
General-Purpose In-Context Learning
by Meta-Learning Transformers

Louis Kirsch1 2, James Harrison1, Jascha Sohl-Dickstein1, Luke Metz1

1Google Research, Brain Team 2The Swiss AI Lab IDSIA, USI, SUPSI
louis@idsia.ch, {jamesharrison,jaschasd,lmetz}@google.com

Abstract

Modern machine learning requires system designers to specify aspects of the
learning pipeline, such as losses, architectures, and optimizers. Meta-learning,
or learning-to-learn, instead aims to learn those aspects, and promises to unlock
greater capabilities with less manual effort. One particularly ambitious goal of
meta-learning is to train general-purpose learning algorithms from scratch, using
only black box models with minimal inductive bias. Such a model takes in training
data, and produces test-set predictions, without any explicit definition of an infer-
ence model, training loss, or optimization algorithm. In this paper we show that
Transformers and other black-box models can be meta-trained to act as general-
purpose in-context learners. We characterize phase transitions between algorithms
that generalize, algorithms that memorize, and algorithms that fail to meta-train at
all, induced by changes in model size, number of tasks, and meta-optimization. We
further show that the capabilities of meta-trained algorithms are bottlenecked by
the accessible state size (memory) determining the next prediction, unlike standard
models which are thought to be bottlenecked by parameter count.

Meta-learning is the process of automatically discovering new learning algorithms instead of de-
signing them manually [1]. An important quality of human-engineered learning algorithms is their
applicability to a wide range of tasks or environments. For learning-to-learn to exceed those capabili-
ties, the meta-learned learning algorithms must be similarily general-purpose. Recently, there has
been significant progress toward this goal [2–7]. The improved generality of the discovered learning
algorithms has been achieved by introducing inductive bias, such as by bottlenecking the architecture
or by hiding information, which encourages learning over memorization.

While enabling generalization, these inductive biases come at the cost of increasing the effort to design
these systems and potentially restrict the space of discoverable learning algorithms. Instead, we seek
to explore general-purpose meta-learning systems with minimal inductive bias. Good candidates for
this are black-box sequence-models as meta-learners such as LSTMs [8–11] or Transformers [12, 13].
These models take in training data and produce test-set predictions without any explicit definition
of an inference model, training loss, or optimization algorithm. This is known as memory-based or
in-context learning.

In this work, we investigate how such black-box meta-learners can be trained to (meta-)generalize
and learn on significantly different datasets than used during meta-training. For this we propose
a Transformer-based General-Purpose In-Context Learner (GPICL). We characterize transitions—
induced by scaling the number of tasks or the model size used for meta-training—between memoriza-
tion, learning, and generalization. We further show that the capabilities of meta-trained algorithms
are bottlenecked by their accessible state size (memory) determining the next prediction (such as the
hidden state size in a recurrent network), unlike standard models which are thought to be bottlenecked
by parameter count.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

What is a (supervised) learning algorithm? In this paper, we focus on the setting of meta-learning
supervised learning algorithms. Consider a mapping(

{xi, yi}ND
i=1, x

′
)
7→ y′ (1)

from the training (support) set D = {xi, yi}ND
i=1 and a query input x′ to the query’s prediction y′

where xi, x′ ∈ RNx , yi, y′ ∈ RNy and ND, Nx, Ny ∈ N+. The subset of these functions that qualify
as learning algorithms are those that improve their predictions y′ given an increasingly larger training
set D. Meta-learning then corresponds to finding these functions via meta-optimization. As in other
black-box meta-learning models, we use a neural network to represent such functions, for example
based on RNNs [8], memory-augmented NNs [14], or Transformers [15].

What is a general-purpose learning algorithm? We focus in particular on obtaining general-
purpose learning algorithms. A learning algorithm can be considered general-purpose if it learns on
a wide range of possible tasks D and their respective related queries x′, y′. For example, gradient-
descent on a suitable loss function can be considered a very general-purpose human-engineered
learning algorithm (where the gradient is obtained via backpropagation or other means).

1 General-Purpose In-Context Learning Algorithms with Transformers

Due to the small number of inductive biases in black-box models, we can only expect (meta-
)generalization when meta-training with an appropriately broad data distribution. Thus, changes in
the data distribution affect whether and how a model meta-learns and meta-generalizes. We classify
algorithms along two different dimensions: To what extent it learns (improving predictions given
increasingly larger training sets), and to what extent it generalizes (performs well on instances, tasks,
or datasets not seen before). Algorithms can then be categorized as follows:

Learning Generalization Algorithm Description

No No Instance memorization
Yes No System identification
No Yes Zero-shot generalization
Yes Yes General-purpose learning algorithm

We demonstrate that sharp phase transitions occur between these learning modalities, and empirically
investigate these transitions.

General-Purpose In-Context Learning Transformer

x1 0 x2 y1 x′ 3 y2

…

y′ 1 y′ 2 … y′ 3

Third support set
Third query set

Figure 1: Our General-Purpose In-Context Learner
(GPICL) is based on the vanilla Transformer which is
trained to make predictions for queries x′ given any
prefix of a dataset D := {xi, yi}ND

i=1 as in Equation 2.

Generating tasks for learning-to-learn
In this work, we augment existing datasets,
in effect increasing the breadth of the task
distribution based on existing task regular-
ities. We do so by randomly projecting
inputs and permuting classification labels.
While the random projection removes spa-
tial structure from the inputs, this structure
is not believed to be central to the task (for
instance, the performance of SGD-trained
fully connected networks is invariant to
projection by a random orthogonal matrix
[16]). Task augmentation allows us to in-
vestigate fundamental questions about learning-to-learn in the regime of many tasks without relying
on huge amounts of existing tasks or elaborate schemes to generate those. A task or dataset D is
then defined by its corresponding base dataset D̄ = {x̄i, ȳi}, (linear) projection A ∈ RNx×Nx , with
Aij ∼ N (0, 1

Nx
), and output permutation ρ, D = {Ax̄i, ρ(ȳi)}.

Meta-learning Given those generated tasks, we then meta-train jointly on a mini-batch sampled
from the whole distribution. We minimize J(θ), the sum of losses on the query prediction after
observing any prefix of a dataset D sampled from the augmented task distribution p(D)

J(θ) = ED∼p(D)

ND∑
j=1

l(fθ(D1:j−1, xj), yj)

 , (2)

2

2 4 8 16 32 64 12
8

25
6

51
2

10
24

Hidden size (capacity)

20
22
24
26
28

210
212
214
216
218
220
222
224

Nu
m

be
r o

f t
as

ks

MLP: Accuracy on seen tasks

0.0

0.2

0.4

0.6

0.8

1.0
(a)

2 4 8 16 32 64 12
8

25
6

51
2

Transformer model size

20
22
24
26
28

210
212
214
216
218
220
222
224

Nu
m

be
r o

f t
as

ks

Accuracy on seen tasks

2 4 8 16 32 64 12
8

25
6

51
2

Transformer model size

Accuracy on unseen tasks

0.0

0.2

0.4

0.6

0.8

1.0

Transformer
(b) (c)

Figure 2: GPICL is able to generalize to unseen tasks. Each cell is a separate meta-training run.
(a) An MLP classifier trained in a multi-task fashion across various numbers of tasks (generated based
on MNIST) and network sizes is able to fit linearly more tasks, the larger its capacity. (b) A sequence
model (here the GPICL Transformer) that observes a dataset D of inputs and labels transitions into
generalizing to an seemingly unbounded number of tasks with an increase in model size. This is
achieved by switching from a memorization solution to a learning solution that (c) generalizes to
unseen tasks. This generalization does not occur with the MLP.

where in the classification setting, l is the cross entropy loss between the label yj and prediction
y′ = fθ(D1:j−1, xj), fθ is a neural network mapping to predictions y′ as in Equation 1. During
meta-training, we take gradient steps in J(θ) by backpropagation and Adam [17]. To investigate the
effect of the data distribution, we train on various numbers of tasks (1). Finally, we need to choose
a black-box model for the function fθ. We use a vanilla Transformer [12] with learned positional
embeddings, visualized in Figure 1. We call it the General-Purpose In-Context Learner (GPICL).
Each token corresponds to a concatenated and transformed input xi and one-hot encoded label yi−1
predicting the corresponding logits y′ = yi for the current input x′ = xi.

