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Abstract

Given the challenges associated with the real-world deploy-
ment of Machine Learning (ML) models, especially towards
efficiently integrating novel information on-the-go, both Con-
tinual Learning (CL) and Causality have been proposed
and investigated individually as potent solutions. Despite
their complimentary nature, the bridge between them is still
largely unexplored. In this work, we focus on causality to im-
prove the learning and knowledge preservation capabilities of
CL models. In particular, positing Causal Replay for knowl-
edge rehearsal, we discuss how CL-based models can benefit
from causal interventions towards improving their ability to
replay past knowledge in order to mitigate forgetting.

1 Introduction
Real-world application of Machine Learning (ML) solutions
require models to dynamically learn and adapt with streams
of incrementally acquired data, while preserving past knowl-
edge. Conventional ML-based methods are ill-fated to meet
these challenges as they work under a pivotal assumption
that all data is available a priori under relatively stationary
data distributions (Graffieti, Borghi, and Maltoni 2022). This
stationarity ensures that training samples are independent
and identically distributed (i.i.d), allowing models to learn
in batches of representative distributions. The real-world,
however, is not stationary and changes continuously (Had-
sell et al. 2020). As models continually encounter novel in-
formation, violating this i.i.d assumption, their ability to re-
member previously learnt tasks progressively deteriorates,
resulting in forgetting (McCloskey and Cohen 1989).

Continual Learning (CL) (Parisi et al. 2019; Hadsell et al.
2020) aims to address adaptability in ML-based models by
enabling them to continually learn and adapt, balancing in-
cremental learning of novel information with the preserva-
tion of past knowledge. CL focuses on learning with contin-
uous streams of data acquired from non-stationary or chang-
ing distributions (Hadsell et al. 2020). This may be achieved
by regulating model updates to control plasticity or rehears-
ing past knowledge by storing and replaying already seen
information to simulate i.i.d learning settings.
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Given the above, Causality (Pearl 2009), especially ad-
dressing adaptability and causal discovery, can comple-
ment lifelong learning of information by helping under-
stand the causal structure of the data or the task and ‘re-
adjust’ model learning to cope with changing data distri-
butions (Pearl 2019). Furthermore, it has been posited that
the increasingly apparent challenges in ML (such as ro-
bustness, generalisation, bias, transparency) are due to con-
ventional ML methods learning correlation-based patterns
and relationships (Schölkopf et al. 2021). Causal reason-
ing tools can contribute towards understanding (Cheong,
Kalkan, and Gunes 2023) and addressing some of these chal-
lenges (Cheng et al. 2022).

In this position paper, we focus on knowledge rehearsal
as an effective tool for CL-based models to preserve past
knowledge particularly using causal interventions to under-
stand and update data distributions such that only the most
relevant data samples (for rehearsal) or features (for pseudo-
rehearsal) can be used by the model to preserve past knowl-
edge. Such Causal Replay can help improve the efficiency of
knowledge rehearsal for continual learning of information.

1.1 Knowledge Rehearsal to Mitigate Forgetting
Efficient rehearsal of past knowledge can be achieved by
physically storing samples from previous tasks in mem-
ory buffers and regularly sampling from them (rehearsal –
Robins 1993) mixing it with new data. The simplest strategy
to achieve this is to fix the size of the memory buffer to be
‘large enough’ and randomly maintain a fraction of previ-
ously seen samples from each task in the buffer for periodic
rehearsal (Hsu et al. 2018). However, as the number of tasks
increases, fewer samples are available for rehearsal per task.
Other sophisticated rehearsal methods focus on prioritising
replay following certain heuristics such as feature or classi-
fication margins (Hu, Zhang, and Zhu 2021), or storing ex-
emplars for each task that best approximate task means (Re-
buffi et al. 2017). Despite such ‘intelligent’ sampling, high
dimensionality of data and a large number of tasks require
a huge amount of memory, making their real-world applica-
tion inefficient (Kwon et al. 2021).

Alternatively, generative models may be used, along with
the learning model, that learn the inherent data statistics,
enabling models to draw pseudo-samples to be replayed
(pseudo-rehearsal – Robins 1995) along with novel data.
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Figure 1: Causal Replay for (a) Prioritised Rehearsal and efficient (b) Pseudo-rehearsal of past knowledge.

Recent advances in generative models (Goodfellow et al.
2014; Kingma and Welling 2013), particularly in their abil-
ity to generate high-quality samples, have greatly enhanced
the potential of pseudo-rehearsal methods (Shin et al. 2017;
Churamani and Gunes 2020). More recent methods focus on
generative feature replay (van de Ven, Siegelmann, and To-
lias 2020; Stoychev, Churamani, and Gunes 2023), alleviat-
ing the need to optimise generators for reconstructing high-
dimensional samples. However, as the number of tasks in-
creases, they face capacity saturation and are not able to ef-
ficiently learn task-discriminative representations. Further-
more, the generators become harder to train, resulting in an
inefficient rehearsal of past knowledge. We believe causality
can offer significant improvements in this regard. To date,
there is minimal work that explores the synergies between
CL and causality (Chu, Rathbun, and Li 2021).

1.2 Causality
The study of causality entails a range of tools such as
graphical models, the do-operator, counterfactuals as well
as structural equations (Pearl 2009). Using these tools, con-
ventional causal research has mostly focused on causal pat-
tern recognition (Vowels, Camgoz, and Bowden 2021) and
causal distribution estimation (Yao et al. 2021), Here, we
focus on methods to merge conventional causal research
with ML to address the existing gaps. Recent works in
causal interpretability (Moraffah et al. 2020) and causal fair-
ness (Makhlouf, Zhioua, and Palamidessi 2020) have proven
such an approach to be promising. Here, we leverage two
main themes: Causal Interventions and Causal Structure
Discovery.

