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ABSTRACT

Preference alignment is a critical step in making Large Language Models (LLMs)
useful and aligned with (human) preferences. Existing approaches such as Re-
inforcement Learning from Human Feedback or Direct Preference Optimization
typically require curated data and expensive optimization over billions of param-
eters, and eventually lead to persistent task-specific models. In this work, we
introduce Preference alignment of Large Language Models via Residual Steering
(PALRS), a training-free method that exploits preference signals encoded in the
residual streams of LLMs. From as few as one hundred preference pairs, PALRS
extracts lightweight, plug-and-play steering vectors that can be applied at infer-
ence time to push models toward preferred behaviors. We evaluate PALRS on
various small-to-medium-scale open-source LLMs, showing that PALRS-aligned
models achieve consistent gains on mathematical reasoning and code generation
benchmarks while preserving baseline general-purpose performance. Moreover,
when compared to DPO-aligned models, they perform better with huge time sav-
ings. Our findings highlight that PALRS offers an effective, much more efficient
and flexible alternative to standard preference optimization pipelines, offering a
training-free, plug-and-play mechanism for alignment with minimal data.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced the state-of-the-art performance across var-
ious domains, including dialogue, programming, and mathematical tasks (Li et al., 2025). While
most capabilities in such systems are due to rich and wide pretraining (Chen et al., 2024; Kirchen-
bauer et al., 2024; Shaib et al., 2024; Wang et al., 2025b), a key determinant in their usability is
how close their outputs align with human preferences (Wang et al., 2023; Shen et al., 2023). Indeed,
preference alignment has emerged in recent years as a focal stage in the LLM deployment pipeline:
approaches such as reinforcement learning from human feedback (Ouyang et al., 2022; Bai et al.,
2022) and direct preference optimization (DPO) (Rafailov et al., 2023) have become standard prac-
tices for eliciting better capabilities from LLMs.

Despite their tangible effects, preference-optimization alignment methods remain costly and inflex-
ible. First, current approaches rely on large volumes of curated preference datasets (Köpf et al.,
2023), thus being highly annotation intensive. Second, despite parameter-efficient methods such
as LoRA adapters, aligning a model remains computationally intensive because it requires repeated
forward and backward passes through large models, often consuming substantial GPU hours. (Sti-
ennon et al., 2020). Third, alignment is typically considered persistent: once an LLM has been
fine-tuned toward a particular preference setting, adapting it to a different set of preferences gener-
ally requires starting again from the base model to produce new checkpoints. Maintaining multiple
preference-specific checkpoints can quickly become resource-intensive. These challenges under-
score the need to scale alignment methods across three dimensions: efficiency (reducing computa-
tional cost), effectiveness (maximizing alignment quality), and flexibility (enabling rapid adaptation
to new preference specifications).

Recently, an emerging line of research has unveiled that residual stream activations of LLMs encode
contextually rich and linearizable features that can be used to manipulate the model behavior surgi-
cally, yet without altering their weights or requiring any additional training (Zou et al., 2023; Zhang
& Nanda, 2024). Residual-based interventions have been shown effective to mitigate refusal behav-
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Figure 1: Euclidean distance and cosine angle between residual stream activations (from Llama 3.1
8B Instruct) of pairs of chosen-rejected responses to math questions, for a fixed token position (last
position in each input response) and varying model layers. Stars denote average coordinates for each
layer. (Best viewed in color)

iors (Arditi et al., 2024; Wang et al., 2025a), erase concepts (Belrose et al., 2023), induce desired
persona-like behaviors (Chen et al., 2025), or improve factfulness (Li et al., 2023). These results
suggest a promising direction, with residuals functioning as “control knobs,” providing a relatively
inexpensive yet effective mechanism for steering model behavior at inference time. However, prior
work has focused on optimizing narrow behaviors (e.g., refusal mitigation), leaving the broader
challenge of using residual interventions to align models with a range of preferences underexplored.

Our Hypothesis. Consider the task of improving a model’s mathematical reasoning or coding ca-
pabilities. Standard practices based on preference optimization alignment, would require curating
thousands of preference pairs, optimizing the model’s weights, and deploying task-specific check-
points, resulting in a resource-intensive and inflexible process.

In this work, we hypothesize that the difference between the residual stream activations of chosen
and rejected responses—to questions grounded in a particular domain, e.g., math or coding—can
be distilled into steering directions that can be used to induce preferred behaviors in a model via
lightweight inference-time interventions.

To support our hypothesis, consider Figure 1, which shows Euclidean distance and cosine angle be-
tween residual stream activations (from Llama 3.1 8B Instruct) of pairs of chosen-rejected responses
to math questions. The observed relatively large Euclidean distances offer evidence that the chosen
and rejected activations can be far apart in residual space, which implies the possibility of defining a
vector, or steering direction, that moves the activation from the rejected toward the chosen response:
if the difference were tiny, a steering vector would have little effect, by contrast, large distances sug-
gest the difference is sufficiently large to guide model behavior adjustment. In addition, the fairly
low angles observed in the majority of points offer evidence that the differences between chosen
and rejected activations are mostly consistent in direction, thus allowing a generalizable aggregated
steering vector to be distilled, rather than needing a separate vector for each example. Combining
the two insights, i.e., the chosen-rejected differences are significant in magnitude and relatively co-
herent in direction, raises a pattern suggesting that a residual-based intervention could reliably guide
the model toward preferred behaviors.