Algorithm 1 Meta-Training for General-Purpose In-Context Learning (GPICL)
Require: Base dataset D̄ = {x̄i, ȳi}, Number of tasks K ∈ N+

{A(k)
ij }Kk=1 ∼ N (0, 1

Nx
) . Sample input projections

{ρ(k)}Kk=1 ∼ p(ρ) . Sample output permutations
D(k) = {A(k)x̄i, ρ

(k)(ȳi)}
p(D) := Uniform[{D(k)}Kk=1]
while not converged do

θ ← θ − α∇θJ(θ) . Meta-train across tasks p(D) (Equation 2)

Meta-testing At meta-test time, no gradient-based learning is used. Instead, we simply obtain a
prediction y′ by evaluating the neural network fθ on the training dataset D and query point x′.

2 Experiments on the Emergence of General Learning-To-Learn

Multi-task training with standard classifiers Given a task distribution of many different classifi-
cation tasks, we first ask under what conditions we expect “learning-to-learn” to emerge. We train
a single model across many tasks where each task corresponds to a random transformation of the
MNIST dataset, but where the MLP only receives a single datapoint instead of a whole sequence as
input. This corresponds to ND = 1 in Equation 2. We would expect such a non-sequential classifier
to be able to correctly predict for more tasks as its number of parameters increases. When plotting
the network capacity against the number of tasks, we indeed observe a linear boundary where an
increasing number of tasks can be fit the larger the network (Figure 2a). This is consistent with results
in Collins et al. [18], which found that a constant number of bits about the data distribution can be
stored per model parameter, across a variety of model architectures and scales.

Learning-to-learn with large sequential models and data In contrast to the MLP classifier, a
sequence model that observes multiple observations and their labels from the same task, could exceed
that linear performance improvement by learning at inference time. Indeed, we observe that when
switching to a Transformer that can observe a sequence of datapoints before making a prediction

3

about the query, more tasks can be simultaneously fit (Figure 2b). At a certain model size and
number of tasks, the model undergoes a phase transition, allowing to generalize to a seemingly
unbounded number of tasks. We hypothesize that this is due to switching the prediction strategy from
memorization to learning-to-learn. Further, when (meta-)testing the same trained models from the
previous experiment on an unseen task (new random transformation of MNIST), they generalize only
in the regime of large numbers of tasks and model size (Figure 2c). As with all black-box learners,
meta-testing does not involve any gradient updates but only running the model in forward mode.

Simple invariances in data lead to the emergence of learning-to-learn To verify whether the
observed generalizing solutions actually implement learning algorithms (opposed to e.g. zero-shot
generalization), we analyze the meta-test time behavior. We plot the accuracy for a given query point
given varying numbers of seen examples in Figure 3. As it is typical for learning algorithms, the
performance improves given an increasingly large set of seen examples (inputs and labels).

0 20 40 60 80 100
Number of examples seen

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Meta-test learning curve on MNIST

0 20 40 60 80 100
Number of examples seen

Meta-test learning curve on FashionMNIST

Trained on
mnist
fashion_mnist

(a) (b)

Figure 3: GPICL learns from examples at test time, and gener-
alizes to unseen tasks and datasets. We meta-trained the Trans-
former on a set of tasks defined by random transformations of
either MNIST (blue) or FashionMNIST (orange). We then meta-
test on unseen tasks, and seen (ab) or unseen (ba) datasets. The
plot shows the accuracy averaged across multiple runs at each in-
ner step, with shading indicating 95% confidence intervals. The
increase in performance at each step suggests we have discovered
a learning algorithm.

Generalization Naturally, the
question arises to what ex-
tent these learning algorithms
are general. While we have
seen generalization to unseen
tasks consisting of novel pro-
jections of the same dataset,
do the learned algorithms also
generalize to unseen datasets?
In Figure 3 we observe out-
of-distribution performance on
Fashion MNIST after having
trained on MNIST (b, blue). In
this direction, there is no gener-
alization gap to directly training
on Fashion MNIST (b, orange).
Similarly, when meta training
on Fashion MNIST and meta
testing on MNIST (a, orange)
we observe that the learning algorithm generalizes, albeit with a larger generalization gap.

Comparison to other methods Other datasets and baselines are shown in Table 1. In particular,
rather than focusing on SOTA, we aim to validate whether methods with less inductive bias (such
as our GPICL), can compete with methods that include more biases suitable to learning-to-learn.

20 23 26 29 212 215 218 221 224

Number of tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 im
pr

ov
em

en
t w

ith
in

 se
qu

en
ce

Instance
memorization

Task
memorization Learning to learn

Seen MNIST
Unseen MNIST
Unseen FashionMNIST

Figure 4: Transformers exhibit three different
phases in terms of meta-learned behavior. (1)
When training on a small number of tasks, specific
instances are memorized. (2) Tasks are memorized,
which is evident as a within-sequence increase of
performance. (3) When training across many tasks,
we discover a learning algorithm that generalizes
to unseen tasks and unseen datasets.

This includes stochastic gradient descent (SGD)
that updates the parameters online after observ-
ing each datapoint. MAML [19] proceeds like
SGD, but uses a meta-learned neural network
initialization. Both methods that rely on back-
propagation and gradient descent, learn more
slowly compared to our Transformer. In the
case of MAML, this may be due to the main
mechanism being feature reuse [20] which is
less useful when training across our wider task
distribution. Among methods that do not hard-
code gradient descent at meta-test time, we test
VSML [6] that discovered learning algorithms
significantly generalizing between tasks. Our
GPICL comes surprisingly close to VSML with-
out requiring the associated inductive bias. Fi-
nally, we compare to a standard LSTM that is
trained with the same inputs as our Transformer.
We observe that it performs worse, which we
investigate further.

Transitioning from memorization to learn-
ing to generalizing When do the found solu-

4

Table 1: Meta-test generalization to various datasets after meta-training on augmented MNIST and
seeing 99 examples, predicting the 100th. We report the mean across 3 meta-training seeds, 16
sequences from each task, 16 tasks sampled from each base dataset.

