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Harmfully Manipulated Images Matter in Multimodal
Misinformation Detection

Anonymous Authors
ABSTRACT

Nowadays, misinformation is widely spreading over various social
media platforms and causes extremely negative impacts on soci-
ety. To combat this issue, automatically identifying misinformation,
especially those containing multimodal content, has attracted grow-
ing attention from the academic and industrial communities, and
induced an active research topic namedMultimodalMisinformation
Detection (MMD). Typically, existing MMD methods capture the
semantic correlation and inconsistency between multiple modali-
ties, but neglect some potential clues in multimodal content. Recent
studies suggest that manipulated traces of the images in articles
are non-trivial clues for detecting misinformation. Meanwhile, we
find that the underlying intentions behind the manipulation, e.g.,
harmful and harmless, also matter in MMD. Accordingly, in this
work, we propose to detect misinformation by learning manipula-
tion features that indicate whether the image has been manipulated,
as well as intention features regarding the harmful and harmless
intentions of the manipulation. Unfortunately, the manipulation
and intention labels that make these features discriminative are
unknown. To overcome the problem, we propose two weakly super-
vised signals as alternatives by introducing additional datasets on
image manipulation detection and formulating two classification
tasks as positive and unlabeled learning problems. Based on these
ideas, we propose a novel MMD method, namely Harmfully Manip-
ulated Images Matter in MMD (Hami-m3d). Extensive experiments
across three benchmark datasets can demonstrate that Hami-m3d
can consistently improve the performance of any MMD baselines.

CCS CONCEPTS

• Computing methodologies → Artificial intelligence; • In-
formation systems→ Social networks.

KEYWORDS

social media, misinformation detection, image manipulation, multi-
modal learning, positive and unlabeled learning

1 INTRODUCTION

During the past decade, prevalent social media platforms, e.g., Twit-
ter and Instagram, have bridged people from all corners of the world
and made sharing information much more convenient. However,
with the rise of these platforms, various misinformation has also
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Figure 1: The statistics on an MMD dataset Twitter illustrate
the quantitative relationship between image manipulation

and veracity labels. We use a pre-trained image manipula-

tion detector to discriminate whether the image has been

manipulated. We also provide several examples of images

manipulated with harmful and harmless intentions.

spread widely with malicious intentions, causing damages to peo-
ple’s mental and property [40, 42]. To eliminate such damages, the
primary task becomes to automatically detect misinformation from
social media, giving birth to the active topic namedMisinformation
Detection (MD).

Generally, the objective of MD is to train the veracity predictor
that can automatically distinguish whether an article is real or fake.
The previous arts map raw articles into a high-dimensional seman-
tic space and learn potential correlations between these semantics
and their veracity labels by designing a variety of deep models
[21, 36, 55, 61]. However, most existing MD efforts solely handle
text-only articles, which is unrealistic for nowadays social media
platforms that contain a large amount of multimodal content. There-
fore, Multimodal Misinformation Detection (MMD) approaches
have been developed recently to meet the practical need, which
detects misinformation containing multiple modalities, e.g., text
and image. The typical MMD pipelines first capture unimodal se-
mantic features with various prevalent feature extractors [12, 17],
and then align and fuse them into a multimodal feature to predict
the veracity labels [8, 15, 34, 44, 48]. Building upon this pipeline,
cutting-edge MMD works design innovative multimodal interac-
tion strategies to fuse semantic features [23, 34, 52], and learn the
semantic inconsistency between different modalities [8, 32, 38].

The existing MMD methods can be beneficial from modality
features, however, they also treat MMD as a standard classification
problem that relies on the semantic information of samples. In con-
trast, misinformation is a complex phenomenon whose veracity is
influenced by various aspects. As surveyed in [3, 4], a majority of
fake articles may contain manipulated images created by various
techniques, e.g., copy-moving and splicing [9, 22]. To verify this
viewpoint, we conduct a preliminary statistical analysis across a
public MMD dataset Twitter, as shown in Fig. 1. The observation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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is two-fold. On one hand, we observe that approximately 66.4% of
fake articles involve manipulated images, motivating us that ma-
nipulated images can be a discriminative indicator for fake articles.
On the other hand, we observe that approximately 10.0% of real
articles also involve manipulated images, seeming a bit conflict to
the commonsense that real articles should be completely real. We
examined all those manipulated images and empirically found the
ones of fake articles are more likely with harmful intentions such
as deception and pranks, but the ones of real articles are with harm-
less intentions such as watermarking and aesthetic enhancements,
as examples shown in Fig. 1. Upon these observations and the in-
tention perspective [10], we assume that harmfully manipulated
images can be a discriminative indicator for fake articles.

Motivated by these considerations, we propose to detect mis-
information by extracting distinctive manipulation features that
reveal whether the image is manipulated, as well as intent features
that differentiate between harmful and harmless intentions behind
the manipulation. Accordingly, we design a novel MMD frame-
work, namely HArmfully Manipulated Images Matter in MMD

(Hami-m
3
d). Specifically, we extract manipulation and intention

features from multimodal articles and use them to formulate two
binary manipulation and intention classification tasks. We then
supervise these two classifiers with their corresponding binary
labels. Unfortunately, their ground-truth labels are unknown in
MMD datasets. To address this issue, we suggest the following two
weakly supervised signals as substitutes for these labels. First, to
supervise the manipulation classifier, we resort to a knowledge
distillation paradigm [18, 24, 59] to train a manipulation teacher,
which can discriminate whether an image has been manipulated,
and distill its discriminative capabilities to the manipulation classi-
fier. Specifically, we introduce additional benchmark datasets on
Image Manipulation Detection (IMD) [14] to pre-train the manip-
ulation teacher. To further alleviate the distribution shift problem
between IMD data and MMD data, we synthesize some manipu-
lated images based on MMD datasets and formulate a Positive and
Unlabeled (PU) learning objective to transfer the teacher to the
MD data. Second, based on the fact that if the image of the real infor-
mation has been manipulated, its intention must be harmless, we can
also formulate intention classification as a PU learning problem,
and solve it by a variational PU method.

We evaluate our method Hami-m3d across 3 benchmark MMD
datasets and compare it with 5 baseline MMD models. The experi-
mental results demonstrate thatHami-m3d can improve the average
performance of its baselines by approximately 1.21 across all met-
rics, which indicates the effectiveness of Hami-m3d. Our source code
and data will be released once the paper is accepted.

In summary, our contributions are following three-folds:

• We suggest that image manipulation and its underlying in-
tentions matter in MMD. To extract and integrate manipula-
tion and intention features, we propose a new MMD model
Hami-m3d.

• To solve the issue of unknown manipulation and intention
labels, we propose two weakly supervised signals based on
additional IMD data and PU learning.

• Extensive experiments are conducted across threeMDdatasets
to demonstrate the improvements of Hami-m3d on the ex-
isting baseline model.

2 RELATEDWORKS

In this section, we briefly review and introduce the related literature
on MMD, manipulation detection, and PU learning.

2.1 Multimodal Misinformation Detection

In general, the primary goal of MMD is to automatically distinguish
misinformation consisting of text-image pairs on social media. Most
existing MMD methods concentrate on creating powerful multi-
modal models to grasp complex semantic information [34, 44, 48].
For example, BMR [52] refines and fuses multimodal feature using
an improved mixture-of-experts network. In addition, several MMD
arts suggest modeling the inconsistency between different modali-
ties [8, 15], and they present a hypothesis that the inconsistency
between modalities is a non-trivial clue for detecting misinforma-
tion. Following this hypothesis, CAFE [8] proposes a variational
approach to calculate the inconsistency between modalities and
leverage it to guide the multimodal feature fusion. Our study aims
to improve MMD models by specifying manipulation and its in-
tent features. Despite the importance of the image manipulation
in misinformation detection, few works have explored the role of
manipulation features. Previous studies [1, 3, 4, 28, 33] have intu-
itively highlighted the significance of such features, but specific
models have not been developed yet.