Preference alignment of Large Language Models via Residual Steering (PALRS). Building
on the above remarks, we introduce a novel approach to preference alignment of LLMs through
steering with residual stream activations, dubbed PALRS. Instead of updating model weights via
gradient optimization, PALRS identifies preference directions by extracting differences in residual
activations from only a small set of preference pairs (on the order of 100). These directions are then
applied at inference time, enabling lightweight, plug-and-play steering toward preferred behaviors.

To the best of our knowledge, this is the first study to leverage residual stream directions for prefer-
ence alignment. Our contributions are threefold:
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• We bring the model steering framework based on residual stream activations to the setting of pref-
erence alignment of LLMs, showing that residual stream activations encode preference information
in a linearly accessible form.

• We introduce a simple difference-in-means approach for estimating candidate preference direc-
tions from a small set of chosen–rejected response pairs, without requiring any LLM post-training.
We further propose a principled criterion for selecting the steering direction that best aligns an
LLM’s behavior with target preferences.

• We demonstrate the effectiveness of PALRS through different small-to-medium scale open-source
LLMS, with testing on widely used benchmarks. Particularly, as a concrete case study, we show
that steering directions derived from preference-alignment datasets conceived for math reasoning
(GSM8K) and code generation (HumanEval), under certain conditions of the steering intensity,
lead an LLM to improve performance on corresponding benchmarks, without degrading results
on other-domain benchmarks. Additionally, we highlight that PALRS-aligned models outperform
DPO-aligned models on both GSM8K and HumanEval, achieving superior effectiveness while
requiring much less computational overhead.

2 METHODOLOGY

2.1 PRELIMINARIES

Notation. Throughout this paper, we will use capital letters to denote data objects, lowercase
letters to denote scalars, and bold lowercase letters to denote vectors.

We are given a collection of text triplets ⟨Q,A(+), A(−)⟩ where Q is a question, and As are two
possible (human-provided) answers to Q. Based upon this collection, we define the dataset D =
{⟨Q,A(+), A(−)⟩ |A(+) ≻Q A(−)}, where A(+) ≻Q A(−) denotes that, for question Q, A(+) is
preferred over A(−). Let also t(+), t(−), and t(Q) denote the input sequences of tokens from an
answer A(+), A(−)1 and question Q, respectively.

Residual stream activations. Following previous studies (Zhang & Nanda, 2024), we resort
to the concept of residual stream activation, specifically in the context of a standard Transformer
decoder model, with L layers and hidden size d.

Given an input sequence t, the state of knowledge a model has about a token in position i at the
start of layer ℓ (i.e., before layer ℓ processes it) can effectively be expressed by the token’s residual
stream activation, given the input tokens up to position i and all contributions computed from the
layers preceding ℓ. We will denote it as a real-valued d-dimensional vector xi,ℓ(t), or simply with
xi,ℓ if t is clear from the context.

In other words, the token’s residual stream activation is the accumulated hidden representation of the
token as it flows through the model, thus encoding all contextual information that the model has built
up so far—which includes the initial token and positional embeddings, plus the contributions from
the multi-head causal self-attention and feed-forward MLP components (sublayers) of all previous
layers. This also means that the residual stream is linearly interpretable, since sublayer outputs are
added to the residual stream, and is tied to the model’s prediction distribution, since at the final
layer the model projects the last residual stream through the embedding-to-token matrix to get the
next-token logits.

Model steering. The residual stream activation can be used for model steering because it is the
central state vector that encodes all of the model’s knowledge about a token at a given point.

One effective way to reliably alter the model’s outputs and behavior is activation addition, i.e.,
adding an identified direction r ∈ Rd in the residual space that corresponds to some feature, e.g., to-
kens that are more representative of the chosen responses than the rejected ones. Therefore, shifting
the residual stream along that direction will change the model’s predictions accordingly.

1The two vectors may have arbitrary and different lengths; however, it will be ensured that any token
positions remain consistent across both vectors.
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An opposite approach is directional ablation, which consists in subtracting from the residual stream
its orthogonal projection onto the direction r. However, as noted in (Arditi et al., 2024), the two
approaches have a different impact as the directional ablation applies to all layers and token posi-
tions; by contrast, the activation addition involves only a desired layer (and applies across all token
positions). Besides that, while ablation has been proven effective in refusal-removal setups (Arditi
et al., 2024; Wang et al., 2025a), it is not well-suited to our setting: indeed, chosen and rejected
responses typically differ only by a few key tokens, thus ablating their direction is very likely to
disrupt the model’s behavior.

2.2 EXTRACTING PREFERENCE DIRECTIONS

To extract the candidate preference directions from the model’s residual stream activations, we resort
to the difference-in-means approach (Belrose, 2023), which has shown to be effective in previous
work (Arditi et al., 2024; Tigges et al., 2024; Wang et al., 2025a).

