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Abstract001

Domain-specific Visually Rich Document Un-002
derstanding (VRDU) presents significant chal-003
lenges due to the complexity and sensitivity004
of documents in fields such as medicine, fi-005
nance, and material science. Existing Large006
(Multimodal) Language Models (LLMs/M-007
LLMs) achieve promising results but face lim-008
itations such as hallucinations, inadequate do-009
main adaptation, and reliance on extensive fine-010
tuning datasets. This paper introduces Syn-011
Doc, a novel framework that combines discrim-012
inative and generative models to address these013
challenges. SynDoc employs a robust synthetic014
data generation workflow, using structural in-015
formation extraction and domain-specific query016
generation to produce high-quality annotations.017
Through adaptive instruction tuning, SynDoc018
improves the discriminative model’s ability to019
extract domain-specific knowledge. At the020
same time, a recursive inferencing mechanism021
iteratively refines the output of both models for022
stable and accurate predictions. This frame-023
work demonstrates scalable, efficient, and pre-024
cise document understanding and bridges the025
gap between domain-specific adaptation and026
general world knowledge1.027

1 Introduction028

Visually Rich Documents combine visual elements029

and text to convey information in an engaging030

and thorough way (Ding et al., 2024b). With the031

increasing demand for domain-specific Visually032

Rich Document Understanding (VRDU), signifi-033

cant opportunities are emerging in areas such as034

medicine (Ding et al., 2023b, 2024c), finance (Zhu035

et al., 2022; Ding et al., 2023a), material science036

(Khalighinejad et al., 2024), and politics (Wang037

et al., 2023). These areas often rely on documents038

that contain extensive domain-specific knowledge039

and sensitive information, which pose unique chal-040

lenges to automated understanding systems. As041

1The code will be released after acceptance

Figure 1: Comparing SynDoc with discriminative and
generative VRDU frameworks.

industries increasingly turn to AI-powered solu- 042

tions for document analysis, the need for robust and 043

adaptable frameworks capable of navigating these 044

intricacies has reached an unprecedented level. 045

Vision-Language Pretrained Models (VLPMs) 046

(Huang et al., 2022; Gu et al., 2021; Lyu et al., 047

2024) have demonstrated significant advances in 048

VRDU, normally in a discriminatory manner 049

by directly mapping multimodal inputs to struc- 050

tured outputs through classification and sequence 051

labeling. Yet, they encounter several challenges. 052

First, they are heavily dependent on extensive fine- 053

tuning datasets (Ding et al., 2024a). Second, their 054

practical use, particularly in zero-shot scenarios, is 055

limited by hallucinations and inconsistent domain 056

adaptation. Multimodal Large Language Models 057

(MLLMs) have been applied to VRDU in a gener- 058

ative manner (Hu et al., 2024b; Feng et al., 2024), 059

achieving remarkable progress due to their rich 060

general knowledge; however, they suffer from a 061

lack of target domain knowledge, leading to unreli- 062

able and imprecise outputs in VRDU applications. 063

For instance, as shown in Figure 1, an MLLM ex- 064

tracts the present voting power “18.86%" instead 065

of the requested previous voting power (“22.02%"), 066

highlighting its limitations in understanding the 067
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structure of tables.068

Recent existing research has explored various069

strategies to address these challenges in VRDU,070

with synthetic data generation increasingly emerg-071

ing as a crucial approach, driving advances in both072

discriminative and generative models. The dis-073

criminative framework uses domain-adaptive tech-074

niques in the VLPM backbone, achieving promis-075

ing results through fine-tuning on curated anno-076

tated datasets (Ding et al., 2024a). However, this077

approach remains constrained by high annotation078

costs and limited zero-shot performance. How-079

ever, generative models leverage synthetic data080

for self-supervised pretraining (Hu et al., 2024b;081

Feng et al., 2024) and instructive tuning (Hu et al.,082

2024a; Tang et al., 2024; Zhang et al., 2024) to en-083

hance multimodal VRD comprehension. However,084

the massive computational demands and subopti-085

mal performance in zero-shot scenarios in a new086

domain are challenges. The synthetic generation087

method powered by MLLMs (Ding et al., 2024c)088

often faces issues generating meaningful or incon-089

sistent question-answer pairs. Therefore, the field090

still sees a gap in research on how to improve the091

quality of these generated QA pairs.092

In this study, we propose SynDoc, a new hy-093

brid framework that leverages discriminative and094

generative models to enhance VRDU through a095

multifaceted approach. Compared to previous stud-096

ies, SynDoc offers several advantages. First, Syn-097

Doc employs a robust synthetic data generation098

workflow that blends structural information extrac-099

tion techniques, such as OCR (Optical Character100

Recognition) and PDF parsing, with multi-task in-101

quiry generation and quality verification modules.102

This workflow ensures the creation of high-quality103

synthetic annotations that accurately reflect both104

document structure and content, enabling a nu-105

anced understanding of complex domain-specific106

documents. Second, SynDoc integrates a discrim-107

inative model, referred to as the warmer, with a108

generative MLLM to combine their complemen-109

tary strengths. The discriminative model leverages110

pre-trained backbones, adaptively fine-tuned on111

synthetic datasets, to effectively extract domain-112

specific knowledge. Simultaneously, the genera-113

tive model utilizes state-of-the-art MLLM to gener-114

ate abstractive answers through zero-shot prompt-115

ing. Third, SynDoc employs adaptive instruction116

tuning incorporating multimodal features- includ-117

ing text, visuals, layouts, and structural elements-118

with predictions from MLLMs. This approach en-119

ables the discriminative warmer to provide detailed, 120

context-aware information, thus enhancing the out- 121

puts of the generative model. Finally, a key innova- 122

tion in SynDoc is its recursive inferencing mecha- 123

nism, where outputs from both the discriminative 124

and generative models undergo iterative refinement 125

through cross-feeding. This iterative process con- 126

tributes to more stable and accurate responses in 127

zero-shot settings. By integrating these compo- 128

nents, we hypothesize that SynDoc offers a scal- 129

able and robust framework for domain-specific doc- 130

ument understanding; we demonstrate its effective- 131

ness on three domain-specific datasets and assess 132

its generalizability using a cross-domain dataset. 133

2 Related Work 134

Curated and synthetic data for VRDU. Heuris- 135

tic (Watanabe et al., 1995; Seki et al., 2007) and 136

statistical learning methods (Oliveira and Viana, 137

2017) perform well in domain-specific document 138

understanding but rely on expert efforts, limiting 139

cross-domain adaptability. (Huang et al., 2022; 140

Tang et al., 2023; Lyu et al., 2024; Xu et al., 2021a; 141

Wang et al., 2022a; Hong et al., 2022) address this 142

limitation by employing self-supervised learning 143

on large-scale, unannotated, and multi-source docu- 144

ment collections such as RVL-CDIP (Harley et al., 145

2015), thereby improving generalizability and mul- 146

timodal comprehension in broader VRDU tasks. 147

Fine-tuning these frameworks with curated datasets 148

achieves state-of-the-art performance in specific 149

VRDU tasks. However, the creation of high-quality 150

curated datasets (Jaume et al., 2019; Park et al., 151

2019; Ding et al., 2023b) is resource-intensive, pos- 152

ing challenges for scalability and applicability to 153

novel document collections. Recent research (Ding 154

et al., 2024c) has explored using LLMs/MLLMs 155

to generate synthetic datasets with well-designed 156

prompts and human verification. Some VRDU 157

MLLMs also create large-scale synthetic datasets 158

to conduct self-supervised pretraining (Hu et al., 159

2024b; Feng et al., 2024) or instruct-tuning (Hu 160

et al., 2024a; Tang et al., 2024; Zhang et al., 2024) 161

to enhance multimodal document understanding. A 162

recent work DAViD (Ding et al., 2024a) pretrains 163

VRDU models with synthetic QA pairs, followed 164

by semi-supervised refinement, achieving perfor- 165

mance comparable to full supervision. However, 166

there remains a limited exploration into optimizing 167

synthetic dataset generation and integrating SoTA 168

MLLMs for real-world applications. 169
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VRDU frameworks. Self-supervised frame-170

