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Abstract

A commonly observed problem of the state-001
of-the-art natural language technologies, such002
as Amazon Alexa and Apple Siri, is that their003
services do not extend to most developing coun-004
tries’ citizens due to language barriers. Such005
populations suffer due to the lack of available006
resources in their languages to build NLP prod-007
ucts. This paper presents AllWOZ, a multi-008
lingual multi-domain task-oriented customer009
service dialog dataset covering eight languages:010
English, Mandarin, Korean, Vietnamese, Hindi,011
French, Portuguese, and Thai. Furthermore, we012
create a benchmark for our multilingual dataset013
by applying mT5 (Xue et al., 2021) in a meta-014
learning setting (Finn et al., 2017).015

1 Introduction016

Task-oriented dialog systems are crucial for busi-017

ness solutions. While task-oriented dialog sys-018

tems have made tremendous success in English,019

there is still a pressing urgency to build systems020

that can serve 6,900 other languages all over the021

world to enable universal technology access (Ruder022

et al., 2019; Aharoni et al., 2019; Arivazhagan et al.,023

2019). 94% of the world’s population do not have024

English as their first language, and 75% do not025

speak English at all. Most developing countries’026

citizens cannot benefit from state-of-the-art lan-027

guage technologies due to language barriers.028

Building dialog systems for most languages is029

challenging due to a lack of data. Automatic trans-030

lation is a powerful tool to generate more resources.031

However, the state-of-the-art translations still suf-032

fer from low fluency and coherence. Moreover,033

they have difficulties dealing with the mentioned034

entities in the dialog, which is essential in serv-035

ing the functional purposes of task-oriented dialog036

systems.037

To facilitate the development of multilin-038

gual task-oriented dialog systems, we create039

a new dataset AllWOZ based on MultiWOZ040

Figure 1: Three stages of our data collection: Data
selection, machine translation and human correction.

(Budzianowski et al., 2018; Zang et al., 2020). All- 041

WOZ is a multilingual multi-domain task-oriented 042

dialog dataset with intent and state annotation. It 043

has eight languages across various language fam- 044

ilies: English, Mandarin, Korean, Vietnamese, 045

Hindi, French, Portuguese and Thai. We will ex- 046

tend the dataset to more than 20 languages in our 047

future work. 048

Many languages have similarities in syntax and 049

vocabulary, and multilingual learning approaches 050

that leverage the shared structure of the input space 051

have proven to be effective in alleviating data spar- 052

sity. In this work, we applied a meta-learning train- 053

ing schema for multilingual adaptation to take ad- 054

vantage of shared language structures. 055

Our contributions are as follows: (1) We col- 056

lect a new dataset, AllWOZ, for multilingual task- 057

oriented dialog systems. (2) Extensive experiments 058

show that few-shot learning could improve the 059

model performance on our dataset. We would make 060

our dataset and models public. 061

2 Related Work 062

Early work in this direction focused on individ- 063

ual tasks, such as grammar induction (Ruder et al., 064

2019; Snyder et al., 2009), part-of-speech (POS) 065

tagging (Täckström et al., 2013), parsing (McDon- 066

ald et al., 2011), and text classification (Klementiev 067

et al., 2012). General-purpose multilingual repre- 068

sentation learning has gained increasing attention 069

during the past few years. Approaches that are 070
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applicable to multiple tasks have been researched071