Method / Dataset Inductive bias MNIST Fashion
MNIST KMNIST Random CIFAR10 SVHN

SGD Backprop, SGD 70.31% 50.78% 37.89% 100.00% 14.84% 10.16%
MAML Backprop, SGD 53.71% 48.44% 36.33% 99.80% 17.38% 11.33%

VSML Parameter sharing,
Permutation invariance 79.04% 68.49% 54.69% 100.00% 24.09% 17.45%

LSTM black-box 25.39% 28.12% 18.10% 58.72% 12.11% 11.07%
GPICL Transformer (ours) black-box 73.70% 62.24% 53.39% 100.00% 19.40% 14.58%

tions correspond to memorizing, learning, and generalizing solutions? In Figure 4, we plot the
accuracy difference between the last and first prediction for a seen task, an unseen task, and an
unseen task with a different base dataset. We observe three phases: In the first phase, we memorize
each instance, resulting in no within-sequence performance improvement. In the second phase, we
memorize tasks and learn to identify tasks, resulting in a within-sequence improvement confined
to seen task instances. In the final and third phase, we observe a more general learning-to-learn, a
performance improvement for unseen tasks, even different base datasets (here FashionMNIST).

Architecture: A large state is crucial for learning In the previous experiments we observed that
given sufficient task diversity and model size, Transformers can learn general-purpose learning
algorithms. This raises the question how essential the Transformer architecture is and whether other
black-box models could be used. We hypothesize that for learning-to-learn the size of the memory at
meta-test time (or state more generally) is particularly important in order to be able to store learning
progress. Through self-attention, Transformers have a particularly large state. We test this by training
several architectures with various state sizes in our meta-learning setting. In Figure 5a, we observe
that when we vary the respective hyper-parameters which most influence the state size, we observe
that for a specific state size we obtain similar performance of the discovered learning algorithm
across architectures. In contrast, these architectures have markedly different numbers of parameters
(Figure 5b). This suggests that the model size in terms of numbers of parameters plays a smaller role
in the setting of learning-to-learn and Transformers have benefited in particular from an increase in
state size by self-attention. Beyond learning-to-learn, this likely applies to other tasks that rely on
storing large amounts of sequence-specific information.

Discussion and Conclusion By generating tasks from existing datasets, we demonstrated that black-
box models such as Transformers can be used to meta-learn general-purpose in-context learning
algorithms (GPICL). Compared to previous work, this can be done without having to put strong
inductive biases in the inner learning algorithm or architecture. We observed that learning-to-learn
arises in the regime of large models and large numbers of tasks with several phase transitions from
instance memorization, to system identification, to general learning. The size of the memory or model
state significantly determines how well any architecture can learn how to learn across various neural
network architectures. For additional experiments, limitations, and related work, see appendix. In the
appendix, we also identified difficulties in meta-optimization and proposed interventions in terms
of optimizers, hyper-parameters, and a biased data distribution acting as a curriculum. We believe
our findings open up new possibilities of data-driven general-purpose meta-learning with minimal
inductive bias.

24 26 28 210 212 214

State size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Seen MNIST
(seen task & seen dataset)

24 26 28 210 212 214

State size

Unseen MNIST
(unseen task, seen dataset)

24 26 28 210 212 214

State size

Unseen FashionMNIST
(unseen task, unseen dataset)

LSTM
Transformer
Outer-product LSTM
VSML without symmetries

(a)

210 212 214

Parameter count

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Seen MNIST
(seen task & seen dataset)(b)

Figure 5: The state size (accessible memory) of an architecture most strongly predicts its
performance as a general-purpose learning algorithm. (a) A large state is crucial for learning-
to-learn to emerge. (b) The parameter count correlates less well with learning capabilities.

5

References
[1] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to

learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[2] Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in
meta reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

[3] Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. arXiv preprint
arXiv:2007.08794, 2020.

[4] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: evolving machine learning
algorithms from scratch. In International Conference on Machine Learning, pages 8007–8019.
PMLR, 2020.

[5] John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak
Lee, and Aleksandra Faust. Evolving reinforcement learning algorithms. In International
Conference on Learning Representations, 2021.

[6] Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and improving it. arXiv
preprint arXiv:2012.14905, 2020.

[7] Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian
Chen. Introducing symmetries to black box meta reinforcement learning. arXiv preprint
arXiv:2109.10781, 2021.

[8] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer,
2001.

[9] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[10] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[11] Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan Martic, Shane
Legg, and Pedro Ortega. Meta-trained agents implement bayes-optimal agents. Advances in
neural information processing systems, 33:18691–18703, 2020.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[13] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[14] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850. PMLR, 2016.

[15] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representa-
tions, 2022.

[16] Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.
Whitening and second order optimization both make information in the dataset unusable during
training, and can reduce or prevent generalization. In International Conference on Machine
Learning, pages 10617–10629. PMLR, 2021.

6

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability in
recurrent neural networks. arXiv preprint arXiv:1611.09913, 2016.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[20] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on
Learning Representations, 2020.

[21] Yann LeCun, Corinna Cortes, and C J Burges. MNIST handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[22] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. CoRR, abs/1708.0, 2017.

[23] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and
David Ha. Deep Learning for Classical Japanese Literature, 2018.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[26] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[27] Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti,
Gaurav Sukhatme, and Franziska Meier. Meta learning via learned loss. In 25th International
Conference on Pattern Recognition (ICPR), pages 4161–4168. IEEE, 2021.

[28] Joachim Winther Pedersen and Sebastian Risi. Evolving and merging hebbian learning rules:
increasing generalization by decreasing the number of rules. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 892–900, 2021.

[29] Sebastian Risi. The future of artificial intelligence is self-organizing and self-assembling.
sebastianrisi.com, 2021. URL https://sebastianrisi.com/self_assembling_ai.

[30] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

[31] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

[32] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pages 4556–4565. PMLR, 2019.

[33] Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein.
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and
using them to train themselves. arXiv preprint arXiv:2009.11243, 2020.

[34] Rein Houthooft, Richard Y Chen, Phillip Isola, Bradly C Stadie, Filip Wolski, Jonathan Ho,
and Pieter Abbeel. Evolved policy gradients. arXiv preprint arXiv:1802.04821, 2018.

7

https://sebastianrisi.com/self_assembling_ai

[35] Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha
Sohl-Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies.
arXiv preprint arXiv:2002.11887, 2020.

[36] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. arXiv preprint arXiv:2205.13320, 2022.

[37] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–139, 1992.

[38] Jürgen Schmidhuber. Reducing the ratio between learning complexity and number of time
varying variables in fully recurrent nets. In International Conference on Artificial Neural
Networks, pages 460–463. Springer, 1993.

[39] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations, 2017.

[40] Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond lin-
ear transformers with recurrent fast weight programmers. Advances in Neural Information
Processing Systems, 34:7703–7717, 2021.

[41] Mark Sandler, Max Vladymyrov, Andrey Zhmoginov, Nolan Miller, Andrew Jackson, Tom
Madams, et al. Meta-learning bidirectional update rules. arXiv preprint arXiv:2104.04657,
2021.

[42] Louis Kirsch and Jürgen Schmidhuber. Self-referential meta learning. In Decision Awareness
in Reinforcement Learning Workshop at ICML 2022, 2022.

[43] Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. Hypertransformer: Model
generation for supervised and semi-supervised few-shot learning. In International Conference
on Machine Learning, pages 27075–27098. PMLR, 2022.

[44] Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neural
networks for reinforcement learning. Advances in Neural Information Processing Systems, 34:
22574–22587, 2021.

[45] Joachim Winther Pedersen and Sebastian Risi. Minimal neural network models for permutation
invariant agents. arXiv preprint arXiv:2205.07868, 2022.

[46] Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan
Pascanu, Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, et al. Meta-learning of
sequential strategies. arXiv preprint arXiv:1905.03030, 2019.

[47] Jürgen Schmidhuber. A ‘self-referential’weight matrix. In International conference on artificial
neural networks, pages 446–450. Springer, 1993.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[49] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 12(10):2451–2471, 2000.