works (Wang et al., 2022b; Appalaraju et al., 2023;171

Kim et al., 2022) employ diverse pretraining tasks172

to enhance multimodal learning, achieving strong173

performance on downstream tasks when fine-tuned174

with curated datasets. However, most discrimi-175

native models rely heavily on off-the-shelf OCR176

tools such as LayoutLM-series (Xu et al., 2020,177

2021a; Huang et al., 2022; Xu et al., 2021b), mak-178

ing extractive predictions vulnerable to cumulative179

errors from both the models and OCR systems.180

To mitigate this, end-to-end OCR-free frameworks181

(Kim et al., 2022; Abramovich et al., 2024; Lyu182

et al., 2024) bypass OCR dependency. Despite183

these advances, their smaller model sizes and lim-184

ited training resources constrain world knowledge,185

reducing generalization without substantial annota-186

tions. LLMs/MLLMs (OpenAI, 2024; Team et al.,187

2024; Bai et al., 2023; Laurençon et al., 2024; Ope-188

nAI, 2023), benefiting from scaling laws, leverage189

extensive training to capture broad knowledge, sup-190

porting zero-shot and few-shot learning in VRD191

tasks (He et al., 2023). However, issues like hal-192

lucination and lack of domain-specific knowledge193

limit their reliability. Our SynDoc aims to bridge194

this gap by introducing an adaptively tuned dis-195

criminative warmer that provides domain-specific196

knowledge, which is then integrated into a gener-197

ative MLLM. This approach enables the model to198

refine the inference process recursively, leveraging199

both domain-aware information and broad world200

knowledge to enhance accuracy and reliability.201

3 Methods202

3.1 Overview of SynDoc203

Let D be a document collection within a specific204

domain. We propose a framework to predict the205

answer to a user-provided natural language query206

Q concerning a specific document d ∈ D. This207

framework integrates a discriminative model D208

and a generative model G to address Q in ex-209

tractive and abstractive manners, respectively. D210

employs pretrained backbones to capture target-211

domain knowledge named as a warmer, while G212

employs state-of-the-art LLMs/MLLMs and ap-213

plies specific prompts P to predict answer of in214

zero-shot scenarios.215

To ensure the workflow is functional, we first216

generate the synthetic dataset (Figure 2). This217

process begins with structural information extrac-218

tion using off-the-shelf tools (e.g., OCR or PDF219
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Figure 2: Workflow of the Synthetic Data Generator.

parsers2). Next, synthetic domain-specific queries 220

are generated using MLLMs. Therefore, D incor- 221

porates multimodal representations, including tex- 222

tual, visual, layout, and structural features, along 223

with predictions from MLLM. During inference, 224

the outputs from D and G undergo iterative refine- 225

ment through cross-feeding until they achieve con- 226

vergence (e.g., stable predictions). The following 227

subsections describe four key modules in SynDoc: 228

Synthetic Data Generator, Discriminative Warmer 229

Architecture, Adaptive Instruction Tuning, and Re- 230

cursive Inference. 231

3.2 Synthetic Data Generator 232

VRD Structure Parsing We use off-the-shelf 233

tools to extract the text content and layout structure 234

of a target document collection (Figure 2). For doc- 235

ument images, we employ vision-based OCR tools 236

to get text line entities L. Each l = (b, c) ∈ L con- 237

tains the bounding boxes b with corresponding tex- 238

tual content c. We use (xmin, ymin, xmax, ymax) 239

to represent coordinates of each box. For text- 240

embedded PDF files, we employ the PDF parsing 241

tools to acquire text line or document semantic en- 242

tity sets L (e.g., paragraph, list, section) along with 243

more accurate structural information. 244

MLLM-driven Inquiry Generation For D to 245

capture knowledge from the target domain, we pro- 246

pose a MLLM-driven workflow with two modules 247

(Figure 2). i) Multi-Task Inquiry Generation pro- 248

duces diverse inquiries to instruct-tune D to en- 249

hance its structural and semantic understanding 250

of the domain. Specifically, a set of text lines is 251

2https://github.com/PaddlePaddle/
PaddleOCR or https://pypi.org/project/
pdfminer/
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randomly selected and fed to an LLM to generate252

two types of QA pairs. First, Semantic QA pairs253

guide D to extract target information from a docu-254

ment. By inputting the target entity content along255

with its document and context information into an256

MLLM, we generate pairs (qsem, c), where c is the257

answer to the generated question qsem. Second,258

Spatial-aware QA pairs facilitate D in capturing259

both semantic and spatial correlations. Here, we260

transform qsem into qspt by identifying the docu-261

ment region (e.g., top-left, top-middle, top-right)262

where the target information c is located. ii) Multi-263

Aspect Quality Verification is implemented to filter264

out low-quality questions by assessing factors in-265

cluding meaningfulness and question-answer con-266

sistency. It first determines whether c is relevant267

to the end user (e.g., “Is the target information in-268

teresting to the end user?"). It then verifies that c269

adequately answers qsem (e.g., “Whether the tar-270

get information c could be expected answer of a271

question qsem?”).272

3.3 Warmer Architecture273

Warmer (D) utilizes a vision-language pre-trained274

model (VLPM) as its backbone, optimized for dis-275

criminative answer extraction through adaptively276

tuning on synthetic datasets. The adopted VLPM277

is pre-trained on layout-aware tasks and fine-tuned278

on well-annotated datasets, exhibiting decent per-279

formance in targeted VRDU tasks. To address zero-280

shot scenarios, we design the warmer architecture281

based on the VLPM backbone, enabling D to learn282

multi-aspect domain-aware knowledge from syn-283

thetic datasets. We will first introduce the initial284

feature representation of D and then describe the285

detailed architecture.286

Initial Feature Representation For a syntheti-287

cally acquired entity set L of document Id, a pre-288

trained vision model extracts visual representation289

v from b and a text model extracts sentence repre-290

sentation s from c (Ding et al., 2024c). b’s coor-291

dinates are linearly projected to match s (Tan and292

Bansal, 2019). A textual sequence C = {τi}ni=1293

encodes context, summed with projected coordi-294

nates B = {bi}ni=1 and, if relevant, concatenated295

with document image patches P . For each seman-296

tic query qsem, the MLLM-generated answer a can297

aid localization. Grid embeddings G = {gi}j×k
i=1298

result from resizing and flattening pixel data over a299

j × k grid of the document image.300
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Figure 3: Architecture of the discriminative Warmer.

