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ABSTRACT

In this paper, we propose a rotation-constrained compensation method to address
the errors introduced by structured pruning of large language models (LLMs).
LLMs are trained on massive datasets and accumulate rich semantic knowledge
in their representation space. In contrast, pruning is typically carried out with
only a small amount of calibration data, which makes output mismatches unavoid-
able. Although direct least-squares fitting can reduce such errors, it tends to over-
fit to the limited calibration set, destructively modifying pretrained weights. To
overcome this difficulty, we update the pruned parameters under a rotation con-
straint. This constrained update preserves the geometry of output representations
(i.e., norms and inner products) and simultaneously re-aligns the pruned subspace
with the original outputs. Furthermore, in rotation-constrained compensation, re-
moving components that strongly contribute to the principal directions of the out-
put makes error recovery difficult. Since input dimensions with large variance
strongly affect these principal directions, we design a variance-aware importance
score that ensures such dimensions are preferentially kept in the pruned model.
By combining this scoring rule with rotation-constrained updates, the proposed
method effectively compensates errors while retaining the components likely to
be more important in a geometry-preserving manner. In the experiments, we
apply the proposed method to Llama-7B and Llama-2-13B, and evaluate it on
WikiText-2 and multiple language understanding benchmarks. The results demon-
strate consistently better perplexity and task accuracy compared with existing
baselines. Codes are available at https://anonymous.4open.science/
r/anonymous-llm-pruning-D884/.

1 INTRODUCTION

Large language models (LLMs) are driving a rapid wave of transformation and are now being de-
ployed across a wide range of applications, including code assistance, conversational agents, search
and summarization, agentic execution, and content generation Jiang et al. (2025); Fan et al. (2024);
Zhang et al. (2025); Wang et al. (2024). At the same time, their inference costs in computation and
memory remain substantial, creating significant bottlenecks for deployment. In mobile and embed-
ded settings, there is a strong need for model compression techniques that reduce computational cost
while preserving task performance Saha & Xu (2025); Girija et al. (2025). Against this backdrop,
a variety of efficient methods have been explored, such as quantization, knowledge distillation, and
pruning Miao et al. (2025). Among them, structured pruning typically removes parameters at the
granularity of weight-matrix rows or columns, and in some cases even entire transformer blocks
Kim et al. (2024). Such structured removal directly reduces the parameter count and thereby lowers
memory usage and inference cost He & Xiao (2024).

Early work targeting LLMs, such as LLM-Pruner, demonstrated the feasibility of compression but
tends to rely on downstream fine-tuning to recover high accuracy Ma et al. (2023). Therefore,
methods that preserve accuracy without re-training are desirable. WANDA is widely used for un-
structured sparsification, and prunes using simple activation-aware heuristics with only a small cal-
ibration set without downstream fine-tuning Sun et al. (2024). Its structured variant, Wanda-sp,
provides a simple column-pruning importance score and serves as a familiar baseline in structured
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Figure 1: Overview of RCPU framework. Input activations are scored by a variance-aware impor-
tance score, less important columns are pruned, and the retained subspace is updated through the
rotation-constrained fitting. The pruned output vectors (arrows) are rotated to align with the original
output vectors, showing how RCPU compensates for pruning errors.

pruning An et al. (2024). Yet, removing columns inevitably introduces output discrepancies. In
real deployments, the data available for calibration is often limited. Thus, pruning decisions must
be made under sparse observations, and how errors are handled becomes decisive for overall per-
formance. Recent work, FLAP, has shown that compensating the mean component of post-pruning
errors with a bias term can be practical and effective An et al. (2024). Nonetheless, input-dependent
directional mismatches are not easily addressed by a constant bias. As another possible approach,
one might consider least-squares style fitting that directly minimizes output error. However, such
a broad parameter update, under limited calibration data, risks overfitting that damages knowledge
acquired during pretraining even if using regularization method like Ridge Hoerl & Kennard (1970).