2.2 Manipulation Detection

With the rapid development and popularization of multimedia tech-
nology, it has become increasingly easy to manipulate various mul-
timedia contents, e.g., images and videos, through copy-moving [9],
splicing [22] or inpainting [27]. To automatically control the misuse
of these techniques, IMD has become an active topic in the informa-
tion forensics community [10, 35]. Briefly, The primary goal of IMD
is to determine if an image has been manipulated and localize the
specific manipulated area, which is a challenging segmentation task.
Most of the existing methods focus on designing powerful neural
models to extract effective semantic features and capture subtle ma-
nipulation traces [30, 39, 57]. Apart from network structures, some
works are also dedicated to designing more efficient training strate-
gies. For example, some pre-training datasets are synthesized by
manipulating real images to extend the tampered class [49, 50, 58].
Motivated by these arts, we design a hierarchical visual encoder as
the basic manipulation teacher to obtain multi-view manipulation
features, pre-train it with large-scale IMD datasets, and adapt the
model to the MMD task with synthesized PU learning.

2.3 Positive-Unlabeled Learning

PU learning is a unique learning paradigm that aims to learn a
binary classifier by accessing only a part of labeled positive sam-
ples and several unlabeled samples. Generally, existing PU learn-
ing methods are summarized into two basic categories, sample-
selection and cost-sensitive methods. The sample-selection line
leverages several heuristic strategies to select potential negative
samples from the unlabeled data, and then train the binary classifier
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with the supervised or semi-supervised learning paradigm [20, 53].
For example, PULUS [29] learns a negative sample selector with
reinforcement learning by the reward from the performance across
the validation set. On the other hand, the cost-sensitive line designs
a variety of empirical risks on negative samples and constrains them
unbiased [6, 16, 25, 56]. For example, uPU [16] early proposes to un-
biasedly estimate risks. Additionally, some current methods attempt
to assign reliable pseudo labels to unlabeled samples [19, 29, 45]
and design effective augmentation methods [26, 47].

In the MD community, some recent works also solve the PU
misinformation detection topic [11, 43]. They present a weakly-
supervised task, which learns misinformation detectors with partial
real articles as the positive samples and regards the other articles
as unlabeled samples. Unlike them, our Hami-m3d employs PU
learning as an important tool to adapt the pre-trained IMD model
to MMD datasets and resolve the issue of unknown intention labels.

3 PROPOSED HAMI-M
3
DMETHOD

In this section, we will introduce the proposed MMD model Hami-

m
3
d in more detail.

Problem definition. Formally, an MMD dataset typically contains
𝑁 training samples D = {(x𝑇

𝑖
, x𝐼
𝑖
, 𝑦𝑖 )}𝑁𝑖=1, where x

𝑇 and x𝐼 are re-
spectively the text content and images of an article, and 𝑦 ∈ {0, 1}
denotes the corresponding veracity label (0/1 indicates real/fake).
The basic target of MMD is to learn a detector to predict the ve-
racity of any unseen article. The basic framework of the existing
MMD method typically consists of three modules: feature encoder,
feature fusion network, and predictor. The feature encoder extracts
the unimodal semantic features of x𝑇

𝑖
and x𝐼

𝑖
. The feature fusion

network integrates these features into a multimodal feature before
feeding into the predictor module.

3.1 Overview of Hami-m
3
d

We are inspired by the joint observation and assumption that fake
articles may be highly relevant to harmfully manipulated images.
Accordingly, for each sample, we can extract its latent manipulation
feature and harmful feature and then fuse them with the semantic
features to achieve more discriminative fused features. To estimate
the two latent features, we conduct the manipulation classification
and harmful classification as auxiliary tasks. Upon these ideas, we
design Hami-m3d under a multi-task learning framework jointly
learning the primary task of veracity classification with the two
auxiliary tasks. To be specific, Hami-m3d consists of three primary
modules: feature encodersmodule, feature fusionmodule, and
predictors module. For clarity, the overall framework of Hami-
m3d is illustrated in Fig. 2. In the following, we introduce these
modules in more detail.
Feature encoders module. This module consists of four specific
feature encoders, including text encoder, image encoder, manipula-
tion encoder, and intention encoder.

Given a pair of text content x𝑇
𝑖
and an image x𝐼

𝑖
, the text en-

coder and image encoder extract their respective text and image
features e𝑇

𝑖
and e𝐼

𝑖
. Specifically, we derive text and image features

e𝑇
𝑖

= F
𝚯
𝑇 (x𝑇𝑖 ) and e𝐼

𝑖
= F

𝚯
𝐼 (x𝐼𝑖 ), respectively, by leveraging a

pre-trained BERT model [12] and a ResNet34 model [17]. These

features are then aligned into a shared feature space using two feed-
forward neural networks. Next, we directly input the image feature
e𝐼
𝑖
into a manipulation encoder to generate the manipulation feature

e𝑀
𝑖

= F
𝚯
𝑀 (e𝐼

𝑖
). Based on this manipulation feature, we then inte-

grate it with the text and image features e𝑇
𝑖
and e𝐼

𝑖
into an intention

encoder to obtain the intention feature e𝐸
𝑖
= F

𝚯
𝐸 (e𝑇𝑖 , e

𝐼
𝑖
, e𝑀
𝑖
).

Feature fusion module. Given these extracted features, the fea-
ture fusion module utilizes a multi-head attention network to inte-
grate them into one fused feature z𝑖 = F

𝚿
𝐹 (e𝑇𝑖 , e

𝐼
𝑖
, e𝑀
𝑖
, e𝐸
𝑖
).

Predictors module. This module contains three predictors trained
on three different tasks: veracity classification, manipulation clas-
sification, and intention classification. Utilizing the fused feature
z𝑖 , a linear veracity classifier is employed to predict the veracity
label as 𝑝𝑖 = W𝑉 z𝑖 . The objective for the veracity classification
task across D can be formulated as follows:

L𝑉𝐶 =
1
𝑁

∑︁𝑁

𝑖=1 ℓ𝐶𝐸 (𝑝𝑖 , 𝑦𝑖 ) , (1)

where ℓ𝐶𝐸 (·, ·) denotes a cross-entropy loss function. Then, given
manipulation and intention features e𝑀

𝑖
and e𝐸

𝑖
, we deploy manip-

ulation and intention classifiers to generate their corresponding
predictions 𝑝𝑀

𝑖
= W𝑀e𝑀

𝑖
∈ [0, 1] and 𝑝𝐸

𝑖
= W𝐸e𝐸𝑖 ∈ [0, 1], where

𝑝𝑀
𝑖

= 1 or 0 indicates whether the image has been manipulated or
not, and 𝑝𝐸

𝑖
= 1 or 0 represents the harmless or harmful intention

behind the manipulation, respectively.
Unfortunately, the ground-truth manipulation and intention la-

bels are unknown in MMD datasets. To overcome this issue, we
introduce two weakly supervised signals as substitutes to achieve
the manipulation classification and intention classification tasks.
Specifically, for manipulation classification, we train a manipula-
tion teacher 𝑓

𝚷
(·) using additional IMD datasets, e.g., CASIAv2 [14],

with an objective L𝑃𝑅𝐸 . To address the distribution shift issue be-
tween IMD datasets and MMD datasets, we then adapt the teacher
by utilizing a PU lossL𝑃𝑈 . Given the teacher’s output𝑦𝑀𝑖 = 𝑓

𝚷
(x𝐼
𝑖
),

we can distill it to the prediction 𝑝𝑀
𝑖

as follows:

L𝐾𝐷 =
1
𝑁

∑︁𝑁

𝑖=1 𝐷𝐾𝐿
(
𝑦𝑀𝑖 , 𝑝

𝑀
𝑖

)
, (2)

where 𝐷𝐾𝐿 (· , ·) denotes the Kullback-Leibler divergence function.
For intention classification, we draw inspiration from the fact that
if the image of the real article is manipulated, its intention must
be harmless, and reformulate the intention classification into a
PU learning problem, which can be specified by an objective L𝐼𝑅 .
Additionally, based on another fact that if the image of one article
is manipulated with a harmful intention, the veracity label of this
article must be fake, we can also check the reliability of 𝑝𝐸

𝑖
, and

filter out unreliable samples during training.
Based on the aforementioned tasks, our overall objectives are as

follows:
L = L𝑉𝐶 + 𝛼L𝐾𝐷 + 𝛽L𝐼𝑅, (3)

Lteacher = L𝑃𝑅𝐸 + 𝛿L𝑃𝑈 , (4)
where𝛼 , 𝛽 , and 𝛿 are trade-off hyper-parameters to balancemultiple
loss functions. We will alternatively optimize our MMD model and
the teacher model with the objectives in Eqs. (3) and (4). For clarity,
the overall training pipeline is described in Alg. 1. In the following



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Prediction 
Checking

Veracity 
Classifier

Fact 2

Text 
Encoder

Image 
Encoder

Fact 1 Real

Fake

- Unlabeled samples + Positive samples

Intention 
Classifier

+
-

Manipulation 
Encoder

Manipulation 
Classifier

In
te

nt
io

n 
C

la
ss

.

Veracity Classification

manipulate

C
A

SIA

Manipulation Teacher

- + M
an

ip
ul

at
io

n 
C

la
ss

.

Feature Fusion 
Network

Intention 
Encoder

Figure 2: The overall framework of Hami-m
3
d. Given text content x𝑇

𝑖
and an image x𝐼

𝑖
, we use four encoders including text

encoder, image encoder, manipulation encoder, and intention encoder to extract their corresponding features. These features

are then input into a feature fusion network to obtain a fused feature. Finally, we propose three predictors to achieve three

different tasks: veracity classification, manipulation classification, and intention classification.

sections, we introduce the manipulation and intention classification
tasks in more detail.

3.2 Manipulation Classification

Generally, the manipulation classification task involves training
a manipulation teacher 𝑓

𝚷
(·) and then distilling its predictions to

the prediction 𝑞𝑀
𝑖

with Eq. (2). To be specific, the optimization of
the teacher model requires two objectives: a pre-training objective
L𝑃𝑅𝐸 and an objective L𝑃𝑈 to adapt the model.

First, we introduce a benchmark IMD dataset, denoted as D𝜇 =

{x𝜇
𝑗
, 𝑦
𝜇

𝑗
}𝑁𝜇
𝑗=1, e.g., CASIAv2 [14]. The dataset consists of 𝑁𝜇 pairs

of images x𝜇 and their corresponding ground-truth manipulation
labels 𝑦𝜇 ∈ {0, 1}, where 𝑦𝜇 = 1 or 0 indicates x𝜇 is manipulated or
not. Given x𝜇

𝑗
, we feed it into a ResNet18 as the backbone of our

teacher model. Since recent some IMD arts suggest that the detec-
tion of manipulation trace requires not only semantic information
but also subtle clues in images [13, 39]. Therefore, we follow Chen
et al. [7] to extract the features of the inner layers of ResNet18,
integrate them with a self-attention network, and predict the ma-
nipulation label of x𝜇

𝑗
. Its objective can be formulated as follows:

L𝑃𝑅𝐸 =
1
𝑁𝜇

∑︁𝑁𝜇

𝑗=1 ℓ𝐶𝐸
(
𝑓
𝚷

(
x𝜇
𝑗

)
, 𝑦
𝜇

𝑗

)
. (5)

Then, due to the inevitable distribution shift problem between
the IMD dataset D𝜇 and the MMD dataset D, we propose to adapt
the teacher model pre-trained across D𝜇 to the MMD dataset
through a PU learning framework. Specifically, given an image
x𝐼
𝑖
sampled from D, we randomly manipulate it with the copy-

moving approach [9], and synthesize its manipulated version x̂𝐼
𝑖
.

Therefore, the manipulation label of x̂𝐼
𝑖
can be naturally assigned

as “manipulated”, denoted as 𝑦𝑀
𝑖

= 1, and form a training subset

P𝑀 = {x̂𝐼
𝑖
, 𝑦𝑀
𝑖

= 1}𝑁
𝑖=1. Meanwhile, the manipulation label of x𝐼

𝑖
is

still unknown, so we form another unlabeled subsetU𝑀 = {x𝐼
𝑖
}𝑁
𝑖=1.

Accordingly, drawing inspiration from PU learning, which aims
to train a binary classifier with partially labeled positive samples
and sufficient unlabeled samples, we reformulate the manipulation
classification across P𝑀 ∪U𝑀 as a PU learning problem.

Formally, several arts specify PU learning with various risk es-
timation approaches. In this work, we implement it with a varia-
tional PU learning framework [5].1 Given two subsets P𝑀 ∼ P𝑃 ≜
P(x𝐼 |𝑦𝑀 = 1) and U𝑀 ∼ P𝑈 ≜ P(x𝐼 ),2 using a Bayes rule, we can
estimate P𝑃 as follows:

P𝑃 =
P(𝑦𝑀 = 1|x𝐼 )P(x𝐼 )∫
P(𝑦𝑀 = 1|x𝐼 )P(x𝐼 )𝑑x𝐼

=
𝑓
𝚷
★ (x𝐼 )P𝑈

EP𝑈
[
𝑓
𝚷
★ (x𝐼 )

]
≈ 𝑓

𝚷
(x𝐼 )P𝑈

EP𝑈
[
𝑓
𝚷
(x𝐼 )

] ≜ P
𝚷
, (6)

where P
𝚷
is the data distribution with the parametric model 𝚷,

and 𝑓
𝚷
★ (·) represents an optimal teacher model. Accordingly, to

optimize 𝑓
𝚷
(·) towards the optimal 𝑓

𝚷
★ (·), prior studies [5] prove

that we can minimize the KL divergence between P𝑃 and P
𝚷
, which

1The variational PU learning follows a “selected completely at random” assumption
that does not require additional class priors, which is consistent with the scenario
of our paper. Additionally, it has empirically demonstrated superior performance in
Hami-m3d.
2Since P(x̂𝐼 ) and P(x𝐼 ) are independently and identically distributed, to keep our no-
tations clear, we uniformly utilize x𝐼 and 𝑦𝑀 to indicate the image and its manipulation
label.
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Algorithm 1 Training summary of Hami-m3d.
Input: Training MMD dataset D; IMD dataset D𝜇 ; hyper-

paramaters 𝛼 , 𝛽 , and 𝛿 ; training iterations 𝐼 .
Output: An MMD model parameterized by 𝚯; teacher model 𝚷.
1: Initialize 𝚯𝑇 and 𝚯

𝐼 with their pre-trained weights, and other
parameters from scratch.

2: Warm-up 𝚷 with L𝑃𝑅𝐸 for 10 epochs.
3: for 𝑖 = 1, 2, · · · , 𝐼 do
4: Draw mini-batches B, B𝜇 from D, D𝜇 randomly.
5: Manipulate images in B and form a manipulated B̂.
6: Calculate L𝑃𝑅𝐸 with B𝜇 and L𝑃𝑈 with B ∪ B̂.
7: Optimize 𝚷 with Eq. (4).
8: Calculate L𝑉𝐶 , L𝐾𝐷 , and L𝐼𝑅 with B.
9: Optimize 𝚯 with Eq. (3).
10: end for

is formalized as follows:

𝐷𝐾𝐿 (P𝑃 ∥P𝚷) = EP𝑃
[
log P𝑃 (x

𝐼 )
P
𝚷
(x𝐼 )

]
(7)

= EP𝑃
[
log 𝑓

𝚷
★ (x𝐼 )

]
+ EP𝑃

[
logP𝑃 (x𝐼 )

]
− logEP𝑈

[
𝑓
𝚷
★ (x𝐼 )

]
−
(
EP𝑃

[
log 𝑓

𝚷
(x𝐼 )

]
+ EP𝑃

[
logP𝑃 (x𝐼 )

]
− logEP𝑈

[
𝑓
𝚷
(x𝐼 )

] )
.