[50] Stephanie CY Chan, Adam Santoro, Andrew K Lampinen, Jane X Wang, Aaditya Singh,
Pierre H Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. arXiv preprint arXiv:2205.05055, 2022.

[51] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. arXiv preprint arXiv:2208.01066, 2022.

[52] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

8

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] The code or
code snippet will be released at a later date.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix Section A.8

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section A.9

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the datasets

in Table 1 [21–25]
(b) Did you mention the license of the assets? [Yes] See respective prior publication for

the license.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

9

A Appendix

A.1 Classifying Algorithms: Learning & Generalization

We can classify algorithms along two different dimensions: To what extent it learns (improving
predictions given increasingly larger training sets), and to what extent it generalizes (performs well
on instances, tasks, or datasets not seen before). Algorithms can then be categorized as follows:

Learning Generalization Algorithm Description

No No Instance memorization
Yes No System identification
No Yes Zero-shot generalization
Yes Yes General-purpose learning algorithm

A.2 Solutions are memorizing or generalizing

0k 2k 5k 8k 10k 12k 15k
Number of tasks

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 lo
ss

Figure 6: Solutions found by GPICL
after meta-training are bi-modal,
with a memorization and generaliza-
tion mode. Each point represents the
training loss at the end of meta-training
for runs with different seeds and for var-
ious numbers of tasks that include the
transition boundary previously observed.
Almost all solutions are either in a mem-
orization cluster or in a generalization
cluster.

When do the found solutions correspond to memorizing
vs generalizing solutions? In Figure 2 we observe a fairly
discrete transition between memorizing and generalizing
solutions as a function of the number of tasks. To analyze
this transition, we perform multiple training runs with
varying seeds and numbers of tasks in Figure 6, reporting
the final training loss. We find that the distribution is bi-
modal. Solutions at the end of training are memorizing
or generalizing. Memorization cluster: The larger the
number of tasks, the more difficult it is to memorize all of
them with a fixed model capacity. Generalization cluster:
At a certain number of tasks (here 6 thousand), a transition
point is reached where optimization sometimes discovers
a lower training loss that corresponds to a generalizing
solution. For larger numbers of tasks the solutions always
settle in the generalizing cluster.

A.3 What corresponds
to state (memory) in various architectures?

We hypothesize that for learning-to-learn the size of the memory NS at meta-test time (or state more
generally) is particularly important in order to be able to store learning progress. We test this by
training several architectures with various NS in our meta-learning setting. Memory in the context
of recurrent neural networks corresponds to the hidden state or context vector of size NH , thus
NS ∈ O(NH). More generally, we can describe the state as the information bottleneck that the
sequence has to pass through before making predictions. In the context of learning-to-learn, this state
has to hold information about everything that has been learned so far. Standard learning algorithms
such as neural networks trained via SGD would have a state that corresponds to the neural network
parameters, iteratively updated via SGD. In transformers, self-attention allows for a particularly large
state of NS ∈ O(NKNLNT) where NK is the size of key, value, and query, NL is the number of
layers, and NT is the length of the sequence.

A.4 Summary of Insights

Insight 1: It is possible to learn-to-learn with black-box models Effective learning algorithms
can be realized using black-box models with few inductive biases, given sufficient meta-training task
diversity and large enough model sizes. To transition to the learning-to-learn regime, we needed at
least 213 = 8192 tasks.

Insight 2: Simple data augmentations are effective for general learning-to-learn The generality
of the discovered learning algorithm can be controlled via the data distribution. Even when large task
distributions are not (yet) naturally available, simple augmentations that promote permutation and
scale invariance are effective.

10

Insight 3: The meta-learned behavior has phase transitions When increasing the number of
tasks, the meta-learned behavior transitions from instance memorization, to task identification, to
general learning-to-learn. The last transition is discrete, with two unique clusters.

Insight 4: Large state is more crucial than parameter count We conclude that the specific
inductive biases of each architecture matter to a smaller degree. The driving factor behind their ability
to learn how to learn is the size of their state. Furthermore, this suggests that the model size in terms of
numbers of parameters plays a smaller role in the setting of learning-to-learn and Transformers have
benefited in particular from an increase in state size by self-attention. In non-meta-learning sequence
tasks parameter count is thought to be the performance bottleneck [18]. Beyond learning-to-learn, this
likely applies to other tasks that rely on processing and storing large amounts of sequence-specific
information.

A.5 Challenges in Meta-Optimization

Meta-optimization is known to be challenging. Meta gradients [19, 26, 27] are unstable for long
inner loops consisting of many gradient updates. Works relying on parameter-sharing or weight
updates in their architecture [6, 28, 29] observed various difficulties: Slower convergence, local
minima, unstable training, or loss plateaus at the beginning of training. In VSML, in particular deeper
architectures make meta-optimization more difficult (Figure 17). In this section, we show that some
of these problems also occur with black-box models and propose effective interventions.

Loss plateaus when meta-learning with black-box models By training across a large number of
randomly transformed tasks, memorizing any task-specific information is difficult. Instead, the model
is forced to find solutions that are directly learning. We observe that this results in (meta-)loss plateaus
during meta-training where the loss only decreases slightly for long periods of time (Figure 7a). Only
after a large number of steps (here around 35 thousand) does a drop in loss occur.

In Figure 7b we zoom into the plateau. We observe that while in the plateau the training loss decreases
only slightly, at the same time the generalization loss increases on unseen tasks from both the same
and a different base dataset. This suggests that being able to first memorize slightly in the plateau
enables the following learning-to-learn phase whereas directly optimizing for learning-to-learn is
difficult. When analyzing the gradients in the loss plateau, we observe that all gradients have a very
small norm with exception of the last layer (Figure 13).

Intervention 1: Increasing the batch size High variance gradients appear to be one reason training
trajectories become trapped on the loss plateau (see Appendix Figures 11, 12). This suggests
increasing the meta-batch size as a straightforward solution. When plotting various batch sizes
against numbers of tasks we obtain three kinds of solutions at the end of meta-training (Figure 8a):
(1) Solutions that generalize and learn, (2) Solutions that memorize, and (3) Solutions that are still
in the loss plateau (due to maximum of 50 thousand optimization steps). The larger the batch size,
the more tasks we can train on without getting stuck in a loss plateau. When plotting the length of
the loss plateau against the task batch size (Figure 8b) we observe a power-law relationship with
increasing batch sizes decreasing the plateau length. At the same time, the batch size also increases
the number of total tasks seen in the plateau (Appendix Figure 14). Thus, this intervention relies on
parallelizability. An increase in the number of tasks also increases the plateau length (Figure 8c).
This may be due to a larger number of tasks making the initial memorization phase more difficult.

0k 10k 20k 30k 40k 50k
step

2

4

lo
ss

0k 10k 20k 30k 40k 50k
step

100% permuted labels

Training

Unseen FashionMNIST

Unseen MNIST

(a)

0k 20k 40k
step

2.25

2.30

2.35

2.40

lo
ss

Training loss

0k 20k 40k
step

Unseen FashionMNIST

0k 20k 40k
step

Unseen MNIST(b)

Figure 7: Meta-training dynamics often involve an extended period where GPICL’s perfor-
mance is stuck on a plateau. (a) Meta-loss vs. meta-training step, for a uniform distribution over
meta-training tasks. Training tasks are generated by random transformations of FashionMNIST. (b)
A zoomed in view of the plateau. The loss only decreases slightly and the model memorize small
biases in the training data (decreasing generalization) before the loss drops sharply.