Motivated by these limitations, in this paper, we propose RCPU, a Rotation-Constrained Parameter
Update, to reduce pruning error while preserving the norm and inner-product structure of output
representations. Figure 1 shows the overview of RCPU. Compared to general linear least-squares
updates, restricting the update to rotations preserves angles and lengths, which helps avoid geometric
distortion under small calibration sets. We formulate the alignment between the retained outputs and
the original outputs as an Orthogonal Procrustes problem and, for each layer, estimate the optimal
rotation and use it to update the parameters. The constraint reduces the update’s degrees of freedom,
which improves statistical stability and makes it less prone to overfitting. Moreover, since the choice
of retained components strongly affects the effectiveness of rotation-constrained compensation, we
adopt a simple pruning score that augments weight magnitude and input scale with input variance.
By doing this, components contributing to principal output directions are preferentially kept. We
combine this scoring rule with rotation-constrained updates, and RCPU effectively compensates
errors while retaining the components likely to be more important in a geometry-preserving manner.
In the experiments, we apply RCPU to existing LLMs and evaluate it on a variety of language
understanding benchmarks. As a result, we demonstrate improvements over existing baselines in
both perplexity and task accuracy. The main contributions of this paper are as follows:

• We formulate the compensation method via orthogonal rotation applied immediately af-
ter column pruning, and combine it with a simple pruning score that incorporates input
variability. We show improvements over existing baselines in post-pruning evaluation.

• The compensation can be inserted directly after Wanda-sp style column pruning, requiring
no additional model modifications. It requires no extra architectural changes and adds only
modest computation.
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2 PROBLEM FORMULATION

2.1 NOTATION AND SETUP

We consider a linear sub-layer in a transformer block (e.g., attention output projection or MLP down-
projection) with weight matrix W ∈ Rdout×din . From a small calibration set of N token positions, we
record input activations X ∈ Rdin×N and the corresponding original outputs Y = WX ∈ Rdout×N .

We focus on structured pruning methods that drop entire columns of the weight matrix, i.e., column
pruning. Structured column pruning selects a binary mask m ∈ {0, 1}din and keeps the index set
K = {j | mj = 1} with |K| = d′, while D = {1, . . . , din} \ K denotes the dropped indices.
Using K and D, we define WK := W[:,K] ∈ Rdout×d′

, WD := W[:,D] ∈ Rdout×(din−d′), XK :=

X[K,:] ∈ Rd′×N , and XD := X[D,:] ∈ R(din−d′)×N , where W[:,K] denotes selecting the columns
of W indexed by K, and X[K,:] denotes selecting the rows of X indexed by K. Similarly, D selects
the dropped indices. Then the original output decomposes as

Y = WX = WKXK︸ ︷︷ ︸
kept

+ WDXD︸ ︷︷ ︸
dropped

. (1)

After pruning, the post-pruning output is

Z = WKXK ∈ Rdout×N . (2)
To compensate the discrepancy without using dropped columns, one possible approach is to update
the kept parameters. Concretely, the following regularized optimization problem can be considered:

L(W⋆) = ∥Y −W⋆XK∥2F + λ∥W⋆ −WK∥2F , (3)
where λ is regularization hyper-parameter. This corresponds to Ridge regression, in which the
updated weights are penalized for deviating from the original ones.

2.2 UNCONSTRAINED LEAST-SQUARES COMPENSATION

A straightforward way to minimize the error defined in equation 3 is to apply a least-squares fitting.
The closed-form solution is

W⋆
K = (YX⊤

K + λWK) (XKX⊤
K + λI)−1. (4)

Limitations under limited calibration. (i) Geometric distortion: an unconstrained linear fit may
introduce scaling and shear that reduce in-sample error while altering angles and norms in the output
space, which can harm generalization beyond the calibration set. Desideratum: preserve the geom-
etry of the outputs as much as possible. (ii) Limited effectiveness of regularization: The λ values
that minimize calibration perplexity do not stabilize the estimator and, in our experiments, often
degrade downstream performance. Desideratum: ensure stability in a way that does not depend on
regularization tuned purely for calibration set.

These issues motivate restricting the compensation update to geometry-preserving transformations
with limited flexibility, while ensuring that the update operates only within the kept subspace.

3 RCPU (ROTATION CONSTRAINED PARAMETER UPDATE)

We target the error introduced by structured column pruning in linear sub-layers of a transformer
block. After pruning, the kept subspace still carries most of the signal, yet its orientation relative
to the original outputs can be misaligned. Our idea is to re-align the orientation by a rotation-
constrained parameter update computed from a small calibration set. Restricting the update to rota-
tions preserves norm and inner-product relationships of output representations, helping reduce error
while maintaining the pretrained geometry.