Accordingly, the PU optimization objective can be specified as
follows:

L𝑃𝑈 ≜ logEU𝑀∼P𝑈
[
𝑓
𝚷
(x𝐼 )

]
− EP𝑀∼P𝑃

[
log 𝑓

𝚷
(x𝐼 )

]
. (8)

By optimizing these two objectives L𝑃𝑅𝐸 and L𝑃𝑈 with Eq. (4),
we can obtain a strong manipulation teacher, and distill the predic-
tion 𝑦𝑀

𝑖
from the teacher to 𝑝𝑀

𝑖
with Eq. (2) [18, 24, 59]. Note that

during the optimization process, we first use L𝑃𝑅𝐸 to warm up the
teacher model for 10 epochs to prevent cold start problems in the
optimization of L𝑃𝑈 .

3.3 Intention Classification

Given the intention feature e𝐸
𝑖
, the intention classification task aims

to make it discriminative about the intention behind the image
manipulation. To solve the problem of unknown intention labels,
we provide two facts as weakly supervised signals to supervise the
intention prediction 𝑝𝐸

𝑖
. Specifically, the first fact is presented as:

Fact 1. If the image of the real article is manipulated, its intention
must be harmless; But if the image of the fake article is manipulated,
its intention may be harmful or harmless.Written as:

𝑦𝐸𝑖 =

{
1, 𝑦𝑖 = 0 ∧ 𝑦𝑀𝑖 = 1,

0 or 1, 𝑦𝑖 = 1 ∧ 𝑦𝑀𝑖 = 1,

where 𝑦𝐸
𝑖
denotes the intention label of the 𝑖-th sample.

Based on this fact, we can form a subset D𝐸 ∈ D where all
samples satisfy𝑦𝑀 = 1, and then splitD𝐸 into a positive subset P𝐸
where 𝑦 = 0 and an unlabeled subsetU𝐸 where 𝑦 = 1. Accordingly,
the intention classification acrossP𝐸∪U𝐸 can also be reformulated
as a PU learning problem. Similar to the formula in Eq. (8), its
objective is represented as:

L𝐼𝑅 ≜ logEU𝐸∼P𝑈 [𝑝𝐸 ] − EP𝐸∼P𝑃 [log𝑝
𝐸 ] . (9)

Table 1: Statistics of three prevalent MMD datasets.

Dataset # Real # Fake # Images
GossipCop [37] 10,259 2,581 12,840
Weibo [23] 4,779 4,749 9,528
Twitter [1] 6,026 7,898 514

In addition, another fact is presented as:

Fact 2. If the image of one article is manipulated by a harmful
intention, the veracity label of this article must be fake; But if the
image of one article is manipulated by a harmless intention, the
veracity label of this article may be real or fake. Written as:

𝑦𝑖 =

{
1, 𝑦𝐸𝑖 = 1 ∧ 𝑦𝑀𝑖 = 1,

0 or 1, 𝑦𝐸𝑖 = 0 ∧ 𝑦𝑀𝑖 = 1.

This fact can be regarded as a metric to check the reliability
of predictions 𝑝𝑀

𝑖
and 𝑝𝐸

𝑖
. For a sample that satisfies 𝑝𝑀

𝑖
= 1 and

𝑝𝐸
𝑖
= 1, if its ground-truth veracity label 𝑦𝑖 ≠ 1, at least one of its

predictions 𝑝𝑀
𝑖

and 𝑝𝐸
𝑖
is incorrect, and we remove these incorrect

samples when optimizing the model with Eq. (3).

4 EXPERIMENTS

In this section, we conduct extensive experiments and compare
Hami-m3d to existing MMD baselines to evaluate its performance.

4.1 Experimental Settings

Datasets. To evaluate the empirical performance of Hami-m3d,
we conduct our experiments across three prevalent MMD datasets
GossipCop [37], Weibo [23], and Twitter [1, 2], their statistics are
shown in Table 1. Specifically,GossipCop andWeibo consist of 12,840
and 9,528 text-image pairs, respectively, and their text and images
typically have a one-to-one correspondence. Differently, the Twitter
dataset contains 13,924 texts but only 514 images, so it exhibits
a complex one-text-to-many-images or one-image-to-many-texts
correspondence, which is a more challenging scenario. We follow
previous works [46, 54] to process and split these datasets into
training, validation, and test subsets by a ratio of 7:1:2.
Baselines. We compare five MMD baselines and their improved
versions using Hami-m3d in our experiments. These baselines are
briefly introduced as follows:

• Basic model extracts text and image features with a pre-
trained BERT model [12] and a ResNet34 [17], respectively.
Then, we use typical FFNN layers to map and align two fea-
tures into a shared space, and then fuse multimodal features
and predict veracity labels with MLP layers.

• SAFE [60] designs a similarity-aware multimodal fusion
module for MMD.

• MCAN [51] proposes a multimodal co-attention network
to fuse multimodal features effectively and considers inter-
modality correlations.

• CAFE [8] guides the multimodal feature fusion by assign-
ing adaptive weights with a variational method, and aligns
unimodal features with a contrastive learning regularization.
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Table 2: Experimental results of Hami-m
3
d across three prevalent MD datasets GossipCop, Weibo, and Twitter. The results

marked by * are statistically significant compared to its baseline models, satisfying p-value < 0.05.

Method Accuracy Macro F1 Real Fake Avg. Δ
Precision Recall F1 Precision Recall F1

Dataset: GossipCop
Basic model 87.77±0.56 79.51±0.44 91.55±0.41 93.36±1.20 92.37±0.41 69.96±1.10 63.30±1.46 66.92±0.58 -

Basic model + Hami-m3d 88.45±0.20* 80.32±0.43* 91.93±0.14 94.08±0.33* 92.83±0.12 71.99±0.80* 64.59±0.74* 67.63±0.78* +0.90

SAFE [60] 87.78±0.31 79.22±0.49 91.22±0.30 93.34±0.47 92.37±0.20 70.66±1.32 63.12±1.50 66.66±0.84 -
SAFE + Hami-m3d 88.53±0.24* 79.87±0.30* 91.90±0.31* 94.32±0.54* 92.95±0.20* 72.19±1.30* 64.44±0.73* 67.88±0.51* +0.96

MCAN [51] 87.66±0.59 78.89±0.34 90.89±0.78 94.07±1.27 92.19±0.46 71.01±1.09 60.37±1.21 65.29±0.87 -
MCAN + Hami-m3d 88.27±0.57* 79.87±0.36* 91.72±0.35* 95.13±1.21* 93.05±0.41* 72.69±0.96* 62.64±1.21* 66.65±0.32* +1.21

CAFE [8] 87.40±0.71 79.51±0.61 91.07±0.25 93.84±1.28 92.16±0.50 71.60±1.39 61.16±1.10 66.24±0.72 -
CAFE + Hami-m3d 88.18±0.44* 80.43±0.48* 91.50±0.45 94.46±1.00* 92.80±0.31* 72.84±0.83* 62.51±0.90* 67.58±0.83* +0.91

BMR [52] 87.26±0.46 79.03±0.64 90.89±0.24 93.99±0.59 92.14±0.29 71.15±1.23 60.37±1.21 65.51±1.01 -
BMR + Hami-m3d 87.95±0.27* 79.99±0.57* 91.40±0.51* 94.73±0.75* 93.14±0.19* 72.26±0.73* 62.94±0.89* 66.80±1.09* +1.11

Dataset: Weibo
Basic model 90.87±0.34 90.75±0.34 91.08±0.23 90.17±0.85 90.62±0.40 90.87±0.70 91.41±0.28 91.29±0.29 -

