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Abstract

Despite its widespread use, little is understood about what makes large language
models more — or less — robust to quantization. To address this question, we study
the degradation induced by post-training quantization (PTQ) in language modeling,
analyzing open-source training trajectories of models up to 3 billion parameters
and 11 trillion tokens. Furthermore, we validate our analysis by pretraining 160M-
parameter models on up to 100B tokens. Our findings reveal that, post-training
quantization robustness is driven by a complex interplay between learning rate
decay and validation loss. In particular, as learning rate decays, validation loss and
quantization error diverge, mostly independent of the amount of training data. As a
consequence, we present two examples of interventions on the training dynamics
that modulate quantization error, sometimes favorably. Namely, (1) for comparable
validation loss, higher learning rates can lead to smaller quantization error; (2)
weight averaging approximates learning rate decay favorably in some settings.

1 Introduction

The present of deep learning is already low-bit [ , ]. Quantization has emerged as an
horizontal technique that can be plugged in different parts of the deep learning pipeline - pretraining
[ ; ; , , ], optimizer states [ , ,

, , , IR post training quantization (PTQ) [ ,
, ] - to unlock low-bit primitive throughput and memory gains. It is used i 1n
popular language models such as the deepseek models [ , ] or gpt-oss [

, ]. In general, quantization can be summarized as mapping full-precision (FP) values to
low-precision representations while preserving accuracy as much as possible. Common strategies
include scaling [ s ], rotating [ s ], grouping [ s ], or
indexing in codebooks [ , ]. Despite the widespread use of post-training quantization
(PTQ), there is limited understanding of the principles that govern its sensitivity.

Two recent studies, one by [ ] and the other by [ ], claim that
post-training quantization becomes less effective as models are trained on more data, arguing that
quantization error increases with the number of tokens. However, both studies depend on studies
performed following the same training recipe, and training dynamics are not a part of the resulting
scaling laws. We focus on this particular issue, in fact, in Section 2 we show two examples of training
dynamics having a larger effect on quantization robustness than data budget.

Our findings reveal that as learning rate decays, the validation loss decreases and coincidentally, quan-
tization error surges, unveiling a deeper connection between PTQ robustness and training dynamics.
We analyze this effect across multiple training runs and open-source models, exploring a range of
hyperparameter settings and training horizons. Finally, we show that weight averaging [
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et al.,, 2019, Kaddour, 2022] successfully modulates the full-precision to quantized validation loss
trade-off. We summarize our contributions as follows:

1. We decouple the influence of training data from quantization degradation, showing that
robustness is not primarily determined by scale alone.

2. We examine learning rate decay and validation loss, suggesting their interplay as critical
factors underlying PTQ robustness.

3. We intervene on the learning rate magnitude and find that, in our settings, higher learning
rates result in lower quantization error for the same validation loss.

4. We identify weight averaging as a substitute of learning rate decay with favorable post-
training quantization robustness. In some cases, leading to a lower validation loss for the
quantized weights.
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Figure 1: Evolution of quantization error and validation loss during training for SmolLM3 [Bakouch et al,,
2025]. We show the evolution of quantization error during training in Figure 1a, where solid lines show the
difference in validation loss between full precision checkpoints and their quantized counterparts during training,
while dotted curves trace the learning rate evolution. Curves during the stable phase ( = 2e~*) are reported
in green, and during the phase in yellow. We quantize to 4 bits using GPTQ [Frantar et al., 2023]. In
Figure 1b we show the evolution of validation loss during training. The learning rate schedule also appears as
dotted lines. We observe that as the learning rate decay triggers a surge in the quantization error and a decline in
the validation loss.

2 Training Dynamics and Quantization

SmolLM-3B. We track the evolution of quantization error along the training trajectory of SmolLM3
[Bakouch et al., 2025]. This 3B-parameter language model is well suited for our study due to its long
training horizon of 11T tokens, and adoption of a Warmup—Stable—Decay (WSD) schedule [Hu et al.,
2024, Haegele et al., 2024], which conveniently splits training into constant-LR stable phase and a
linear-decay phase, thereby isolating the influence of learning rate dynamics on quantization error.

Figure 1a shows quantization error — measured as the difference in validation loss between each
checkpoint and its quantized counterpart — alongside the learning rate schedule. We primarily use
GPTQ [Frantar et al., 2023] and report consistent results across other backends, models, bit-widths,
and methods in Appendix B. Whereas prior work argued that quantization error increases with the
number of tokens [Kumar et al., 2024, Ouyang et al., 2024], we observe a different pattern: after an
initial rise during the first 20B tokens, error grows only slowly throughout the stable phase despite
the increasing number of tokens, but surges sharply in the decay phase as the learning rate decreases.
Figure 1b demonstrates that the validation loss follows a similar - albeit inverse - curve than that of the
quantization error. While the learning rate itself may not directly cause this degradation, this obser-
vation suggests a deeper connection between optimization dynamics and quantization performance.