This compensation is more effective when the dropped columns do not dominate principal out-
put directions. We therefore combine the rotation with a variance-aware importance score that
avoids dropping columns likely to contribute to those directions. Concretely, we extend a com-
mon magnitude-and-activation heuristic with an input-variance factor, yielding a simple score that
preferentially keeps columns which seem to be relevant for orientation recovery.

3
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3.1 ROTATION-BASED COMPENSATION VIA ORTHOGONAL PROCRUSTES

Given (X,Y) and a pruning mask K, we form Z = WKXK as in equation 2.

Optimization problem. We seek a rotation matrix Q ∈ Rdout×dout that aligns the kept output to the
original output on calibration data:

Q⋆ = arg min
Q⊤Q=I

∥∥Y −QZ
∥∥2
F
. (5)

Equation 5 is known as the classical Orthogonal Procrustes problem Golub & Van Loan (2013). It
corresponds to the least-squares formulation in equation 3 and equation 4, but with the compensation
update restricted to an orthogonal matrix.

Closed-form solution. Let M = YZ⊤ and take its singular value decomposition M = UΣV⊤,
where U and V are orthogonal matrices whose columns give the left and right singular vectors and
Σ is a diagonal matrix containing the singular values of M. Then the minimizer of equation 5 is
given by

Q⋆ = UV⊤. (6)
We update only the kept parameters by rotation as

W̃K = Q⋆WK . (7)

In other words, applying the update makes the new output W̃KXK = Q⋆Z. Thus, the kept compo-
nent Z is explicitly rotated by Q⋆ so that its orientation matches the original output Y. Finally, we
replace the sub-layer weight with the compact matrix Ŵ := W̃K ∈ Rdout×k, meaning that columns
in D are physically removed.

Scaled variant. As a natural extension of the rotation-only solution, we can introduce a single
isotropic scaling factor. Although the benefit is expected to be limited, this variant is intuitively
reasonable: it preserves the angular structure and norm ratios of the outputs, while also allowing the
overall magnitude to be better matched to the original model.

Formally, the optimization problem is defined as

(Q⋆, s⋆) = arg min
Q⊤Q=I, s≥0

∥∥Y − sQZ
∥∥2
F
. (8)

With M = YZ⊤ = UΣV⊤,

Q⋆ = UV⊤, s⋆ =
tr(Σ)

∥Z∥2F
, (9)

and we set W̃K = s⋆Q⋆WK . This variant rescales all vectors by a common factor s⋆ > 0. The
ordering of vector lengths (within the same set) is invariant.

Geometric intuition. Pruning removes the WDXD term in equation 1, but the kept subspace
often still captures much of the useful signal. By restricting the update to rotation (with an optional
isotropic scaling), the retained subspace can be re-aligned with the original output geometry while
preserving angles and relative norms. This avoids the arbitrary scaling and shear distortions that the
least-squares fit may introduce under limited calibration.

3.2 VARIANCE-AWARE COLUMN SCORING

To fully exploit rotation-constrained compensation, it is important to retain columns that preserve
strong directional information. We therefore assign each input column j with

γj =
∥∥W[:,j]

∥∥ ∥∥X[j,:]

∥∥ Var(X[j,:]). (10)

The variance term emphasizes columns whose activations fluctuate across calibration tokens, which
are more likely to align with dominant output directions. The weight and input norms further bias the
score toward columns with inherently larger contributions. This formulation is a natural extension of
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Algorithm 1 Layerwise post-pruning orientation compensation with variance-aware selection

Require: Calibration tokens; target sub-layers S; pruning ratio ρ
1: for each transformer layer and each sub-layer s ∈ S do
2: Collect: record calibration activations X and original outputs Y
3: Score and select columns:

• Compute scores γj = ∥W[:,j]∥ ∥X[j,:]∥ Var(X[j,:])

• Keep top-k indices K where k = din − ⌈dinρ⌉
• Define dropped indices D = {1, . . . , din} \K

4: Form reduced matrices:
• XK = X[K,:], WK = W[:,K], and Z = WKXK

5: Align kept subspace:
• Solve equation 5 (or equation 8) for Q⋆ (and s⋆)

• Update kept weights: W̃K = Q⋆WK (or s⋆Q⋆WK)

6: Finalize: replace the weight by Ŵ = W̃K and remove columns in D
7: end for

the WANDA-sp score, which uses only the product of weight and input norms and omits the variance
factor. By incorporating variance, our scoring favors columns that not only have large magnitude
but also actively contribute under diverse inputs.

