
RECAST: Retrieval-Augmented Contextual ASR via Decoder-State
Keyword Spotting

Anonymous ACL submission

Abstract001

Contextual biasing in ASR systems is critical002
for recognizing rare, domain-specific terms but003
becomes impractical with large keyword dic-004
tionaries due to prompt size and latency con-005
straints. We present RECAST—a lightweight006
retrieval-augmented approach that repurposes007
decoder states of a pretrained ASR model to008
retrieve relevant keywords without requiring009
audio exemplars. RECAST introduces a con-010
trastively trained retriever that aligns decoder-011
state embeddings with textual keyword repre-012
sentations, enabling fast token-level retrieval013
over large dictionaries. Retrieved keywords are014
ranked and formatted into a prompt to guide a015
downstream speech language model. Trained016
solely on LibriSpeech and evaluated on out-of-017
domain benchmarks covering up to 4,000 key-018
words across diverse domains, RECAST con-019
sistently outperforms full-list prompt biasing020
and strong phonetic/text baselines. It achieves021
up to 54.3% relative reduction in entity WER022
and 41.3% overall WER improvement over the023
baseline, along with up to 2.5× higher recall024
in challenging settings. Furthermore, RECAST025
remains effective for diverse languages such as026
Hindi, demonstrating its scalability, language-027
agnostic design, and practicality for real-world028
contextual ASR.029

1 Introduction030

Contextual biasing in ASR via domain-specific031

keywords improves recognition of rare terms but032

fails to scale: large keyword inventories degrade033

transcription quality and exceed prompt-size con-034

straints (Liu et al., 2020; Gourav et al., 2021; Sun035

et al., 2021; Mittal et al., 2023a). While recent ad-036

vances in speech language models (Radford et al.,037

2023; Abouelenin et al., 2025; Saon et al., 2025)038

and LLM-based error correction (Li et al., 2024a;039

Ma et al., 2025) enable effective keyword prompt-040

ing (Peng et al., 2023), domains like medicine or041

finance involve thousands of rare entities, making042

full-list inclusion infeasible. This raises a central 043

challenge: how can we efficiently identify a small, 044

relevant subset of keywords for any given utter- 045

ance? 046

Unlike prior contextual biasing methods that 047

struggle to scale with large keyword dictionar- 048

ies—such as attention-based selection over the 049

full list (Jain et al., 2020; Sun et al., 2023), 050

or keyword spotting approaches that require au- 051

dio exemplars and perform independent searches 052

for each keyword (Navon et al., 2024; Li et al., 053

2024b)—we propose a unified and scalable solu- 054

tion: RECAST (Retrieval-Augmented Contextual 055

ASR via Decoder-State Keyword Spotting). RE- 056

CAST leverages the final decoder state of a pre- 057

trained encoder–decoder ASR model as a query 058

to retrieve relevant keywords directly from a large 059

text-only inventory, without modifying the ASR 060

backbone or relying on audio examples. 061

Beyond the challenge of large keyword lists, real- 062

world utterances are often long, with target entities 063

appearing anywhere in the audio. This makes it 064

crucial not only to retrieve relevant keywords but 065

also to localize their aligned positions. To this end, 066

RECAST introduces two lightweight modules: a 067

unidirectional LSTM-based keyword encoder and 068

a feed-forward decoder-state projector, trained with 069

a contrastive loss to align subword-level decoder 070

states with keyword token embeddings in a shared 071

retrieval space. At inference time, each decoder 072

state is treated as a fine-grained retrieval query into 073

a precomputed keyword index. Retrieved token- 074

level matches are aggregated into candidate key- 075

word spans and ranked using a position-aware scor- 076

ing function to form a top-K shortlist. This shortlist 077

is then incorporated into the decoder prompt of a 078

downstream speech language model, enabling flu- 079

ent and grounded contextual biasing without modi- 080

fying the ASR model. 081

We validate RECAST by training the retriever 082

solely on LibriSpeech and evaluating it on diverse 083

1

out-of-domain benchmarks with up to 4,000 key-084

words across domains such as locations, names,085

and medical terms. Despite no exposure to these086

entities during training, RECAST consistently im-087

proves retrieval and ASR performance. It outper-088

forms strong retrieval-style baselines—common089

in information retrieval but underexplored in090

ASR—which rely on ASR hypotheses and apply091

fuzzy matching (e.g., BM25) or phonetic algo-092

rithms like Soundex (Knuth, 1973) and Double093

Metaphone (Philips, 2000). In contrast, RECAST094

operates directly over decoder states and text key-095

words, enabling seamless generalization to lan-096

guages such as Hindi, where phonetic methods tai-097

lored for English—like Soundex and Double Meta-098

phone—are ineffective. It integrates with existing099

speech language models, offering low-latency infer-100

ence and practical gains for real-world contextual101

ASR.102

Our contributions are threefold: (1) a con-103

trastively trained retriever that aligns ASR decoder104

states with keyword token embeddings for efficient105

large-vocabulary retrieval; (2) a token-level track-106

ing and ranking algorithm that builds contextually107

relevant shortlists in real time; and (3) robust gener-108

alization across domains and languages, improving109

accuracy and latency without modifying the under-110

lying ASR backbone.111

2 Related Work and Background112

Keyword Spotting (KWS). In keyword spotting113

the goal is to detect specific keywords within a114

speech signal. Early systems performed keyword115

spotting via large vocabulary continuous speech116

recognition with lattice-based search (Mamou117

et al., 2007) or HMM-based keyword-filler mod-118

els (Rohlicek et al., 1989). Query-by-example119

methods using DTW (Zhang and Glass, 2009) elim-120

inated the need for transcription but were sensi-121

tive to speaker and channel variability. The ad-122

vent of deep learning introduced frame-level classi-123

fiers using DNNs and CNNs for small-vocabulary124

tasks (Arik et al., 2017; Tucker et al., 2016),125

while embedding-based methods—such as Siamese126

networks (Settle and Livescu, 2016) and audio-127

text dual encoders (Kamper et al., 2016)—en-128

abled open-vocabulary detection for short audio129

but struggled with long audio. Recent works ap-130

ply self-supervised speech models like wav2vec131

2.0 (Baevski et al., 2020) and HuBERT (Hsu132

et al., 2021) to spoken language understanding133

tasks—classifying short utterances into discrete la- 134

bels (Lugosch et al., 2019; Wang et al., 2021; Lim 135

et al., 2023)—but they struggle to generalize to 136

long-form audio and unseen keywords. Large-scale 137

pretrained models like Whisper (Radford et al., 138

2023) have also been adapted for KWS. Notably, 139

Li et al.(Li et al., 2023, 2024b) use CNNs on cross- 140

attention similarity matrices, and AdaKWS(Navon 141

et al., 2024) applies keyword-guided normalization 142

in transformers for open-vocabulary spotting. 143

However, most methods still process keywords 144

independently, leading to linear scaling in compu- 145

tation and latency with large dictionaries. 146

Contextual ASR. Contextual ASR integrates exter- 147

nal information—such as dynamic vocabularies or 148

keywords—into the decoding process to improve 149

recognition. Traditional approaches combine an 150

external language model (LM) via shallow (Ravi 151

et al., 2020; Liu et al., 2020; Gourav et al., 2021) or 152

deep fusion (Le et al., 2021b,a), but fixed interpola- 153

tion weights can misbias rare terms and require LM 154

retraining for new domains (Mittal et al., 2023a); 155

moreover, they are ill-suited for keyword dictionar- 156

ies that lack contextual structure. Attention-based 157

methods allow ASR models to attend over keyword 158

lists by embedding context tokens (Jain et al., 2020; 159

Huber et al., 2021; Sun et al., 2023; Munkhdalai 160

et al., 2023), but they struggle to scale or generalize 161

to out-of-domain dictionaries. Inference-time meth- 162

ods inject keyword lists into beam search via class- 163

or tree-based biasing (Williams et al., 2018; Huang 164

et al., 2020; Sun et al., 2021), or use synthesized 165

keyword exemplars for on-the-fly biasing (Mittal 166

et al., 2023b), though these can lead to disfluent 167

outputs. Prompt-based strategies, inspired by in- 168

context learning, prepend keywords to speech LLM 169

inputs (Peng et al., 2023; Chang et al., 2024; Yang 170

et al., 2024), enabling biasing without model up- 171

dates, but are limited by prompt length and do not 172

scale to large dictionaries. 173

Unlike prior methods that require keyword-level 174

audio exemplars or rely on ASR hypotheses for re- 175

trieval, our approach learns a contrastive alignment 176

between ASR decoder states and text-only key- 177

word embeddings. This enables scalable retrieval 178

from large keyword inventories without modifying 179

the ASR backbone or requiring audio templates. 180

Background: Encoder-Decoder ASR. Encoder- 181

decoder architectures, as employed in state-of-the- 182

art ASR systems such as Whisper (Radford et al., 183

2023), process audio and generate transcriptions us- 184

2

yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multi-layer self-attention layers. Let d denote
the number of decoder layers. Let su,` denote the vector output
from the decoder at layer ` 2 [1, d]. The last layer is a softmax
layer that yields P (y|su,h) where y 2 V , the vocabulary of the
ASR model.

We assume the LLM model L is a decoder-only architec-
ture consisting of dL layers. Conditioned on a prompt denot-
ing the instruction, and the partially generated text, the model
generates the next token autoregressively. Let VL denote the
vocabulary of the LLM and let T L denote its tokenization al-
gorithm. Since the ASR and LLMs are assumed to have been
trained independently, in general, both of these could be differ-
ent from the vocabulary V and tokenizer T of the ASR model.
At any step t of generation, let sL

t,` denote the decoder output
from each layer ` 2 [1, dL] of the decoder.

For fine-tuning we are provided with a small set of labeled
audio-transcript pairs D = {(xn, yn) : n = 1 . . . N} in a
target low-resource language. We assume that the LLM has
been pre-trained with significantly more text data in the lan-
guage, compared to the speech transcription data used in the
ASR model. We present a method of verifying this assumption
before proposing to use an LLM to improve an ASR model in
Section ??. Sine the LLM is

Notations used: (this is only for our reference) The overall
trend is we use the same variables for both L and M. For M we
dont have any superscript, and for L we add L as the superscript
in the variables (inspired by notations in section 2).