Detailed Architecture. D processes the input 301

word sequence (q, a, C, P and B). These inputs are 302

passed through a VLPM backbone, Ew, to derive 303

embedded feature representations: 304

(P ′, G′, Tq, Ta, Tc) = Ew(P,G, q, a, C +B) (1) 305

where T represented corresponding encoded tex- 306

tual features, while P ′ and G′ represent the en- 307

coded patch and grid features, respectively. 308

For each l ∈ L extracted using parsing tools, 309

a pooling layer aggregates the token features to 310

obtain the entity-level representation e. 311

ê = Pooling ({Ew(ci), ci ∈ c}) (2) 312

e = ê⊕ v ⊕ s (3) 313

The enhanced entity features, E = {el | l ∈ L}, 314

are processed by an Entity-Retrieval Head, which 315

includes a coarse-grained transformer encoder for 316

improving entity-level contextual understanding 317

and a pointer network (Ding et al., 2024c) to predict 318

the final entity index. Additionally, a fine-grained 319

Span-based QA Head is employed to predict the 320

start and end indices of the answer span based on 321

the input query q. A Grid Matching Head is intro- 322

duced to enhance structural understanding within 323

the target domain. This matching head predicts the 324

grid index of the input set G′ by leveraging spe- 325

cially aware queries. A different head is trained 326

on diverse stages to enable warmer capture of ade- 327

quate domain-specific knowledge. 328

3.4 Adaptively Warmer Tuning 329

Step-by-step training enables the warmer D to ef- 330

fectively adapt to the target domain, starting with 331
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structural adaptation to enhance the domain-332

specific structural understanding, followed by the333

task-oriented semantic adaptation for locating tar-334

get information based on the input query.335

Structural Adaptation enhances both semantic336

and layout understanding by guiding D to iden-337

tify the most relevant document grid g′ ∈ G′ for338

a given structural query qstr. For example, given339

the query “Where is the date of the previous notice340

located?”, D predicts the grid g5 that contains the341

answer (Figure 3). A pointer network computes the342

logit for each candidate grid (Ding et al., 2024c),343

and the probability over grids is obtained using344

the softmax function. The model optimization em-345

ploys the cross-entropy loss function to compute346

the structure adaptation loss Lstr:347

Lstr = −
∑

g′∈G′
yg′ log ŷg′ (4)348

where yg′ represents the ground truth indicator of349

each grid. This adaptation process ensures that350

the model effectively learns to associate structural351

queries with relevant document regions, improving352

both retrieval accuracy and layout-aware reasoning.353

Semantic Adaptation enables D to pretrain on354

a synthetic semantic QA set P , allowing it to better355

understand document image Id and qsem for zero-356

shot extractive QA in real-world scenarios. The357

model employs two extractive QA heads: a fine-358

grained, span-based QA head and a coarse-grained359

entity-retrieving head. The fine-grained head pre-360

dicts the start and end token indices using a linear361

projector, with the cross-entropy loss defined as:362

Lfg = −
∑

t∈Ew(c)
ystart
t log ŷstart

t + yend
t log ŷend

t (5)363

where ystart
t and yend

t denote the ground truth in-364

dices, while ŷstart
t and ŷend

t represent the predicted365

probabilities after Softmax.366

The coarse-grained entity retrieving head re-367

trieves entities based on entity logits and is op-368

timized with a cross-entropy loss function:369

Lcg = −
∑

e∈E
ye log ŷe (6)370

where ye represents the ground truth probability371

distribution over the entity set E, and ŷe is the pre-372

dicted Softmax normalised probability. The final373

optimization objective combines both losses as:374

L = λfgLfg + λcgLcg (7)375

where λfg and λcg control the balance between the376

fine-grained and coarse-grained QA losses. During377

Figure 4: An illustration of the recursively inferencing
framework for zero-shot question answering on VRDs.
Given a question, “What is the name of the substantial
holder?”, the initial MLLM output is enhanced using
retrieved entity hints (LD) from the adaptively tuned
warmer. Bounding box hints and other VRD features
guide MLLM toward more precise answers in subse-
quent iterations.

the semantic adaptation process, different synthetic 378

subsets may be selected based on Multi-Aspect 379

Quality Verification results, possibly leading to 380

varying performance, as described in Section 5.2. 381

3.5 Recursively Inferencing 382

We propose a recursively inferencing framework to 383

harness D and G for zero-shot question answering 384

on VRDs (Figure 4). The retrieved top-k entities 385

LD serve as domain-specific guidance to enhance 386

MLLM responses. Originally, given the prompt 387

(Id, C, qsem) → Π, G generates an answer AG . In 388

the t-th recursive process, D refines its retrieval 389

based on the previous A(t)
G , leading to an updated 390

prompt that integrates the extracted entity informa- 391

tion: 392

L
(t+1)
D = D(A

(t)
G ) (8) 393

Π(t+1) = UpdatePrompt(Π(t), L
(t+1)
D ) (9) 394

A
(t+1)
G = G(Π(t+1)) (10) 395

This allows G to acquire more domain-specific 396

knowledge, improving its ability to comprehend 397

and locate question-relevant information within the 398

context with greater accuracy and reliability. The it- 399

erative refinement process enhances both extractive 400

and generative responses over time. 401

4 Experimental Settings 402

4.1 Datasets 403

We used four datasets from different domains to 404

evaluate SynDoc: FormNLU (financial forms) 405

5



Model F-P F-H CORD Ephoie FUNSD
Idefics2 57.54 33.31 54.45 15.22 62.11
InternVL2 66.56 45.47 66.84 68.92 74.95
Qwen2-VL 78.05 43.65 77.86 70.36 79.12
GPT-4o 76.16 56.49 79.05 79.40 80.05
Gemini 76.09 66.86 84.35 81.82 83.56

SynDoc (Gemini)
Top-1 80.29 67.73 85.19 81.80 82.77
Top-K 81.60 66.90 83.57 81.33 82.12
Top-1 R 80.29 67.73 85.19 82.15 83.02
Top-K R 81.91 68.09 84.57 81.58 82.40
w/bbox 80.93 68.13 85.40 82.08 83.87

Table 1: Results using Zero-shot MLLM. The last row
shows the best configuration with bounding boxes.