Basic model + Hami-m3d 91.62±0.66* 91.61±0.66* 91.83±0.87* 93.23±0.56* 91.39±0.76* 92.52±0.89* 91.87±0.64 91.84±0.62* +1.11

SAFE [60] 91.06±0.88 91.04±0.89 91.09±1.25 90.51±0.90 90.73±1.04 91.27±0.78 91.57±1.14 91.36±0.85 -
SAFE + Hami-m3d 92.22±0.91* 92.22±0.93* 91.15±1.08 94.22±0.84* 92.14±0.92* 94.34±1.00* 91.34±1.09 92.30±0.66* +1.42

MCAN [51] 90.99±0.83 90.99±0.83 89.66±0.82 92.24±1.10 90.81±0.90 92.69±0.80 89.92±0.99 91.20±0.79 -
MCAN + Hami-m3d 92.01±0.80* 92.01±0.80* 90.44±0.70* 93.37±0.87* 91.88±0.85* 93.59±0.74* 90.84±0.78* 92.17±0.76* +0.98

CAFE [8] 90.99±0.78 90.98±0.78 90.31±0.72 91.19±1.09 90.73±0.97 91.70±1.26 90.81±1.03 91.24±0.60 -
CAFE + Hami-m3d 91.95±1.06* 91.84±1.01* 91.25±0.55* 92.38±1.04* 91.66±0.91* 92.99±0.83* 91.93±0.91* 92.11±0.75* +1.02

BMR [52] 90.17±0.92 90.15±0.93 90.09±1.20 89.60±0.85 89.81±1.00 90.36±0.93 90.71±0.78 90.50±0.81 -
BMR + Hami-m3d 91.74±0.40* 91.68±0.40* 91.01±0.92* 93.17±0.82* 91.56±0.43* 93.40±0.84* 91.29±0.67* 91.81±0.38* +1.79

Dataset: Twitter
Basic model 65.08±1.18 63.91±1.09 57.29±1.26 66.67±1.01 61.48±1.56 72.04±0.96 62.41±0.92 65.35±1.01 -

Basic model + Hami-m3d 66.27±0.66* 65.67±1.27* 59.70±1.16* 69.70±0.71* 62.46±1.08* 73.19±0.93* 64.12±1.12* 67.86±0.82* +1.84

SAFE [60] 66.43±0.33 66.33±0.32 58.28±0.50 73.63±1.38 64.47±0.53 74.94±0.84 61.78±1.26 68.34±0.69 -
SAFE + Hami-m3d 67.15±0.96* 67.00±0.89* 59.32±0.90* 74.05±0.99 65.65±0.70* 76.49±0.60* 63.58±1.09* 68.77±0.94 +0.98

MCAN [51] 65.82±0.64 65.24±1.34 58.30±1.07 63.66±1.03 61.16±1.23 71.70±1.03 67.42±1.39 69.33±1.22 -
MCAN + Hami-m3d 67.14±1.11* 66.58±1.21* 60.63±0.99* 64.94±1.04* 62.55±1.28* 72.86±0.82* 68.77±1.12* 70.61±1.10* +1.43

CAFE [8] 65.62±0.58 65.04±0.48 58.39±0.90 66.24±1.48 62.05±0.21 72.37±1.28 65.16±1.06 68.57±1.05 -
CAFE + Hami-m3d 65.89±1.30 65.37±0.87 59.91±0.55* 67.28±1.17* 63.60±0.64* 73.42±1.18* 68.76±1.12* 70.49±1.06* +1.41

BMR [52] 67.12±0.74 66.64±1.28 59.09±0.61 72.62±1.28 64.43±1.28 75.10±1.13 62.56±0.91 68.65±1.17 -
BMR + Hami-m3d 67.84±0.83* 67.68±0.82* 60.01±0.88* 73.31±1.28* 65.65±0.92* 76.27±1.03* 64.32±0.98* 69.71±0.91* +1.08

• BMR [52] creates an elaborate networkwith improvedmixture-
of-experts to extract and fuse multimodal features.

The results of all baselines are re-produced by us to use the BERT
model and ResNet34 as the feature extractors.
Implementation Details. To preprocess the raw data, we resize
and randomly crop raw images to 224 × 224, and truncate text
content to 128 word tokens. Then, we employ pre-trained ResNet34
and BERT3 to capture visual and text features, and the first 9 Trans-
former layers of the BERT model are frozen. For the manipulation
teacher, we use a shallow ResNet18 model as its backbone, and we
pre-train it with an existing benchmark dataset CASIAv24 [14, 31]
on image manipulation detection, which consists of 12,614 images,
including 7,491 authentic and 5,123 tampered images. During train-
ing, we fine-tune the BERT model using an Adam optimizer with
a learning rate of 3 × 10−5 and optimize the other modules using
Adamwith a learning rate of 10−3, and the batch size is consistently

3Downloaded from https://huggingface.co/bert-base-uncased.
4Downloaded from https://github.com/SunnyHaze/CASIA2.0-Corrected-Groundtruth.

fixed to 32. We empirically set the hyperparameters 𝛼 , 𝛽 , 𝛿 , and𝐾 to
0.1, 0.1, 0.1, and 10, respectively. Meanwhile, to prevent overfitting,
we stop the training early when no better Macro F1 score appears
for 10 epochs.

4.2 Main Results

We compare the performance of our model Hami-m3d against 5
baseline models across 3 benchmark datasets, and evaluate them
using 8 typical metrics. The experimental results are reported in
Table 2. Generally, Table 2 reports the scores of Avg. Δ, which rep-
resents the average improvements of Hami-m3d over the baseline
models across all evaluation metrics. We observe significant im-
provements of Hami-m3d over all these baselines. For instance, on
the Weibo dataset, Hami-m3d improves the BMR model by approxi-
mately 1.79, and on the Twitter dataset, it improves the basic model
by 1.84. Observing the performance of Hami-m3d in detail on dif-
ferent metrics, our model consistently outperforms the baseline
models on all evaluation metrics. For example, on the Gossipcop
dataset, it outperforms the BMR model by approximately 2.57 in

https://huggingface.co/bert-base-uncased
https://github.com/SunnyHaze/CASIA2.0-Corrected-Groundtruth
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Table 3: Ablative study on objective functions. w/o represents

the short of “without”. The bold and underlined scores indi-

cate the highest and lowest results in the ablative versions,

respectively.

Method Acc. F1 AUC F1real F1fake
Dataset: GossipCop

BMR + Hami-m3d 87.95 79.99 87.46 93.14 66.80
w/o L𝑃𝑅𝐸 87.24 79.18 87.21 92.14 66.23
w/o L𝑃𝑈 87.63 79.66 87.38 93.05 66.52

w/o L𝐾𝐷 , L𝐼𝑅 86.93 78.65 86.24 91.94 65.36
Dataset: Weibo

BMR + Hami-m3d 91.74 91.68 97.06 91.56 91.81
w/o L𝑃𝑅𝐸 90.17 90.12 96.93 89.91 90.83
w/o L𝑃𝑈 91.40 91.39 96.96 91.19 91.60

w/o L𝐾𝐷 , L𝐼𝑅 90.10 90.10 95.97 89.88 90.31

Table 4: Ablative study on manipulation and intention fea-

tures. w/o represents the short of “without”.