1. Input audio: X = {x1, x2, . . . , xT }
2. Ground truth character sequence: C = {c1, c2, . . . , cm}
3. M encoder output: H = {h1,h2, . . . ,hT }
4. dimensionality

(a) For M: d

(b) For L: dL

5. decoder output sequence (i.e decoder states):

(a) For M: s = {s1, s2, . . . , sw}
(b) For L: sL = {sL

1 , sL
2 , . . . , sL

l }
6. Tokenizers used

(a) For M: T with T () for encoding and T �1() for decoding
(b) For L: T L

7. decoder ground truth token sequence

(a) For M: Y = {y1, y2, . . . , yw}
(b) For M: Yinit = {y1, y2, . . . , yw0}. For whisper, w0 = 4.
(c) For L: YL = {yL

1 , yL
2 , . . . , yL

l }
8. for indexing we use the following

(a) For M: layer is indexed with ith

(b) For L: layer is indexed with j th

(c) For L: state is indexed with tth, i.e sL
t,i is the tth frame in

the ith decoder layer of llama.
(d) For projection layer: rth. Also, the total number of projec-

tion layers is F .

Our proposed approach aims at learning a composite model
C that combines the representation power and language mod-
elling capability of M and L. To combine both these mod-
els, we employ a set of F projection layers that consists of

✓C learnable parameters. Each projection layer, denoted as
fc : Rd ! RdL

combines the output from every d/F th de-
coder layer of M with every dL/F th layer of L respectively 1.
Given that L is mainly responsible for generating the transcrip-
tions, the role of the rth projection layer fr

c is to incorporate
the output from the j th decoder layer of M into the output of
the ith layer of L. However, due to the mismatch in the token
vocabulary between M and L, there exists a discrepancy in the
number of decoder states used by both M and L while predict-
ing the target text. Although, a simple solution here would be to
use the last decoder state of M for every state of L, we find this
approach to be sub-optimal. In this work, our main goal is to
tightly couple both M and L together such that they can utilize
each other’s intermediate states while predicting the target se-
quence. To achieve this, during training, we use a deterministic
mapping function G, that determines which decoder state from
M, the tth state of L should attend to. The exact procedure
of generating the state mappings is described in Algorithm 1.
Broadly speaking, if Y = {y1, y2, . . . , yw} 2 is the token se-
quence used by M and YL = {yL

1 , yL
2 , . . . , yL

l } is the token
sequence used by L with T and T L being their respective tok-
enizers, then for the tth state of L responsible for predicting yL

t ,
the mapping function G(C, t) returns k if

T �1({y1, y2, . . . , yk}) = T L�1
({yL

1 , yL
2 , . . . , yL

i�1}) (1)

In simpler terms, this means that if the tth state of L is respon-
sible for generating character c, we select a state of M that is
also responsible for predicting c. It is possible that for low re-
source language, a character is tokenized into multiple tokens,
which, when used independently produce non-comprehensible
characters. We ensure that for such tokens, the corresponding
decoder states used always produces a valid sequence of char-
acters. Once we have this mapping, the integration of represen-
tation from M to L for the tth state using the projection layer
fr

c can be written as:

sL
t,i = sL

t,i + fr
c (sG(C,t),j) (2)

where sG(C,t),j 2 Rdw

and sL
t,i 2 RdL

. This new representa-
tion is then used as input to the (v + 1)th layer of L. It is worth
noting our intervention only alters the state space of L, and no
changes are made to M. Finally, we train C using cross-entropy
loss and freeze all the parameters of both M and L, except the
parameters ✓C used by the projection layers.

The mismatch between the token vocabulary of L and M
presents a challenge for the inference algorithm. Algorithm 2
outlines the SALSA’s inference algorithm. To obtain the ini-
tial decoder states for M and L, we feed these models with
the start tokens. In each subsequent step, we first advance the
state of L by utilizing the decoder states of M. We use nucleus
sampling with topk and topp values of 10 and 0.9, in place
of greedy decoding for predicting the next token. This crucial
step in our inference algorithm helps address the issue of hal-
lucination, which is a common occurrence in such large mod-
els. The predicted token sequence is then decoded and checked
for completeness. In the case of low resource languages, the

1For simplicity, we employ a symmetric configuration where the
projection layers are placed at equal intervals. A more complex setup,
with either shared projection layers or assymetrically spaced projection
layers can also be explored.

2It is not necessary for this sequence to be the same as the one ob-
tained when ground truth text sequence is directly tokenized.

Cross-attention

Audio Projector

ASR Encoder

Text Encoder

Text Projector

<latexit sha1_base64="AEvVP94DCXVoGKEiC2sqnQ3YSdY=">AAACHHicbVBNS8NAEN3Ur1q/oh5FCBbBU0lEqseiFw8eKthaaELYbLft0s0m7E7EEnLyf3j3qn/Bm3gV/Af+DDdtDtr2wcDjvRlm5gUxZwps+9soLS2vrK6V1ysbm1vbO+buXltFiSS0RSIeyU6AFeVM0BYw4LQTS4rDgNP7YHSV+/cPVCoWiTsYx9QL8UCwPiMYtOSbh26IYUgwT28yP3WBPkJKIgESK8gy36zaNXsCa544BamiAk3f/HF7EUlCKoBwrFTXsWPwUiyBEU6zipsoGmMywgPa1VTgkCovnbyRWcda6Vn9SOoSYE3UvxMpDpUah4HuzI9Ws14uLvSCcJHcTaB/4aVMxAlQQab7+wm3ILLyqKwek5QAH2uCiWT6BYsMscQEdKA6Gmc2iHnSPq059Vr99qzauCxCKqMDdIROkIPOUQNdoyZqIYKe0At6RW/Gs/FufBif09aSUczso38wvn4BjXCjUg==</latexit>Lcontrast

ASR Decoder

(a) Training the Retriever Parameters

Ke
yw

or
d

Li
st Token

Embedding Token

Keyword Index

(b) Keyword Index Creation

<latexit sha1_base64="ug/o+4YvO8fDlFSlhETKcelqcwg=">AAACH3icbZDLSgMxGIUz9VbrrerSTbAIFUqZiFQ3QtGNCxcV7AV6GTJppg3NZIYkYynDbH0P9271FdyJ276Bj2F6WWjbA4HDOf9P+D835Exp2x5bqbX1jc2t9HZmZ3dv/yB7eFRTQSQJrZKAB7LhYkU5E7Sqmea0EUqKfZfTuju4m/T1ZyoVC8STHoW07eOeYB4jWJvIycJBJ86j8wTewKGDOqjQ4t1Aq8Kwg5z4wUGJk83ZRXsquGzQ3OTAXBUn+9PqBiTyqdCEY6WayA51O8ZSM8JpkmlFioaYDHCPNo0V2KeqHU8vSeCZSbrQC6R5QsNp+ncjxr5SI981kz7WfbXYTcKVneuvipuR9q7bMRNhpKkgs/+9iEMdwAkt2GWSEs1HxmAimTkBkj6WmGjD1KBBiyCWTe2iiErF0uNlrnw7h5QGJ+AU5AECV6AM7kEFVAEBL+ANvIMP69X6tL6s79loyprvHIN/ssa/1omhgQ==</latexit>

k(1) = w1
1, . . . , w

1
L1

<latexit sha1_base64="5VCsz4bwbtnz3zCAKYpHifsxRu4=">AAACH3icbZDLSgMxGIUz9VbrrerSTbAIFUqZEaluhKIbFxYq2Av0MmQymTY0MxmSjKUM3foe7t3qK7gTt30DH8O0nYW2PRA4nPP/hP9zQkalMs2JkVpb39jcSm9ndnb39g+yh0d1ySOBSQ1zxkXTQZIwGpCaooqRZigI8h1GGs7gbto3nomQlAdPahSSjo96AfUoRkpHdhYOunG+cj6GN3BoW91Koc1crmRh2K3Y8YNdGdvZnFk0Z4LLxkpMDiSq2tmftstx5JNAYYakbFlmqDoxEopiRsaZdiRJiPAA9UhL2wD5RHbi2SVjeKYTF3pc6BcoOEv/bsTIl3LkO3rSR6ovF7tpuLJz/FVxK1LedSemQRgpEuD5/17EoOJwSgu6VBCs2EgbhAXVJ0DcRwJhpZlqNNYiiGVTvyhapWLp8TJXvk0gpcEJOAV5YIErUAb3oApqAIMX8AbewYfxanwaX8b3fDRlJDvH4J+MyS+PjKHx</latexit>

k(M) = wM
1 , . . . , wM

LM

⋮ ⋮

⋮

Text Encoder

yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multi-layer self-attention layers. Let d denote
the number of decoder layers. Let su,` denote the vector output
from the decoder at layer ` 2 [1, d]. The last layer is a softmax
layer that yields P (y|su,h) where y 2 V , the vocabulary of the
ASR model.

We assume the LLM model L is a decoder-only architec-
ture consisting of dL layers. Conditioned on a prompt denot-
ing the instruction, and the partially generated text, the model
generates the next token autoregressively. Let VL denote the
vocabulary of the LLM and let T L denote its tokenization al-
gorithm. Since the ASR and LLMs are assumed to have been
trained independently, in general, both of these could be differ-
ent from the vocabulary V and tokenizer T of the ASR model.
At any step t of generation, let sL

t,` denote the decoder output
from each layer ` 2 [1, dL] of the decoder.

For fine-tuning we are provided with a small set of labeled
audio-transcript pairs D = {(xn, yn) : n = 1 . . . N} in a
target low-resource language. We assume that the LLM has
been pre-trained with significantly more text data in the lan-
guage, compared to the speech transcription data used in the
ASR model. We present a method of verifying this assumption
before proposing to use an LLM to improve an ASR model in
Section ??. Sine the LLM is

Notations used: (this is only for our reference) The overall
trend is we use the same variables for both L and M. For M we
dont have any superscript, and for L we add L as the superscript
in the variables (inspired by notations in section 2).

1. Input audio: X = {x1, x2, . . . , xT }
2. Ground truth character sequence: C = {c1, c2, . . . , cm}
3. M encoder output: H = {h1,h2, . . . ,hT }
4. dimensionality

(a) For M: d

(b) For L: dL

5. decoder output sequence (i.e decoder states):

(a) For M: s = {s1, s2, . . . , sw}
(b) For L: sL = {sL

1 , sL
2 , . . . , sL

l }
6. Tokenizers used

(a) For M: T with T () for encoding and T �1() for decoding
(b) For L: T L

7. decoder ground truth token sequence

(a) For M: Y = {y1, y2, . . . , yw}
(b) For M: Yinit = {y1, y2, . . . , yw0}. For whisper, w0 = 4.
(c) For L: YL = {yL

1 , yL
2 , . . . , yL

l }
8. for indexing we use the following

(a) For M: layer is indexed with ith

(b) For L: layer is indexed with j th

(c) For L: state is indexed with tth, i.e sL
t,i is the tth frame in

the ith decoder layer of llama.
(d) For projection layer: rth. Also, the total number of projec-

tion layers is F .

