ﬁnt]>
1=0 j=0 i=1 j=0

X —\/ﬁmT_l (xE ) — i (X —@n
VITVE (x¢) [ mﬁz (VE(x};) — VEFi(x)) NG t]>

T 1
= T IVF(x)|* + E

2

1 \/77 m 17—1 . \/’ﬁ
— 3B = ;;VFi(Xt,J) + = (16)
1 2 9
\/ﬁ m T— ~ @
[VE(x,)||” + E mﬁ;;( Fi(x; ;) = VFi(x))| | +E Hﬁnt ]
2
1 m T7—1
_2i —ZZVFZ(Xt])+nt
T i=1 j=0
m T—1
< %T IV (x0))? %Z E [HVFZ-(xi,j) - VFZ-(xt)HQ} T QE [Hnt\ﬂ
i=1 j=0
m T7—1 2
—2i lZZVF,(X”)-FW (17)
T i=1 j=0
m T7—1
< T IVF) + 25 3B [ — x| + 2 [inel?]
i=1 j=0
2
n m 7—1 . 1
B 2m27-E ;jzo (VFi(Xt,j)+ T”t) ) (18)

where (16) holds because (z,y) = %[[z|*> + [|yl|* — ||z — y||*] forz = \/MTVF(x;) and y =
_ m\/\ﬁﬁ PO Z;;é(VFi (xi ;) — VF;(x;)). Also, (17) is based on the convexity of £, norm and
Jensen’s inequality.
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Bounding 75.

1 m T ]
= EllnAdP) = n’E || =33 gi;+me

i=1j=0
.

1™

. 1
(gi’j + ;nt VF( ) + VF

=1 j=0
2 2
1 m T ; ; 1 m T
i=1 j=0 i=1 j=0
2 2

20 - ~ i 2 I ¢~ v i

= s DB |3 ogi — VEK)| | +207E | VEGx,) + (19)
i=1 Jj=0 i=1 j=0
2

27]27_ ) 2772 m T . 1

< 0L + WE Z Z VEi(x; ;) + — , (20)

where (19) is due to the fact that E[||x1 + x2 + - - - 4 x,, [|?] = E[[|x1[|2 + [|x2|* + - - - + [|xn ||?] if
x;s are independent of each other with zero mean and E[g; ;] = VF;(x; ;).

Now, by plugging in (18) and (20) into (15), we have

/37]7

E[F(xi1)] < F(x)) - TE [|[VF(x)|1P] +

i 1
+(n;72—27227>E ZZO( J(xi ) + nt) + 2E |ns]?]

nr £n27 U
< F(x) = TE[IVFe)I?] + =0 + 1B [n?]

m T—1
E“xt] x| } Q1)
=1 j=0
where (21) holds if n < ~—. Summing up (21) across T' communication rounds, we have

5
L
5

-1

(Feen) - Fex)) < - ST [19FGe) 2] + 2073 ”ZE[HnM

~+
I
o



Based on Lemma 1, the right-hand side can be re-written as follows.
T—1

T-1 2
nT Ly*tT
; (F(xi41) = F(x)) < (86mn - ) ; EIVF()|P] + ZL=0% + 4nrTo} + snrTod

T-1 T—1

. (8n£2 77:12) ZiiE [ |x; —XtHQ}

t=0 =1 5=0

T-1
L
= (8%777 — %) Z E [HVF x¢)|] } ntT (rr? + 4) ot +8nrTo
t=0
g2 T o !

m Z ZZE (i =]

0 i=1 j=

+

After rearranging the telescoping sum, we finally have

z_:]E{HVF(Xt)HZ} < %(F(Xo)—F(xT))_F 2T (577+4> b2y 16T o
t=0

16K)nT 1-16k \ m 1—-16k
18[:2 T—1 m 7-—1 9
R e DD DD DL | EAEE
(1 —16K)mt pour e e
O
Now, we can derive the following Theorem based on Lemma 3, 5, and 1 as follows
Theorem 6. Under assumption 1~3, if the learning rate n < 61\/52" and Kk < 16, we have
T—1
4 4T Ln 10807 L2072
E[VF 2}<7F _F 44902 )02 4 BT 2
2::0 IVEGI] < gy (FO0) = Fler) + == (T +4+ T

Proof. Based on Lemma 3 and 5, we have
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: 1-16k
where (22) holds if n < G300 O

A.3 Experimental Settings in details

Implementation Details — All our experiments are conducted on a GPU cluster that contains 2
NVIDIA A6000 GPUs per machine. We use TensorFlow 2.15.0 for training and MPI for model
aggregations. All individual experiments are performed at least three times, and the average
accuracies are reported. The total number of clients is 128 and randomly chosen 32 clients participate
in every communication round. We use mini-batch SGD with momentum (0.9) as the local optimizer.
Table 6 shows the hyper-parameter settings for all our experiments, used not only for our method but
also for other SOTA methods.