Given the dataset D = {⟨Q,A(+), A(−)⟩ |A(+) ≻Q A(−)} of triplets of questions and chosen-
rejected responses, we first compute two quantities for any choice of token position i and layer ℓ,
which correspond to the average of the residual stream activations produced by the model when it
receives in input the chosen, resp. rejected, responses:

µ
(+)
i,ℓ =

1

|D|
∑

A(+)∈D

xi,ℓ(t
(+)), µ

(−)
i,ℓ =

1

|D|
∑

A(−)∈D

xi,ℓ(t
(−)). (1)

We define the candidate preference direction for a given token position i and layer ℓ as the difference
between the two means as follows:

ri,ℓ = µ
(+)
i,ℓ − µ

(−)
i,ℓ . (2)

It is worth noticing that, to prevent diluting the residual stream signals, we focus on the chosen and
rejected responses while discarding the instruction Q from the computation of directions. Indeed,
we are interested in discerning the signals that differentiate the chosen tokens from the rejected ones,
regardless of a particular prompt.

Position and layer selection strategies. Following (Arditi et al., 2024), we consider only token
positions corresponding to post-instruction tokens, i.e., the template tokens following the instruction
(e.g., <|eot id|> in Llama 3, cf. Appendix A), ensuring the model processed the given text and
starts producing its output.

Regarding the selection of layers, we emphasize the importance of focusing on mid-to-late layers
for model steering. The rationale is that early layers primarily shape broad syntactic and structural
features, well before semantics, knowledge retrieval, and reasoning processes emerge in the mid
layers; also, late layers and especially the unembedding layer directly influence the logits, which
bias outputs without meaningfully altering intermediate reasoning.

2.3 SELECTING THE STEERING DIRECTION

Our goal is to choose the vector that can effectively steer the model toward the desired preference-
aligned behavior, i.e., favoring human-based preferences in generating responses, while avoiding
disruption of its general capabilities.

First, we consider the average signal of residual stream activations induced by the chosen responses
from D. Specifically, for a given layer ℓ, we compute the mean residual stream activation at each
selected token position and then take the average across all such positions. We denote this quantity
by µ

(+)
ℓ .

Let us denote with C = {(i, ℓ)} the set of pairs (token-position, layer id) that are selected as result of
the previous stage of position and layer selection. We aim to select the steering direction by finding
the preference vector ri,ℓ (with (i, ℓ) ∈ C) that is most strictly aligned with µ

(+)
ℓ , that is the vector

ri,ℓ that preserves the direction of µ(+)
ℓ exactly, while only boosting its magnitude. This can be
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accomplished by finding the vector projection of a ri,ℓ onto µ
(+)
ℓ with the maximum magnitude, or

simply the one maximizing the scalar product with µ
(+)
ℓ :

r∗ = arg max
(i,ℓ)∈C

∥∥∥∥∥
(
ri,ℓ ·

µ
(+)
ℓ

∥µ(+)
ℓ ∥

)
µ

(+)
ℓ

∥µ(+)
ℓ ∥

∥∥∥∥∥ = arg max
(i,ℓ)∈C

∣∣∣ri,ℓ · µ(+)
ℓ

∣∣∣ . (3)

Above, the absolute value ensures that only the magnitude of alignment with µ
(+)
ℓ is maximized,

thereby avoiding negative contributions that would otherwise diminish ∥µ(+)
ℓ ∥.

Once we have best aligned a preference direction with the one of the mean activations of the chosen
responses, we rescale r∗ so that its norm matches ||µ(+)

ℓ∗ ||, where ℓ∗ denotes the layer corresponding
to one of the selected r∗:

r̂∗ =
||µ(+)

ℓ∗ ||
||r∗||

· r∗. (4)

The above transformation makes the two vectors comparable on the same scale, which allows us to
better control the effect of the multiplicative factor in the activation addition step, as described next.

2.4 APPLYING THE STEERING DIRECTION

The selected prefernce direction r∗ is eventually used to steer the model toward preference-aligned
behavior. As discussed in Sect. 2.1, the model steering is performed through activation addition,
which means that the selected preference direction is added to the residual stream activations of
any newly generated response by the model. Specifically, given an input token sequence t and by
denoting with xℓ∗ the residual stream activations at any token position and at layer ℓ∗, the steered
residuals are defined as follows:

x′
ℓ∗ := xℓ∗(t) + αr̂∗, (5)

where α ∈ R+ is a coefficient that controls the strength of the steering effect.

2.5 EXPERIMENTAL SETUP

Preference datasets. To demonstrate our proposed PALRS approach, we chose to focus on two
particularly informative testbeds for alignment, namely mathematical reasoning and coding. In fact,
compared to broad, general-purpose tasks like commonsense reasoning, math reasoning and coding
demand precise logical reasoning and adherence to rules—small alignment errors can directly break
correctness—and models’ responses can usually be evaluated unambiguously as correct or incorrect.

Within this view, we used the argilla/distilabel-math-preference-dpo dataset,2 which provides cho-
sen/rejected pairs grounded in mathematical correctness, and inclusionAI/Ling-Coder-DPO,3 whose
preferences aim at improving correctness in coding generation.