Our proposed approach aims at learning a composite model
C that combines the representation power and language mod-
elling capability of M and L. To combine both these mod-
els, we employ a set of F projection layers that consists of

✓C learnable parameters. Each projection layer, denoted as
fc : Rd ! RdL

combines the output from every d/F th de-
coder layer of M with every dL/F th layer of L respectively 1.
Given that L is mainly responsible for generating the transcrip-
tions, the role of the rth projection layer fr

c is to incorporate
the output from the j th decoder layer of M into the output of
the ith layer of L. However, due to the mismatch in the token
vocabulary between M and L, there exists a discrepancy in the
number of decoder states used by both M and L while predict-
ing the target text. Although, a simple solution here would be to
use the last decoder state of M for every state of L, we find this
approach to be sub-optimal. In this work, our main goal is to
tightly couple both M and L together such that they can utilize
each other’s intermediate states while predicting the target se-
quence. To achieve this, during training, we use a deterministic
mapping function G, that determines which decoder state from
M, the tth state of L should attend to. The exact procedure
of generating the state mappings is described in Algorithm 1.
Broadly speaking, if Y = {y1, y2, . . . , yw} 2 is the token se-
quence used by M and YL = {yL

1 , yL
2 , . . . , yL

l } is the token
sequence used by L with T and T L being their respective tok-
enizers, then for the tth state of L responsible for predicting yL

t ,
the mapping function G(C, t) returns k if

T �1({y1, y2, . . . , yk}) = T L�1
({yL

1 , yL
2 , . . . , yL

i�1}) (1)

In simpler terms, this means that if the tth state of L is respon-
sible for generating character c, we select a state of M that is
also responsible for predicting c. It is possible that for low re-
source language, a character is tokenized into multiple tokens,
which, when used independently produce non-comprehensible
characters. We ensure that for such tokens, the corresponding
decoder states used always produces a valid sequence of char-
acters. Once we have this mapping, the integration of represen-
tation from M to L for the tth state using the projection layer
fr

c can be written as:

sL
t,i = sL

t,i + fr
c (sG(C,t),j) (2)

where sG(C,t),j 2 Rdw

and sL
t,i 2 RdL

. This new representa-
tion is then used as input to the (v + 1)th layer of L. It is worth
noting our intervention only alters the state space of L, and no
changes are made to M. Finally, we train C using cross-entropy
loss and freeze all the parameters of both M and L, except the
parameters ✓C used by the projection layers.

The mismatch between the token vocabulary of L and M
presents a challenge for the inference algorithm. Algorithm 2
outlines the SALSA’s inference algorithm. To obtain the ini-
tial decoder states for M and L, we feed these models with
the start tokens. In each subsequent step, we first advance the
state of L by utilizing the decoder states of M. We use nucleus
sampling with topk and topp values of 10 and 0.9, in place
of greedy decoding for predicting the next token. This crucial
step in our inference algorithm helps address the issue of hal-
lucination, which is a common occurrence in such large mod-
els. The predicted token sequence is then decoded and checked
for completeness. In the case of low resource languages, the

1For simplicity, we employ a symmetric configuration where the
projection layers are placed at equal intervals. A more complex setup,
with either shared projection layers or assymetrically spaced projection
layers can also be explored.

2It is not necessary for this sequence to be the same as the one ob-
tained when ground truth text sequence is directly tokenized.

(c) RECAST Inference

. . .

Cross-attention

h1…hT

ASR Encoder

Audio Projector

<latexit sha1_base64="9K+L6T1BcvcbkpmwZqBP18jb4i4=">AAACAnicbZDNTgIxFIXv4B/iH+rSTSMxcUVmjEGXRDcuMXGABEbSKR1oaDuTtqMhE3bu3eoruDNufRHfwMewwCwUOUmTL+fcm7YnTDjTxnW/nMLK6tr6RnGztLW9s7tX3j9o6jhVhPok5rFqh1hTziT1DTOcthNFsQg5bYWj62neeqBKs1jemXFCA4EHkkWMYGMt//He63m9csWtujOh/+DlUIFcjV75u9uPSSqoNIRjrTuem5ggw8owwumk1E01TTAZ4QHtWJRYUB1ks8dO0Il1+iiKlT3SoJn7eyPDQuuxCO2kwGaoF7OpuTQLxTK7k5roMsiYTFJDJZnfH6UcmRhNC0F9pigxfGwBE8XsFxAZYoWJsbXZarzFIv5D86zq1aq12/NK/SovqQhHcAyn4MEF1OEGGuADAQbP8AKvzpPz5rw7H/PRgpPvHMIfOZ8/trOXbw==</latexit>

w1
1

<latexit sha1_base64="/DIa+Mk9wd5I3h5nAPynwPoL7WE=">AAACAnicbZDNTgIxFIXv4B/iH+rSTSMxcUVmiEGXRDcuMXGABEbSKR1oaDuTtqMhhJ17t/oK7oxbX8Q38DEsMAsFTtLkyzn3pu0JE860cd1vJ7e2vrG5ld8u7Ozu7R8UD48aOk4VoT6JeaxaIdaUM0l9wwynrURRLEJOm+HwZpo3H6nSLJb3ZpTQQOC+ZBEj2FjLf3rwupVuseSW3ZnQMngZlCBTvVv86fRikgoqDeFY67bnJiYYY2UY4XRS6KSaJpgMcZ+2LUosqA7Gs8dO0Jl1eiiKlT3SoJn7d2OMhdYjEdpJgc1AL2ZTc2UWilV2OzXRVTBmMkkNlWR+f5RyZGI0LQT1mKLE8JEFTBSzX0BkgBUmxtZmq/EWi1iGRqXsVcvVu4tS7TorKQ8ncArn4MEl1OAW6uADAQYv8ApvzrPz7nw4n/PRnJPtHMM/OV+/uE2XcA==</latexit>

w1
2

<latexit sha1_base64="XxJGybq5u76koRCfUZk9tFQMn2E=">AAACBnicbZDLSgMxGIX/8VrrrerSTbAIrsqMSHVZdOPCQgV7kXYcMmmmDU1mhiSjlKF79271FdyJW1/DN/AxTNtZaNsDgY9z/p8kx485U9q2v62l5ZXVtfXcRn5za3tnt7C331BRIgmtk4hHsuVjRTkLaV0zzWkrlhQLn9OmP7ga581HKhWLwjs9jKkrcC9kASNYG+v+6aHqpTdedeQVinbJngjNg5NBETLVvMJPpxuRRNBQE46Vajt2rN0US80Ip6N8J1E0xmSAe7RtMMSCKjedPHiEjo3TRUEkzQk1mrh/N1IslBoK30wKrPtqNhubCzNfLLLbiQ4u3JSFcaJpSKb3BwlHOkLjUlCXSUo0HxrARDLzBUT6WGKiTXWmGme2iHlonJaccql8e1asXGYl5eAQjuAEHDiHClxDDepAQMALvMKb9Wy9Wx/W53R0ycp2DuCfrK9fTdiZcg==</latexit>

wM
LM

a1 a2 a3

ASR Decoder

a4

KNN
Search

KNN
Results

Ranking <latexit sha1_base64="r6IXpoF8o3Zp/Mz9K3bRKStut+A=">AAACBHicbZDLTgIxGIX/wRviDXXpppGY4IbMGIMuiW5cYiKXBEbSKR1oaDuTtmNCJmzdu9VXcGfc+h6+gY9hgVkocJImX875/7Q9QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDvNW09UaRbJBzOOqS/wQLKQEWys1Ro9pmV2PukVS27FnQktg5dBCTLVe8Wfbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjUWJBtZ/OnjtBZ9bpozBS9kiDZu7fjRQLrccisJMCm6FezKbmyiwQq+xOYsJrP2UyTgyVZH5/mHBkIjStBPWZosTwsQVMFLNfQGSIFSbGFmer8RaLWIbmRcWrVqr3l6XaTVZSHk7gFMrgwRXU4A7q0AACI3iBV3hznp1358P5nI/mnGznGP7J+foFc5mYaA==</latexit>

k(i)

<latexit sha1_base64="Z5NemK4WDwk3urx/+a+oXY3eJQw=">AAACBHicbZDLTgIxGIX/8Yp4Q126aSQmuCEzxqBLohuXmMglgZF0SgcqbWfSdkzIhK17t/oK7oxb38M38DEsMAsFTtLkyzn/n7YniDnTxnW/nZXVtfWNzdxWfntnd2+/cHDY0FGiCK2TiEeqFWBNOZO0bpjhtBUrikXAaTMY3kzy5hNVmkXy3oxi6gvclyxkBBtrNYcPaenxbNwtFN2yOxVaBC+DImSqdQs/nV5EEkGlIRxr3fbc2PgpVoYRTsf5TqJpjMkQ92nbosSCaj+dPneMTq3TQ2Gk7JEGTd2/GykWWo9EYCcFNgM9n03MpVkgltntxIRXfspknBgqyez+MOHIRGhSCeoxRYnhIwuYKGa/gMgAK0yMLc5W480XsQiN87JXKVfuLorV66ykHBzDCZTAg0uowi3UoA4EhvACr/DmPDvvzofzORtdcbKdI/gn5+sXdTWYaQ==</latexit>

k(j)

Retrieved keywords

⋮
⋮

⋮
⋮

⋮⋮

Figure 1: Overview of RECAST. (a) Training - We train a retrieval model with contrastive loss to align keyword-level
audio and text representations in a shared embedding space. (b) Indexing - Encoded token-level keyword embeddings
are stored in an index for efficient similarity search. (c) Inference - At each decoding step, token-level KNN matches
are performed using the audio embedding, and continuous token spans forming keywords are extracted and ranked
based on similarity.