Hyperparameters CIFAR-10 (ResNet20) CIFAR-100 (WRN-28) FEMNIST (CNN)  AG News (DistillBERT)

7 (local steps) 20 20 20 20
batch size 32 32 20 128
min learning rate 0.2 0.1 0.01 le—5
max learning rate 0.2 0.4 0.01 le—5
total epoch 200 300 200 100
weight decay le—4 le—5 le—4 le—4
decay epoch 100, 150 150, 200 100, 150 60, 80

Table 6: Hyperparameter Settings for all experiments

Artificial Data Heterogeneity — For benchmark datasets that are not naturally non-IID, we generate
artificial data distributions using Dirichlet’s distributions. To evaluate the performance of our
proposed method under realistic FL. environments, the concentration coefficient « is configured as
0.1 for CIFAR-10, CIFAR-100, and FEMNIST, and as 0.5 for AG News. Note that these small
concentration coefficient values represent highly heterogeneous distributions of local samples across
clients as well as imbalance in the number of samples across labels.

Algorithm-Specific Hyperparameter Selection — Here, we summarize the hyper-parameter settings
used to reproduce other SOTA methods, primarily following the configurations outlined in the
original papers. We find algorithm-specific hyper-parameters using a grid search that achieve
accuracy reasonably close to the baseline algorithm (FedAvg) while minimizing communication
costs, and then measure the validation accuracy as shown in Section 4.1. Table 7 and Table 8 show
the hyper-parameter settings for SOTA methods and experiments shown in Table 2 and 3, respectively.
When running FedPara, both convolution layers and fully connected (FC) layers are re-parameterized
using their proposed method. All hyperparameters shown in Table 7 and 8 are defined in the original
papers.

Algorithm Hyperparameters CIFAR-10 (ResNet20)  CIFAR-100 (WRN-28) FEMNIST (CNN)  AG News (DistillBERT)
FedPAQ s (quantization level) 16 16 8 8

FedPara parameters ratio [%] 0.5 0.6 0.2 0.3

LBGM & (threshold) 0.95 0.98 0.96 0.6

PruneFL reconfiguration iteration 50 50 50 50
FedDropoutAvg  fdr (federated dropout rate) 0.5 0.4 0.75 0.5

FedBAT p, ¢ (coefficient, warm-up ratio) 6,0.5 6,0.5 6, 0.5 6,0.5

Table 7: Hyperparameter Settings for Comparative Study 4.1 of communication-efficient FL. methods

Algorithm  Hyperparameters CIFAR-10 (ResNet20) FEMNIST (CNN)
FedProx e (proximal term coefficient) 0.001 0.001
FedPAQ s (quantization level) 16 8

FedOpt 7 (server learning rate) 0.9 1.2
MOON w1 (control the weight of model-contrastive loss), T (temperature parameter) 1,15 1,0.5
FedMut « (distance scaling factor), 8 (dynamic mutation factor) 05,1 05,1
FedACG A (global momentum scaling factor), 3 (penalty coefficient) 0.7,0.01 0.7,0.01

Table 8: Hyperparameter Settings for Harmonization with Other FL methods 4.2
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A.4 Extra Results

Sensitivity on § — We performed a grid search for each dataset to find the best ¢ setting which yields
reasonable accuracy together with the maximum communication cost reduction. Table 9—12 show the
four benchmarks’ accuracy and communication costs corresponding to various ¢ settings.

How much could be recycled safely? — We also investigate the impact of § on model accuracy
and communication costs. We divide the number of model aggregations at each layer by the total
number of communication rounds to calculate the layer-wise communication cost. Then, we sum up
the calculated layer-wise costs to get the total communication cost. Intuitively, the larger the J, the
lower the communication cost. However, the model accuracy is expected to drop as more layers have
their updates recycled.

Table 9 and 10 show CIFAR-10 and CIFAR-100 experimental results for various § settings. One key
observation is that the accuracy is almost not degraded when LUAR is applied with § < 12 for both
datasets. This means that many network layers have quite stable gradient dynamics, and thus their
updates can be safely recycled. In addition, the accuracy is hardly reduced until the communication
cost is reduced by almost 50%. This is a significant benefit especially in FL environments where the
network bandwidth is extremely limited.