11

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

Task batch size

20

22

24

26

28

210

212

214

216

218

220

222

224

N
u
m

b
e
r

o
f

ta
sk

s

Plateau, memorize, or generalize?

Plateau

Memorize

Generalize

(a)

25 26 27 28 29 210 211 212

Task batch size

213

214

215

Pl
at

ea
u

le
ng

th

of tasks
216

218

220

222

224

(b)

217 219 221 223 225

Number of tasks

213

214

215

Pl
at

ea
u

le
ng

th

Task batch size
25

27

29

211

(c)

Figure 8: Whether GPICL memorizes, generalizes, or remains trapped on a meta-loss plateau
depends on the number of meta-training tasks, and the meta-training batch size. (a) A phase
diagram showing GPICL’s behavior at the end of meta-training (50k steps). Solutions either memorize,
generalize and learn, or remain in the loss plateau. With additional training steps, configurations in
the plateau might eventually transition to memorization or generalization. Generalization only occurs
with large enough batch sizes and sufficient, but not too many, tasks. (b) This behavior is explained
by the plateau length decreasing with the increasing batch sizes (reducing the noise contribution),
and (c) increasing with larger numbers of tasks.

Intervention 2: Changes in the meta-optimizer Can we address the loss plateau on an optimizer-
level? Given that many gradients in the loss plateau have very small norm, Adam would rescale those
element-wise, potentially alleviating the issue. In practice, we observe that the gradients are so small
that the ε in Adam’s gradient-rescaling denominator (for numerical stability) limits the up-scaling of
small gradients. Instead of using the default ε of 10−8 we investigate 10−16 and smaller. While this
doesn’t alleviate the loss plateau entirely, it results in more than halving the plateau length (Appendix
Figure 15). Alternatively, discarding the magnitude of the gradient entirely by applying the sign
operator to an exponential moving average of the gradient (replacing Adam’s approximate magnitude
normalization with direct magnitude normalization) has a similar effect while also increasing the
numerical stability over Adam with small ε (Figure 15).

2

4

lo
ss

0% permuted labels 10% permuted labels

0k 10k 20k 30k 40k 50k
step

2

4

lo
ss

90% permuted labels

0k 10k 20k 30k 40k 50k
step

100% permuted labels

Training
Unseen FashionMNIST
Unseen MNIST

(a) (b)

(c) (d)

Figure 9: Biasing the training distribution is an
effective intervention which prevents a meta-
loss plateau. A uniform distribution over tasks
leads to a long plateau (d), while increasing the
training fraction that corresponds to a single task
reduces the plateau (abc).

Intervention 3: Biasing the data distribution
/ Curricula The previous interventions may
also be useful with optimization difficulties in
methods that have a larger number of inductive
biases in the learning algorithm and architec-
ture. In this paper, due to the nature of using
black-box models for the learning algorithm, we
rely mainly on the data distribution to govern
learning dynamics, learning-to-learn, and gener-
alization. This enables a different intervention
that relies on modifications to the data distribu-
tion. This is inspired by the observation that
within the loss plateau, a decrease in loss goes
with memorizing biases in the data distribution.
We propose a simple remedy that enables initial
memorization, is cheap, and simple to imple-
ment: biasing the data distribution. Instead of
sampling label permutations uniformly at ran-
dom, we bias towards a specific permutation by
using a fixed permutation for a fraction of each batch. This completely eliminates the loss plateau,
enabling a smooth path from memorizing to learning (Figure 9). Surprisingly, even when heavily
biasing the distribution, memorization is followed by generalization. This biased data distribution can
be viewed as a curriculum, essentially solving an easier problem first, a ‘stepping stone’, that enables
solving the harder learning-to-learn problem. Further investigation is required to understand how this
transition occurs. This may be connected to grokking [30] which we investigate in Appendix A.10.
We hypothesize that many natural data distributions—including language—contain such sub-tasks
that are easy to memorize followed by generalization.

12

A.6 Related work

Meta-learning inductive biases Meta-learning approaches exist with a wide range of inductive
biases, usually inspired by existing human-engineered learning algorithms. Some methods pre-wire
the entire learning algorithm [19], pre-wire backpropagation and the structure of a gradient-based
optimizer [31–33], or hard-code gradient-based optimization but learn the loss function [2, 27, 34].
Many methods search over hyper-parameters that alter existing learning algorithms [26, 35, 36].
Fast weight programmers or hyper-networks update the weights of the same or another neural
network [37–43]. Our work aims to keep such inductive biases to a minimum.

General-purpose meta-learning There has been growing interest in meta-learning more general-
purpose learning algorithms. The improved generality of the discovered learning algorithm has
been achieved by introducing inductive bias, such as by bottlenecking the architecture or by hiding
information, encouraging learning over memorization. Methods include enforcing learning rules to
use gradients [2, 3, 32], symbolic graphs [4, 5], or parameter sharing and symmetries [6, 7]. Parameter
sharing and symmetries have also been discussed in the context of self-organization [29, 44, 45].

Black-box meta-learning: MetaRNNs, RL2, in-context learning In contrast to these inductive
biases, neural networks can also learn-to-learn purely in their activations with little architectural and
algorithmic biases [8–10, 46]. This requires a feedback signal in the inputs that allows for learning
such as the reward in reinforcement learning or label in supervised learning [47]. A frequently
used architecture is the LSTM [48, 49]. Recently this mechanism has also been used with other
architectures such as Transformers [13, 50] under the name of in-context learning. We refer to these
networks simply as black-box meta learners. Our method GPICL is in the class of these black-
box meta learners. In contrast to previous methods, GPICL implements general-purpose learning
algorithms. Independently, Garg et al. [51] recently studied generalization on synthetic functions
compared to our augmented datasets. PFNs [11] demonstrated learning to learn on small tabular
datasets when meta-training on synthetically generated problems. Experiments on more complex
classification settings such as Omniglot relied on fine-tuning. In comparison, our method investigated
generalization of learning algorithms directly to datasets such as MNIST, Fashion MNIST, and
CIFAR10.

A.7 Limitations

Varying input and output sizes Compared to some previous works in meta-learning [6, 19, 31],
the discovered learning algorithms are not applicable to an arbitrary input and output size which
makes it more difficult to apply the learning algorithm to a new, unseen problem. This problem
also applies to Transformers applied to multiple tasks and modalities. Related work has solved this
problem by tokenizing inputs to compatible, unified representations [52]. We expect these techniques
or others to be useful in the learning-to-learn context too.

Processing large datasets Learning algorithms often process millions of inputs before outputting
the final model. In the black-box setting, this is still difficult to achieve. Recurrency-based models
usually suffer from accumulating errors, whereas Transformers computational complexity grows
quadratically in the sequence length. Additional work is required to build models capable of
processing and being trained on long sequences. Alternatively, parallel processing, similar to batching
in learning algorithms, may be a useful building block.

A.8 Architectural Details and Hyper-parameters

Transformer details See Figure 1 for a visualization. When querying for the first x1, there is no
previous label, so we feed zeros. By default, all Transformers have a key, value, and query size of 32,
8 heads, and 4 layers, and model size of NM = 256. The model size defines the dimensionality of
each token, and the MLP between layers scales this size up to a hidden representation of 4×NM
where NM corresponds to the model size.