Method Acc. F1 AUC F1real F1fake
Dataset: GossipCop

BMR + Hami-m3d 87.95 79.99 87.46 93.14 66.80
w/o e𝑀 87.53 79.13 86.47 92.37 65.89
w/o e𝐸 87.69 79.56 86.72 92.39 66.25

w/o e𝑀 , e𝐸 87.26 79.03 86.27 92.14 65.51
Dataset: Weibo

BMR + Hami-m3d 91.74 91.68 97.06 91.56 91.81
w/o e𝑀 90.92 90.91 96.52 90.57 91.08
w/o e𝐸 91.13 91.11 96.78 90.78 91.45

w/o e𝑀 , e𝐸 90.17 90.15 96.45 89.81 90.50

the fake class recall score. These results demonstrate the effective-
ness of our approach and highlight the role of manipulation and
intention features in detecting misinformation. Additionally, we ob-
serve that the order of improvements induced by Hami-m3d across
the three datasets is roughly ranked as Twitter >Weibo > Gossip-
Cop. This phenomenon suggests that, firstly, for smaller datasets,
Hami-m3d compensates for the lack of semantic information by
exploiting manipulation and intention features, leading to larger
improvements. Secondly, we observe that there are more manip-
ulated images in the Twitter dataset, allowing our manipulation
features to have a greater impact, which indirectly demonstrates
the accuracy of our extracted manipulation features.

4.3 Ablative Study

To evaluate the effectiveness of all objective functions and features
in Hami-m3d, we conduct an ablative experiment on an English
dataset GossipCop, and a Chinese datasetWeibo, their experimental
results are shown in Tables 3 and 4. The descriptions of these
ablative versions are as follows:

• w/oL𝑃𝑅𝐸 represents the removal of the pre-training process
using the external IMD dataset D𝜇 , training the teacher
model only with the PU objective L𝑃𝑈 ;

• w/oL𝑃𝑈 indicates not using the PU loss to adapt the teacher
model to the MMD dataset D;
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Figure 3: Sensitivity analysis of the parameters 𝛼 and 𝛽 .

• w/o L𝐾𝐷 ,L𝐼𝑅 represents not using any objective function
to supervise the manipulation and intention features, and
the optimization of these two features solely relies on the
cross-entropy loss L𝐶𝐸 of veracity prediction. Due to the
strong dependency ofL𝐼𝑅 onL𝐾𝐷 , we exclude both of them
in this analysis;

• w/o e𝑀 , w/o e𝐸 , and w/o e𝑀 , e𝐸 represents the removal of
e𝑀 and e𝐸 and their related training losses, as well as the
removal of both features, equivalent to the baseline model
without using the method proposed in this paper.

In general, removing each module leads to a decrease in the pre-
diction results of Hami-m3d, confirming their effectiveness. Specif-
ically, comparing the ablation results of the three objectives, their
performance is roughly ranked as w/o L𝑃𝑈 > w/o L𝑃𝑅𝐸 > w/o
L𝐾𝐷 ,L𝐼𝑅 , and the removal of L𝑃𝑅𝐸 and L𝐾𝐷 ,L𝐼𝑅 has the great-
est impact on the results of our model, with several results even
falling below the baseline model. L𝑃𝑅𝐸 effectively guides the ma-
nipulation teacher to accurately determine whether an image has
been manipulated. Without L𝑃𝑅𝐸 , the teacher’s prediction perfor-
mance deteriorates, indirectly leading to more confused features
obtained by the manipulation encoder, thereby significantly affect-
ing the veracity prediction results. On the other hand, L𝐾𝐷 and
L𝐼𝑅 impose no constraints on the manipulation and intention fea-
tures, not only increasing the computational burden of the baseline
model but also introducing meaningless and non-discriminative
features, directly affecting the discriminative ability of the final
veracity feature e. Then, comparing the ablation results of the three
features, their performance is ranked as w/o e𝐸 > w/o e𝑀 > w/o
e𝑀 , e𝐸 , indicating that both features contribute to enhancing the
discriminative ability of the final multimodal feature, and e𝑀 has a
greater impact.

4.4 Sensitivity Analysis

In Hami-m3d, 𝛼 and 𝛽 are crucial hyper-parameters, which rep-
resent the weights of L𝐾𝐷 and L𝐼𝑅 to balance training among
multiple losses. Therefore, in this section, we conduct sensitivity
experiments on these two hyper-parameters to analyze whether our
model is sensitive to these parameters and to provide evidence for
the selection of hyper-parameters in Hami-m3d. The specific exper-
imental results are shown in Fig. 3. We conduct experiments across
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Figure 4: Visualization analysis of features z, e𝑀 and e𝐸 with

the T-SNE method.

both English and Chinese datasets, GossipCop andWeibo, respec-
tively, and report the Macro F1 metric in Fig. 3. 𝛼 and 𝛽 are selected
from the set {0, 0.01, 0.1, 1, 10}, where 𝛼 or 𝛽 = 0 indicates that the
corresponding objective function does not need to be trained. The
experimental results show that the model is quite sensitive to both
hyper-parameters and consistently has the best performance when
𝛼 = 0.1 and 𝛽 = 0.1. As they increase or decrease, the model’s per-
formance shows a decreasing trend. Therefore, in implementing all
the experiments in this paper, we always choose 𝛼 = 0.1 and 𝛽 = 0.1.
When 𝛼 and 𝛽 are small, the manipulation and intention features
are not sufficiently trained, leading to insufficient discriminative
features that degrade the model’s prediction results, even below
the baseline model. Conversely, when they are large, the model’s
optimization tends to favor their corresponding losses, reducing
the weight of the veracity prediction objective L𝐶𝐸 and degrading
the veracity prediction results.

4.5 Visualization Analysis

To analyze the discriminative nature of the extracted manipulation
and intention features, we visualize these features, as shown in
Fig. 4. Specifically, we choose theWeibo dataset for visualization
analysis, using the T-SNE method [41] to reduce the dimensionality
of the multimodal feature z, manipulation feature e𝑀 , and inten-
tion feature e𝐸 to 2D, and displaying the corresponding 2D points
in Fig. 4. Fig. 4(a) illustrates the visualization of the multimodal
features of the basic model, while Fig. 4(b) shows the visualization
of the multimodal features with the addition of our proposed Hami-
m3d. By comparing the two results, we can observe that our method
can separate the two clusters of real and fake classes from each
other, thereby improving the discriminative nature of the multi-
modal features to a certain extent. Fig. 4(c) displays the visualization
results of the manipulation feature e𝑀 , where we use the results
provided by the teacher model to distinguish between manipulated
and unmanipulated images. In the result, we can observe that the
manipulation feature has strong discriminative power in determin-
ing whether an image has been manipulated, demonstrating the

Manipulation: 0.97 

Intention: 0.10

Veracity: Fake

Manipulation: 0.79

Intention: 0.95

Veracity: Real

Manipulation: 0.98

Intention: 0.92

Veracity: Fake

I blame cats . 
#hurricane #sandy

The pirates of the 
Caribbean ship sunk. 

Makes me a sad panda.

No idea if \"Suspect 2\" is missing 
Brown student Sunil Tripathi but 
looks more than a little like him:

Figure 5: We illustrate three representative examples for the

case study.

effectiveness of knowledge distillation in inheriting the discrim-
inative ability of the manipulation teacher to the manipulation
encoder. Fig. 4(d) visualizes only the intention features e𝐸 of sam-
ples classified as "manipulated" in the manipulation classification
task. We find that the intention features of real and fake samples
are clearly separated. However, some fake samples are mixed in the
real cluster, reflecting the fact that fake samples may also have a
harmless intent.

4.6 Case Study

We provide three representative examples for illustrating the per-
formance of our classifiers on three tasks in Fig. 5. The first example
involves an image that has been manipulated in a harmful inten-
tion. Our model confidently predicts both the manipulation and the
intention, accurately identifying its veracity label as fake; The sec-
ond example presents an image with manipulated colors. Although
our model correctly identifies the manipulation and provides accu-
rate veracity predictions, it assigns a low-confidence probability
to this type of manipulation, suggesting that there is room for
improvement in detecting certain manipulation techniques; The
third example illustrates an image that has been harmlessly manip-
ulated, merely slicing it without any harmful intention. Our model
also provides accurate predictions for all three tasks. In summary,
our model’s performance across the three tasks is commendable,
but it is susceptible to subtle manipulations that require further
improvement.