Let ρ ∈ [0, 1) be the pruning ratio for a sub-layer with input width din; we prune ⌈dinρ⌉ columns
and keep k = din − ⌈dinρ⌉ indices with the largest γj .

3.3 ALGORITHM AND COMPLEXITY

We apply the procedure layerwise to a designated set of linear sub-layers. Algorithm 1 summarizes
the steps. This procedure is greedy and layerwise: each layer–sub-layer Procrustes subproblem
admits a closed-form global minimizer ( equation 6 and equation 9), but the overall routine is not a
joint global optimization across the network.

Complexity. Per treated sub-layer, computing scores takes O(din(dout + N)), forming Z costs
O(doutkN), and constructing M = YZ⊤ requires O(d2outN). The dominant cost is the SVD of
M ∈ Rdout×dout , which is typically O(d3out). Thus the overall complexity is cubic in dout, on par with
unstructured pruning methods such as SparseGPT Frantar & Alistarh (2023).

4 EXPERIMENTAL RESULTS

4.1 SETTINGS

We evaluate RCPU on Llama-7B and Llama-2-13B as the base model Touvron et al. (2023a;b). As
baselines, we use WANDA-sp, a pruning method based on weight magnitude and activation scale;
and FLAP, a bias-based error compensation method. In addition, we compare RCPU with SliceGPT.
SliceGPT does not support Llama-1-7B, we evaluate it on Llama-2-13B with benchmarks.

Following prior work, we use WikiText-2 as the calibration dataset Merity et al. (2016). We perform
pruning based on the input channels of o proj and down proj, and simultaneously remove the corre-
sponding positions in the other projection matrices. For the attention modules, we prune at the head
level. Parameter updates, however, are applied only to o proj and down proj. We evaluate pruning
ratios of 10%, 20%, and 30%.

Evaluation metrics follow prior studies. We report perplexity (PPL) on WikiText-2, as well as ac-
curacy on a suite of language understanding benchmarks: BoolQ, PIQA, HellaSwag, WinoGrande,
ARC-easy, ARC-challenge, and OpenBookQA Clark et al. (2019); Bisk et al. (2020); Zellers et al.
(2019); Sakaguchi et al. (2020); Clark et al. (2018); Mihaylov et al. (2018). These benchmarks
cover diverse domains and reasoning types, enabling us to evaluate the model’s performance in a

5
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Figure 2: Perplexity versus calibration-set size for RCPU on Llama-7B.

Table 1: Representative PPL (↓) of WANDA-sp, FLAP, and RCPU under Ncalib = 128, 512. The
best score in each setting is in bold, while the second-best score is underlined. See also Figure 3.

Method PR Llama-7B Llama-2-13B
128 512 128 512

Original 0% 12.4 12.4 10.98 10.98

WANDA-sp 10% 14.66 14.53 12.29 12.29
FLAP 10% 14.14 14.11 12.22 12.08
RCPU (Rot.) 10% 13.55 13.48 11.65 11.57
RCPU (Rot.+Scale) 10% 13.52 13.45 11.66 11.57
WANDA-sp 20% 16.70 16.96 14.62 14.62
FLAP 20% 15.36 15.07 14.49 14.14
RCPU (Rot.) 20% 14.40 14.83 13.12 12.75
RCPU(Rot.+Scale) 20% 14.55 14.81 13.07 12.72
WANDA-sp 30% 24.13 26.20 61.66 63.35
FLAP 30% 18.59 18.31 17.15 16.71
RCPU (Rot.) 30% 18.35 16.99 16.99 16.01
RCPU (Rot.+Scale) 30% 18.21 16.91 16.88 15.96

comprehensive manner. For evaluation, we adopt the Language Model Evaluation Harness Gao et al.
(2024). All experiments were conducted on a single NVIDIA A100 GPU with 80GB memory.