Results under varying degrees of data heterogeneity — The degree of non-IIDness strongly affects
the training efficiency of Federated Learning methods. We conducted additional experiments to
demonstrate that FedLUAR is robust to various degrees of non-IIDness. Table 13 and Table 14 show
CIFAR-10 and AG News experimental results for various Dirchlet concentration factor « settings.
In both benchmarks, FedLUAR achieves comparable accuracy to FedAvg regardless of «, while
considerably reducing the communication cost. Therefore, we conclude that FedLUAR is robust to
the degree of non-IIDness.

Performance under different numbers of active clients — We conducted additional ablation study
using different numbers of active clients. Table 15 and Table 16 show that, regardless of the total
number of clients, FedLUAR achieves accuracy comparable to FedAvg while significantly reducing
the communication cost. This ablation study demonstrates the superior scalability of FedLUAR.
Learning Curves — Figure 5 and 6 show the learning curve comparisons for CIFAR-100 and
FEMNIST benchmarks, respectively. To highlight the difference clearly, we chose only 3
representative methods and compare their curves to those of FedLUAR. It is clearly shown that
FedLUAR achieves virtually the same accuracy as FedAvg while having a significantly reduced
communication cost. These results well prove the efficacy of the proposed update recycling method.

6  Validation Accuracy (%) Communication Cost
0 61.27 + 0.7% 1.00
4 61.25 + 0.4% 0.84
8 60.92 +1.7% 0.68
12 60.15 + 0.7% 0.47
16 50.07 + 1.6% 0.30

Table 9: The CIFAR-10 (ResNet20) classification performance with varying J settings.

&  Validation Accuracy (%) Communication Cost
0 59.88 + 0.8% 1.00
4 59.85 + 0.1% 0.88
8 59.93 + 0.1% 0.76
12 59.73 + 0.6% 0.61
14 56.49 + 0.1% 0.54
16 55.03 + 0.7% 0.51
20 49.60 + 0.2% 0.36

Table 10: The CIFAR-100 (WideResNet28) classification performance with varying § settings.
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& Validation Accuracy (%) Communication Cost
0 71.01 + 0.4% 1.00
1 71.46 £ 0.1% 0.50
2 73.17+1.1% 0.18
3 60.35 + 2.6% 0.03

Table 11: The FEMNIST (CNN) classification performance with varying § settings.

6 Validation Accuracy (%) Communication Cost

0 82.66 £ 0.1% 1.00
10 82.82+0.1% 0.56
20 82.24 £ 0.1% 0.36
30 82.80 £ 0.1% 0.17
35 79.00 £ 0.1% 0.08

Table 12: The AG news (DistillBERT) classification performance with varying § settings.

Method a=01 a=05 a=1.0

Comm Acc Acc Acc

FedAvg 1.00 61.27% 76.54% 79.73%
FedLUAR 0.47 60.15% 76.04% 79.50%

Table 13: CIFAR-10 with various Dirchlet concentration factor « settings. The number of recycled layers,
0 = 10 out of 20 layers in ResNet20.

Method a=01 a=05 a=1.0

Comm Acc Acc Acc

FedAvg 1.00 81.53% 82.66% 83.22%
FedLUAR 0.17 81.88% 82.80% 82.75%

Table 14: AG News with various Dirchlet concentration factor « settings. The number of recycled layers, § = 30
out of 40 layers in DistilBERT.

Method 64 (0.5) 128 (0.25) 256 (0.125)

Comm Acc Acc Acc

FedAvg 1.00 54.24% 61.27% 57.81%
FedLUAR 0.48 53.34% 60.15% 57.81%

Table 15: The § = 10 out of 20 layers in ResNet20 for FedLUAR. 64, 128, and 256 indicate the total number of
clients, and the numbers in parentheses (0.5, 0.25, 0.125) represent the client activation ratio on CIFAR-10.

Method 64 (0.5) 128(0.25) 256 (0.125)

Comm Acc Acc Acc

FedAvg 1.00 66.31% 71.01% 75.97%
FedLUAR 0.14 68.15% 73.17% 76.72%

Table 16: The § = 2 out of 4 layers in CNN for FedLUAR. 64, 128, and 256 indicate the total number of clients,
and the numbers in parentheses (0.5, 0.25, 0.125) represent the client activation ratio on FEMNIST.
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Figure 5: The learning curve comparisons for CIFAR-100 (Wide-ResNet28-10). The x-axis represents the
communication cost relative to FedAvg. FedPAQ has the least amount of communication cost for 300 epochs,
however it loses the accuracy too much. FedLUAR nearly does not drop the accuracy while significantly reducing
the communication cost.
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Figure 6: The learning curve comparisons for FEMNIST (CNN). The x-axis represents the communication
cost relative to FedAvg. FedLUAR significantly reduces the communication cost while maintaining the model
accuracy.
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