(Ding et al., 2023a), CORD (receipts) (Park et al.,406

2019), Ephoie (exam papers) (Wang et al., 2021),407

and FUNSD (Jaume et al., 2019) (multi-domains).408

(Appendix A.1 for more details). Form-NLU was409

further divided into Printed (F-P) and Handwrit-410

ten (F-H) subsets. The document images in each411

test set were processed using the Synthetic Data412

Generation module to produce synthetic structure413

annotations and QA pairs with verification results.414

During inference, QA pairs or key-value/question415

pairs from the original dataset are utilized.416

For the FUNSD and CORD datasets, we utilized417

the processed test sets from (Luo et al., 2024). For418

Form-NLU and Ephoie, we converted the key-value419

pairs into QA pairs for inference. Consistent with420

(Mathew et al., 2021; Luo et al., 2024), we used421

the Averaged Normalized Levenshtein Similarity422

(ANLS) as our primary evaluation metric.423

4.2 Baselines and Implementation Details424

We compared SynDoc with state-of-the-art base-425

lines (Appendix B). These include both open426

source (i.e., Qwen2-VL (Wang et al., 2024),427

Idefics2 (Laurençon et al., 2024), and InternVL2428

(Chen et al., 2024)) and proprietary models (i.e.,429

GPT-4o (OpenAI, 2024) and Gemini 1.5 (Team430

et al., 2024)). We selected these models due to431

their remarkable performance on various document-432

related benchmarks.433

All MLLMs were tested using their default set-434

tings in the Huggingface environment3 with access435

to up to 2× A100 80G GPUs.436

5 Results and Discussion437

5.1 Main Results438

Table 1 shows that proprietary models generally439

outperform their open-source counterparts. This440

3https://huggingface.co/

Adapt St Prior F-P F-H CORD Ephoie FUNSD

1 ✗ ✗ 31.39 18.18 41.48 19.23 44.37
2 ✗ ✗ 42.56 16.41 46.71 20.64 48.66
3 ✗ ✗ 33.87 14.61 41.16 22.74 42.77
4 ✗ ✗ 44.23 12.23 50.44 23.78 44.67

1 ✗ ✓ 59.26 30.67 65.6 22.94 56.83
2 ✗ ✓ 65.67 31.63 66.37 22.06 57.77
3 ✗ ✓ 64.68 27.85 65.9 25.48 57.43
4 ✗ ✓ 65.75 29.31 65.08 24.76 59.86

1 ✓ ✓ 62.67 30.25 66.21 24.12 58.08
2 ✓ ✓ 66.03 31.64 67.26 24.13 58.05
3 ✓ ✓ 65.2 28.83 63.94 25.29 61.01
4 ✓ ✓ 66.19 28.29 66.25 27.16 61.24

Table 2: Results under various Warmer Adaptive Tuning
Configurations. Adapt - Four types of adaptive tuning
sets: (1) full synthetic set, (2) meaningful verification
filtered set, (3) consistency verification filtered set, and
(4) dual verification filtered set. St - structure adaptation.
Prior - prior MLLM outputs.

advantage is particularly evident in complex sce- 441

narios (e.g., F-H and Ephoie). Among similarly 442

sized open-source MLLMs, Qwen2-VL achieves 443

the highest performance, benefiting from its ex- 444

tensive multimodal training data and advanced 445

OCR capabilities. Intern-VL2 also demonstrates 446

strong performance across all datasets, whereas 447

Idefics2 encounters challenges, particularly with 448

structurally complex documents in Ephoie. 449

Since Gemini shows better performance across 450

most benchmark datasets compared to GPT-4o, 451

we present the results of the Gemini-based Syn- 452

Doc framework. Overall, incorporating adaptively 453

tuned warmer knowledge into MLLMs enhances 454

performance on domain-specific datasets; however, 455

it may introduce noise in cross-domain benchmarks 456

such as FUNSD. The results also suggest that em- 457

ploying top-K candidate hints or recursive infer- 458

ence (top-K R) substantially improves MLLM per- 459

formance in zero-shot scenarios. 460

5.2 Warmer Performance Analysis 461

Here, we evaluated the effectiveness of the Syn- 462

thetic Data Generation workflow and Warmer’s 463

capability to capture domain-specific knowledge. 464

Adaptive Tuning Strategies. We first evaluated 465

the adaptive tuning methods in three settings. 466

i) Effects of adaptive tuning sets. Table 2 shows 467

that both verification methods improve perfor- 468

mance and enhance domain adaptation. However, 469

meaningfulness verification consistently provides 470

performance gains, while consistency verification 471

can sometimes negatively affect tuning. This nega- 472

tive impact may be attributed to OCR errors, which 473
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Figure 5: Top-K retrieved entity performance using
LayoutLMv3 as the backbone.

can lead to inaccurate MLLM justifications.474

ii) Impact of prior MLLM outputs. Table 2475

also shows that incorporating MLLM outputs as476

Warmer input helps Warmer efficiently locate rele-477

vant information with improved accuracy.478

iii) Structural Adaption Tuning (St) is intro-479

duced to enhance the Warmer model by improv-480

ing its comprehension of layout and semantic481

correlations within a specific domain. Table 2482

consistently demonstrates its efficacy across all483

datasets. The result indicates that the proposed self-484

supervised structural adaptation effectively warms485

up the Warmer, enabling it to capture richer struc-486

tural and semantic correlations while enhancing487

subsequent semantic adaptation.488

Top-K Retrieved Entity Performance. Here,489

we compared the Top-1, Top-3, and Top-5 retrieved490

entities, selecting the entity with the highest ANLS491

when multiple entities are given. Figure 5 shows492

that the Top-3 predictions significantly improve the493

retrieval of relevant information compared to Top-494

1. However, the performance gain between Top-3495

and Top-5 is marginal. Notably, for datasets with496

lower OCR accuracy, the improvement from Top-1497

to Top-3 is more pronounced, indicating the benefit498

of broader retrieval in error-prone scenarios.499

Various Warmer Backbones. We selected three500

commonly used models to assess the effectiveness501

of various backbones: the text-only RoBERTa (Liu,502

2019), the text and layout-aware LiLT (Wang et al.,503

2022a), and the text, layout, and vision-aware Lay-504

outLMv3 (Huang et al., 2022). Table 3 shows505

that multimodal frameworks tend to outperform506

the monomodal RoBERTa, particularly when OCR507

errors impact the input text sequence. However,508

LayoutLMv3-Chinese exhibits weaker feature rep-509

resentation, significantly underperforming com-510

pared to LiLT and RoBERTa, despite all three using511

the same xlm-RoBERTa-base checkpoints. Inter-512

estingly, there are instances where the monomodal513

RoBERTa outperforms multimodal backbones, in-514

dicating that multimodal architectures do not al-515

ways guarantee superior performance or enhanced516

domain-specific knowledge extraction.517

Model F-P F-H CORD Ephoie FUNSD

Roberta 64.18 23.85 70.40 31.57 59.44
LiLT 63.82 30.89 67.87 31.97 60.94
LayoutLMv3 65.75 31.63 66.37 25.48 59.86

Table 3: Results under different Warmer backbones.

F-P F-H CORD Ephoie

Model Vani. Ours Vani. Ours Vani. Ours Vani. Ours

InternVL 66.56 ↑ 68.09 45.47 ↑ 46.81 66.84 ↑ 68.8 68.92 ↑ 70.29
QWenVL 78.05 ↓ 77.27 43.65 ↑ 44.43 77.86 ↑ 78.44 70.36 ↑ 75.03
Gemini 76.09 ↑ 81.91 66.86 ↑ 68.02 84.35 ↑ 85.19 81.82 ↑ 82.15

Table 4: Comparison of Warmer to Generative Models.