4.2 PERPLEXITY

First of all, we conducted experiments regarding PPL, which changes Ncalib (The number of cal-
ibration samples). Figure 2 reports how the PPL of RCPU varies with the number of calibration
samples. We observe that PPL drops rapidly as Ncalib increases and becomes roughly stable once
Ncalib reaches around 64. Based on this trend, we adopt Ncalib = 128 and 512 as the calibration set
sizes for other experiments. While 128 is a common choice in prior work, we additionally include
512, which lies well within the empirically stable region, providing more reliable evaluations.

Table 1 summarizes PPL on WikiText-2 across pruning ratios. As we can see from Table 1, RCPU
consistently improves upon WANDA-sp and performs better than FLAP regardless of the number
of calibration samples and models. These results show that rotation-constrained updates can be
competitive with bias-based correction. While the advantage is not uniform at all pruning levels,
the geometry-preserving nature of rotational transformations helps prevent the distortions that often
arise from unconstrained updates. We also compare the scaled variant (Rot.+Scale) to plain rotation.
The results show only marginal differences, indicating that introducing a global rescaling does not
significantly alter PPL. We believe this is because the rotation already aligns the retained subspace
with the dominant output directions, effectively discarding less informative components. As a result,
the overall output norm is well preserved, and an additional scaling factor brings limited benefit.
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(c) WANDA-sp score+ comp. (Ncalib =512)
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(d) Proposed score + compensation (Ncalib =512)

Figure 3: PPL vs P.R. ratio for different calibration sizes and compensation methods on Llama-7B.

Next, in Figure 3, we compare the compensation effectiveness of RCPU and LS (Least
Square)+Ridge regularization (equation 4). We performed a grid search over λ ∈
{10−6, 10−5, . . . , 106} and reported the result on best λ (See Section 7.1). Figure 3 focuses on the
effect of different error-compensation methods (LS or Rot.) in different calibration sizes. From Fig-
ure 3a and Figure 3b, we observe that with Ncalib = 128, the proposed rotation-based compensation
achieves the best PPL. In Figure 3a, the regularized LS even worsens PPL, reflecting its tendency to
overfit under limited calibration. In contrast, Figure 3c and Figure 3d show that when Ncalib = 512,
both rotation and Ridge-based compensation effectively reduce PPL, but the regularized LS update
contributes more strongly to the improvement. Similar trend is observed in Llama-2-13B as shown
in Appendix 7.2. Although it is intuitively expected that the effect of the least square fitting becomes
larger as the number of calibration samples increases, we emphasize that this does not necessarily
translate into better downstream benchmark performance. Indeed, for example in Table 6 in Ap-
pendix, LS-based compensations are not the top performer, whereas RCPU often achieves the best
accuracy. According to Hastie et al. (2001), the degree of freedom in ridge regression is computed
by dout

∑
i

σ2
i

σ2
i+λ

, where σ denotes the singular value of the input matrix. Using this equation and

the best λ, we obtain the degree of freedom values in the range 1.395 × 109 to 1.578 × 109 across
each pruning ratio. In contrast, the degree of freedom in RCPU is given by dout(dout−1)

2 since Q is
constrained to the orthogonal matrix. Its degree of freedom is 5.36 × 108, which is smaller than
that of LS+Ridge. This indicates that, from the standpoint of preserving the pretrained knowledge
of LLMs, the rotation-based compensation tends to be more robust. We also highlight that, in the
context of LLMs, selecting an appropriate regularization hyper-parameter λ can be computationally
expensive, as it requires repeatedly computing large matrix inverses for multiple candidate values of
λ. In contrast, our method has no hyper-parameters, avoiding this overhead.

4.3 BENCHMARK

Table 2 and Table 3 reports accuracy on seven language understanding benchmarks on Llama-7B
and Llama-2-13B. Overall, performance degrades as the pruning ratio increases. RCPU achieves
higher mean accuracy than FLAP across all pruning levels, indicating that geometry-preserving
compensation can be more effective than bias-only correction. Comparing Table 2 with Table 6, the

7
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Table 2: Zero-shot accuracy (↑) on Benchmark datasets when Ncalib = 128 on Llama-7B. The best
score in each setting is highlighted in bold, while the second-best score is underlined.