Outer-product LSTM We slightly modify an LSTM by replacing the context state with an outer-
product update and inner-product read-out.

x_and_h = j n p . c o n c a t e n a t e ([i n p u t s , p r e v _ s t a t e . h id den] , a x i s =−1)

g a t e d = hk . L i n e a r (8 ∗ s i z e ∗ s e l f . num_heads) (x_and_h)

13

g a t e d = g a t e d . r e s h a p e ((b a t c h _ s i z e , s e l f . num_heads , 8 ∗ s i z e))
g a t e d = checkpo in t_name (ga ted , ’ g a t e d ’)

i = i n p u t , g = c e l l _ g a t e , f = f o r g e t _ g a t e ,
q = query , o = o u t p u t _ g a t e
s i z e s = (3 ∗ s i z e , 3 ∗ s i z e , s i z e , s i z e)
i n d i c e s = np . cumsum (s i z e s [: −1])
k1 , k2 , q , o = j n p . s p l i t (ga ted , i n d i c e s , a x i s =−1)
s c a l e = j a x . nn . s o f t p l u s (

hk . g e t _ p a r a m e t e r (’ k e y _ s c a l e ’ , shape = () , d t y p e =k1 . d type ,
i n i t = j n p . z e r o s))

i , g , f = j n p . e insum (’ bhki , bhkj−>k b h i j ’ ,
j a x . nn . t a n h (s p l i t _ a x i s (k1 , (3 , s i z e))) ∗ s c a l e ,
j a x . nn . t a n h (s p l i t _ a x i s (k2 , (3 , s i z e))))

f = j a x . nn . s igmoid (f + 1) # F or ge t b i a s
c = f ∗ p r e v _ s t a t e . c e l l + j a x . nn . s igmoid (i) ∗ g
r e a d = j n p . einsum (’ b h i j , bhi−>b h j ’ , c , q)
h = hk . F l a t t e n () (j a x . nn . s igmoid (o) ∗ j n p . t a n h (r e a d))

VSML We use a version of VSML with a single layer and self-messages [7] of size 8. Each LSTM
has a hidden size of 16. For each LSTM update we use two micro-ticks. We train on 225 tasks with
a 90% biased permutation distribution. The task batch size is 8. All images are scaled to a size of
32× 32× 3

VSML without symmetries Before activations are fed to a standard instantiation of VSML, all
inputs are projected using a learnable linear projection. Logits are generated using another linear pro-
jection, followed by a softmax. We use a version of VSML with a single layer and self-messages [7]
of size 8. The LSTMs are on a grid of k × k LSTMs, where k ∈ {1, 2, 4, 8, 16, 24}. Each LSTM has
a hidden size of 64. For each LSTM update we use two micro-ticks. We train on 225 tasks with a
90% biased permutation distribution. The task batch size is 128. All images are scaled to a size of
14× 14.

LSTM For the results in Table 1, we used a hidden size of 256 and 105 optimization steps. Larger
hidden sizes were harder to optimize. We train on 225 tasks with a 90% biased permutation distribution.
The task batch size is 128. All images are scaled to a size of 32× 32× 3

A.9 Experimental Details

Most experiments can be run on a single GPU, some require 16 GPUs due to sequence length and
large batch sizes, with sufficient GPU memory (around 16 GB each). Some experiments, such as
Figure 2, require up to 1000 runs of that kind to produce the final heat-map.

Input normalization Each dataset is z-normalized by its mean and standard deviation across all
examples and pixels.

Number of seeds and shading If not noted otherwise, line plots use 8 seeds for meta-training and
at least 512 seeds for meta-testing. Shading indicates 95% confidence intervals.

Figure 2 The MLP has two hidden layers of varying size with relu activations. The Transformer
has the default parameters as defined above.

Figure 3 We use a transformer model with a model size of 256. We train on 225 tasks with a
90% biased permutation distribution. The task batch size is 128. All images are scaled to a size of
32× 32× 3 Inputs are z-normalized across the dataset and all input dimensions.

Table 1 The SGD baseline was obtained by sweeping over learning rates from 10−4 to 0.5, opti-
mizers SGD, Adam and Adam with weight decay, one or two layers, and hidden sizes of 32, 64,
or 128 on MNIST. The best configuration (most sample efficient) corresponds to a learning rate of
10−3, Adam, and no hidden layers. SGD performs updates online on each one out of the 100 data
points. MAML is equivalent to SGD up to the difference that we meta-train the weight initialization
according to Equation 2 where θ are the initial parameters of the classifier that is then updated using
SGD at meta-test time. All black-box approaches do not use gradient descent at meta-test time. All
meta-learning approaches where meta-trained and tuned via grid search on MNIST.

14

50 100 200 400
sequence_length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

task
Seen FashionMNIST
Unseen FashionMNIST
Unseen MNIST

Figure 10: Increasing the sequence length during meta-training and meta-testing improves the
predictive performance of the final query in the sequence. Error bars indicate 95% confidence
intervals.

Figure 6 We trained a Transformer with model size 64 and 32 seeds for each number-of-tasks-
configuration.

Figure 4 Input normalization is disabled.

Figure 5 The Transformer uses a task batch size of 512.

Figure 7 Trained on 216 tasks generated from FashionMNIST with labels fully permuted.

Figure 8 Trained on 216 tasks generated from FashionMNIST with labels fully permuted.

Figure 9 Trained on 216 tasks generated from FashionMNIST with label permutations varied.

A.10 Additional Experiments

Sequence length In all experiments of the main paper we have meta-trained on a sequence length
(number of examples) of 100. This is a small training dataset compared to many human-engineered
learning algorithms. In general, as long as the learning algorithm does not overfit the training data,
more examples should increase the predictive performance. In Figure 10 we investigate how our
model scales to longer sequence lengths. We observe that the final accuracy of the last query in the
sequence consistently increases with longer sequences. The generalization to longer sequences than
those seen during meta-training is another important direction for future work.

Gradient and update statistics To better understand the properties of the loss plateau, we visualize
different statistics of the gradients, optimizer, and updates. In Figure 11, we track the exponential
moving average statistics of Adam before the loss plateau and after (dashed vertical line). In
Figure 12 we investigate how gradients differ between settings with a plateau and settings with a
biased distribution where the plateau is avoided. We plot the cosine similarity between consecutive
optimization steps, the gradient L2-norm, and the similarity and norm of the weight updates after
normalization with Adam. The statistics are plotted cumulatively or smoothed with a Gaussian filter
for better readability. The gradient and update cosine similarity differ only marginally between cases
with a plateau and cases without. We observe that the gradient L2-norm in the plateau is half as big
as in the biased distribution case, although the updates that Adam applies are going towards zero.
This also results in not moving far from parameter initialization when in the plateau. We hypothesize
this has to do with varying gradient norms when looking at individual parameter tensors (Figure 13).
We observe that the gradients have a small norm for most tensors, except for the last layer.

Batch size and number of tasks influence on plateau length Instead of looking at the plateau
length in terms of the number of steps (Figure 8), we may also be concerned with the total number of
tasks seen within the plateau. This is relevant in particular when the task batch is not processed fully
in parallel but gradients are accumulated. Figure 14 shows the same figure but with the number of
tasks in the plateau on the y-axis instead. It can be observed that larger batch-sizes actually increase
the data requirement to leave the plateau, despite decreasing the plateau in terms of the number of
optimization steps. Similarly, a larger task training distribution requires a larger number of tasks to
be seen within the plateau.