5.3 Recursive Inference Results 518

Here, we assessed how effectively the zero-shot 519

trained Warmer enhances MLLM inference and 520

explored the impact of the recursive inferencing 521

mechanism across various MLLMs. 522

Performance on Various MLLMs. Table 4 523

presents the results of two high-performing open- 524

source models (InternVL and QWenVL) and the 525

best-performing proprietary model (Gemini). The 526

result shows that the inclusion of Warmer outputs 527

consistently improves performance across all mod- 528

els and datasets. 529

Effectiveness of Top-K Candidates. Figure 6 530

shows that providing top-K candidates from the 531

warmer can enhance the likelihood of integrating 532

relevant extracted information into MLLMs and 533

improve performance. For instance, in FormNLU, 534

retrieving additional information from the warmer 535

can guide Gemini to focus on relevant context, 536

thereby enhancing its performance. However, this 537

approach also introduces the risk of incorporating 538

noise into the prompt, which may negatively impact 539

the generative model’s performance. This effect is 540

particularly notable in InternVL2 and QWenVL2, 541

when applied to datasets with OCR-challenging 542

like F-H and Ephoie. 543

Effectiveness of Iterative Tuning. Table 5 544

shows that models exhibit improved performance 545

when more than one iteration is conducted. This 546

demonstrates that Warmer and the LLM genera- 547

tor can mutually reinforce each other, enabling the 548

model to generate more accurate final predictions. 549

Additionally, we observed that open-source models 550

(InternVL, QWenVL) typically require more itera- 551

tions to reach peak performance, while the closed- 552

source Gemini often achieves its best results with 553

fewer iterations. Moreover, datasets that present 554
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Figure 6: Result comparison by feeding Top-K Warmer-
Retrieved Candidates into MLLM.

Iter. F-P F-H CORD EPHOIE

Int Qw Gemi Int QW Gemi Int QW Gemi Int QW Gemi

Vani. 66.56 78.05 76.09 45.47 43.65 66.86 66.84 77.86 84.35 68.92 70.36 81.82
Iter 1 68.09 76.53 80.29 46.81 44.43 67.73 68.80 76.93 85.19 68.54 75.03 81.80
Iter 2 70.12 77.22 80.17 46.17 45.27 67.60 67.89 76.70 84.67 69.49 75.55 81.91
Iter 3 68.54 76.75 80.15 47.23 44.50 67.32 67.29 76.93 84.65 70.24 75.44 81.71
Iter 4 68.28 77.27 79.88 45.54 45.26 67.63 66.84 76.70 84.39 68.99 75.55 82.15
Iter 5 70.21 76.75 80.06 44.86 44.51 67.63 67.28 76.93 84.40 70.07 75.44 81.86

Table 5: Performance trends of iterative tuning. Int:
InternVL2; QW: QWenVL2; Gemi: Gemini.

OCR challenges (F-H and Ephoie) benefit from555

additional iterations, with all models requiring at556

least two iterations for optimal performance.557

Recursive Warmer Performance. Table 6558

shows that recursive inference enhances both dis-559

criminative Warmer and generative MLLM perfor-560

mance. Notably, the FormNLU dataset exhibits561

significant improvement, with scores rising from562

66.19 to 73.76 on the printed set and from 31.64 to563

39.15 on the handwritten set. An interesting find-564

ing is that the performance peaks for Warmer and565

MLLM do not always coincide at the same itera-566

tion. This may suggest that while Warmer improves567

retrieval, Gemini might not immediately capitalize568

on these improvements due to its integration and569

reasoning process.570

6 Case Study571

To further illustrate the effectiveness of SynDoc,572

Figure 7 visualizes several examples where ini-573

tial MLLM predictions are refined using SynDoc4.574

In Q1, a question regarding the present voting575

count initially yields an incorrect answer of 15,41,576

which is subsequently corrected to 27,210 with the577

aid of the warmer. This example highlights how578

the warmer effectively introduces domain-specific579

knowledge, mitigating hallucinations and reducing580

the imprecision of MLLM predictions.581

Additionally, relying solely on the Top-1 re-582

trieved answer from the warmer may not always583

capture the most relevant information needed for ac-584

4Please refer to Appendix for more case studies.

F-P F-H CORD Ephoie

Warmer Gemini Warmer Gemini Warmer Gemini Warmer Gemini

Vanilla 66.19 76.09 31.64 66.86 67.26 84.35 27.16 81.82
1 73.57 80.29 38.11 67.73 63.37 85.19 27.98 81.80
2 73.76 80.17 38.79 67.60 64.15 84.67 25.94 81.91
3 73.72 80.15 39.15 67.32 64.32 84.65 26.03 81.71
4 73.76 79.88 38.84 67.63 64.32 84.39 25.94 82.15
5 73.60 80.06 38.92 67.63 64.04 84.40 26.12 81.86

Table 6: Impact of iterations on Warmer and Gemini.

WarmerMLLM MLLM

WarmerMLLM MLLM

MLLM Warmer MLLM MLLMWarmer

Q3: What is the current vote for the substan�al holder a�er the recent update?

'Th previous
netice wat27.210,% 74.33% 2.602

26.02

Q2: What type of securi�es are referenced in the document?

Q1: What is the current vote count for the
substan�al holder a�er the recent update?

27,210,%

15,41 27,210

Equities Rank 1: Equity securities
Rank 2: Ordinaries
Rank 3: Class

Target Document Image

Ordinaries

A1: 27,210%

A2: Ordinaries

Final
Predic�on

Final 
Predic�on

Final 
Predic�onQ1 Answer Region

Q2 Answer Region

Q3 Answer Region

A3: 26.02%

Iter 1 Iter 2

Figure 7: Qualitative Case Studies.

curate answering. As demonstrated in Q2, provid- 585

ing Top-3 entities enhances performance by lever- 586

aging both the warmer’s domain knowledge and 587

the MLLM’s general world knowledge, thereby 588

refining the final prediction. 589

The last example Q3 highlights the effectiveness 590

of the iterative inference mechanism. Here, the 591

warmer and MLLM incrementally improve each 592

other’s performance, leading to an almost correct 593

prediction. Notably, even when the warmer pro- 594

vides the perfect hints in the final iteration, OCR 595

errors may still be present. However, the MLLM 596

compensates by leveraging its large-scale general 597

world knowledge to generate the correct prediction. 598

599

7 Conclusion 600

In this paper, we introduced a novel VRDU frame- 601

work, SynDoc, which effectively integrates discrim- 602

inative VLPMs and generative MLLMs to advance 603

domain-specific VRDU performance, particularly 604

in zero-shot settings. Our extensive experiments 605

show that the proposed Synthetic Data Generator 606

and Adaptive Warmer Tuning enable the discrimi- 607

native warmer to efficiently acquire domain knowl- 608

edge and, together with recursive inference, drive 609

continual performance gains for both the warmer 610

and the MLLM. While the framework exhibits ro- 611

bust results on multiple domain-specific datasets, 612

however, further enhancements may be required to 613

maximize generalizability and robustness in cross- 614

domain applications. 615
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Limitations616

While SynDoc achieves strong results in domain-617

specific VRDU tasks, it has several limitations. The618

framework’s performance is sensitive to the quality619

of synthetic data and the accuracy of external tools620

like OCR and PDF parsers, making it vulnerable621

to errors from noisy or complex documents. Its622

domain adaptation strategy, though effective within623

target domains, often struggles to generalize across624

diverse document types, as shown by performance625

drops in cross-domain settings such as FUNSD626

dataset. Additionally, the iterative inference pro-627

cess increases computational cost, and the current628

evaluation is limited to a handful of public datasets,629

leaving broader real-world applicability for future630

exploration.631
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A Detailed Dataset Information879