From each dataset, we randomly sampled 100 triplets to construct the collection D, which we use
to compute residual stream activations of chosen and rejected responses. Note that the decision
to sample a relatively small number of instances is deliberate, as this is sufficient to capture the
difference-in-means signal, in line with findings from related work (Arditi et al., 2024; Wang et al.,
2025a). In addition, unlike prior work using residual vectors for refusal ablation (Arditi et al., 2024;
Wang et al., 2025a) or personality steering (Chen et al., 2025), our approach does not rely on external
cues for sample selection, such as evaluation scores, targeted refusal tokens, or LLMs-as-judges.

Evaluation goals and benchmarks. We define the following evaluation goals:
• (E1) – Assessing the performance of PALRS-aligned models against baseline models (i.e., not
steered) using two well-established benchmarks for the target tasks: GSM8K (Cobbe et al., 2021)
for mathematical reasoning and HumanEval (Chen et al., 2021) for code generation.
• (E2) – Assessing the performance of PALRS-aligned models on tasks outside the target domains,

2https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo
3https://huggingface.co/datasets/inclusionAI/Ling-Coder-DPO
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Model Hugging Face ID Params Post-training Strategy No. Layers
Llama 1B meta-llama/Llama-3.2-1B-Instruct 1B SFT + RLHF 16
Llama 3B meta-llama/Llama-3.2-3B-Instruct 3B SFT + RLHF 28
Llama 8B meta-llama/Llama-3.1-8B-Instruct 8B SFT + RLHF 32
Mistral mistralai/Mistral-7B-Instruct-v0.3 7B SFT 32
OLMo allenai/OLMo-2-1124-7B-Instruct 7B SFT + DPO + RLVR 32

Table 1: Summary of used LLMs. Post-training strategies are abbreviated as SFT: Supervised Fine-
Tuning, RLHF: Reinforcement Learning From Human Feedback, RLVR: Reinforcement Learning
with Verifiable Reward, DPO: Direct Preference Optimization.

using five widely adopted benchmarks: ARC-Challenge (Bhakthavatsalam et al., 2021) for scien-
tific and commonsense reasoning, HellaSwag (Zellers et al., 2019) for physical and social common-
sense inference, MMLU (Hendrycks et al., 2021) for broad knowledge and multi-task understanding,
TruthfulQA (Lin et al., 2022) for factuality and truthfulness, and WinoGrande (Sakaguchi et al.,
2020) for coreference resolution and pronoun disambiguation. By treating these benchmarks as
guardrails, this evaluation aims to measure whether, and to what extent, PALRS-aligned models for
math or coding steering are able to preserve general-purpose capabilities of baseline models.
• (E3) – Comparing PALRS-aligned models with DPO-aligned models on the target tasks, using
the same 100-sample preference data, and evaluating their performance on the benchmarks as well
as their efficiency.
• (E4) – Assessing the parameter sensitivity of the steering coefficient and its impact on PALRS in
the target tasks.

To ensure reliability and reproducibility in the evaluation of models, we used the well-established
Language Model Evaluation Harness framework (Gao et al., 2024) via its TinyBenchmarks
tasks (Polo et al., 2024), which are a curated selection of samples from the aforementioned bench-
marks that ensure the same evaluation robustness as the full one, at a reduced temporal cost. The per-
formance results which will be reported for the experiments correspond to exact match for GSM8K,
pass@1 for HumanEval, and accuracy for the remaining benchmarks.

Models. We experimented with a range of LLMs differing in family, post-training strategy, and
parameter size, as summarized in Table 1. These include Llama3 (Dubey et al., 2024) in its 1B, 3B,
and 8B variants, Mistral (Jiang et al., 2023) 7B, and OLMo2 (OLMo et al., 2025) 7B. This variety
enables us to assess to some extent the impact of model architectures, post-training approaches, and
sizes on the steering behavior induced by PALRS.

As mentioned in Sect. 2.2, we inspected mid-to-late layers in each of the models. Specifically, we
selected a range [0.3L..0.9L], where L is the number of layers as reported in Table 1.

3 RESULTS

Performance of PALRS on target tasks (E1). Looking at the first two result-columns in Ta-
ble 2,4 we observe how PALRSMath systematically boosts the math-related task (GSM8K) across
all models, with an average improvement over the baseline around +14% (from +3.7% with OLMo
up to +20.1% with Llama 1B). Analogously, PALRSCode consistently improves the code-related
task (HumanEval) across all models, with an average improvement over the baseline around +22%
(from +2.6% with Llama 8B up to +53.3% with Mistral).