15

0 10000 20000 30000 40000 50000
step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L2
 n

or
m

norm_type = MovAvg gradient norm

0 10000 20000 30000 40000 50000
step

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

L2
 n

or
m

norm_type = MovAvg gradient squared norm

Figure 11: L2-norms of the gradient and squared gradient exponential moving average in Adam. The
dashed line corresponds to the loss drop at the end of the loss plateau.

Adjusting Adam’s ε or changing the optimizer As discussed in the main paper and visualized
in Figure 15b, decreasing ε significantly shortens the plateau. This is due to the rescaling of very
small gradient magnitudes being limited by ε. At the same time it incurs some instability. Directly
normalizing the gradient by applying the sign function element-wise (Figure 15a) to the exponential
gradient average shortens the plateau even further.

When memorization happens, can we elicit grokking? In Figure 8a we have seen that an insuffi-
ciently large task distribution can lead to memorization instead of general learning-to-learn. At the
same time, Figure 9 showed that biasing the data distribution is helpful to avoid loss plateaus. Power
et al. [30] observed a phenomenon which they called “grokking” in which even after having converged
in terms of training loss, test loss may suddenly decrease. Large amounts of regularization, like
weight decay with a coefficient of 1.0 were found to facilitate this behavior. Is grokking connected
to the optimization behavior we observe, and if so, do similar interventions help in our setting? We
look in particular at the boundary of memorization and generalization (214 = 16384) where doubling
the number of tasks a few more times would lead to generalization. Figure 16 shows three task
settings, 210, 214, 216, and three different weight decay coefficients, 0.01, 0.1, 1.0. The setting of 216

tasks shows generalization by default and only serves as a baseline for the weight decay coefficient
analysis. In the cases of memorization due to too few tasks, we have not been able to produce
grokking behavior.

Optimization difficulties in VSML Previous work has observed several optimization difficulties:
Slower convergence, local minima, unstable training, or loss plateaus at the beginning of training.
Figure 17 shows some of these difficulties in the context of VSML [6]. Because VSML has
permutation invariance built into the architecture as an inductive bias, changing the number of tasks
has only a small effect. We observe that in particular deeper architectures make meta-optimization
more difficult.

16

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

tra
in

in
g_

lo
ss permute_labels_prob

0.0
0.1
0.9
1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sm
oo

th
_g

ra
d_

sim
0.0

0.1

0.2

0.3

0.4

0.5

sm
oo

th
_g

ra
d_

no
rm

0

50

100

150

200

in
it_

pa
ra

m
_d

ist

0

20

40

60

80

100

cu
m

_g
ra

d_
sim

0

20

40

60

80

100

120

140

cu
m

_g
ra

d_
no

rm

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sm
oo

th
_u

pd
at

e_
sim

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sm
oo

th
_u

pd
at

e_
no

rm

0 10000 20000 30000 40000 50000
step

0

100

200

300

400

cu
m

_u
pd

at
e_

sim

0 10000 20000 30000 40000 50000
step

0

20

40

60

80

100

cu
m

_u
pd

at
e_

no
rm

(a) (b) (c)

Figure 12: Gradient and Adam update statistics for differently biased data distributions. (a) Plateaus in
the loss are influenced by the bias in the data distribution. Plateaus result in moving away slowly from
the parameter initialization. (b) The cosine similarity of both gradients and updates in consecutive
steps is only marginally different with or without a loss plateau. (c) While the gradient norm is about
half as big when a plateau exists, the updates are going towards zero.

17

10 9 10 7 10 5 10 3 10 1

tensor_grad_norm

transformer/ln_f/offset/grad_norm
transformer/h3_mlp/linear/b/grad_norm
transformer/h3_ln_2/offset/grad_norm

transformer/h3_mlp/linear_1/w/grad_norm
transformer/h3_ln_1/scale/grad_norm

transformer/h3_attn/value/b/grad_norm
transformer/h3_attn/query/w/grad_norm
transformer/h3_attn/query/b/grad_norm
transformer/h3_attn/linear/w/grad_norm
transformer/h3_attn/linear/b/grad_norm
transformer/h3_attn/key/b/grad_norm

transformer/h2_mlp/linear/w/grad_norm
transformer/h2_ln_2/offset/grad_norm

transformer/h2_attn/value/w/grad_norm
transformer/h2_attn/value/b/grad_norm
transformer/h2_attn/query/w/grad_norm
transformer/h2_attn/query/b/grad_norm
transformer/h2_attn/linear/w/grad_norm

transformer/h0_ln_1/scale/grad_norm
transformer/h3_mlp/linear/w/grad_norm

transformer/h1_mlp/linear_1/b/grad_norm
transformer/h1_mlp/linear/w/grad_norm
transformer/h2_attn/key/b/grad_norm

transformer/h1_mlp/linear/b/grad_norm
transformer/h1_ln_2/offset/grad_norm
transformer/h1_ln_1/scale/grad_norm

transformer/h2_mlp/linear_1/b/grad_norm
transformer/h1_mlp/linear_1/w/grad_norm

transformer/h1_ln_1/offset/grad_norm
transformer/h0_attn/query/b/grad_norm
transformer/h1_attn/query/b/grad_norm
transformer/h1_attn/key/w/grad_norm

transformer/h0_mlp/linear_1/b/grad_norm
transformer/h1_attn/value/b/grad_norm
transformer/h0_attn/value/w/grad_norm
transformer/h0_attn/value/b/grad_norm
transformer/h0_attn/query/w/grad_norm
transformer/h0_ln_2/offset/grad_norm

transformer/h1_attn/value/w/grad_norm
transformer/h0_attn/linear/w/grad_norm
transformer/h2_ln_1/offset/grad_norm
transformer/h0_attn/key/b/grad_norm

linear_out/w/grad_norm
linear_out/b/grad_norm

linear/w/grad_norm
transformer/h1_attn/key/b/grad_norm

transformer/h1_attn/linear/b/grad_norm
transformer/h0_attn/key/w/grad_norm

transformer/h2_attn/linear/b/grad_norm
transformer/h1_ln_2/scale/grad_norm
transformer/h0_ln_2/scale/grad_norm
transformer/h3_ln_1/offset/grad_norm

transformer/h1_attn/query/w/grad_norm
transformer/h3_attn/key/w/grad_norm
transformer/h2_ln_2/scale/grad_norm
transformer/h2_ln_1/scale/grad_norm

transformer/h0_mlp/linear_1/w/grad_norm
transformer/h0_mlp/linear/w/grad_norm
transformer/h0_attn/linear/b/grad_norm

transformer/h3_ln_2/scale/grad_norm
~/pos_embs/grad_norm

transformer/h3_mlp/linear_1/b/grad_norm
transformer/h2_mlp/linear/b/grad_norm

transformer/ln_f/scale/grad_norm
linear/b/grad_norm

transformer/h2_mlp/linear_1/w/grad_norm
transformer/h2_attn/key/w/grad_norm

transformer/h3_attn/value/w/grad_norm
transformer/h1_attn/linear/w/grad_norm
transformer/h0_ln_1/offset/grad_norm

transformer/h0_mlp/linear/b/grad_norm

te
n
so
r

0.1 0.0 0.1 0.2 0.3
tensor_grad_sim

~/pos_embs/grad_sim
transformer/ln_f/scale/grad_sim
transformer/ln_f/offset/grad_sim

transformer/h3_mlp/linear_1/b/grad_sim
transformer/h3_mlp/linear/w/grad_sim
transformer/h3_mlp/linear/b/grad_sim