Controlled experiments. To gain a deeper understanding and isolate unknown idiosyncrasies
of online training trajectories, we pretrain several Pythia [Biderman et al., 2023] models of 160M
parameter on FineWedEdu [Penedo et al., 2024], varying learning rate, learning rate schedule, and



training horizons. We refer to Appendix A for more details on the training procedure. Figure 2
shows results across a range of token budgets, obtained by decaying the learning rate at different
points during training. We track the evolution of quantization error across several decay phases, and
observe that, despite training durations ranging from 10B to 100B tokens, models achieve comparable
quantization error after learning rate decay, highlighting the independence between the number of
ingested tokens and PTQ robustness.
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Figure 2: Quantization error across different training durations for Pythia-160M on FineWebEdu. We use
WSD schedule, training up to 100B tokens and performing additional cooldowns after 12B, 28B, 46B, 64B, 82B
tokens. Figure 2a shows the evolution of quantization error during training for the same model with different
token budgets, and Figure 2b reports the corresponding evolution of validation loss. We show the learning rate
as dotted lines in both figures to highlight the decay phase for each training runs. Despite varying the training set
scales, all models show comparable quantization error after cooldown, highlighting that error spikes are driven
by learning rate rather than token budget.

3 Interventions

Having shown the connection between training dynamics and quantization error, we present two
examples where intervening in the optimization process can modulate PTQ robustness and, in some
settings, even yield better quantized models.

Learning rate balances quantization error. In Figure 3, we ablate different choices of top
learning rate to study their impact on quantization. Figure 3a shows that higher learning rates
consistently lead to smaller errors, with curves inversely ordered by rate magnitude. Figure 3b
and Figure 3c further report full-precision versus 4-bit and 3-bit quantized validation losses. These
parametric curves capture quantization error relative to total validation loss: perfect quantization
would lie on the z = y bisector, with deviations measuring the error. Notably, comparing the curves
with LR 1e—3 and 3e—3 shows that, at similar validation loss, the larger rate achieves better low-bit
quantization at no apparent cost. The findings suggest that, for comparable validation loss, employing
a larger learning rate is preferable, as it enhances low-bit quantization performance.

Weight Averaging can reduce quantization degradation. Given the detrimental effect of learning
rate decay on quantization performance, a natural question is whether weight averaging could serve
as an alternative and mitigate its negative impact. Intuitively, averaging parameters along the training
trajectory reduces noise and can act as a proxy for learning rate decay. Prior work derived equivalent
averaging schemes for common learning rate schedules under SGD [Sandler et al., 2023], and
later studies showed that averaging can greatly improve performance over constant learning rate
training [Haegele et al., 2024, Ajroldi et al., 2025], though still falling short of learning rate decay.
Nevertheless, its effect on PTQ robustness remains unexplored, despite its simplicity, negligible
cost, and compatibility with existing pipelines.

We pretrain a 160M-parameter Pythia model on 100B tokens with a constant learning rate and
compare Latest Weight Averaging (LAWA) [Kaddour, 2022] against several intermediate learning-
rate cooldowns. As observed in prior work [Ajroldi et al., 2025], in the full-precision setting
(Figure 42), LAWA yields better checkpoints than constant learning rate but does not reach the
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Figure 3: Larger learning rates lead to lower quantization error. Figure 3a displays the quantization error
achieved by fixing the training recipe and varying the learning rate. We observe that quantization error decreases
when employing higher learning rates. Furthermore, Figure 3b and 3c show that, at similar validation loss, larger
learning rates achieve better low-bit quantization at no apparent cost.

performance of intermediate cooldowns. In contrast, for quantized models (Figure 4b), checkpoints
obtained through weight averaging match—or even surpass—the performance of those trained with
learning-rate decay.

1.0 1.0 le-1
1.0
" — Stable | w |l —+ PTQStable | 520
24.0 Lawa % 240l PTQ LAWA ¥ 5 0.8
= — D 06 = —-. PTQD 06 g
_5 38 ecay [0. _5 \ ecay [0. 5 0.6
=] =] 3 =]
o 0.4 &3.8 \\"‘~T”§“‘ 0.4 _510 0.4
=36 = N T . . c
s 02 2 LN NN 02 g 0-2
3.6 . ST, 305
3.4 0.0 0.0 0.0
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Number of tokens 1lell Number of tokens 1lell Number of tokens 1lell
(a) FP Validation Loss. (b) 3 bit PTQ validation loss (¢) Quantization Error.