Performance of PALRS on guardrail tasks (E2). Important insights also emerge from the per-
formance over the guardrail benchmarks (right-most five columns in Table 2). PALRS-aligned
Llama 1B, Llama 8B, and OLMo are fairly stable, with average percentage changes on guardrail
benchmarks around -1% or less—specifically, for PALRSMath resp. PALRSCode, -0.86% resp.
+0.35% with Llama 1B, -0.64 resp. -0.08% with Llama 8B, and -0.73% resp. -0.51% with OLMo.
PALRSMath with Mistral even slightly improves on average over the guardrails (+0.26%), while

4Table 2 reports the results corresponding to the best model configurations for steering direction extraction,
as reported in Table 4 in Appendix C.
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Tasks Targets ↑ Guardrails ↑

Model Variant GSM8K HumanEval ARC-C HellaSwag MMLU TruthQA WinoGrande

Llama 1B

Baseline 0.34 0.38 0.44 0.55 0.43 0.43 0.57

PALRSMath
0.41 0.41 0.42 0.54 0.44 0.42 0.58

(+20.10%) (+7.89%) (-3.68%) (-1.03%) (+2.39%) (-2.89%) (+0.90%)

PALRSCode
0.31 0.48 0.41 0.56 0.45 0.44 0.56

(-9.90%) (+26.32%) (-6.70%) (+1.95%) (+4.32%) (+3.64%) (-1.47%)

Llama 3B

Baseline 0.62 0.60 0.57 0.78 0.63 0.48 0.61

PALRSMath
0.70 0.56 0.54 0.73 0.62 0.45 0.62

(+13.53%) (-6.67%) (-5.54%) (-5.60%) (-0.85%) (-5.61%) (+1.61%)

PALRSCode
0.57 0.67 0.55 0.74 0.61 0.48 0.64

(-7.72%) (+11.67%) (-3.66%) (-5.19%) (-2.89%) (-0.39%) (+4.52%)

Llama 8B

Baseline 0.72 0.78 0.65 0.81 0.63 0.54 0.75

PALRSMath
0.82 0.77 0.63 0.81 0.63 0.55 0.73

(+13.09%) (-1.28%) (-3.32%) (+0.32%) (-0.12%) (+1.62%) (-1.71%)

PALRSCode
0.76 0.80 0.65 0.81 0.63 0.54 0.75

(+4.71%) (+2.56%) (-0.52%) (+0.00%) (-0.58%) (+0.18%) (+0.50%)

Mistral

Baseline 0.45 0.15 0.64 0.84 0.64 0.61 0.76

PALRSMath
0.53 0.15 0.65 0.84 0.64 0.61 0.76

(+18.42%) (+0.00%) (+1.64%) (-0.05%) (-0.19%) (-0.09%) (+0.00%)

PALRSCode
0.47 0.23 0.65 0.84 0.64 0.61 0.75

(+3.84%) (+53.33%) (+0.95%) (+0.02%) (-0.10%) (-1.46%) (-1.31%)

OLMo

Baseline 0.75 0.52 0.66 0.83 0.62 0.56 0.76

PALRSMath
0.77 0.53 0.65 0.83 0.61 0.54 0.77

(+3.71%) (+1.92%) (-1.19%) (-0.18%) (-1.51%) (-2.43%) (+0.72%)

PALRSCode
0.78 0.60 0.66 0.83 0.62 0.55 0.75

(+4.88%) (+15.38%) (+0.26%) (+0.17%) (+0.00%) (-1.71%) (-1.28%)

Table 2: Benchmark performance results: Baseline vs. PALRS-aligned models. Bold values cor-
respond to PALRS-aligned model performances on the target tasks. Values in parenthesis indicate
percentage increase of a PALRS-aligned model w.r.t. the baseline performance on the same task.

keeping average guardrail degradation around -0.38% when using PALRSCode. By contrast, Llama
3B is the only model to suffer the most guardrail degradation, up to -3.19% with PALRSMath.

Focusing on the models, Mistral provides the largest boost by PALRSCode (+53.4%) and second
large by PALRSMath (+18.4%). Using Llama models has shown a scaling effect, since smaller
models lead to relative larger gains but also stronger impact on guardrail tasks. By contrast, PALRS-
aligned OLMo models have the least improvement (+3.7%) over the baseline on the math task, but
a significant +15.4% on the coding task.

Remarkably, PALRS alignment of the largest models, i.e., OLMo, Mistral and Llama 8B, on one tar-
get task reveals little degradation or, more often, improvement over the other target task, suggesting
that steering in particular on a math task can have beneficial effect on a coding task as well.

Comparison of PALRS with DPO (E3). Figure 2 compares PALRS-aligned models with DPO-
aligned models, in terms of effectiveness and efficiency on the GSM8K and HumanEval bench-
marks (cf. Appendix B for details on the hardware used). PALRSMath-aligned models always
outperform the corresponding DPO-aligned on GSM8K: we notice a clear percentage increase con-
sistently over all models, ranging from +2.6% with OLMo to +20.5% with Mistral, with an average
gain of +10.4%, thus showing robustness across model-scales.

This couples with another outstanding result, which regards time efficiency: PALRSMath-aligned
models are an order of magnitude faster than the corresponding DPO-aligned on GSM8K. For ex-
ample, on Llama 3B, learning the PALRSMath-aligned model takes about 31s vs. DPO-aligned
one’s 300s, i.e., ∼ 10x faster. It is also worth emphasizing that, as models grow larger, DPO-aligned
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Figure 2: Benchmark performance and efficiency comparison of PALRS- and DPO-aligned models:
GSM8K (left) and HumanEval (right). Colored points denote models, star resp. circle markers
denote PALRS- resp DPO-alignment.