A.1 Dataset Description880

Form-NLU (Ding et al., 2023a) is introduced for881

financial-domain form layout and content under-882

standing, focusing on single-template, multi-format883

forms, including digital, printed, and handwritten884

variations. This dataset specifically addresses KIE885

tasks, which involve extracting 12 types of key in-886

formation from more challenging printed and hand-887

written documents. Examples of these key infor-888

mation fields include "Substantial Holder Name",889

"Previous Persons’ Votes", and others.890

CORD (Park et al., 2019) is proposed for receipt891

understanding with diverse receipt templates. This892

dataset focuses on the sub-task of KIE to extract893

fine-grained key information from scanned receipts,894

such as "store name" and "item quantity".895

Ephoie (Wang et al., 2021) is a dataset proposed for896

understanding scanned Chinese exam paper head-897

ers. The collected exam papers have diverse tem-898

plates and handwritten information. This dataset899

focuses on the KIE sub-task to extract information900

from these exam papers, such as "Score," "School,"901

and "Student Name."902

FUNSD (Jaume et al., 2019) is a dataset for form903

understanding, comprising scanned form images904

from diverse sources with varying templates. Each905

form contains predefined key-value pairs catego-906

rized as "Question" and "Answer" in the metadata.907

This dataset is utilized to assess the capability of908

the proposed framework in handling cross-domain909

scenarios.910

Domain Category # Doc # QA Set 1 Set 2 Set 3 Set 4
FormNLU-P Financial Form 50 596 1937 1137 1073 676
FormNLU-H Financial Form 50 597 1998 621 815 302
CORD Receipt 100 156 1644 1535 988 968
EPHOIE Exam Paper 311 928 2488 1746 1553 1159
FUNSD Cross-domain 50 467 2036 1905 1088 1022

Table 7: Dataset statistics across different dataset includ-
ing the size of original test and the synthetic dataset.

B Detailed Model Information911

B.1 Warmer Variants Details912

RoBERTa (Liu, 2019): RoBERTa is a self-913

supervised text-only language model trained on914

a large corpus, including BookCorpus, English915

Wikipedia, CommonCrawl News, OpenWebText,916

and Stories datasets. RoBERTa removes the next-917

sentence prediction (NSP) objective and uses dy-918

namic masking, larger batch sizes, and longer se- 919

quences. 920

LiLT (Wang et al., 2022a): LiLT (Language- 921

independent Layout Transformer) extends pre- 922

trained text encoders with a lightweight layout en- 923

coder. It is pretrained on the IIT-CDIP scanned 924

document corpus. LiLT features a dual-stream 925

architecture to separately encode text and layout 926

(bounding box) information, with Bi-directional 927

Attention Complementation (BiACM) to enhance 928

cross-modal alignment. 929

LayoutLMv3 (Huang et al., 2022): LayoutLMv3 930

is a multimodal Transformer that jointly encodes 931

text, layout, and image information. It is pretrained 932

on the IIT-CDIP corpus and synthetic document 933

data, using masked language modeling (MLM), 934

masked image modeling (MIM), and word-patch 935

alignment (WPA) tasks. 936

B.2 Large Vision-Language Models details 937

B.2.1 Close Source Models 938

GPT-4o (OpenAI, 2024): GPT-4o is a multimodal 939

model capable of processing text, images, and au- 940

dio, with an estimated size in the hundreds of bil- 941

lions to 1 trillion parameters. Trained on web-scale 942

text, images, and audio, GPT-4o features native 943

multimodal reasoning, multilingual support, and 944

high-speed inference. 945

Gemini 1.5 (Team et al., 2024): Gemini 1.5 Pro 946

is a mid-size multimodal model with a Mixture- 947

of-Experts (MoE) architecture, trained on a vast 948

multimodal corpus with a focus on long-context 949

tasks up to 1 million tokens. 950

B.2.2 Open Source Models 951

InternVL2 (Chen et al., 2024): InternVL2 com- 952

bines a vision Transformer and a language model. 953

It is pretrained on 5M curated multimodal sam- 954

ples, including documents, forms, scientific charts, 955

and medical images. InternVL2 ranges from 1B 956

to 108B parameters, pretrained on curated multi- 957

modal data including documents, forms, scientific 958

charts, and medical images. It achieves competitive 959

results on specific document-centric tasks, such as 960

DocVQA. 961

QwenVL2 (Wang et al., 2024): QwenVL2 is 962

trained on 1.4T tokens, including image-text pairs, 963

OCR data, video, and interleaved documents. With 964

innovations like Naive Dynamic Resolution and 965

Multimodal RoPE, QwenVL2 achieves competi- 966

tive performance on multimodal benchmarks, es- 967

tablishing itself as a leading open-source option. 968
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Model Params Modality Training Data Status
RoBERTa 125M Text Web, Books Open
LiLT 131M Text+Layout IIT-CDIP Open
LayoutLMv3 133M Text+Layout+Vision IIT-CDIP Open
GPT-4o ∼200B Text+Vision+Audio Web+Images+Audio Closed
Gemini 1.5 175B Text+Vision+Audio Web+Multimodal Closed
InternVL2 8B Text+Vision Documents, Medical Open
QwenVL2 72B Text+Vision+Video Web, OCR, Video Open
Idefics2 8B Text+Vision Web, Documents Open

Table 8: Baseline Models for Visual-rich Document
Understanding (Appendix)

Idefics2 (Laurençon et al., 2024): Idefics2 com-969

bines a Mistral-7B language model with a SigLIP970

vision encoder. Trained on interleaved web docu-971

ments, captions, OCR data, and diagram-text map-972

pings, it supports arbitrary sequences of text and973

images. Despite its smaller size, it achieves compa-974

rable performance to 30B+ models.975

C Detailed Prompts976

We list all the prompts used in this paper for syn-977

thetic data generation in Table 9 and MLLM zero-978

shot testing in Table 10.979

D Computational Cost980

Table 11 presents the training and inference re-981

source consumption across five benchmark datasets982

with a consistent batch size of 16. The GPU mem-983

ory usage remains within a reasonable range (ap-984

proximately 25.5GB–28GB), demonstrating the985

framework’s efficiency and scalability on stan-986

dard hardware. The structural and semantic987

training times per epoch are well-balanced, typ-988

ically ranging from 2 to 8 minutes, depending989

on dataset complexity. Notably, the inference990

time remains minimal—under 2.5 minutes for all991

datasets—highlighting the framework’s practical992

deployment potential. These results indicate that993

the proposed framework achieves a favorable trade-994

off between training cost and performance, making995

it suitable for both research and real-world applica-996

tions.997

E Additional Evaluation Results998

E.1 Various Prompt Method Performance999

We present the results obtained using various1000

prompting methods for baseline MLLMs and the1001

Gemini-based SynDoc framework. The findings in-1002

dicate that multimodal prompting, which integrates1003

OCR-extracted textual context with document im-1004

ages, generally enhances performance. However,1005

the OCR Challenging dataset exhibits difficulties1006

WarmerMLLM MLLM

Q: What is the "total count of quan�ty”?

4

24,000 Qty=4.00240.000

Target Document Image

A: 4

Final
Predic�on

Answer
Region

Figure 8: Qualitative case studies about CORD dataset
for demonstrating the effectiveness of Warmer retrieved
the content and the MLLM self-correction ability for
OCR-error.

WarmerMLLM MLLM

Q:学生的名字叫什么( What is thestudent name?)