Figure 4: Weight averaging and quantization error. We show the validation performance and quantization
error along the training trajectory of a Pythia 160M parameter model trained for up to 100B tokens at constant
learning rate, and compare intermediate learning rate cooldowns with weight averaging of checkpoints collected
during the stable phase. We report the validation performance of the full-precision model (Figure 42), the 3-bit
quantized model (Figure 4b), and their difference (Figure 4c). Whereas LAWA falls short of learning-rate
decay in the full-precision setting, its 3-bit PTQ performance yields lower validation loss than all cooldowns,
demonstrating a successful setting for LAWA.

4 Conclusion

We conduct a systematic investigation of how training interventions affect quantization degradation
in language models under controlled experimental configurations. First, we find that with all other
hyperparameters fixed, learning rate magnitude alone determines quantization error. Therefore, in
a scenario where two training runs attain comparable validation loss, we recommend breaking the
tie choosing the one with higher learning rate, for its expected enhanced quantization performance.
Secondly, we study replacing learning rate decay by weight averaging, using LAWA. Although recent
work suggests that it does not bridge the validation loss gap, we find that LAWA is more robust to
PTQ. In fact, for some lower bit settings, we observe that LAWA outperforms learning rate decay.
These examples are concrete cases in which quantization error is noticeably changed through changes
in training dynamics, leading us to argue that training dynamics should be carefully investigated for
favorable quantization performance.

Nevertheless, the mechanisms through which learning rates and weight averaging affect quantization
performance remain unclear. As a result, whether a predictive model of quantization degradation
is within reach, or what additional factors may be at play, is still an open question.

Overall, we end with an optimistic note. Our findings indicate that quantization degradation stems
from an intricate relationship between training dynamics and learning rate decay. As a result, we find
that rather than being an unavoidable consequence of training data scale, it can be acted upon with
existing tools and mechanisms, which are especially beneficial for low-bit quantization.
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A Replicability

Quantization We quantize all the checkpoints with from huggingface transformers Wolf et al.
[2020] with different quantization backends. For GPTQ [Frantar et al., 2023, Li et al., 2025] we use
GPTQModel ModelCloud.ai and qubitium@modelcloud.ai [2024]. For AWQ Lin et al. [2024] we
use Kwon et al. [2023]. And for LLM.int8() Dettmers et al. [2022a] we use HuggingFace Wolf et al.
[2020].

Pretrain We use the open source codebase from Ajroldi [2024] to pretrain Pythia-160M parameter
transformer Biderman et al. [2023], Vaswani et al. [2023] on language modeling, training up to 100
billion tokens of FineWebEdu Penedo et al. [2024] on up to 8 A100 80GB GPUs. We employ a
sequence length of 2048 and batch size of 0.5M tokens. We use cross-entropy loss and employ Adam
[Kingma and Ba, 2014] with decoupled weight decay [L.oshchilov and Hutter, 2019] of 0.1 and
gradient clipping of 1.

Evaluation We evaluate on a held-out set of refinedweb with...

B Quantization backbones

Our results are centered around GPTQ Frantar et al. [2023] a popular and easy-to-use quantization
method that works off-the-shelf for new models with minimal engineering overhead. However, we
replicate figure 2 with LLM.int8() Dettmers et al. [2022a] and AWQ Lin et al. [2024] to investigate
whether our observed phenomena are particular to GPTQ or to PTQ as a whole. We show this results
in figure, where relationship between the factors under study appears to be consistent.
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Figure 5: Quantization error on different 4 bit quantization backends.

C Large scale experiments

We replicate the study of Figure 3 with OLMo2 7 billion parameter model trained for 300 billion
tokens with cosine decay, with linear annealing during 50 billion tokens additionally. The learning
rates of the sweep are {12¢7%,9e74,6e=%, 3e~1}. We observe the same results. The red, green and
orange lines achieve comparable performance, and the full-precision loss to quantized loss curves are
sorted by learning rate magnitude, from lowest to highest, indicating that larger learning rates learn a
model that is more robust to post-training quantization.



u
=)

~
n

by
=)

w
1%

Quantization Error

w
=)

le—3

2.66 2.70
2.68
5264 S
g 2566 -
(%] wn e
(%] %) i
9 2.62 S264f — Ir=12e-4
= = — Ir=9e-4
> . >2.62 Ir=6e-4
260/ 2.60] — Ir=3e-4
26 27 28 29 30 260 2.62 264 2.66 2.600 2.625 2.650 2.675 2.7
# Tokens lell Val. Loss (FP) Val. Loss (FP)
(a) Quantization error. (b) FP to 4-bit PTQ val. loss. (¢) FP to 4-bit PTQ val. loss

Figure 6: Quantization error on different 4 bit quantization backends.
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