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Llama-7B (Orig.) 0% 75.10 78.67 76.18 70.01 72.85 44.79 44.40 66.00

FLAP 10% 73.33 77.37 72.81 68.59 70.54 41.13 42.80 63.80
WANDA-sp 10% 75.17 76.82 74.43 67.01 69.53 43.43 39.60 63.71
Prop.Score+LS (λbest) 10% 72.75 75.19 71.03 68.19 64.65 39.93 39.60 61.62
RCPU (Rot.) 10% 74.89 76.71 74.20 69.53 69.99 42.32 40.40 64.01
RCPU (Rot.+Scale) 10% 74.22 76.44 74.33 69.69 69.99 42.15 40.20 63.86

FLAP 20% 70.45 74.91 67.42 67.64 66.79 39.00 43.00 61.32
WANDA-sp 20% 69.57 75.08 69.88 65.74 65.95 40.44 38.80 60.78
Prop.Score+LS (λbest) 20% 67.83 71.71 64.40 64.56 58.71 34.81 35.80 56.83
RCPU (Rot.) 20% 71.50 74.81 70.32 68.43 66.58 39.93 39.40 61.57
RCPU (Rot.+Scale) 20% 71.77 74.97 70.25 68.03 66.71 39.93 38.80 61.49

FLAP 30% 66.67 71.49 59.53 61.56 59.76 34.81 39.60 56.20
WANDA-sp 30% 65.29 67.74 58.09 59.12 58.63 34.56 34.60 54.00
Prop.Score+LS (λbest) 30% 62.54 67.08 55.55 60.77 50.13 31.06 35.00 51.73
RCPU (Rot.) 30% 61.25 70.46 62.76 62.67 58.59 34.98 37.80 55.50
RCPU (Rot.+Scale) 30% 65.14 70.46 62.95 64.25 58.21 34.98 38.40 56.34

Table 3: Zero-shot accuracy (↑) on Benchmark datasets when Ncalib = 512 on Llama-2-13B.

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Llama2-13B (Orig.) 0% 80.55 79.05 79.37 72.14 77.44 49.06 45.20 68.97

FLAP 10% 74.22 78.56 76.12 71.11 74.07 44.54 45.20 66.26
SliceGPT 10% 62.84 77.09 71.80 71.59 76.35 49.40 45.20 64.90
WANDA-sp 10% 79.14 78.02 77.99 70.64 75.76 48.12 44.80 67.78
Prop.Score+LS (λbest) 10% 78.78 77.69 77.56 72.30 73.99 47.53 43.40 67.32
RCPU (Rot.) 10% 79.82 78.13 78.09 72.45 75.00 47.78 44.40 67.95
RCPU(Rot.+Scale) 10% 79.79 78.29 78.14 72.69 75.04 47.78 44.60 68.05
FLAP 20% 67.00 74.97 70.41 68.19 67.09 40.78 43.20 61.66
SliceGPT 20% 52.20 71.76 63.17 67.32 70.45 43.77 41.80 58.64
WANDA-sp 20% 72.78 76.61 73.32 69.46 72.39 44.80 41.80 64.45
Prop.Score+LS (λbest) 20% 73.12 76.28 73.02 69.93 70.50 43.86 41.20 63.99
RCPU (Rot.) 20% 73.76 76.44 73.91 70.09 71.25 44.20 42.20 64.55
RCPU (Rot.+Scale) 20% 73.30 76.33 73.95 69.46 71.21 43.34 41.80 64.20

FLAP 30% 65.78 72.14 64.57 64.25 62.71 38.91 40.20 58.37
SliceGPT 30% 38.35 66.10 52.64 66.38 56.78 35.15 40.00 50.77
WANDA-sp 30% 61.99 62.68 36.09 51.07 41.54 25.60 28.80 43.97
Prop.Score+LS (λbest) 30% 66.61 72.96 64.62 65.04 66.62 36.77 40.40 59.00
RCPU (Rot.) 30% 64.37 73.72 66.22 64.88 67.05 38.31 42.80 59.62
RCPU (Rot.+Scale) 30% 65.17 73.67 66.69 64.88 67.30 38.23 42.60 59.79

scaled variant performed better and ranked as the best baseline more often in the 512-sample setting
than in the 128-sample setting. Intuitively, the additional samples stabilize the norm statistics of the
unpruned versus pruned outputs, allowing the global scale s⋆ to more effectively restore the original
magnitude. Regarding Table 3, SliceGPT transforms the entire model into an equivalent structure
using an orthogonal matrices, and then performs row or column deletion in a single global step. Due
to this property of applying a global transformation followed by global pruning, we expect that, at
high pruning ratios, a mismatch arises between the input distributions assumed by each layer and
the actual input distributions after pruning. This mismatch is also expected to accumulate across
layers and thus we believe accuracy tends to degrade at high pruning ratios. In contrast, RCPU

8
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Table 4: Perplexity under different pruning ratios and compensation targets (Llama-7B).