丽娜
Rank 1 : 丽娜
Rank 2: 姓名岳
Rank 3: 学校

A: 岳丽娜

Final
Predic�on

岳丽娜

Figure 9: Qualitative case studies about Ephoie dataset
for demonstrating the effectiveness of Top-K.

in certain cases. For image-only prompting, some 1007

open-source models demonstrate relatively lower 1008

performance. Consequently, our SynDoc frame- 1009

work adopts the Image + Text context prompt as 1010

the primary approach for overall evaluation and 1011

ablation studies. 1012

E.2 More Detailed Experimental Results 1013

We provide the detailed experimental results of 1014

different configurations for the MLLM inferencing, 1015

from Table 13 to Table 25. 1016

F Additionaly Case Studies 1017

Figures 8 and 9 present qualitative case stud- 1018

ies from the CORD and Ephoie datasets, respec- 1019

tively, highlighting the complementary strengths of 1020

MLLM-based self-correction pipeline and the Top- 1021

K retrieval. In Figure 8, the MLLM initially pre- 1022

dicts "24,000", and the Warmer module retrieves a 1023

noisy string "Qty=4.00240.000". Despite the noise, 1024

the final MLLM module successfully interprets the 1025

correct answer as "4", demonstrating its robustness 1026

to OCR errors and its ability to reason over imper- 1027

fect retrieved content. In Figure 9, a query about a 1028

student’s name is given, where the initial MLLM 1029

output is incorrect. However, the Warmer mod- 1030

ule retrieves relevant entities, ranking the correct 1031

answer within the Top-3, which enables the final 1032

MLLM stage to recover the accurate result. These 1033

examples collectively demonstrate the pipeline’s 1034
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Module Prompt Description Prompt Template
User-Input Verification Checks whether the target infor-

mation was entered by the user
or is part of the form template.

Based on the provided Context {} from the target form and the
form image itself, check if the target information itself (do not
consider the context) "{}" was entered by the form user (not
part of the form template). Only output "Yes" if the {} is exactly
provided by user not from the form template, do not consider
context information. The response should follow the format
below: "Response": "Yes/No"

Semantic Question Generation Generates a short human-asked
question where the answer ex-
actly matches the target.

Based on the above context {} and target document image,
generate a human-asked SHORT question (output question only)
of which answer is exactly same as "{}"

Answer Verification Verifies whether the given target
could be the expected answer to
the given question.

Ignore the context information and domain knowledge (e.g. FAX
NUMBER). Just consider whether ’{}’ could be the expected
answer to the question ’{}’. Output format: {’Response’:
’Yes/No’, ’Explanation’: ’xxx’}.

Layout-Aware Question Refor-
mulation

Reformulates a question into a
short question about the location
of the answer in the document.

Change the question {} to a very short question about finding
the position of the answer from input document image. For
example, where is the answer of xx located?

Table 9: Synthetic Data Generator Prompt Example

effectiveness in overcoming early-stage retrieval1035

errors and OCR-related noise in complex document1036

QA tasks.1037
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Module Prompt Description Prompt Template
Text-Image QA without Tips Generates a response to a ques-

tion based on an image and text
context, without any additional
Tips.

Above is the context {} of the target {}. Please answer the
question ’{}’ based on the context and image. The output format
must strictly follow:
Answer: xxx

Text-Image QA with One Tip Generates a response to a ques-
tion based on an image and text
context, with a single Tip.

The above is the context {} of the target {}. This is a Tip: ’{}’
(which may not be correct). Please answer the question ’{}’
based on the context and image. The output format must strictly
follow:
Answer: xxx

Text-Image QA with Multiple
Tips

Generates a response to a ques-
tion based on an image and text
context, with multiple ranked
Tips.

The above is the context {} of the target {}. These are the Tips
(which may not be correct):
Please answer the question ’{}’ based on the context and image.
The output format must strictly follow:
Answer: xxx

Text-Image QA with Bounding
Boxes (No Tips)

Generates a response to a ques-
tion based on an image, text con-
text, and bounding box overlays,
without any additional Tips.

Above is the context {} of the target {} document,
Please answer the question {},
Based on the context and image,
The output format strictly follows:
Answer: xxx

Text-Image QA with Bounding
Boxes (One Tip)

Generates a response to a ques-
tion based on an image, text con-
text, and bounding box overlays,
with a single Tip.

The above is the context {} of the target {} document.
This is a Tip: ’{}’ (which may not be correct).
Please answer the question {},
Based on the context and image,
The output format strictly follows:
Answer: xxx

Text-Image QA with Bounding
Boxes (Multiple Tips)

Generates a response to a ques-
tion based on an image, text con-
text, and bounding box overlays,
with multiple ranked Tips.

The above is the context {} of the target {} document.
These are Tips: ’{}’, (which may not be correct.)
Please answer the question {},
Based on the context and images,
The output format strictly follows:
Answer: xxx

Table 10: Summary of Inference Prompt Functions and Their Templates

Dataset Batch Size GPU Consumption Structural Time (1 Epoch) Semantic Time (1 Epoch) Inference Time

FormNLU-P 16 27983.4M 00:03:46 00:03:08 00:01:10
FormNLU-H 16 25736.0M 00:03:58 00:03:01 00:01:02
CORD 16 26174.5M 00:04:30 00:04:02 00:02:01
EPHOIE 16 27993.1M 00:06:01 00:03:12 00:01:14
FUNSD 16 25566.2M 00:08:10 00:02:01 00:00:59

Table 11: Per-epoch GPU consumption and time cost across different datasets with a fixed batch size of 16. The
reported times correspond to the most effective training configurations: 2 epochs for structural adaptation and 10
epochs for semantic adaptation.
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Models Prompt Formnlu-P Formnlu-H CORD Ephoie Funsd

InternVL2 Context-only 59.65 7.16 44.00 54.39 53.48
Qwen2-VL 72.12 10.04 65.20 61.59 68.87
Idefics2 28.52 3.33 4.33 8.90 21.98
GPT-4o 71.64 1.45 69.88 59.78 68.71
Gemini 70.88 5.91 71.53 59.94 68.21

InternVL2 Image-only 68.28 48.85 62.86 63.92 74.85
Qwen2-VL 79.17 55.35 75.85 83.79 83.06
Idefics2 46.97 35.64 51.54 2.97 58.48
GPT-4o 74.81 56.51 77.63 62.23 80.32
Gemini 79.78 66.29 81.48 76.07 83.79

InternVL2 Context + Image 66.56 45.47 66.84 68.92 74.95
Qwen2-VL 79.71 55.33 79.12 83.35 82.77
Idefics2 57.54 33.31 54.45 15.22 62.11
GPT-4o 76.16 56.49 79.05 79.40 80.05
Gemini 76.09 66.86 84.35 81.82 83.56

SynDoc Context + Image 81.91 68.02 85.19 82.15 83.02
SynDoc Context + Image + bbox 80.93 68.13 85.40 82.08 83.87