Figure 3: Performance of PALRS-aligned models on the target tasks GSM8K (top) and HumanEval
(bottom) by varying the steering coefficient. Dashed horizontal line marks the baseline performance.

models’ times increase steeply, while PALRSMath-aligned models scale much more smoothly (from
5s to about 25s). Accuracy also scales better with PALRSMath-aligned models: the performance
gap against DPO widens with larger models.

Analogous remarks can be drawn from the comparison on the HumanEval benchmark. The perfor-
mance gain of PALRS vs. DPO here is from +2.6% (Llama 8B) to 23.1% (Llama 1B), and tends to
diminish as models get larger, again except for Mistral, whereby PALRSCode model has a percent-
age increase of +21%. Also, PALRSCode-aligned models are again an order of magnitude faster
than corresponding DPO models, with an average speedup of 10x across models, and the time gap
increases linearly with model size, showing PALRSCode-aligned models are far more scalable.

Impact of the steering coefficient (E4). We investigate the sensitivity of the steering coefficient α
(cf. Eq. (5)) and its effect on the performance of PALRS-aligned models on the target tasks. Figure
3 provides insights which can be summarized as follows. We notice that the coefficient sensitivity is
model- and task-dependent. While in general performance trends drop consistently as the coefficient
increases, there is always a regime of the coefficient where the PALRS-aligned models outperform
the relative baselines. Low to moderate coefficients (up to 0.8) often yield the best trade-offs, espe-
cially for Llama 3B, Llama 8B (GSM8K) and OLMo (HumanEval). Oversteering is most visible
at coefficient at 1.0 for all models. More specifically, for Llama 3B and OLMo (HumanEval), the
beneficial range is around 0.6–0.8 before oversteering occurs; for Mistral and Llama 1B, oversteer-
ing happens much earlier (as low as 0.4–0.6), while Llama 8B tolerates higher coefficients better but
still show oversteering when pushed too far. To sum up, steering shows to be beneficial, but needs
moderate tuning of the coefficient to avoid oversteering and performance degradation.
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4 RELATED WORK

Model Steering via Feature Directions. Recent studies suggest that linear directions in the activa-
tion space of LLMs capture richer and more generalizable features than individual neurons (Boluk-
basi et al., 2016; Li et al., 2021; Elhage et al., 2022). This shift toward subspace-level aspects has
motivated research that exploits linear representations to probe model internals and provide bet-
ter interpretation and steering of their behaviors (Hernandez & Andreas, 2021; Nanda et al., 2023;
Park et al., 2024). A key challenge is to reliably identify such feature directions. In this regard,
unsupervised approaches based on Sparse Auto-Encoders (SAE) have been used to uncover latent,
interpretable features (Huben et al., 2024; Lan et al., 2024; Shu et al., 2025). A complementary
trend involves exploiting contrastive pairs of texts differing across a specific axis (e.g., sentiment) to
extract directions that isolate targeted behaviors (Burns et al., 2023; Rimsky et al., 2024).

Once extracted, these features can be used to intervene on model activations, particularly in the
residual stream, where editing is known to effectively steer the models’ behavior (Zou et al., 2023;
Zhang & Nanda, 2024). Such interventions have been shown promising in shifting sentiment and
detoxification (Turner et al., 2023), enhancing truthfulness (Li et al., 2023), erasing concepts (Bel-
rose et al., 2023), targeting refusal behaviors (Arditi et al., 2024; Wang et al., 2025a), and controlling
character traits in LLMs Chen et al. (2025).

Preference Optimization in LLMs. A large body of work has focused on aligning LLMs with
human preferences, aiming to render such tools more usable Wang et al. (2023); Shen et al.
(2023). This has been largely driven by Reinforcement Learning from Human Feedback (RLHF)
approaches (Ouyang et al., 2022; Bai et al., 2022), and more efficient methods like Direct Preference
Optimization (DPO) (Rafailov et al., 2023). Nonetheless, despite recent efforts to further improve
efficiency (Hong et al., 2024; Meng et al., 2024), the promising and more efficient alternative of
steering models toward preferences via residual streams remained almost totally unexplored.

In a related effort, a recent work by Liu et al. (2024) explores preference alignment by identify-
ing disparities in activation patterns elicited by preferred versus dispreferred stimuli. While this
represents an important step toward bridging preference data with internal model representations,
their approach differs fundamentally from ours. First, it requires training with contrastive stimuli
to extract the relevant signals, whereas our method is entirely training-free. Second, it introduces
a low-rank adaptation module to perform steering, in contrast to our inference-time intervention.
These design choices also manifest in practice, as their method yields more limited steering effects
compared to the lightweight and scalable improvements enabled by PALRS.