transformer/h3_ln_2/scale/grad_sim
transformer/h3_attn/query/w/grad_sim
transformer/h3_attn/linear/w/grad_sim

transformer/h3_attn/key/w/grad_sim
transformer/h3_attn/key/b/grad_sim

transformer/h2_mlp/linear_1/w/grad_sim
transformer/h2_mlp/linear_1/b/grad_sim

transformer/h2_ln_2/scale/grad_sim
transformer/h3_mlp/linear_1/w/grad_sim

transformer/h2_ln_2/offset/grad_sim
transformer/h2_ln_1/scale/grad_sim

transformer/h2_attn/value/w/grad_sim
transformer/h2_attn/linear/b/grad_sim

transformer/h2_attn/key/w/grad_sim
transformer/h1_attn/value/w/grad_sim

transformer/h1_mlp/linear_1/w/grad_sim
transformer/h2_attn/linear/w/grad_sim

transformer/h1_mlp/linear_1/b/grad_sim
transformer/h0_mlp/linear_1/w/grad_sim

transformer/h3_attn/value/w/grad_sim
transformer/h2_ln_1/offset/grad_sim

transformer/h1_mlp/linear/b/grad_sim
transformer/h1_ln_2/offset/grad_sim
transformer/h1_ln_1/scale/grad_sim
transformer/h1_ln_2/scale/grad_sim

transformer/h1_attn/linear/b/grad_sim
transformer/h1_attn/key/w/grad_sim
transformer/h2_attn/key/b/grad_sim

transformer/h0_mlp/linear/w/grad_sim
transformer/h0_ln_2/scale/grad_sim
transformer/h0_ln_2/offset/grad_sim

transformer/h0_attn/query/w/grad_sim
transformer/h0_ln_1/scale/grad_sim
transformer/h0_ln_1/offset/grad_sim
transformer/h1_attn/key/b/grad_sim

transformer/h0_attn/query/b/grad_sim
transformer/h0_attn/linear/w/grad_sim
transformer/h0_attn/linear/b/grad_sim
transformer/h2_attn/query/w/grad_sim

linear/w/grad_sim
linear/b/grad_sim

transformer/h0_attn/key/w/grad_sim
transformer/h2_attn/query/b/grad_sim
transformer/h1_attn/query/w/grad_sim

transformer/h0_mlp/linear_1/b/grad_sim
transformer/h0_attn/value/w/grad_sim
transformer/h1_mlp/linear/w/grad_sim

transformer/h3_ln_2/offset/grad_sim
transformer/h3_attn/query/b/grad_sim
transformer/h1_attn/query/b/grad_sim

linear_1/b/grad_sim
transformer/h0_mlp/linear/b/grad_sim

transformer/h1_ln_1/offset/grad_sim
transformer/h2_attn/value/b/grad_sim
transformer/h3_attn/linear/b/grad_sim
transformer/h0_attn/value/b/grad_sim

linear_1/w/grad_sim
transformer/h2_mlp/linear/w/grad_sim

transformer/h3_ln_1/scale/grad_sim
transformer/h2_mlp/linear/b/grad_sim

transformer/h1_attn/linear/w/grad_sim
transformer/h3_attn/value/b/grad_sim

transformer/h0_attn/key/b/grad_sim
transformer/h3_ln_1/offset/grad_sim

transformer/h1_attn/value/b/grad_sim

te
ns

or

Figure 13: Gradient L2 norms (left) and gradient cosine similarity for consecutive optimization steps
(right) for different parameter tensors. The last (output) layer has the largest gradients. Most other
gradients are small.

25 26 27 28 29 210 211 212

Task batch size

220

221

222

223

224

225

226

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

of tasks
216

218

220

222

224

217 219 221 223 225

Number of tasks

220

221

222

223

224

225

226

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

Task batch size
25

27

29

211

Figure 14: Instead of plotting the loss plateau length in terms of optimization steps, we look at the
total number of tasks seen within the plateau as a function of the task batch size and the number of
tasks in the training distribution. An increase in the task batch size leads to more tasks to be processed
to leave the plateau.

18

25 26 27 28 29 210 211 212

Task batch size

210

211

212

213

214

215

Pl
at

ea
u

le
ng

th

of tasks
216

218

220

222

224

Optimizer
Adam
Sign

(a)

25 26 27 28 29 210 211 212

Task batch size

211

212

213

214

215

Pl
at

ea
u

le
ng

th

of tasks
216

218

220

222

224

10 24

10 16

10 8

(b)

25 26 27 28 29 210 211 212

Task batch size

219

221

223

225

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

of tasks
216

218

220

222

224

Optimizer
Adam
Sign

25 26 27 28 29 210 211 212

Task batch size

220

221

222

223

224

225

226

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

of tasks
216

218

220

222

224

10 24

10 16

10 8

217 219 221 223 225

Number of tasks

219

221

223

225

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

Task batch size
25

27

29

211

Optimizer
Adam
Sign

217 219 221 223 225

Number of tasks

220

221

222

223

224

225

226

227

Pl
at

ea
u

nu
m

be
r o

f t
as

ks
 se

en

Task batch size
25

27

29

211

10 24

10 16

10 8

Figure 15: (a) When replacing Adam with a sign normalization of the gradient or (b) reducing ε the
plateau length is significantly shorter.

19

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
ss

num_tasks = 1024 | weight_decay = 0.01 num_tasks = 1024 | weight_decay = 0.1 num_tasks = 1024 | weight_decay = 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
ss

num_tasks = 16384 | weight_decay = 0.01 num_tasks = 16384 | weight_decay = 0.1 num_tasks = 16384 | weight_decay = 1.0

0 25000 50000 75000 100000125000150000175000200000
step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
ss

num_tasks = 65536 | weight_decay = 0.01

0 25000 50000 75000 100000125000150000175000200000
step

num_tasks = 65536 | weight_decay = 0.1

0 25000 50000 75000 100000125000150000175000200000
step

num_tasks = 65536 | weight_decay = 1.0

task
Training loss
Seen FashionMNIST
Unseen FashionMNIST
Unseen MNIST

Figure 16: We investigate whether grokking as defined in Power et al. [30] can be produced when
we observe memorization on a smaller numbers of tasks. This would correspond to the test loss
decreasing long after the training loss has converged. We have not been able to elicit this behavior
when looking at different numbers of tasks and weight decay coefficients.

20

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

ni
ng

 lo
ss

of tasks = 20 | 1 layers # of tasks = 20 | 2 layers # of tasks = 20 | 3 layers # of tasks = 20 | 4 layers

0k 10k 20k 30k 40k 50k
Step

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

ni
ng

 lo
ss

of tasks = 225 | 1 layers

0k 10k 20k 30k 40k 50k
Step

of tasks = 225 | 2 layers

0k 10k 20k 30k 40k 50k
Step

of tasks = 225 | 3 layers

0k 10k 20k 30k 40k 50k
Step

of tasks = 225 | 4 layers

0% permuted
10% permuted
100% permuted

Figure 17: Loss plateaus and slow convergence with deeper variants of VSML.

21

	General-Purpose In-Context Learning Algorithms with Transformers
	Experiments on the Emergence of General Learning-To-Learn
	Appendix
	Classifying Algorithms: Learning & Generalization
	Solutions are memorizing or generalizing
	What corresponds to state (memory) in various architectures?
	Summary of Insights
	Challenges in Meta-Optimization
	Related work
	Limitations
	Architectural Details and Hyper-parameters
	Experimental Details
	Additional Experiments