Pruning ratio No compensation o proj only down proj only Both updated
10% 13.96 13.61 13.62 13.55
20% 16.85 15.47 15.76 14.40
30% 21.94 18.91 20.22 18.35

Table 5: Size of the pruned model and time required for pruning (Llama-7B).

Pruning ratio # of parameters Memory size Time required for pruning a layer
0% (FP32) 6.73B 25,705MiB -

10% 6.10B 23,295MiB 8.36s
20% 5.47B 20,875MiB 8.90s
30% 4.84B 18,456MiB 9.20s

optimizes the pruning-induced error layer by layer. Thus, even at high pruning ratios, each layer
is more likely to maintain representations close to the inputs it assumes, which we believe leads
to better benchmark performance. Looking at individual tasks, HellaSwag and WinoGrande show
relatively stronger performance with RCPU. These tasks require contextual consistency and pronoun
resolution, both of which are sensitive to orientation shifts in the representation space. The benefit
observed here aligns with the perplexity improvements reported earlier, suggesting that rotation-
constrained updates help preserve the structural properties of output representations that underlie
these tasks. Similarly, for BoolQ and PIQA, which rely directly on basic language modeling ability
and commonsense judgments, RCPU maintains stable performance, again consistent with trends in
perplexity.

4.4 ANALYSIS

4.4.1 WHERE TO APPLY ROTATION?

In order to clarify which parts are effective to apply RCPU, we conducted ablation study that changes
the module to apply the proposed compensation. Table 4 reports PPL when rotation-based compen-
sation is applied to different projection sub-layers. First, applying compensation to either o proj or
down proj alone improves PPL compared to the uncompensated baseline. This indicates that the
kept subspace indeed contains recoverable signal, and aligning it to the original outputs partially
restores the lost information. Second, updating o proj is consistently more effective than updat-
ing down proj. A plausible explanation lies in the forward order of computation in transformer
blocks: attention is followed by the MLP. Misalignment at o proj propagates directly into the subse-
quent MLP input, thereby amplifying its negative effect. Correcting the orientation earlier at o proj
provides the MLP with already aligned features, reducing the burden of later layers. In contrast,
compensating only down proj cannot undo the upstream misalignment originating from o proj, and
thus achieves a smaller gain. Finally, applying compensation to both o proj and down proj yields the
largest improvement, suggesting that errors at the two sites are complementary. Moreover, the ben-
efit becomes larger at higher pruning ratios, where the retained subspace is smaller and orientation
recovery plays a more critical role.

4.4.2 EFFICIENCY

Table 5 summarizes the number of parameters, memory usage, and pruning time per layer at different
pruning ratios. As expected, both the parameter count and memory decrease monotonically as the
pruning ratio increases, confirming the resource savings of structured pruning. In contrast, pruning
time exhibits a counter-intuitive trend. While the dominant computation is the SVD of M = Y Z⊤ ∈
Rdout×dout , which incurs a constant O(d3out) cost, the computation of Z = WKXK depends on the
number of kept columns k (Section 3.3). In principle, a larger pruning ratio (smaller k) should
make this step cheaper. However, in practice, we observed that pruning time becomes slightly
longer at higher ratios. This is because when k is small, WKXK results in a tall and narrow matrix

9
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multiplication, which GPU libraries (e.g., cuBLAS) handle less efficiently than more square-shaped
matrices. Similar behavior has been reported in prior work Rivera et al. (2021). Notably, pruning
completes within 10 seconds per layer, suggesting that the proposed method remains practically
applicable even to larger-scale models.

5 RELATED WORK

Model compression in LLMs Large language models (LLMs) incur substantial computational
and memory costs, motivating the development of compression techniques. Among the most widely
studied approaches are quantization, which lowers precision to improve efficiency Lang et al. (2024),
and distillation, which transfers knowledge from a large teacher to a smaller student model Yang
et al. (2024). In this work, we focus on pruning, which removes unnecessary parameters.