ing a sequence-to-sequence framework with atten-185

tion mechanisms. The encoder first transforms the186

input speech sequence x1, . . . ,xT into a sequence187

of latent representations h1, . . . ,hT using architec-188

tures such as RNNs (Hochreiter and Schmidhuber,189

1997), Transformers (Vaswani et al., 2017), or Con-190

formers (Gulati et al., 2020).191

The decoder generates the output sequence au-192

toregressively. At each step u, it attends to previous193

tokens y1, . . . ,yu−1 and performs cross-attention194

over encoder states h1, . . . ,hT to compute a con-195

text vector eu. This is combined with self-attention196

to update the decoder state du, which is then used197

to compute the output distribution Pθ(y|du,h) via198

a softmax layer. Inference typically uses beam199

search to find the most likely sequence.200

3 RECAST201

We formalize the retrieval problem as follows. Let202

D = {ỹ1, . . . , ỹN} denote a large dictionary of203

keywords, where N is large. Given an audio utter-204

ance x to be transcribed, the goal is to efficiently205

retrieve a small subset of at most K keywords from206

D that are likely to appear somewhere in x.207

The key insight behind RECAST is that the de-208

coder of a pretrained encoder–decoder ASR model209

uses cross-attention to focus on relevant segments 210

of the input audio when generating each text token. 211

These decoder states implicitly encode fine-grained 212

audio–text alignment. RECAST leverages this prop- 213

erty by introducing a lightweight extension to the 214

decoder that repurposes these intermediate states 215

to retrieve relevant keywords from D. The ar- 216

chitecture and overall workflow of this retrieval- 217

augmented framework are illustrated in Figure 1. 218

Overview of RECAST The two new trainable 219

components we introduce are: a keyword-encoder 220

KEϕ and a decoder-state projector DPϕ with pa- 221

rameters ϕ. The keyword-encoder KEϕ converts 222

any keyword k to a sequence of vectors S(k) = 223

z1, . . . ,zlk where lk denotes the number of tokens 224

into which the ASR tokenizer would decompose 225

k. The decoder-state projector DPϕ converts at 226

each decoder step t, the last hidden vector of the 227

decoder dt into an audio snippet embedding at. 228

More details about estimating ϕ are in Section 3.1. 229

During domain-specific deployment, first given any 230

arbitrary list of keywords D in that domain, we 231

first input each keyword k ∈ D to KEϕ and get 232

its corresponding vector sequence. This vector 233

sequence is inserted into a vector search data struc- 234

3

ture I. More details about constructing such an235

index appear in Section 3.2. Once the index is cre-236

ated, for each subsequent transcription task on an237

audio x, we retrieve a short list of at most K key-238

word matches from D. This retrieval is performed239

auto-regressively where at each step t, the decoder240

state is used as search key to probe into the I for241

potential matches. The matches across multiple242

consecutive decoding steps are stitched together243

to obtain the short list K. More details of this re-244

trieval process appears in Section 3.3. Finally, the245

retrieved shortlist is used for contextual biasing246

the transcription of x into the text as described in247

Section 3.4.248

3.1 Training the Retriever Parameters249

To learn fine-grained associations between spoken250

content and its textual counterpart, we train a re-251

trieval model that aligns keyword-level audio and252

text representations using a contrastive loss. Given253

a paired example (x,y), where x = x1, . . . , xT de-254

notes the input audio and y = y1, . . . , yU the corre-255

sponding transcript tokens, the model is trained to256

bring matching audio-text keyword representations257

closer in a shared embedding space.258

Keyword Extraction. From each transcript259

y, we extract a set of salient keywords260

{k(1), . . . ,k(r)} using KeyBERT. Each keyword261

k(m) may be a single word or a multi-word phrase.262

We tokenize each of these using the ASR tokenizer.263

Let the resulting sequence of subword tokens be264

tok(k(m)) = [w
(m)
1 , . . . , w

(m)
Lm

]. Each keyword265

corresponds to a span yum , . . . , yum+Lm in the tran-266

script where um denotes the start index of the m-th267

keyword within the tokenized transcript y.268

Text Representation. We represent each key-269

word k(m) by embedding its token sequence270

[w
(m)
1 , . . . , w

(m)
Lm

] through a unidirectional LSTM271

encoder and then linearly projecting to obtain the272

keyword embedding:273

z
(m)
1 , . . . ,z

(m)
Lm

= KEϕ(w
(m)
1 , . . . , w

(m)
Lm

) (1)274

Audio Representation. The corresponding au-275

dio x is processed through the encoder-decoder276

ASR model. At the decoding steps that produce277

tokens w
(m)
1 , . . . , w

(m)
Lm

, we extract the decoder278

hidden states {d(m)
ℓ+um

}Lm
ℓ=1. Each decoder state279

d
(m)
ℓ+um

∈ Rdaudio is passed through a linear pro-280

jection layer DPϕ : Rdaudio → Rdtext to obtain audio281

embeddings: 282

a
(m)
ℓ+um

= DPϕ(d
(m)
ℓ+um

) (2) 283

Training Objective. To align audio and text rep- 284

resentations, we employ a token-level contrastive 285

loss where for each keyword token w
(m)
ℓ , we in- 286

crease the similarity between its contextual text 287

embedding z
(m)
ℓ and the audio embedding a

(m)
ℓ+um

288

at position ℓ + um by contrasting with two kinds 289

of negatives: (1) In-batch negatives, i.e., mis- 290

matched keyword-audio pairs (z(m)
ℓ ,a

(n)
j), and (2) 291

Hard-negative keyword tokens N (w
(m)
ℓ) mined as 292

described in Section 3.1.1 for greater contextual 293

awareness of text embeddings. The overall training 294

objective is: 295

max
ϕ

∑
(x,y)

∑
k(m)∈y

Lm∑
ℓ=1

log

S
(
z
(m)
ℓ ,a

(m)
ℓ+um

)∑
(j,n)

S
(
z
(m)
ℓ ,a

(n)
j

)
+

∑
z∈N (w

(m)
ℓ)

S
(
z,a

(m)
ℓ+um

)
(3)

296

where S(·, ·) = exp(cosine(·, ·)/τ) denotes expo- 297

nentiation of cosine similarity scaled by a tempera- 298

ture hyper-parameter τ . This ensures that embed- 299

dings of corresponding audio and text tokens for 300

each keyword are embedded close together, facili- 301

tating effective cross-modal retrieval. 302

3.1.1 Hard Negative Mining 303

To enhance the discriminative power of the learned 304

embeddings and encourage sensitivity to left- 305

context in keyword representations, we incorpo- 306

rate hard negatives during training. For each to- 307

ken w
(m)
ℓ within a keyword k(m), we construct 308

additional negative examples N (w
(m)
ℓ) that differ 309

only in contextual prefix, thereby enforcing context- 310

aware alignment. The first type of hard negative 311

is constructed by identifying another keyword k(n) 312

that ends in the same token w
(m)
ℓ but is preceded by 313

a different left context. We extract the contextual 314

embedding z
(n)
ℓ of this token (via Equation 1) and 315

include it in N (w
(m)
ℓ) as a hard negative. This pe- 316

nalizes the model if it aligns representations of 317

identical tokens that appear in different contex- 318

tual settings. The second type of hard negative in 319

N (w
(m)
ℓ) is obtained by stripping the left context 320

of the keyword and recomputing the representation 321

4

of the token w
(m)
ℓ in isolation. This ensures that322

the model respects the full contextual information323

present during actual decoding.324

3.2 Keyword Index Creation325

Once the retrieval parameters are trained, RECAST326

enables contextual biasing for any set of keywords327

through a one-time index creation process. This328

process involves tokenizing each keyword using329

the ASR tokenizer, encoding the resulting subword330

tokens with the keyword encoder (KEϕ) to produce331

contextualized embeddings, and storing them in a332

list E along with a parallel list K that records the333

originating keyword and token position. A kNN in-334

dex I is then constructed from E and K, enabling335

efficient similarity-based retrieval of token-level336

keyword embeddings during inference. The full337

procedure is provided in Appendix D.338

3.3 RECAST Inference339

At inference time, given an input audio x and in-340

dex I, RECAST interleaves greedy ASR decoding341

with token-level keyword retrieval to identify the342

K keywords appearing in x.343

The inference algorithm begins by initializing344

the decoded transcript prefix ŷ to the empty se-345

quence and the decoder state d0 to its designated346

initial value (line 3). Two collections are initial-347

ized: B, for active keyword hypotheses, and C, for348

completed keyword matches.349

During each decoding step (lines 6–32), the350

model first performs greedy ASR decoding to ex-351

tend the transcript by one token and updates the352

decoder state accordingly (lines 7–9). The updated353

state is then processed by the audio projector to354

obtain an embedding au, which is used to query355

the kNN index for its T̂ nearest neighbors and as-356

sociated distances (lines 10–11). Each hypothesis357

in B is then updated: it verifies whether its next358

expected token index remains within the length of359

its corresponding keyword and whether its error360

count is below the threshold Emax. If the token at361

position ℓ is not among the retrieved kNN neigh-362

bors, the hypothesis incurs an error; otherwise, the363

error count remains unchanged. In all cases, the364

current similarity score is appended to the hypothe-365

sis’s score list before advancing its suffix index. We366

allow up to Emax such mismatches to accommo-367

date discrepancies between keyword tokenization368

and ASR output (lines 14–26). Hypotheses that369

complete their keyword are added to C, while the370

remaining hypotheses persist to the next iteration.371

Algorithm 1 RECAST Inference
1: Input: Encoder Context h, Max Steps U , kNN Index I,

Audio Projector DPϕ, Neighbors T̂ , Output Count K
2: Output: transcript ŷ, top-K keywords

3: ŷ ← ⟨⟩, d0 ← init ▷ Initial decoder state
4: B ← ∅ ▷ Active hypotheses
5: C ← ∅ ▷ Completed hypotheses
6: for u = 1 to U do
7: (p(·), du)← Pθ(ŷ | du−1,h, ŷ) ▷ Decoding step
8: y∗ ← argmax p(·)
9: ŷ += y∗

10: au ← DPϕ(du)

11: (dists, {(mj , ℓj)}T̂j=1)← I.search(au, K̂) ▷ KNN
12: Bnext ← ∅
13: for all (kw,m, ℓ, err, dist_list) ∈ B do
14: if err < Emax and ℓ ≤ |k(m)| then
15: if (m, ℓ) /∈ {(mj , ℓj)}K̂j=1 then
16: err += 1 ▷ Not in K̂, Count as Error
17: end if
18: sim← eu · I.get_embedding(m, ℓ)
19: dist_list.append(sim)
20: ℓ += 1
21: if ℓ > |k(m)| then ▷ End of Keyword
22: C.append((kw, dist_list))
23: else
24: Bnext.append((kw,m, ℓ, err, dist_list))
25: end if
26: end if
27: end for
28: B ← Bnext

29: for j = 1 to K̂ do ▷ Spawn new hypotheses
30: B.append((k(mj),mj , ℓj + 1, ℓj , [dists[j]]))
31: end for
32: end for
33: top-K ← DistanceRanker(C,K)
34: return (ŷ, top-K)