on both word-level (Mikolov et al., 2013; Faruqui072

and Dyer, 2014; Artetxe et al., 2017) and sentence-073

level (Devlin et al., 2019; Lample and Conneau,074

2019). However, previous work processed text075

within a short context window due to the lack of076

datasets with long texts. There is little publicly077

available dialog resource that contains a diverse set078

of languages. A multilingual multi-domain natural079

language understanding (NLU) dataset with Thai,080

English, and Spanish (Schuster et al., 2019). (Mrk-081

sic et al., 2017) annotated only two additional lan-082

guages in WOZ 2.0 and (Liu et al., 2019) proposed083

a mixed-language training method for cross-lingual084

NLU and dialog state tracking (DST) tasks.085

In terms of algorithms, Schuster et al. (2019)086

found that in low resource settings, multilingual087

contextual word representations produce better re-088

sults than using cross-lingual static embeddings.089

This suggests that simply using pre-trained mul-090

tilingual embedding, such as MASS (Song et al.,091

2019) and mBART (Liu et al., 2020), which trained092

on auto-encoding objectives are not ideal for solv-093

ing the dialog task. This prompts us to propose new094

algorithms that not only utilizes pretrained mul-095

tilingual embedding, but also considers dialogue096

context information.097

3 Multilingual Dialog Collection098

To build a multilingual task-oriented dialog sys-099

tem, we collect a new dataset, AllWOZ, consist-100

ing of paired dialogs between different languages101

based on the MultiWOZ dataset. We first carefully102

sample dialogs from MultiWOZ and then translate103

those dialogs into different languages with Google104

Translation Tool. To ensure the quality of the trans-105

lation, we recruit native speakers for each language106

to correct the translation results.107

3.1 Data Selection108

MultiWOZ (Budzianowski et al., 2018) is the109

most popular task-oriented dialog dataset, covering110

seven domains and containing 10K+ dialogs. Many111

works devote effort to correcting and improving the112

dataset (Eric et al., 2020; Qian et al., 2021; Han113

et al., 2021; Ye et al., 2021). We conduct transla-114

tion jobs on the MultiWOZ 2.2 (Zang et al., 2020)115

since it is the most widely-accepted version. As116

mentioned in Sec. 1, most languages lack dialog117

training data, so our goal is to build dialog models118

under few-shot settings. Therefore, we sample 100119

Figure 2: Data generated from machine translation are
noisy when there are entities in the sentence.

dialogs (1476 turns) from the test set in total. In 120

order to maintain the prior knowledge of each do- 121

main, we keep the same domain distribution of the 122

whole test set during sampling. For example, as 123

shown in Table 1, there are 38 out of 100 sampled 124

dialogs involved in the attraction domain, and 399 125

out of 1000 dialogs involved in the attraction do- 126

main in the test set. Those two ratios are very close. 127

Similarly, for all five domains, the ratio of the dia- 128

log number counted for sampled dialogs (left side 129

of slash in Table 1) over the number for the whole 130

test set (right side of slash) keeps consistent. The 131

same case happens when it comes to the turn num- 132

ber. As for each domain, we expect the sampled 133

dialogs to cover as much information as possible. 134

So, during the sampling, we record the dialog state 135

annotations of chosen dialogs and skip the dialog 136

with similar annotations. As shown in the last row 137

of Table 1, the sampled dialog covers all possible 138

slot types. 139

3.2 Machine Translation 140

In order to reduce the human workload of transla- 141

tion, we first utilize the Google Translation Tool 142

to automatically translate both dialog utterances 143

and dialog state annotations. Fig. 1 shows an ex- 144

ample of the translation flow. Machine-translated 145

utterances are usually of low quality, mainly be- 146

cause some entity tokens like “Carolina Bed and 147

Breakfast” is hard for machine to translate. 148

3.3 Human Correction 149

To build a high-quality dataset, we recruit na- 150

tive speakers to correct the errors in the machine- 151

translated utterances. Our dataset currently covers 152

eight languages: English, Mandarin, Korean, Viet- 153

namese, Hindi, French, Portuguese and Thai. For 154

each language except English, we recruit a bilin- 155

gual speaker to edit the machine-translated utter- 156

ances based on the original English dialogs. In 157

addition to dialog utterances, we also require the 158

translators to edit the machine translations of the 159
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Num. of Attraction Hotel Restaurant Taxi Train
Dialog 38/399 40/395 39/445 13/198 55/489
Turn 213/2433 254/2588 224/2867 38/640 331/2946
Slot Type 3/3 10/10 7/7 4/4 6/6

Table 1: The statistics for the sampled 100 dialogs/whole test set in terms of dialog number, turn number and the
number of different slot types over all five domains in test set. The sampled dialogs are evenly distributed across the
five domains.