Table 12: Performance comparison of various models
on different datasets.
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Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 67.26 66.84 63.38 68.80 57.74 67.89 58.50 67.29 59.70 66.84 57.82 67.28
QWenVL (2B) 67.26 12.17 63.38 16.36 59.75 16.75 59.86 16.43 59.75 16.75 59.86 16.43
QWenVL (7B) 67.26 77.86 63.38 76.93 59.89 76.70 59.64 76.93 59.89 76.70 59.64 76.93
QWenVL (72B) 67.26 79.12 63.38 78.02 59.98 77.96 60.30 77.81 59.98 77.96 60.30 77.81
Gemini 67.26 84.35 63.37 85.19 64.15 84.67 64.32 84.65 64.32 84.39 64.04 84.40

Table 13: Performance comparison across iterations for different models on the CORD dataset with Top-1 warmer
retrieved entity.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 66.19 66.56 73.57 68.09 68.65 70.12 70.32 68.54 69.20 68.28 69.19 70.21
QWenVL (2B) 66.19 44.85 73.57 50.34 61.63 50.45 61.82 50.52 61.76 50.48 61.84 50.54
QWenVL (7B) 66.19 78.05 73.57 76.53 72.52 77.22 73.18 76.75 72.61 77.27 73.18 76.75
QWenVL (72B) 66.19 79.71 73.57 81.21 74.41 81.42 74.54 81.20 74.58 81.42 74.54 81.20
Gemini 66.19 76.09 73.57 80.29 73.76 80.17 73.72 80.15 73.76 79.88 73.60 80.06

Table 14: Performance comparison across iterations for different models on the Printed dataset with Top-1 warmer
retrieved entity.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 31.64 45.47 38.11 46.81 32.29 46.17 32.70 47.23 32.06 45.54 32.76 44.86
QWenVL (2B) 31.64 14.56 38.11 19.21 24.95 19.33 25.45 19.19 25.02 19.36 25.44 19.20
QWenVL (7B) 31.64 43.65 38.11 44.43 34.51 45.27 35.25 44.50 34.83 45.26 35.26 44.51
QWenVL (72B) 31.64 55.33 38.11 58.33 38.37 58.40 38.33 58.37 38.48 58.58 38.36 58.37
Gemini 31.64 66.86 38.11 67.73 38.79 67.60 39.15 67.32 38.84 67.63 38.92 67.63

Table 15: Performance comparison across iterations for different models on the Handwritten dataset with Top-1
warmer retrieved entity.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 27.16 68.92 27.98 68.54 25.78 69.49 25.94 70.24 26.00 68.99 25.96 70.07
QWenVL (2B) 27.16 46.13 27.98 36.51 27.10 37.00 26.78 36.39 27.10 36.97 26.78 36.39
QWenVL (7B) 27.16 70.36 27.98 75.03 26.79 75.55 26.76 75.44 26.79 75.55 26.76 75.44
QWenVL (72B) 27.16 83.35 27.98 81.95 26.38 82.08 26.51 82.06 26.38 82.08 26.51 82.06
Gemini 27.16 81.82 27.98 81.80 25.94 81.91 26.03 81.71 25.94 82.15 26.12 81.86

Table 16: Performance comparison across iterations for different models on the Ephoie dataset with Top-1 warmer
retrieved entity.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 61.24 74.95 59.64 73.18 58.30 72.13 58.44 73.41 58.97 73.57 58.98 73.12
QWenVL 61.24 79.12 61.94 74.84 60.03 75.73 60.92 74.57 59.93 75.73 60.92 74.57
Gemini 61.24 83.56 59.17 82.77 59.77 83.02 60.06 82.38 59.54 82.91 60.11 82.36

Table 17: Performance comparison across iterations for different models on the FUNSD dataset with Top-1 warmer
retrieved entity.
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Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 67.26 66.84 63.38 61.61 60.19 65.31 53.73 64.75 53.52 61.70 54.06 62.22
QWenVL 67.26 77.86 63.38 78.16 59.65 77.96 59.34 78.12 59.65 77.96 59.34 78.12
Gemini 67.26 84.35 63.38 83.46 63.79 82.34 63.42 83.07 63.42 83.07 63.69 83.00

Table 18: Top-3 Performance comparison across iterations for different models on the CORD dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 66.19 66.56 73.56 65.91 67.70 67.85 67.55 67.12 68.53 66.21 66.92 66.38
QWenVL 66.19 78.05 73.57 77.08 72.93 76.60 72.81 76.63 72.53 76.72 72.80 76.67
Gemini 66.19 76.09 73.99 81.60 74.12 81.91 74.30 81.63 74.01 81.58 74.28 81.46

Table 19: Top-3 Performance comparison across iterations for different models on the Printed dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 31.64 45.47 38.11 43.48 32.64 43.24 30.92 42.02 31.75 43.15 31.93 43.52
QWenVL 31.64 43.65 38.11 42.03 33.65 43.37 33.68 41.66 32.60 42.62 33.28 41.55
Gemini 31.64 66.86 38.11 66.82 39.35 67.68 39.48 67.12 39.15 66.80 38.79 67.49

Table 20: Top-3 Performance comparison across iterations for different models on the Handwritten dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 27.16 68.92 27.98 70.29 26.00 69.04 26.08 69.35 26.17 68.15 26.30 69.41
QWenVL 27.16 70.36 27.98 73.91 26.36 74.29 26.68 74.18 26.28 74.29 26.68 74.18
Gemini 27.16 81.82 27.98 81.18 26.23 81.13 26.25 81.16 26.27 81.43 26.10 81.32

Table 21: Top-3 Warmer Retrieved Entity Performance comparison across iterations for different models on the
Ephoie dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 67.26 66.84 63.37 64.25 57.02 63.21 54.63 68.18 55.93 66.76 57.87 65.13
QWenVL 67.26 77.86 63.38 78.20 59.54 77.49 58.91 78.44 60.08 77.53 58.91 78.16
Gemini 67.26 84.35 63.38 84.57 63.79 82.85 63.99 83.37 63.79 82.77 63.79 83.39

Table 22: Top-5 Performance comparison across iterations for different models on the CORD dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 66.19 66.56 73.57 66.88 69.19 66.17 67.46 65.23 65.67 65.67 66.27 66.27
QWenVL 66.19 78.05 73.57 76.35 72.22 77.01 72.66 76.67 72.34 77.27 72.70 76.21
Gemini 66.19 76.09 73.58 80.10 73.35 80.35 73.70 80.20 73.40 80.36 73.54 80.08

Table 23: Top-5 Performance comparison across iterations for different models on the Printed dataset.

Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 31.64 45.47 38.11 43.82 32.79 44.13 33.66 43.78 31.87 41.55 32.11 43.22
QWenVL 31.64 43.65 38.11 40.12 32.51 41.97 33.13 40.18 32.26 41.75 32.99 39.78
Gemini 31.64 66.86 38.11 66.90 39.05 67.33 39.06 67.51 38.99 67.01 39.11 68.02

Table 24: Top-5 Performance comparison across iterations for different models on the Handwritten dataset.
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Model Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM Warmer LLM

InternVL 27.16 68.92 27.98 68.88 26.18 68.66 25.93 67.90 26.06 69.61 25.87 69.77
QWenVL 27.16 70.36 27.98 74.32 26.32 74.32 26.56 74.35 26.32 74.34 26.67 74.24
Gemini 27.16 81.82 27.98 81.33 26.35 81.18 26.31 81.58 26.37 81.23 26.28 81.45

Table 25: Top-5 Performance comparison across iterations for different models on the Ephoie dataset.
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