Concurrently, the algorithm spawns new hy- 372

potheses for each retrieved nearest neighbor (lines 373

29–31). Each new hypothesis encodes the keyword 374

from the retrieved pointer, initializes its suffix in- 375

dex one position beyond the matched token index, 376

seeds its error count to account for unmatched pre- 377

fix tokens, and begins its similarity list with the 378

retrieved distance. After completing U steps, all 379

entries in C are passed to DistanceRanker, which 380

selects the top-K keywords. The final output con- 381

sists of the full transcript ŷ alongside these ranked 382

keywords (line 33). 383

Ranking Algorithm for RECAST. To identify 384

relevant keywords for contextual ASR, we rank 385

candidates by combining similarity, informative- 386

ness, and transcript coverage. Each keyword is first 387

scored using average similarity between its token 388

embeddings and decoder states (via cosine or dot 389

product), then scaled by keyword length to favor 390

5

longer (Wu et al., 2016), more informative terms:391

scaled similarity = average similarity × |tokens|0.6392

To ensure broad coverage, we enforce positional393

diversity by selecting high-scoring keywords from394

distinct transcript regions. Remaining slots are395

filled by top-scoring keywords regardless of po-396

sition. This strategy favors contextually aligned,397

content-rich keywords while maintaining positional398

spread. Ablations in §5.2.1 explore the impact of399

length scaling and diversity constraints.400

3.4 Contextual ASR with RECAST401

We use RECAST to retrieve relevant keywords and402

inject them into the decoder prompt of Whisper or403

other speech LLMs (e.g., Phi-4), following prior404

work (Li et al., 2024b; Shamsian et al., 2024). De-405

coder state embeddings are used to query a precom-406

puted keyword index, and the top-K ranked key-407

words are formatted into a prompt. This retrieval-408

augmented prompting improves grounding and dis-409

ambiguation without modifying the model, enhanc-410

ing ASR performance in out-of-domain settings.411

4 Experimental Setup412

Models and Implementation Details. We use413

Whisper large-v2 (1.5B parameters) as the frozen414

ASR backbone. Our retrieval model consists415

of two lightweight modules: a single-layer416

LSTM keyword encoder KEϕ, which projects417

1024-dimensional token embeddings into a 512-418

dimensional space, and a feedforward decoder-419

state projector DPϕ, which maps 384-dimensional420

decoder states into the same embedding space.421

Combined, these modules introduce only 6.5M422

additional parameters. Keyword embeddings are423

precomputed and indexed to enable efficient kNN-424

based retrieval during inference. Training and im-425

plementation details are provided in Appendix A.1426

Metrics. We evaluate RECAST primarily using427

recall-based metrics to assess keyword retrieval428

quality from large candidate pools. Recall@50429

measures retrieval effectiveness, while Keyword430

Recovery Rate (KRR) captures the proportion431

of keywords missed by the baseline ASR but re-432

covered through retrieval—highlighting gains in433

contextual recall. To assess downstream ASR im-434

pact, we also report Word Error Rate (WER) and435

Entity-WER (E-WER), the latter computed over436

dictionary entity spans in test utterances437

1Code will be released upon acceptance.

Retrieval Baselines. For these baselines, we use 438

the 1-best ASR hypothesis and perform keyword 439

retrieval via fuzzy text matching. While many such 440

methods exist, we focus on scalable, index-based 441

approaches supported by Elastic Search (and its 442

Phonetic Analysis plugin)2. The five baselines 443

are: (1) Soundex. Matches exact Soundex (Knuth, 444
1973) codes between transcript and keywords. 445

(2) Metaphone. Same as above but uses Meta-
446

phone codes. (3) Double Metaphone. Matches
447

on either primary or alternate codes from Dou- 448

ble Metaphone (Philips, 2000). (4) NYSIIS. Uses
449

NYSIIS (Moore, 1977) for phonetic normalization 450

and exact matching. (5) BM25. Ranks keywords
451

using Elastic Search’s built-in BM25 based on term 452

frequency and document relevance. 453

Contextual ASR Baseline. We compare against 454

PRISM (Mittal et al., 2023b), a contextual ASR 455

system that 1) synthesizes keywords via TTS, 2) 456

indexes their audio & text embeddings in a kNN 457

key–value store, and 3) biases the decoder by lin- 458

early interpolating kNN-derived probabilities dur- 459

ing beam-search decoding. 460

Datasets. We evaluate RECAST on two bench- 461

marks. First, we use the entity-rich PRISM 462

dataset (Mittal et al., 2023b), which contains out- 463

of-domain utterances with named entities across 464

domains like people, locations, and medical terms. 465

Second, we use the standard LibriSpeech bench- 466

mark (Panayotov et al., 2015), with keyword dic- 467

tionaries curated from prior contextual ASR stud- 468

ies (Sun et al., 2021; Le et al., 2021a). 469

Contextual ASR Models. For contextual ASR 470

evaluation, we consider two state-of-the-art mod- 471

els: Whisper large-v2 (Radford et al., 2023) and 472

Phi-4 (Abouelenin et al., 2025), a recent speech- 473

language model (SpeechLLM). For Whisper, we 474

adopt the prompting strategy from Peng et al. (Peng 475

et al., 2023), where retrieved keywords are added 476

to the decoder prompt at inference time. For Phi- 477

4, keywords are incorporated according to its de- 478

signed transcription prompt interface (Appendix 479

B). Additionally, we introduce a third baseline 480

based on LLM error correction, where the GPT-4o- 481

mini (Hurst et al., 2024) model is prompted with the 482

initial ASR prediction along with the retrieved key- 483

2Elastic Search: https://www.elastic.co/
elasticsearch; Phonetic Analysis plugin: https:
//www.elastic.co/docs/reference/elasticsearch/
plugins/analysis-phonetic.

6

https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic
https://www.elastic.co/docs/reference/elasticsearch/plugins/analysis-phonetic

Table 1: Comparison of performance on the Entity-rich dataset. We report Recall@50 (with Keyword Recovery
Rate, KKR, in parentheses), along with Word Error Rate (WER) and Entity-WER (E-WER), using Whisper large-v2
as the underlying ASR model.

Method
LOCATION (SMALL) LOCATION (BIG) DRUGS NAMES

Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓

Whisper Baseline 53.7 (-) 19.6 / 37.7 54.2 (-) 19.7 / 39.0 16.1 (-) 16.5 / 74.8 51.2 (-) 9.0 / 13.6

Baselines

Soundex 74.2 (206) 13.1 / 21.1 72.9 (530) 13.8 / 23.5 50.7 (988) 14.1 / 51.2 67.5 (1167) 12.1 / 12.4

Metaphone 73.2 (196) 13.4 / 21.7 73.0 (532) 13.8 / 23.6 50.8 (991) 13.7 / 52.4 70.1 (1238) 11.7 / 12.4

Double Metaphone 75.0 (214) 12.9 / 20.3 74.3 (569) 12.2 / 22.4 53.8 (1077) 14.2 / 49.3 66.0 (1130) 11.7 / 12.3

NYSIIS 70.7 (171) 13.6 / 22.5 69.5 (434) 14.9 / 25.4 41.3 (716) 14.1 / 58.1 67.0 (1007) 12.8 / 12.6

BM25 62.8 (92) 16.1 / 28.7 61.7 (214) 17.4 / 29.0 20.8 (127) 16.2 / 72.3 49.5 (3) 9.2 / 12.6

PRISM - 13.8 / 23.1 - 17.4 / 29.0 - 14.4 / 51.9 - 11.1 / 12.7

RECAST

T̂ = 100 79.3 (266) 12.4 / 19.3 74.0 (609) 13.7 / 21.8 48.6 (994) 14.9 / 52.2 52.8 (681) 11.6 / 12.4

T̂ = 50 79.6 (267) 12.4 / 19.2 75.0 (661) 13.7 / 21.8 48.1 (1043) 14.7 / 51.4 61.6 (907) 9.7 / 12.3

T̂ = 20 82.5 (292) 11.5 / 17.2 75.6 (671) 12.4 / 20.4 55.3 (1149) 12.3 / 49.6 66.0 (1087) 9.6 / 11.6

words and tasked with correcting the transcription484

based on keyword grounding (Appendix C)—an485

approach aligned with prior work on LLM-based486

ASR correction (Li et al., 2024a; Ma et al., 2025).487

5 Experiments and Results488

As shown in Table 1, among phonetic base-489

lines, Double Metaphone achieves the best per-490

formance—improving Recall by up to 19.4% and491

reducing Entity-WER by 29.3% over BM25 on the492

LOCATION (SMALL) benchmark. On the more493

error-prone DRUGS benchmark, it yields a 158.7%494

increase in Recall and a 32.1% drop in Entity-WER495

compared to BM25, demonstrating the effective-496

ness of phonetic matching in noisy ASR settings.497

RECAST extends these improvements further. At498

its best configuration (T̂ = 20), it achieves a 10.0%499

higher Recall and a 15.3% lower Entity-WER than500

Double Metaphone on LOCATION (SMALL). On501

the DRUGS dataset, it reduces WER by an addi-502

tional 13.4%, even over the strongest phonetic base-503

line. On NAMES, it matches the top recall and504

achieves a 5.7% relative improvement in E-WER.505

These gains, summarized in Table 1, highlight506

the strength of RECAST’s contrastive retrieval ap-507

proach in mitigating phonetic ambiguity and ASR508

noise. As shown in Appendix E, RECAST remains509

effective with smaller ASR models, balancing qual-510

ity and efficiency. All WER gains are statistically511

significant under the MAPSSWE test (p < 0.01).512

As shown in Table 2, LIBRISPEECH serves as513

our in-domain benchmark. RECAST with T̂ = 20514

consistently outperforms all baselines across both515

test-clean and test-other. On the more challeng-516

ing test-other split, it achieves a 10.3% relative517

reduction in E-WER compared to the best phonetic518

Table 2: Comparison of performance on the in-domain
LibriSpeech test-clean and test-other datasets with
1,000 distractors. We report Recall@50, Keyword Re-
covery Rate, along with Word Error Rate (WER) and
Entity-WER (E-WER), using Whisper large-v2 as the
underlying ASR model.

Method
test-clean test-other

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Whisper Baseline 89.2 - 4.2 / 10.2 79.5 - 6.7 / 10.6
Baselines

Soundex 90.9 320 3.9 / 8.5 84.34 464 6.2 / 9.2
Metaphone 90.6 309 4.0 / 9.1 83.8 436 6.4 / 9.0
Double Metaphone 91.4 365 3.7 / 8.2 85.1 499 6.1 / 8.7
NYSISS 90.0 264 4.1 / 9.7 82.7 366 6.7 / 9.2
BM25 89.2 2 4.2/10.2 79.5 2 6.7 / 10.6

RECAST

T̂ = 20 92.8 380 3.6 / 7.7 88.0 639 5.4 / 7.8

baseline, while improving Recall by 3.4%. On test- 519

clean, RECAST yields a 6.1% drop in E-WER and 520

the highest recall overall. 521

Applicability to New Languages. Appendix F 522

demonstrates the ability of RECAST to scale ef- 523

fectively to a new language—Hindi. Despite 524

challenges such as high token fertility, RECAST 525

achieves strong retrieval and contextual ASR per- 526

formance. Unlike phonetic baselines such as 527

Soundex and Double Metaphone, which are tailored 528

to English, RECAST remains effective out of the 529

box, reinforcing its language-agnostic applicability 530

when paired with a suitable ASR model. 531

5.1 Using RECAST with LLMs 532

We evaluate the utility of RECAST beyond Whisper 533

prompting by using its top-K keywords to guide 534

two contextual ASR strategies: (1) prompting a 535

speech LLM (Phi-4 Multimodal Instruct), and (2) 536

text-based LLM error correction (Li et al., 2024a; 537

Ma et al., 2025) using GPT-4o-mini (Hurst et al., 538

2024). 539

7

Table 3: Ablation of contextual ASR on the Location
benchmarks: Speech LLMs (Phi-4, Whisper large-v2)
and text-based ASR correction by GPT-4o-mini using
keywords retrieved via RECAST. We report WER and
E-WER for all methods, with RECAST varying by re-
trieval size (K).