dialog states (e.g. “Carolina Bed and Breakfast” in160

Fig. 1), because tasks like dialog state tracking and161

end-to-end dialog generation require those states.162

However, some entity tokens in dialog states have163

polysemy and the translation of the dialog states164

does not match the semantic meaning in the dia-165

log utterance. For example, the token “moderate”166

refers to price by default in the dialog utterance.167

However, as an isolated token in dialog states, it is168

translated as “mild”. To ensure that all the trans-169

lations of dialog states are natural and coherent,170

we ask the translator to translate all dialog states171

first. Then, they should translate dialog utterances172

based on the dialog states’ translations, in order to173

avoid inconsistency between utterances and slots.174

If any state looks not coherent or natural in an utter-175

ance, translators are required to edit the translation176

of dialog states and translate all related utterances177

again.178

4 Experiments179

In this section, we introduce how we divide the180

dataset for train, validation and evaluation, as well181

as the experiment setting.182

4.1 Data Partition183

For each language, the translated 100 dialogs are184

divided into two partitions, each with 40/10/50 di-185

alogs. We first randomly sample a target language,186

then all the other seven languages are considered187

source languages. The experiments aim to explore188

whether the parallelism among source languages189

can help learn the target language under few-shot190

settings. For the source languages, we use the 40191

dialogs as training data and 10 dialogs as validation192

data. And for the target language, since we focus193

on the few-shot learning, we utilize the partition194

of 10 dialogs as training data and 40 dialogs for195

validation. The remaining partition of 50 dialogs is196

used as the test set. In order to achieve trustful re-197

sults, we run each experiment for two times. Each198

time we randomly re-sample the data partition and199

in the table we report the average score, along with200

the standard deviation. 201

4.2 Benchmark Models 202

Inspired by the success of pre-trained multilingual 203

model (Song et al., 2019; Liu et al., 2020; Lin 204

et al., 2020), we choose mT5 (Xue et al., 2020) 205

as our backbone model, a multilingual pre-trained 206

encoder-decoder language model. It is pre-trained 207

on mC4 (Raffel et al., 2019), which covers 101 lan- 208

guages in total, including the 8 languages that we 209

propose to translate. The experiment are conducted 210

under the following settings: 211

• Vanilla Training The vanilla method is di- 212

rectly fine-tuning mT5 model with mixed di- 213

alogs from each source languages and then 214

test on the target language. 215

• Vanilla + English Pretrain Inspired by the 216

success of pre-trained language models, we 217

first pre-train the model on the full-size Mul- 218

tiWOZ dataset (English), then conduct fine- 219

tuning with the parallel dialogs of different 220

source languages. 221

• DAML In order to explore the relation 222

between the parallel dialogs, we adopt 223

DAML (Qian and Yu, 2019) to train our 224

model. 225

4.3 Metrics 226

Following (Budzianowski et al., 2018), we adopt 227

Inform Rate, Success Rate, and BLEU (Papineni 228

et al., 2002) score as our main evaluation metrics. 229

Inform Rate represents the accuracy of success- 230

fully providing the correct entity (e.g., the name 231

of a restaurant that satisfies all user’s constraints 232

in the restaurant domain). Success Rate measures 233

how well the system answers all the requested in- 234

formation. BLEU score is adopted to evaluate the 235

quality of the generated response, compared with 236

the ground truth response. We also use Slot Accu- 237

racy to evaluate the quality of dialog state tracking. 238
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Language Model BLEU Inform Success Slot Accuracy