Following Pearl’s notation (Pearl 2009) for a Structural
Causal Model (SCM), we have a set of variables V and a
set of functions F that encode the causal relations between
each variable. Using this framework, causal interventions
can be either be ‘structural’ or ‘parametric’ (Spirtes et al.
2000) representing a continuum of ‘harder’ to ‘softer’ in-
terventions. A ‘hard’ intervention can be understood as a
forcible removal of an edge such that the function encod-
ing Vi ← fVi is modified such that another variable Vj is
no longer a parent of variable Vi. ‘Soft’ interventions, on the
other hand, simply modify the conditional probability distri-
butions of the intervened variable Vi. Depending on the task,
we can combine the most appropriate form of causal inter-
ventions with CL-based models to preserve past knowledge
and update the model using only the relevant features. In ad-

dition, we also propose to leverage existing causal discovery
methods (Vowels, Camgoz, and Bowden 2021) that can be
utilised to discover causal relations within the observational
data. We propose to impart the discovered causal knowledge
to CL-based methods in order to mitigate forgetting and to
learn new relevant features.

2 Causal Replay for Knowledge Rehearsal
Understanding the causal structure of the data can enable
models to distil task-relevant information, positively impact-
ing performance (Deng and Zhang 2021; Yang et al. 2021).
This can either be in the form of identifying and prioritising
data samples that contribute the most towards the models’
learning (motivating causal rehearsal) or pruning feature-
sets to extract meaningful representations that best attribute
the task to be learnt (motivating causal pseudo-rehearsal).
These possibilities are discussed further in this section.

2.1 Causal Rehearsal
One strategy for augmenting CL with causality can be
causality-driven rehearsal (see Figure 1 a). Firstly, we aim
to understand the causal structure of task-specific data in or-
der to prioritise samples for rehearsal. As neural networks
are capable of representing the input features as well as their
respective causal relations to each other within their param-
eters, we can learn the causal structure of the data during
the training phase using a range of existing causal discov-
ery methods (Vowels, Camgoz, and Bowden 2021). An on-
line example of doing so is exemplified by Javed, White,
and Bengio (2020) who propose to measure the variance
in the weights of the model, over time, with spurious fea-
tures resulting in high variance. As we are only able to dis-
cover causal Directed Acyclic Graphs (DAGs) up to Markov
equivalence, we can subsequently leverage causal-scoring
methods (Glymour, Zhang, and Spirtes 2019) or causality-
based feature selection methods (Yu et al. 2020) to prioritise
those samples for rehearsal that are deemed to have a higher
causal effect on the target prediction outcome. In addition,
given the causal structure of the data, we can therefore prune
off features that have the least or weakest causal effect on
the target outcome. Subsequently, as we update the model
with each new task, we can reprioritise the samples to up-
date the memory buffer as well as the learnt causal structure.
As such, the causal model can then also be updated in a con-
tinual manner as more data becomes available.



2.2 Causal Pseudo-rehearsal
Another opportunity is that of causality-driven pseudo-
rehearsal (see Figure 1 b). Here the goal is to use the learnt
causal structure of the data to rehearse information in a prin-
cipled manner. Attempts to remove unwanted causal rela-
tions has proven to be effective in the case of knowledge
distillation (Deng and Zhang 2021). However, such an idea
has yet to be fully explored in CL. Existing methods largely
rely on pattern generation to simulate i.i.d. settings. How-
ever, this does not take into account the causal relations be-
tween variables. One way of addressing this is to make use
of interventions (both ‘hard’ and ‘soft’) such that we gen-
erate samples from the updated distribution which has been
‘intervened’ upon. Such an approach has proven to be effec-
tive in the domain of disentangled representation learning
using Variational Autoencoders (VAEs) (Yang et al. 2021).
Instead of simply generating pseudo-samples, we can inter-
vene by updating the parameters of the generative model
based on the causal effect estimated or parameterised by the
learnt causal structure of the data. These parameters can also
be continually updated given new information. By conduct-
ing pseudo-rehearsal in this manner, we are able to adapt to
the changes in new data whilst preserving old information.

3 Summary and Next Steps
In this position paper, we propose to learn the causal
structure of the data for efficient knowledge rehearsal in
CL models. Understanding causal relationships can help
distil knowledge by prioritising samples that contribute
most towards model learning (causal rehearsal) as well as
prune feature-sets to include only the most relevant features
(causal pseudo-rehearsal), having the strongest causal re-
lationships vis-à-vis the tasks at hand. Yet, as causal rela-
tions can be problem or task-specific (as opposed to task-
agnostic), it will also be important to consider the causal
relationship and dependencies between the different tasks
to be learnt, across datasets. Some possible directions may
involve exploring image datasets such as ImageNet (Deng
et al. 2009) and CIFAR-10 (Krizhevsky and Hinton 2009)
where models need to learn different objects or, more Fa-
cial Expression Recognition (FER) datasets such as Affect-
Net (Mollahosseini, Hasani, and Mahoor 2018) and RAF-
DB (Li, Deng, and Du 2017) where the models need to learn
to classify different facial expressions. FER-based applica-
tions can be particularly interesting to explore given the high
overlap in the learnt feature-spaces for the different tasks
(evaluating human faces for expression recognition) as well
as subject-specific variations in data samples. Thus, FER
benchmarks will form the pivotal focus of our further ex-
perimentation with Causal Replay.
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