Method LOCATION (SMALL) LOCATION (BIG)
WER ↓ E-WER ↓ WER ↓ E-WER ↓

Baselines
Whisper large-v2 19.6 37.7 19.7 39.0
Phi-4 21.9 42.5 18.9 41.3
GPT-4o-mini 82.5 36.8 71.7 44.5

(w/ all keywords)
RECAST (T̂ = 20)

Phi-4 (K = 10) 18.3 32.1 22.7 33.2
Phi-4 (K = 20) 20.9 33.4 25.2 33.8
Phi-4 (K = 50) 38.9 33.7 40.0 34.2
GPT-4o-mini (K = 50) 16.3 26.6 18.1 32.5
Whisper (large-v2) (K = 50) 11.5 17.2 12.4 20.4

Table 4: Ablation of ranking strategies on the Location
benchmarks. We evaluate four rescoring methods for
top-50 candidates—Avg/Scaled Distance with or with-
out Positional Diversity—using Recall@50, Keyword
Recovery Rate (KKR), WER, and E-WER.

Method
LOCATION (SMALL) LOCATION (BIG)

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Average Distance 78.9 264 12.3 / 18.6 71.6 601 13.8 / 23.3
Scaled Distance 81.2 288 11.7 / 17.2 72.9 630 13.6 / 22.7
P.D & Average Distance 79.9 280 11.8 / 18.1 72.6 625 13.8 / 22.8
P.D & Scaled Distance 82.5 292 11.5 / 17.2 75.6 671 12.4 / 20.4

As shown in Table 3, Phi-4 hallucinates with540

large keyword lists (K = 50), increasing WER and541

E-WER, while smaller, focused subsets (K = 10)542

improve performance—highlighting the need for543

precise keyword selection.544

GPT-4o-mini shows similar behavior: prompting545

with all keywords leads to spurious insertions and546

degraded E-WER, while using RECAST-selected547

subsets yields consistent gains.548

Overall, Whisper large-v2 with K = 50 achieves549

the best performance, outperforming both LLM-550

based strategies.551

5.2 Ablation Study552

5.2.1 Analysis on Rankers553

As shown in Table 4, using scaled distance nor-554

malization over plain average distance improves555

recall and reduces E-WER, with up to a 7.5% rel-556

ative reduction. Incorporating positional diversity557

further enhances both metrics, yielding up to a558

10.1% relative drop in E-WER over the base aver-559

age distance method. These results highlight that560

combining distance scaling with positional diver-561

sity is crucial for selecting more relevant keyword562

candidates, leading to better retrieval quality and563

improved transcription performance.564

Figure 2: Comparison of Real-Time Factor (RTF) versus
number of keywords for RECAST with T̂ = 20.

5.2.2 Latency 565

Figure 2 shows that RECAST maintains consistently 566

low Real-Time Factor (RTF) between 0.013 and 567

0.015 with T̂ = 20, even as dictionary size scales 568

from 1K to over 4K entities. This demonstrates 569

the method’s efficiency and suitability for real-time 570

applications requiring accurate keyword retrieval 571

with minimal latency. Notably, the near-constant 572

RTF highlights the scalability of our token-level 573

retrieval design, which avoids linear growth in in- 574

ference time. These results underscore RECAST 575

’s practicality for deployment in streaming ASR 576

systems, where both responsiveness and retrieval 577

quality are critical. 578

6 Conclusion 579

We introduced RECAST, a retrieval-augmented 580

framework for contextual ASR that leverages de- 581

coder states of a pretrained encoder–decoder model 582

to query large text-only keyword dictionaries with- 583

out audio exemplars. At the core of RECAST is 584

a contrastively trained retriever and a token-level 585

span aggregation algorithm that constructs and 586

ranks keyword hypotheses using contextual sim- 587

ilarity, length-based scaling, and positional diver- 588

sity. RECAST achieves state-of-the-art results on 589

in-domain and out-of-domain benchmarks for both 590

retrieval and contextual ASR, with substantial gains 591

in recognition quality. It maintains low latency de- 592

spite large vocabularies, owing to its lightweight 593

design and efficient kNN retrieval. These results 594

position RECAST as a scalable, accurate, and prac- 595

tical solution for keyword-guided speech recogni- 596

tion—even in languages where traditional phonetic 597

baselines like Soundex and Double Metaphone are 598

ineffective. While the current setup is language- 599

specific, future work may explore multilingual ex- 600

tensions with a shared retriever. 601

8

Limitations602

Our current implementation of RECAST is limited603

to encoder–decoder ASR models, where decoder604

states offer natural alignment for contrastive train-605

ing. Extending this framework to CTC or RNN-606

T architectures would require estimating output607

alignments and identifying appropriate intermedi-608

ate representations—a direction we leave for future609

work. Additionally, while our evaluation covers610

dictionaries of up to 4,000 keywords, real-world611

deployments may require scaling to tens of thou-612

sands of entities, for which suitable benchmarks613

are currently unavailable. We also note that per-614

formance in specialized domains such as medicine615

could further benefit from domain-specific finetun-616

ing of the base ASR model, which was not feasible617

due to data limitations.618

Our current system performs keyword retrieval619

as a separate first pass, followed by contextual620

ASR in a second stage; an exciting direction for621

future work is to integrate retrieval and decoding622

more tightly—e.g., by guiding beam search with623

retrieved keywords in real time to avoid a two-stage624

pipeline.625

While RECAST generalizes well across lan-626

guages, its performance still depends on the qual-627

ity of the underlying ASR backbone, which may628

underperform on certain dialects or low-resource629

languages.630

In terms of broader implications, several risks631

merit consideration. If keyword dictionaries con-632

tain sensitive or personally identifiable information633

(PII), there is potential for unintended exposure in634

transcriptions. Furthermore, overly aggressive bias-635

ing—particularly with low-precision retrieval—can636

cause hallucinations or the insertion of incorrect637

entities. Security concerns also arise if malicious638

keyword dictionaries are introduced to manipulate639

transcription output.640

References641

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkin-642
son, Hany Awadalla, Nguyen Bach, Jianmin Bao,643
Alon Benhaim, Martin Cai, Vishrav Chaudhary, Con-644
gcong Chen, and 1 others. 2025. Phi-4-mini tech-645
nical report: Compact yet powerful multimodal lan-646
guage models via mixture-of-loras. arXiv preprint647
arXiv:2503.01743.648

Sercan O Arik, Markus Kliegl, Rewon Child, Joel649
Hestness, Andrew Gibiansky, Chris Fougner, Ryan650
Prenger, and Adam Coates. 2017. Convolutional re-651

current neural networks for small-footprint keyword 652
spotting. arXiv preprint arXiv:1703.05390. 653

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, 654
and Michael Auli. 2020. wav2vec 2.0: A framework 655
for self-supervised learning of speech representations. 656
Advances in neural information processing systems, 657
33:12449–12460. 658

Kai-Wei Chang, Haibin Wu, Yu-Kai Wang, Yuan-Kuei 659
Wu, Hua Shen, Wei-Cheng Tseng, Iu-thing Kang, 660
Shang-Wen Li, and Hung-yi Lee. 2024. Speech- 661
prompt: Prompting speech language models for 662
speech processing tasks. IEEE/ACM Transactions on 663
Audio, Speech, and Language Processing. 664

Aditya Gourav, Linda Liu, Ankur Gandhe, Yile Gu, 665
Guitang Lan, Xiangyang Huang, Shashank Kalmane, 666
Gautam Tiwari, Denis Filimonov, Ariya Rastrow, and 667
1 others. 2021. Personalization strategies for end-to- 668
end speech recognition systems. In ICASSP 2021- 669
2021 IEEE International Conference on Acoustics, 670
Speech and Signal Processing (ICASSP), pages 7348– 671
7352. IEEE. 672

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki 673
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo 674
Wang, Zhengdong Zhang, Yonghui Wu, and 1 oth- 675
ers. 2020. Conformer: Convolution-augmented 676
transformer for speech recognition. arXiv preprint 677
arXiv:2005.08100. 678

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long 679
short-term memory. Neural computation, 9(8):1735– 680
1780. 681

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, 682
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel- 683
rahman Mohamed. 2021. Hubert: Self-supervised 684
speech representation learning by masked prediction 685
of hidden units. IEEE/ACM transactions on audio, 686
speech, and language processing, 29:3451–3460. 687

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 688
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 689
Weizhu Chen, and 1 others. 2022. Lora: Low-rank 690
adaptation of large language models. ICLR, 1(2):3. 691

Rongqing Huang, Ossama Abdel-Hamid, Xinwei Li, 692
and Gunnar Evermann. 2020. Class lm and word 693
mapping for contextual biasing in end-to-end asr. 694
arXiv preprint arXiv:2007.05609. 695

Christian Huber, Juan Hussain, Sebastian Stüker, and 696
Alexander Waibel. 2021. Instant one-shot word- 697
learning for context-specific neural sequence-to- 698
sequence speech recognition. In 2021 IEEE Auto- 699
matic Speech Recognition and Understanding Work- 700
shop (ASRU), pages 1–7. IEEE. 701

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 702
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 703
Akila Welihinda, Alan Hayes, Alec Radford, and 1 704
others. 2024. Gpt-4o system card. arXiv preprint 705
arXiv:2410.21276. 706

9

Mahaveer Jain, Gil Keren, Jay Mahadeokar, Geoffrey707
Zweig, Florian Metze, and Yatharth Saraf. 2020.708
Contextual rnn-t for open domain asr. arXiv preprint709
arXiv:2006.03411.710

Tahir Javed, Janki Atul Nawale, Eldho Ittan George,711
Sakshi Joshi, Kaushal Santosh Bhogale, Deovrat712
Mehendale, Ishvinder Virender Sethi, Aparna Anan-713
thanarayanan, Hafsah Faquih, Pratiti Palit, and 1 oth-714
ers. 2024. Indicvoices: Towards building an inclu-715
sive multilingual speech dataset for indian languages.716
arXiv preprint arXiv:2403.01926.717