5 CONCLUSION

In this paper, we aim to identify multimodal misinformation by
recognizing manipulation traces of images in articles, as well as
understanding the underlying intention behind such manipulation.
To this end, we introduce a novel MMD model named Hami-m3d,
which extracts manipulation and intention features and incorpo-
rates them into the overall multimodal features. To make manipu-
lation and intention features discriminative towards whether the
image has been harmfully manipulated, we propose two classifiers
and predict their respective labels. To address unknown manipula-
tion and intention labels, we propose two weakly supervised signals
by learning a manipulation teacher with additional IMD datasets
and using two PU learning objectives to adapt and supervise the
classifier. Our experimental results can demonstrate thatHami-m3d
can significantly improve the performance of its baseline models.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Harmfully Manipulated Images Matter in Multimodal Misinformation Detection ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Christina Boididou, Katerina Andreadou, Symeon Papadopoulos, Duc-Tien Dang-
Nguyen, Giulia Boato, Michael Riegler, and Yiannis Kompatsiaris. 2015. Verifying
Multimedia Use at MediaEval 2015. InWorking Notes Proceedings of the MediaEval
2015 Workshop, Vol. 1436. CEUR-WS.org.

[2] Christina Boididou, Symeon Papadopoulos, Markos Zampoglou, Lazaros Aposto-
lidis, Olga Papadopoulou, and Yiannis Kompatsiaris. 2018. Detection and visu-
alization of misleading content on Twitter. International Journal of Multimedia
Information Retrieval 7, 1 (2018), 71–86.

[3] Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi, Danding Wang, and Jintao Li. 2023.
Combating Online Misinformation Videos: Characterization, Detection, and
Future Directions. In ACM International Conference on Multimedia. ACM, 8770–
8780.

[4] Juan Cao, PengQi, Qiang Sheng, Tianyun Yang, Junbo Guo, and Jintao Li. 2020. Ex-
ploring the Role of Visual Content in Fake News Detection. CoRR abs/2003.05096
(2020).

[5] Hui Chen, Fangqing Liu, Yin Wang, Liyue Zhao, and HaoWu. 2020. A Variational
Approach for Learning from Positive and Unlabeled Data. In Advances in Neural
Information Processing Systems.

[6] Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen,
and Zhangyang Wang. 2020. Self-PU: Self Boosted and Calibrated Positive-
Unlabeled Training. In International Conference on Machine Learning, Vol. 119.
PMLR, 1510–1519.

[7] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong Li. 2021. Image
Manipulation Detection by Multi-View Multi-Scale Supervision. In IEEE/CVF
International Conference on Computer Vision. IEEE, 14165–14173.

[8] Yixuan Chen, Dongsheng Li, Peng Zhang, Jie Sui, Qin Lv, Tun Lu, and Li Shang.
2022. Cross-modal Ambiguity Learning for Multimodal Fake News Detection. In
The ACM Web Conference. ACM, 2897–2905.

[9] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. 2015. Efficient Dense-
Field Copy-Move Forgery Detection. IEEE Transactions on Information Forensics
and Security 10, 11 (2015), 2284–2297.

[10] Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine
Bosselut, and Yejin Choi. 2021. Edited Media Understanding Frames: Reasoning
About the Intent and Implications of Visual Misinformation. In Annual Meeting
of the Association for Computational Linguistics. 2026–2039.

[11] Mariana Caravanti de Souza, Bruno Magalhães Nogueira, Rafael Geraldeli Rossi,
Ricardo Marcondes Marcacini, Brucce Neves dos Santos, and Solange Oliveira
Rezende. 2022. A network-based positive and unlabeled learning approach for
fake news detection. Machine Learning 111, 10 (2022), 3549–3592.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics. 4171–4186.

[13] Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and Xirong Li. 2023. MVSS-
Net: Multi-View Multi-Scale Supervised Networks for Image Manipulation Detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 3 (2023),
3539–3553.

[14] Jing Dong, Wei Wang, and Tieniu Tan. 2013. CASIA Image Tampering Detection
Evaluation Database. In IEEE China Summit and International Conference on
Signal and Information Processing. IEEE, 422–426.

[15] Yiqi Dong, Dongxiao He, Xiaobao Wang, Youzhu Jin, Meng Ge, Carl J. Yang, and
Di Jin. 2024. Unveiling Implicit Deceptive Patterns in Multi-Modal Fake News via
Neuro-Symbolic Reasoning. In AAAI Conference on Artificial Intelligence. AAAI
Press, 8354–8362.

[16] Marthinus Christoffel du Plessis, GangNiu, andMasashi Sugiyama. 2014. Analysis
of Learning from Positive and Unlabeled Data. In Advances in Neural Information
Processing Systems. 703–711.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, 770–778.

[18] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[19] Ming Hou, Brahim Chaib-draa, Chao Li, and Qibin Zhao. 2018. Generative
Adversarial Positive-Unlabelled Learning. In International Joint Conference on
Artificial Intelligence. 2255–2261.

[20] Yu-Guan Hsieh, Gang Niu, and Masashi Sugiyama. 2019. Classification from
Positive, Unlabeled and Biased Negative Data. In International Conference on
Machine Learning, Vol. 97. PMLR, 2820–2829.

[21] Kung-Hsiang Huang, Kathleen R. McKeown, Preslav Nakov, Yejin Choi, and Heng
Ji. 2023. Faking Fake News for Real Fake News Detection: Propaganda-Loaded
Training Data Generation. In Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 14571–14589.

[22] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A. Efros. 2018. Fighting
Fake News: Image Splice Detection via Learned Self-Consistency. In European
Conference on Computer Vision, Vol. 11215. Springer, 106–124.

[23] Zhiwei Jin, Juan Cao, HanGuo, Yongdong Zhang, and Jiebo Luo. 2017. Multimodal
Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs. In
ACM on Multimedia Conference. ACM, 795–816.

[24] Minha Kim, Shahroz Tariq, and Simon S. Woo. 2021. FReTAL: Generalizing
Deepfake Detection Using Knowledge Distillation and Representation Learn-
ing. In IEEE Conference on Computer Vision and Pattern Recognition Workshops.
Computer Vision Foundation / IEEE, 1001–1012.

[25] Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis, andMasashi Sugiyama.
2017. Positive-Unlabeled LearningwithNon-Negative Risk Estimator. InAdvances
in Neural Information Processing Systems. 1675–1685.

[26] Changchun Li, Ximing Li, Lei Feng, and Jihong Ouyang. 2022. Who Is Your Right
Mixup Partner in Positive and Unlabeled Learning. In International Conference
on Learning Representations. OpenReview.net.

[27] Haipeng Liu, Yang Wang, Meng Wang, and Yong Rui. 2022. Delving Globally
into Texture and Structure for Image Inpainting. In ACM International Conference
on Multimedia. ACM, 1270–1278.

[28] Xuannan Liu, Peipei Li, Huaibo Huang, Zekun Li, Xing Cui, Jiahao Liang, Lix-
iong Qin, Weihong Deng, and Zhaofeng He. 2024. FakeNewsGPT4: Advancing
Multimodal Fake News Detection through Knowledge-Augmented LVLMs. CoRR
abs/2403.01988 (2024).

[29] Chuan Luo, Pu Zhao, Chen Chen, Bo Qiao, Chao Du, Hongyu Zhang, Wei Wu,
Shaowei Cai, Bing He, Saravanakumar Rajmohan, and Qingwei Lin. 2021. PULNS:
Positive-Unlabeled Learning with Effective Negative Sample Selector. In AAAI
Conference on Artificial Intelligence. AAAI Press, 8784–8792.

[30] Xiaochen Ma, Bo Du, Xianggen Liu, Ahmed Y. Al Hammadi, and Jizhe Zhou.
2023. IML-ViT: Image Manipulation Localization by Vision Transformer. CoRR
abs/2307.14863 (2023).