5 CONCLUSIONS

In this work, we presented PALRS, a training-free method for preference alignment that leverages
residual stream activations to steer LLM behavior directly at inference time. By distilling steering
vectors from as few as a hundred preference pairs, PALRS aligns models with desired behaviors
without any parameter updates, costly optimization, or the need to maintain multiple fine-tuned
checkpoints. Crucially, our results show that PALRS-aligned models are a safer and consistently
superior alternative to their DPO-aligned counterparts: never underperforming, often achieving
substantial gains, and doing so with orders-of-magnitude less computation. Our findings render
residual-based steering as a powerful paradigm for preference alignment, aiming to make it simpler,
more effective yet scalable, and broadly accessible compared to traditional post-training approaches.

Limitations. While our results highlight the promise of residual-based preference alignment, sev-
eral limitations remain. First, although we evaluated PALRS on a relatively representative sample of
model families and post-training modalities, its generalizability to larger-scale or proprietary models
needs to be evaluated. Second, our current method for discovering effective data subsets and steering
coefficients relies on heuristic grid search: developing principled, theoretically grounded selection
strategies remains a key direction for smoother real-world deployment of our results. Third, while
our results demonstrate that residual interventions effectively steer model behavior and provide em-
pirical support for our hypothesis, more in-depth explainability of how preference information is
encoded and disentangled across layers is needed. Overall, we demonstrate the feasibility of this
approach, while leaving refinement and addressing these limitations to future research.
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ETHICS STATEMENTS

Our work demonstrates that residual-based preference steering can effectively influence model be-
havior. While this highlights the potential for beneficial applications, we acknowledge that such
methods might also be misused to steer models toward harmful or malicious behaviors. We strongly
discourage any such misuse and do not assume responsibility for applications beyond the scope of
this research. We encourage researchers and practitioners within this research area to adhere to es-
tablished safety and ethical guidelines when applying our proposed technique or related ones, and
to prioritize transparency, fairness, and safety of end users.

Reproducibility Statement. We are strongly committed to ensuring reproducibility of our results.
All experimental settings, hyperparameters, and model configurations are provided in detail in the
paper or in the code repository of PALRS, which is available at https://anonymous.4open.
science/r/PaLRS-ICLR2026/.

Use of GenAI. We disclose that GenAI assisted exclusively for light text editing. All intellectual
contributions, ideas, methodology, experiments, and analyses, are solely attributable to the authors.
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Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Runjin Chen, Andy Arditi, Henry Sleight, Owain Evans, and Jack Lindsey. Persona vectors: Mon-
itoring and controlling character traits in language models. arXiv preprint arXiv:2507.21509,
2025.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. Parallel structures in pre-
training data yield in-context learning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 8582–8592, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.465. URL https:
//aclanthology.org/2024.acl-long.465/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
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A CHAT TEMPLATES

For each considered model in our study, we resorted to the original chat template as reported either
in the corresponding paper or in the HuggingFace model’s page, as shown in Table 3.

Model Family Template
LLama3 <|begin of text|><|start header id|>user

<|end header id|>instruction<|eot id|>
<|start header id|>assistant<|end header id|>

Mistral <s>[INST] instruction [/INST]

OLMo <|endoftext|><|user|>instruction<|assistant|>

Table 3: Chat templates for the model families considered in this study. Blue tokens indicate post-
instruction tokens, as discussed in Section 2.2.

B DETAILS ON THE RUNNING ENVIRONMENT

We performed our experiments using an 8x NVIDIA A30 GPU server with 24 GB of RAM each,
764 GB of system RAM, a Double Intel Xeon Gold 6248R with a total of 96 cores, and Ubuntu
Linux 20.04.6 LTS as OS.
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C DETAILS ON THE MODEL CONFIGURATIONS USED FOR THE MAIN
RESULTS

Table 4 reports the best model configurations used to obtain r̂∗, and the corresponding steering
coefficient α, used for the results shown throughout the main paper.

Math Code
Model seed i ℓ∗/L α seed i ℓ∗/L α

Llama 1B 870 -2 14/16 0.2 343 -5 14/16 0.2
Llama 3B 921 -5 23/28 0.8 689 -1 24/28 0.8
Llama 8B 245 -4 28/32 0.6 94 -4 26/32 0.2
Mistral 790 -2 24/32 0.2 237 -1 28/32 0.4
OLMo 311 -3 23/32 0.4 447 -3 26/32 0.6

Table 4: (Grid-search based) Best seed, token position (i), layer (ℓ∗/L) and steering coefficient (α)
used throughout our experimental evaluation of PALRS-aligned models.

D CONFIGURATION FOR DPO ALIGNMENT

Table 5 reports the settings we used to align our used models with DPO for a comparison with
PALRS.

Hyperparameter Value
Batch size (per device) 1
Gradient accumulation steps 8
Gradient checkpointing Enabled
Learning rate 1e-6
Scheduler Linear
Optimizer Paged AdamW (32-bit)
Training epochs 3
β coefficient 0.1 (default)

Table 5: Training hyperparameters used for DPO.

E QUALITATIVE EXAMPLES OF PALRS’S STEERING EFFECT

Figures 4-7 provide qualitative insights into the effect of model steering toward preferred behaviors
obtained via PALRS.
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Question: James has 30 teeth. His dentist drills 4 of them and caps 7 more teeth than he
drills. What percentage of James’ teeth does the dentist fix?