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.718
Billion-scale similarity search with GPUs. IEEE719
Transactions on Big Data, 7(3):535–547.720

Herman Kamper, Weiran Wang, and Karen Livescu.721
2016. Deep convolutional acoustic word embeddings722
using word-pair side information. In 2016 IEEE in-723
ternational conference on acoustics, speech and sig-724
nal processing (ICASSP), pages 4950–4954. IEEE.725

Donald E. Knuth. 1973. The Art of Computer Program-726
ming, Volume 3: Sorting and Searching. Addison-727
Wesley.728

Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim,729
Yangyang Shi, Jay Mahadeokar, Julian Chan, Yuan730
Shangguan, Christian Fuegen, Ozlem Kalinli, and 1731
others. 2021a. Contextualized streaming end-to-end732
speech recognition with trie-based deep biasing and733
shallow fusion. arXiv preprint arXiv:2104.02194.734

Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Chris-735
tian Fuegen, and Michael L Seltzer. 2021b. Deep736
shallow fusion for rnn-t personalization. In 2021737
IEEE Spoken Language Technology Workshop (SLT),738
pages 251–257. IEEE.739

Sheng Li, Chen Chen, Chin Yuen Kwok, Chenhui Chu,740
Eng Siong Chng, and Hisashi Kawai. 2024a. In-741
vestigating asr error correction with large language742
model and multilingual 1-best hypotheses. In Proc.743
Interspeech, pages 1315–1319.744

Yuang Li, Yinglu Li, Min Zhang, Chang Su, Jiawei745
Yu, Mengyao Piao, Xiaosong Qiao, Miaomiao Ma,746
Yanqing Zhao, and Hao Yang. 2024b. Cb-whisper:747
Contextual biasing whisper using open-vocabulary748
keyword-spotting. In Proceedings of the 2024 Joint749
International Conference on Computational Linguis-750
tics, Language Resources and Evaluation (LREC-751
COLING 2024), pages 2941–2946.752

Yuang Li, Min Zhang, Chang Su, Yinglu Li, Xiaosong753
Qiao, Mengxin Ren, Miaomiao Ma, Daimeng Wei,754
Shimin Tao, and Hao Yang. 2023. A multitask train-755
ing approach to enhance whisper with contextual bi-756
asing and open-vocabulary keyword spotting. arXiv757
preprint arXiv:2309.09552.758

Hyungjun Lim, Younggwan Kim, Kiho Yeom, Eun-759
joo Seo, Hoodong Lee, Stanley Jungkyu Choi, and760
Honglak Lee. 2023. Lightweight feature encoder761
for wake-up word detection based on self-supervised762

speech representation. In ICASSP 2023-2023 IEEE 763
International Conference on Acoustics, Speech and 764
Signal Processing (ICASSP), pages 1–5. IEEE. 765

Da-Rong Liu, Chunxi Liu, Frank Zhang, Gabriel Syn- 766
naeve, Yatharth Saraf, and Geoffrey Zweig. 2020. 767
Contextualizing asr lattice rescoring with hybrid 768
pointer network language model. arXiv preprint 769
arXiv:2005.07394. 770

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, 771
Vikrant Singh Tomar, and Yoshua Bengio. 2019. 772
Speech model pre-training for end-to-end spo- 773
ken language understanding. arXiv preprint 774
arXiv:1904.03670. 775

Rao Ma, Mengjie Qian, Mark Gales, and Kate Knill. 776
2025. Asr error correction using large language mod- 777
els. IEEE Transactions on Audio, Speech and Lan- 778
guage Processing. 779

Jonathan Mamou, Bhuvana Ramabhadran, and Olivier 780
Siohan. 2007. Vocabulary independent spoken term 781
detection. In Proceedings of the 30th annual inter- 782
national ACM SIGIR conference on Research and 783
development in information retrieval, pages 615–622. 784

Ashish Mittal, Sunita Sarawagi, and Preethi Jyothi. 785
2023a. In-situ text-only adaptation of speech mod- 786
els with low-overhead speech imputations. In The 787
Eleventh International Conference on Learning Rep- 788
resentations. 789

Ashish Mittal, Sunita Sarawagi, Preethi Jyothi, George 790
Saon, and Gakuto Kurata. 2023b. Speech-enriched 791
memory for inference-time adaptation of asr models 792
to word dictionaries. In Proceedings of the 2023 Con- 793
ference on Empirical Methods in Natural Language 794
Processing, pages 14820–14835. 795

Gwendolyn B Moore. 1977. Accessing individual 796
records from personal data files using non-unique 797
identifiers, volume 13. US Department of Commerce, 798
National Bureau of Standards. 799

Tsendsuren Munkhdalai, Zelin Wu, Golan Pundak, 800
Khe Chai Sim, Jiayang Li, Pat Rondon, and Tara N 801
Sainath. 2023. Nam+: Towards scalable end-to-end 802
contextual biasing for adaptive asr. In 2022 IEEE 803
Spoken Language Technology Workshop (SLT), pages 804
190–196. IEEE. 805

Aviv Navon, Aviv Shamsian, Neta Glazer, Gill Hetz, 806
and Joseph Keshet. 2024. Open-vocabulary keyword- 807
spotting with adaptive instance normalization. In 808
ICASSP 2024-2024 IEEE International Confer- 809
ence on Acoustics, Speech and Signal Processing 810
(ICASSP), pages 11656–11660. IEEE. 811

Vassil Panayotov, Guoguo Chen, Daniel Povey, and 812
Sanjeev Khudanpur. 2015. Librispeech: an asr cor- 813
pus based on public domain audio books. In 2015 814
IEEE international conference on acoustics, speech 815
and signal processing (ICASSP), pages 5206–5210. 816
IEEE. 817

10

Puyuan Peng, Brian Yan, Shinji Watanabe, and David818
Harwath. 2023. Prompting the hidden talent of web-819
scale speech models for zero-shot task generalization.820
arXiv preprint arXiv:2305.11095.821

Lawrence Philips. 2000. The double-metaphone search822
algorithm. C/C++ Users Journal, pages 38–43.823

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-824
man, Christine McLeavey, and Ilya Sutskever. 2023.825
Robust speech recognition via large-scale weak su-826
pervision. In International conference on machine827
learning, pages 28492–28518. PMLR.828

Vijay Ravi, Yile Gu, Ankur Gandhe, Ariya Rastrow,829
Linda Liu, Denis Filimonov, Scott Novotney, and830
Ivan Bulyko. 2020. Improving accuracy of rare831
words for rnn-transducer through unigram shallow832
fusion. arXiv preprint arXiv:2012.00133.833

Jan Robin Rohlicek, William Russell, Salim Roukos,834
and Herbert Gish. 1989. Continuous hidden markov835
modeling for speaker-independent word spotting. In836
International Conference on Acoustics, Speech, and837
Signal Processing,, pages 627–630. IEEE.838

George Saon, Avihu Dekel, Alexander Brooks, Tohru839
Nagano, Abraham Daniels, Aharon Satt, Ashish Mit-840
tal, Brian Kingsbury, David Haws, Edmilson Morais,841
and 1 others. 2025. Granite-speech: open-source842
speech-aware llms with strong english asr capabili-843
ties. arXiv preprint arXiv:2505.08699.844

Shane Settle and Karen Livescu. 2016. Discrimina-845
tive acoustic word embeddings: Tecurrent neural846
network-based approaches. In 2016 IEEE spoken lan-847
guage technology workshop (SLT), pages 503–510.848
IEEE.849

Aviv Shamsian, Aviv Navon, Neta Glazer, Gill Hetz,850
and Joseph Keshet. 2024. Keyword-guided adapta-851
tion of automatic speech recognition. arXiv preprint852
arXiv:2406.02649.853

Guangzhi Sun, Chao Zhang, and Phil Woodland. 2023.854
Graph neural networks for contextual asr with the855
tree-constrained pointer generator. arXiv preprint856
arXiv:2305.18824.857

Guangzhi Sun, Chao Zhang, and Philip C Woodland.858
2021. Tree-constrained pointer generator for end-to-859
end contextual speech recognition. In 2021 IEEE860
Automatic Speech Recognition and Understanding861
Workshop (ASRU), pages 780–787. IEEE.862

George Tucker, Minhua Wu, Ming Sun, Sankaran Pan-863
chapagesan, Gengshen Fu, and Shiv Vitaladevuni.864
2016. Model compression applied to small-footprint865
keyword spotting.866

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob867
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz868
Kaiser, and Illia Polosukhin. 2017. Attention is all869
you need. Advances in neural information processing870
systems, 30.871

Yingzhi Wang, Abdelmoumene Boumadane, and Abdel- 872
wahab Heba. 2021. A fine-tuned wav2vec 2.0/hu- 873
bert benchmark for speech emotion recognition, 874
speaker verification and spoken language understand- 875
ing. arXiv preprint arXiv:2111.02735. 876

Ian Williams, Anjuli Kannan, Petar S Aleksic, David Ry- 877
bach, and Tara N Sainath. 2018. Contextual speech 878
recognition in end-to-end neural network systems us- 879
ing beam search. In Interspeech, pages 2227–2231. 880

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, 881
Mohammad Norouzi, Wolfgang Macherey, Maxim 882
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and 883
1 others. 2016. Google’s neural machine translation 884
system: Bridging the gap between human and ma- 885
chine translation. arXiv preprint arXiv:1609.08144. 886

Guanrou Yang, Ziyang Ma, Zhifu Gao, Shiliang Zhang, 887
and Xie Chen. 2024. Ctc-assisted llm-based contex- 888
tual asr. In 2024 IEEE Spoken Language Technology 889
Workshop (SLT), pages 126–131. IEEE. 890

Yaodong Zhang and James R Glass. 2009. Unsuper- 891
vised spoken keyword spotting via segmental dtw on 892
gaussian posteriorgrams. In 2009 IEEE Workshop 893
on Automatic Speech Recognition & Understanding, 894
pages 398–403. IEEE. 895

11

https://doi.org/10.5555/349124.349132
https://doi.org/10.5555/349124.349132
https://doi.org/10.5555/349124.349132