[31] Nam Thanh Pham, Jong-Weon Lee, Goo-Rak Kwon, and Chun-Su Park. 2019.
Hybrid Image-Retrieval Method for Image-Splicing Validation. Symmetry 11, 1
(2019), 83.

[32] Peng Qi, Juan Cao, Xirong Li, Huan Liu, Qiang Sheng, Xiaoyue Mi, Qin He,
Yongbiao Lv, Chenyang Guo, and Yingchao Yu. 2021. Improving Fake News
Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal
Clues. In ACM Multimedia Conference. ACM, 1212–1220.

[33] Peng Qi, Juan Cao, Tianyun Yang, Junbo Guo, and Jintao Li. 2019. Exploiting
Multi-domain Visual Information for Fake News Detection. In IEEE International
Conference on Data Mining. IEEE, 518–527.

[34] Shengsheng Qian, Jinguang Wang, Jun Hu, Quan Fang, and Changsheng Xu.
2021. Hierarchical Multi-modal Contextual Attention Network for Fake News
Detection. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 153–162.

[35] Rui Shao, Tianxing Wu, and Ziwei Liu. 2023. Detecting and Grounding Multi-
Modal Media Manipulation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, 6904–6913.

[36] Qiang Sheng, Juan Cao, Xueyao Zhang, Rundong Li, Danding Wang, and
Yongchun Zhu. 2022. Zoom Out and Observe: News Environment Perception
for Fake News Detection. In Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 4543–4556.

[37] Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu.
2020. FakeNewsNet: A Data Repository with News Content, Social Context, and
Spatiotemporal Information for Studying Fake News on Social Media. Big Data
8, 3 (2020), 171–188.

[38] Mengzhu Sun, Xi Zhang, Jianqiang Ma, and Yazheng Liu. 2021. Inconsistency
Matters: A Knowledge-guided Dual-inconsistency Network for Multi-modal
Rumor Detection. In Findings of the Association for Computational Linguistics:
EMNLP. Association for Computational Linguistics, 1412–1423.

[39] Zhihao Sun, Haoran Jiang, Danding Wang, Xirong Li, and Juan Cao. 2023. SAFL-
Net: Semantic-Agnostic Feature Learning Network with Auxiliary Plugins for
Image Manipulation Detection. In IEEE/CVF International Conference on Computer
Vision. IEEE, 22367–22376.

[40] Sander Van Der Linden. 2022. Misinformation: susceptibility, spread, and inter-
ventions to immunize the public. Nature medicine 28, 3 (2022), 460–467.

[41] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 11 (2008).

[42] Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true and false
news online. science 359, 6380 (2018), 1146–1151.

[43] Jinguang Wang, Shengsheng Qian, Jun Hu, and Richang Hong. 2024. Positive
Unlabeled Fake News Detection via Multi-Modal Masked Transformer Network.
IEEE Transactions on Multimedia 26 (2024), 234–244.

[44] Longzheng Wang, Chuang Zhang, Hongbo Xu, Yongxiu Xu, Xiaohan Xu, and
Siqi Wang. 2023. Cross-modal Contrastive Learning for Multimodal Fake News
Detection. In ACM International Conference on Multimedia. ACM, 5696–5704.

[45] Xinrui Wang, Wenhai Wan, Chuanxing Geng, Shaoyuan Li, and Songcan Chen.
2023. Beyond Myopia: Learning from Positive and Unlabeled Data through
Holistic Predictive Trends. In Advances in Neural Information Processing Systems.

[46] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha,
Lu Su, and Jing Gao. 2018. EANN: Event Adversarial Neural Networks for
Multi-Modal Fake News Detection. In ACM SIGKDD International Conference on



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Knowledge Discovery & Data Mining. ACM, 849–857.
[47] Tong Wei, Feng Shi, Hai Wang, Wei-Wei Tu, and Yu-Feng Li. 2020. MixPUL:

Consistency-based Augmentation for Positive and Unlabeled Learning. CoRR
abs/2004.09388 (2020).

[48] Lianwei Wu, Pusheng Liu, and Yanning Zhang. 2023. See How You Read? Multi-
Reading Habits Fusion Reasoning for Multi-Modal Fake News Detection. In AAAI
Conference on Artificial Intelligence. AAAI Press, 13736–13744.

[49] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. 2018. BusterNet: Detect-
ing Copy-Move Image Forgery with Source/Target Localization. In European
Conference on Computer Vision, Vol. 11210. Springer, 170–186.

[50] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan. 2019. ManTra-Net:
Manipulation Tracing Network for Detection and Localization of Image Forgeries
With Anomalous Features. In IEEE Conference on Computer Vision and Pattern
Recognition. Computer Vision Foundation / IEEE, 9543–9552.

[51] Yang Wu, Pengwei Zhan, Yunjian Zhang, LiMing Wang, and Zhen Xu. 2021. Mul-
timodal Fusion with Co-Attention Networks for Fake News Detection. In Findings
of the Association for Computational Linguistics. Association for Computational
Linguistics, 2560–2569.

[52] Qichao Ying, Xiaoxiao Hu, Yangming Zhou, Zhenxing Qian, Dan Zeng, and
Shiming Ge. 2023. Bootstrapping Multi-View Representations for Fake News
Detection. In AAAI Conference on Artificial Intelligence. AAAI Press, 5384–5392.

[53] Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. 2004. PEBL: Web Page
Classification without Negative Examples. IEEE Transactions on Knowledge and
Data Engineering 16, 1 (2004), 70–81.

[54] Tong Zhang, Di Wang, Huanhuan Chen, Zhiwei Zeng, Wei Guo, Chunyan Miao,
and Lizhen Cui. 2020. BDANN: BERT-Based Domain Adaptation Neural Network
for Multi-Modal Fake News Detection. In International Joint Conference on Neural

Networks. IEEE, 1–8.
[55] Xueyao Zhang, Juan Cao, Xirong Li, Qiang Sheng, Lei Zhong, and Kai Shu. 2021.

Mining Dual Emotion for Fake News Detection. In The Web Conference. ACM /
IW3C2, 3465–3476.

[56] Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong Wen, and Qingming
Huang. 2022. Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 14441–14450.

[57] Jizhe Zhou, Xiaochen Ma, Xia Du, Ahmed Y. Al Hammadi, andWentao Feng. 2023.
Pre-training-free Image Manipulation Localization through Non-Mutually Ex-
clusive Contrastive Learning. In IEEE/CVF International Conference on Computer
Vision. IEEE, 22289–22299.

[58] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018. Learning
Rich Features for Image Manipulation Detection. In IEEE Conference on Computer
Vision and Pattern Recognition. Computer Vision Foundation / IEEE Computer
Society, 1053–1061.

[59] Qinhong Zhou, Zonghan Yang, Peng Li, and Yang Liu. 2023. Bridging the Gap
between Decision and Logits in Decision-based Knowledge Distillation for Pre-
trained Language Models. In Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 13234–13248.

[60] Xinyi Zhou, Jindi Wu, and Reza Zafarani. 2020. SAFE: Similarity-Aware Multi-
modal Fake News Detection. InAdvances in Knowledge Discovery and Data Mining
- Pacific-Asia Conference, Vol. 12085. Springer, 354–367.

[61] Yongchun Zhu, Qiang Sheng, Juan Cao, Shuokai Li, Danding Wang, and Fuzhen
Zhuang. 2022. Generalizing to the Future: Mitigating Entity Bias in Fake News
Detection. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 2120–2125.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Multimodal Misinformation Detection
	2.2 Manipulation Detection
	2.3 Positive-Unlabeled Learning

	3 Proposed Hami-m3d Method
	3.1 Overview of Hami-m3d
	3.2 Manipulation Classification
	3.3 Intention Classification

	4 Experiments
	4.1 Experimental Settings
	4.2 Main Results
	4.3 Ablative Study
	4.4 Sensitivity Analysis
	4.5 Visualization Analysis
	4.6 Case Study

	5 Conclusion
	References