Expected Answer:
First find the total number of teeth the dentist caps: 4 teeth + 7 teeth = 11 teeth
Then find the total number of teeth the dentist fixes: 11 teeth + 4 teeth = 15 teeth
Then divide that number by the total number of teeth and multiply by 100% to find the
percentage of teeth he fixes: 15 teeth / 30 teeth * 100% = 50%

Baseline: James has 30 teeth. The dentist drills 4 teeth. So, the number of teeth that the
dentist fixes is 30 - 4 = 26.
The dentist caps 7 more teeth than he drills. So, the number of teeth that the dentist caps is
4 + 7 = 11.
The number of teeth that the dentist fixes is 26. The number of teeth that the dentist caps is
11. So, the percentage of teeth that the dentist fixes is 26 / 30 * 100 = 86.67%

PALRS Math: James has 30 teeth. His dentist drills 4 teeth, so he has 30 - 4 = 26 teeth left.
The dentist caps 7 more teeth than he drills, so he caps 4 + 7 = 11 teeth.
So James has 26 - 11 = 15 teeth that the dentist fixes.
The percentage of teeth that the dentist fixes is 15/30 * 100% = 50%

Figure 4: Example of mathematical improvement via PALRS for Llama 3.2 1B.

Question: Mia and Emma are currently 16 years apart in age. If Mia, who is younger than
Emma, is 40 years old, what’s the average of their ages?

Expected Answer:
If Mia is 40 years old, Emma is 40 + 16 = 56 years old.
The sum of their ages is 56 + 40 = 96 years.
The average age of the two is 96/2 = 48 years.

Baseline: Mia is 40 years old and Emma is 16 years old, so the average age is (40+16)/2 =
56 / 2 = 28 years.

PALRS Math: Mia is 40 years old and Emma is 40 + 16 = 56 years old.
The average age of the two of them is (40 + 56)/2 = 96 / 2 = 48 years.

Figure 5: Example of mathematical improvement via PALRS for Llama 3.2 1B.
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Question:

d e f c o u n t d i s t i n c t c h a r a c t e r s ( s t r i n g : s t r ) −> i n t :
””” Given a s t r i n g , f i n d o u t how many d i s t i n c t
c h a r a c t e r s ( r e g a r d l e s s o f c a s e ) does i t c o n s i s t o f
>>> c o u n t d i s t i n c t c h a r a c t e r s ( ‘ xyzXYZ ’ )
3
>>> c o u n t d i s t i n c t c h a r a c t e r s ( ‘ J e r r y ’ )
4
”””

Baseline:

d e f c o u n t d i s t i n c t c h a r a c t e r s ( s t r i n g : s t r ) −> i n t :
# Conve r t t h e s t r i n g t o l o w e r c a s e and remove any w h i t e s p a c e

s t r i n g = s t r i n g . lower ( ) . r e p l a c e ( ” ” , ” ” )

# C r e a t e a s e t from t h e s t r i n g and r e t u r n t h e l e n g t h
# o f t h e s e t
r e t u r n l e n ( s e t ( s t r i n g ) )

PALRS Code:

d e f c o u n t d i s t i n c t c h a r a c t e r s ( s t r i n g : s t r ) −> i n t :
# C r e a t e a s e t t o s t o r e t h e c h a r a c t e r s

c h a r s e t = s e t ( )

# I t e r a t e t h r o u g h t h e s t r i n g and add each c h a r a c t e r
# t o t h e s e t
f o r c h a r i n s t r i n g :

c h a r s e t . add ( c h a r . l ower ( ) )

# R e t u r n t h e s i z e o f t h e s e t
r e t u r n l e n ( c h a r s e t )

Figure 6: Example of mathematical improvement via PALRS for Mistral 7B.
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Question:

d e f s t r i n g x o r ( a : s t r , b : s t r ) −> s t r :
””” I n p u t a r e two s t r i n g s a and b c o n s i s t i n g
on ly o f 1 s and 0 s .
Per fo rm b i n a r y XOR on t h e s e i n p u t s and r e t u r n
r e s u l t a l s o as a s t r i n g .
>>> s t r i n g x o r ( ’ 0 1 0 ’ , ’110 ’ )
’100 ’
”””

Baseline:

d e f s t r i n g x o r ( a : s t r , b : s t r ) −> s t r :
r e s u l t = ””

f o r i i n r a n g e ( l e n ( a ) ) :
i f a [ i ] == b [ i ] :

r e s u l t += ”0”
e l s e :

r e s u l t += ”1”
r e t u r n r e s u l t

PALRS Code:

d e f s t r i n g x o r ( a : s t r , b : s t r ) −> s t r :
# I n i t i a l i z e r e s u l t s t r i n g

r e s u l t = ””

# I t e r a t e t h r o u g h bo th s t r i n g s
f o r i i n r a n g e ( l e n ( a ) ) :

# Per fo rm XOR o p e r a t i o n
r e s u l t += s t r ( i n t ( a [ i ] ) ˆ i n t ( b [ i ] ) )

r e t u r n r e s u l t

Figure 7: Example of mathematical improvement via PALRS for Mistral 7B.
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