A Implementation Details896

Training Setup. The retrieval model is trained897

on the LibriSpeech 960-hour corpus (Panayotov898

et al., 2015) using the contrastive loss described899

in Section 3.1. We use a batch size of 256 and a900

learning rate of 1e−4, training for 6 epochs with901

the AdamW optimizer. The temperature parameter902

used in the contrastive loss is set to τ = 0.07. For903

each keyword span, up to 10 hard negatives are904

considered during training to improve contextual905

discrimination. The best checkpoint is selected906

based on validation accuracy.907

Keyword Extraction. Bigram keywords are ex-908

tracted from the capitalized LibriSpeech transcripts909

using the KeyBERT3 model. These are then tok-910

enized using Whisper’s vocabulary and encoded911

using the keyword encoder KEϕ.912

Retrieval Infrastructure. For efficient nearest-913

neighbor retrieval, keyword token embeddings are914

indexed using FAISS (Johnson et al., 2019). At in-915

ference time, decoder state embeddings are queried916

against this index to retrieve relevant token spans.917

Inference Hyperparameters For all English ex-918

periments, the error threshold Emax was set to 2,919

and the number of nearest neighbors retrieved, T̂ ,920

was set to 20.921

Hardware. All experiments are conducted on922

NVIDIA A100 GPUs with 40GB memory.923

B Prompting Strategy for Phi-4924

Multimodal Instruct Model925

We employ different prompting strategies for base-926

line and contextual ASR using the Phi-4 Multi-927

modal Instruct model (Abouelenin et al., 2025).928

Baseline Prompt. For zero-context evalua-929

tion, we use a simple instruction-only prompt:930

"Transcribe the audio to text."931

Contextual Prompt with Retrieved Keywords.932

To enable contextualization, we provide a list of rel-933

evant keywords retrieved by RECAST at inference934

time. The prompt is structured as:935

“Transcribe the audio to text.936

Transcribed text may contain the937

following words: <keyword_1>,938

<keyword_2>, ..., <keyword_N>."939

3https://pypi.org/project/keybert/

Here, <keyword_i> denotes the i-th retrieved key- 940

word. This formulation allows the model to bias 941

transcription toward relevant entities without addi- 942

tional fine-tuning. 943

C Prompting Strategy for GPT-4o-mini 944

Error Correction 945

For ASR error correction, we use GPT-4o-mini in 946

a text-only setting, leveraging retrieved keywords 947

from RECAST to provide contextual guidance. The 948

prompt consists of a system instruction and a user 949

input, combined into a single unified prompt pre- 950

sented to the model: 951

System: You are given a set of 952

keywords and an ASR prediction. 953

Your task is to correct the ASR 954

transcript using the keywords as 955

contextual guidance. Only output 956

the corrected transcript. Do not 957

include any additional text. 958

959

User: Keywords: <keyword_1>, 960

<keyword_2>, ..., <keyword_N> 961

ASR Prediction: <asr_output> 962

Here, <keyword_i> denotes the i-th retrieved key- 963

word, and <asr_output> is the original ASR hy- 964

pothesis. The model is expected to return only 965

the corrected transcription without any additional 966

explanation or formatting. 967

D Algorithm for Keyword Index Creation 968

Algorithm 2 Keyword Index Creation

1: Input: Keywords {k(1), . . . ,k(M)}, Tokenizer,
keyword-encoder KEϕ

2: Output: kNN index I
3: E ← [], K ← []
4: for m = 1 to M do
5: w ← Tokenizer(k(m))

6: [z
(m)
1 , . . . , z

(m)

|w|]← KEϕ(w
(m)
1 , . . . , w

(m)

|w|) ▷ Eq. 1
7: for ℓ = 1 to |w| do
8: E.append(z(m)

ℓ) ▷ Token Embedding
9: K.append((m, ℓ)) ▷ Keyword & Token index

10: end for
11: end for
12: I ← FAISSIndex(E,K)
13: return I

E Effect of ASR Model Size on RECAST 969

In Section 5, RECAST is trained on Whisper 970

large-v2, a 1.5B parameter encoder–decoder ASR 971

12

https://pypi.org/project/keybert/

Table 5: Performance comparison on the Entity-rich dataset. We report Recall@50 (with Keyword Recovery Rate,
KKR, in parentheses), Word Error Rate (WER), and Entity-specific Word Error Rate (E-WER). RECAST is trained
with different Whisper model variants, while all contextual ASR baselines use Whisper large-v2 as the underlying
ASR model.

Method
LOCATION (SMALL) LOCATION (BIG) DRUGS NAMES

Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓ Recall ↑ (KKR ↑) WER / E-WER ↓

Baseline

Large-v2 (1.5B) 53.7 (-) 19.6 / 37.7 54.2 (-) 19.7 / 39.0 16.1 (-) 16.5 / 74.8 51.2 (-) 9.0 / 13.6

RECAST (T̂ = 20)

Tiny (39M) 67.8 (245) 14.4 / 24.7 58.0 (602) 14.7 / 24.7 24.8 (650) 17.3 / 63.2 49.1 (742) 10.6 / 12.9

Base (74M) 69.9 (262) 12.8 / 19.7 59.6 (612) 14.5 / 24.6 25.7 (661) 16.8 / 62.6 49.6 (756) 10.6 / 12.8

Small (244M) 74.2 (270) 12.6 / 18.0 68.5 (646) 13.4 / 22.2 29.6 (692) 16.5 / 60.9 52.3 (778) 10.5 / 12.7

Medium (769M) 75.6 (279) 12.1 / 17.8 69.3 (662) 13.2 / 21.8 32.2 (726) 16.3 / 59.6 54.1 (791) 10.3 / 12.6

Large-v2 (1.5B) 82.5 (292) 11.5 / 17.2 75.6 (671) 12.4 / 20.4 55.3 (1149) 12.3 / 49.6 66.0 (1087) 9.6 / 11.6

model. To assess sensitivity to ASR backbone972

size, we train RECAST on smaller Whisper variants:973

medium.en (769M), small.en (244M), base.en974

(74M), and tiny.en (39M), with the keyword re-975

triever trained from scratch in each case. At in-976

ference, retrieved keywords are passed as prompts977

to Whisper large-v2 (Peng et al., 2023) to isolate978

retrieval quality from decoding performance.979

As shown in Table 5, we find that smaller back-980

bones yield competitive performance on LOCA-981

TION benchmarks (e.g., Tiny incurs only a 17.8%982

relative drop in Recall on LOCATION (SMALL)983

compared to Large-v2), but show larger degrada-984

tions on entity-rich or ambiguity-prone datasets.985

On DRUGS, the E-WER increases by 27.5% for986

Tiny relative to Large-v2, while on NAMES, recall987

drops by 25.6%. These results indicate that while988

RECAST remains robust across model scales, larger989

ASR backbones offer significant benefits for com-990

plex retrieval settings. Nonetheless, smaller models991

remain a viable option in resource-constrained sce-992

narios or domains with fewer rare entities.993

F Evaluation on Hindi994

To assess the effectiveness of RECAST on a linguis-995

tically diverse language, we conduct experiments996

on Hindi using the IndicVoices dataset (Javed et al.,997

2024). Retrieval and contextual ASR evaluations998

follow the same setup described in Section 4.999

As the baseline Whisper large-v2 model per-1000

forms poorly on IndicVoices (WER: 60.0), we first1001

fine-tune it on the training split using LoRA (Hu1002

et al., 2022), reducing the WER to 28.1. All sub-1003

sequent RECAST training and contextual ASR ex-1004

periments are conducted on this LoRA-adapted1005

model. This setup enables fair comparison and1006

demonstrates the applicability of RECAST in lan-1007

guages with challenging tokenization characteris-1008

Table 6: Performance on the Hindi contextual biasing
benchmark constructed from the IndicVoices dataset.
We report Recall@50 (with Keyword Recovery Rate,
KKR, in parentheses), along with Word Error Rate
(WER) and Entity-specific WER (E-WER) under two
matching tolerance settings: Emax = 2 and Emax = 3.
All models are evaluated using the LoRA-adapted Whis-
per large-v2 model.

Method
Emax = 2 Emax = 3

Recall ↑ KKR ↑ WER ↓ Recall ↑ KKR ↑ WER ↓
/ E-WER ↓ / E-WER ↓

Baseline 43.6 - 28.1 / 43.6 43.6 - 28.1 / 43.6
RECAST (T̂ = 20) 52.6 192 27.2 / 40.4 71.5 396 26.3 / 38.2
RECAST (T̂ = 50) 66.1 322 26.4 / 38.5 75.6 479 25.9 / 37.1
RECAST (T̂ = 100) 73.0 420 26.2 / 38.1 77.7 531 25.2 / 35.1

tics. Notably, since Hindi is underrepresented in the 1009

training data of Whisper’s tokenizer, its tokeniza- 1010

tion quality is significantly worse than for English. 1011

The token fertility—the average number of tokens 1012

per word—is approximately 2 for English but rises 1013

to around 6 for Hindi, resulting in sequences that 1014

are roughly 3× longer. This further underscores 1015

the importance of evaluating retrieval methods in 1016

token-heavy settings. 1017

Since no standard contextual biasing benchmark 1018

exists for Hindi, we construct one by extracting 1019

keywords from all test utterances and compiling 1020

them into a dictionary of 800 entries, which serves 1021

as the biasing list for retrieval and contextual ASR 1022

evaluation in this experiment. 1023

Moreover, most phonetic baselines—such 1024

as Double Metaphone (Philips, 2000) and 1025

Soundex (Knuth, 1973)—are not applicable to 1026

Hindi, as they were primarily designed for English 1027

and lack multilingual phonetic support. In contrast, 1028

RECAST is inherently applicable across languages 1029

with sufficient ASR capabilities, making it particu- 1030

larly well-suited for multilingual scenarios. 1031

Table 6 shows that RECAST yields substantial 1032

relative improvements over the baseline across all 1033

13

settings. At Emax = 2, recall improves by 67.4%1034

and E-WER is reduced by 12.7%. With Emax = 3,1035

the relative gains are even higher, with Recall im-1036

proving by 78.2% and E-WER dropping by 19.5%.1037

These trends highlight that, for languages with high1038

token fertility, larger T̂ values are especially benefi-1039

cial due to longer and more fragmented entity spans.1040

Additionally, increasing Emax enables more toler-1041

ant entity matching, which is important for com-1042

pensating for tokenization-induced mismatches.1043

G Acknowledgment of AI Assistance1044

We used GPT-4o for spell checking and text editing1045

assistance only. All technical content and experi-1046

mental results were developed and written by the1047

authors.1048

14

	Introduction
	Related Work and Background
	Recast
	Training the Retriever Parameters
	Hard Negative Mining

	Keyword Index Creation
	Recast Inference
	Contextual ASR with Recast

	Experimental Setup
	Experiments and Results
	Using Recast with LLMs
	Ablation Study
	Analysis on Rankers
	Latency

	Conclusion
	Implementation Details
	Prompting Strategy for Phi-4 Multimodal Instruct Model
	Prompting Strategy for GPT-4o-mini Error Correction
	Algorithm for Keyword Index Creation
	Effect of ASR Model Size on Recast
	Evaluation on Hindi
	Acknowledgment of AI Assistance