English Vanilla 15.34±1.90 43.00±24.00 6.00±2.83 71.07±1.75

+English Pretrain 20.39±3.92 57.00±12.73 11.00±12.73 75.27±8.19

DAML 18.32±0.58 54.00±2.83 7.00±4.24 73.29±0.10

French Vanilla 16.93±1.51 26.00±2.83 5.00±1.41 70.48±2.86

+English Pretrain 19.94±3.12 23.00±1.41 4.00±0.00 73.74±8.63

DAML 18.07±0.47 19.00±0.85 6.00±0.00 65.80±7.89

Vietnamese Vanilla 16.95±1.09 23.00±1.41 6.00±2.83 68.46±1.72

+English Pretrain 19.63±1.15 25.00±1.41 6.00±2.83 76.36±4.76

DAML 18.89±1.74 23.00±1.41 5.00±1.41 70.61±8.36

Portuguese Vanilla 13.35±4.51 23.00±1.41 5.00±1.41 75.13±5.16

+English Pretrain 14.13±0.16 24.00±0.00 4.00±0.00 69.68±1.75

DAML 16.66±1.94 24.00±0.00 6.00±2.83 72.82±2.68

Korean Vanilla 7.29±0.09 24.00±0.00 4.00±0.00 69.93±1.42

+English Pretrain 9.59±1.17 25.00±1.41 4.00±0.00 78.04±0.77

DAML 8.15±2.15 23.09±1.41 4.00±0.00 74.42±1.92

Mandarin Vanilla 3.42±1.56 26.00±2.83 5.00±1.41 74.53±4.98

+English Pretrain 7.13±2.10 24.00±0.00 6.00±2.83 79.40±0.25

DAML 3.93±0.29 24.00±0.00 4.00±0.00 69.83±1.81

Hindi Vanilla 15.24±0.70 26.00±2.83 5.00±1.41 71.62±2.36

+English Pretrain 16.37±0.26 23.00±1.41 4.00±0.00 75.79±1.56

DAML 14.55±5.44 23.00±1.41 6.00±2.83 72.52±1.44

Thai Vanilla 12.36±0.82 25.00±1.41 6.00±0.00 76.84±2.36

+English Pretrain 10.76±1.43 22.00±2.83 4.00±0.00 65.17±0.66

DAML 10.39±6.71 25.00±1.41 7.00±4.24 77.15±3.30

Average Vanilla 12.61±1.50 27.00±3.89 5.25±1.41 72.26±1.81

+English Pretrain 14.75±1.63 27.88±1.24 5.38±2.30 74.18±2.77

DAML 13.74±2.46 27.63±0.53 5.63±1.94 72.06±1.73

Table 2: Performances of three benchmark models in terms of BLEU score, Inform Rate, Success Rate and Slot
Accuracy for each language.

4.4 Results239

The results of all three benchmark models for each240

language are included in the Table 2. From the241

table, we observe that pre-training on English Mul-242

tiWOZ corpus improves all the metrics. With the243

English pre-training, the model does not only per-244

form better on the dialog state tracking task, but245

also better on the language generation task. The im-246

provement for non-English language indicates that247

dialog knowledge from the English pre-training248

data can be adapted to a new language through249

paralleled dialog data. Therefore, the similar struc-250

tures that different languages share help the model251

to generalize to new languages based on the em-252

bedded information about English data.253

The DAML approach, without introducing ex-254

tra English corpus, improves the average BLEU255

score and inform rate. It also has the best suc-256

cess rate among all approaches. By forcing the257

model to learn the similar structures that different258

languages share, the DAML approach works well259

in the few-shot setting and outperforms the model260

pre-trained on English corpus for both Thai and 261

Portuguese. The performance of DAML over the 262

“Vanilla” setting also shows that parallel corpus 263

brings significant advantages when the pre-trained 264

multilingual models are used for downstream tasks 265

in a language that we do not have a lot of available 266

data. 267

5 Conclusion 268

We created a new multilingual dialog data with 269

eight languages focusing on customer service tasks. 270

We find that our model, which uses meta-learning 271

to learn the shared structures between languages, 272

performs significantly better than normal training 273

in a few-shot setting and could achieve comparable 274

results when there is enough training data. 275

One limitation of our work is that we only have 8 276

languages so far. In future work, we plan to expand 277

the dataset to 30 languages. In addition, we will 278

study how to perform zero-shot generation on all 279

languages, and how to improve performance on 280

both tasks and generations in the zero-shot setting. 281
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A Licenses for Relevant Artifacts 442

• MultiWOZ: Apache License 2.0 443

• mT5: Apache License 2.0 444

• DAML: CC BY-NC-SA 4.0 445

B Experimental Details 446

B.1 Hyper-Parameters 447

For the meta-learning approach: The meta-learning rate is 3 × 10−4. The fine-tune learning rate is 448

5 × 10−4. The batch size is 1. The maximum epoch number for the meta-learning phase is 5. The 449

maximum epoch number for fine-tuning phase is 80. For other approaches: The fine-tune learning rate is 450

8× 10−4. The batch size is 1. The maximum epoch number for the pre-training phase is 3. The maximum 451

epoch number for fine-tuning phase is 10. 452

B.2 Computational Budget 453

All experiments are run on NVIDIA RTX A6000. The total running time is around 80 hours. 454

C Human Annotation 455

C.1 Guidelines 456

Here is the full text of instructions given to participants: First, you should translate the slots in MultiWoz 457

into the target language that you are working on. Then, you should correct the automatic translations into 458

fluent utterances. All mentioned slots should be present in the corrected utterance and consistent with the 459

slot translation. The purpose of the data is to build multilingual dialog systems. 460

C.2 Recruitment Details 461

We recruit 7 native speakers to correct the corresponding machine translations in 7 languages. The total 462

payment is $50 per person. 463
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