Unstructured pruning Unstructured pruning accelerates inference by sparsifying weight ma-
trices. SparseGPT Frantar & Alistarh (2023) enables one-shot pruning of LLMs via an efficient
second-order update. WANDA Sun et al. (2024) introduces an activation-aware importance score
that works with only a small calibration set. There also exist approaches that pursue higher accuracy,
such as AlphaPruning Lu et al. (2024), which varies the pruning ratio across layers. While effective,
unstructured methods do not actually reduce parameter count. Their memory and speed benefits
depend on specialized hardware supports, and thus they are generally unsuitable for small devices.

Structured Pruning Structured pruning removes parameters at the level of rows, columns, or
blocks, directly shrinking model size and memory footprint. LLM-Pruner Ma et al. (2023) demon-
strates structured pruning for LLMs but typically requires downstream fine-tuning, and Shortened-
LLaMA Kim et al. (2024) prunes depth (layers) with retraining. In contrast, methods such as
Wanda-sp and FLAP are applicable without additional retraining An et al. (2024): Wanda-sp ex-
tends WANDA’s activation-aware rule to column pruning, while FLAP compensates post-pruning
errors via a bias term. SliceGPT Ashkboos et al. (2024) leverages a computational invariance of
RMSNorm-connected transformers: by applying an orthogonal reparameterization (derived via prin-
cipal component analysis), the model is reformulated into a rotated basis where entire rows and
columns can be deleted while preserving functional equivalence. Rotation has also been used to
improve prunability in other forms: RotPruner Chen & Wang (2025) learns layer-wise orthogonal
transforms to obtain pruning-friendly parameterizations, and DenoiseRotator Gu et al. (2025) trains
rotations that concentrate importance scores before pruning. These methods use rotation as an ad-
ditional parameterization to facilitate pruning before or during parameter removal. Unlike these
rotation-learning or slicing-based approaches, RCPU focuses on reducing the pruning error after
structured column removal through an analytically derived orthogonal compensation. Our work is
closer to FLAP, trying to minimize pruning-induced output error and achieve better performance.

6 CONCLUSION

In this paper, we proposed RCPU, a rotation-constrained error compensation method, for struc-
tured pruning of large language models. By formulating post-pruning recovery as an Orthogo-
nal Procrustes problem, our approach preserves the geometry of output representations while re-
aligning the retained subspace to the original outputs. To complement this update, we introduced
a variance-aware importance score that preferentially retains columns contributing to principal out-
put directions, thereby enhancing the effectiveness of rotation-constrained compensation. Through
experiments on Llama-7B and Llama-2-13B, we demonstrated that RCPU consistently reduces per-
plexity and improves task accuracy across pruning ratios, outperforming existing baselines such as
WANDA-sp and FLAP. The improvements were particularly pronounced at higher pruning levels,
indicating that geometry-preserving updates become increasingly critical as the retained subspace
shrinks. Moreover, we showed the method requires no additional architectural changes and only
modest computational overhead, making it practically applicable to large-scale deployments.

Overall, our findings highlight the importance of incorporating geometric constraints into error com-
pensation for pruning. We believe that the proposed framework opens up new directions for design-
ing pruning-aware model updates that are both statistically stable and computationally efficient, and
it can serve as a foundation for further advances in scalable and reliable model compression.
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ETHICS AND REPRODUCIBILITY STATEMENT

Disclosure of AI assistance. We used a large language model to edit and polish the manuscript
text. All research ideas, methods, and experiments were conducted solely by the authors.

Data usage and privacy. All calibration and evaluation datasets used in this work are publicly
available and contain no sensitive personal information. We used the data under their respective
licenses, made no attempts at re-identification, and did not store or share model inputs and outputs
beyond the scope of calibration and evaluation.

Environmental impact. This study adds only a small incremental compute footprint: calibration
consists of forward passes plus one small SVD per targeted sub-layer. We did not perform gradient-
based fine-tuning in our experiments. At deployment time, structured pruning reduces parameter
count and effective FLOPs, which can lower inference cost under comparable hardware and batching
conditions.

Fairness and safety. Structured pruning can alter performance unevenly across tasks, domains,
or languages. We therefore evaluate on diverse benchmarks and report per-task metrics to surface
potential regressions. No safety-critical deployment is claimed.

Reproducibility. All experimental settings and tools are described in the main text, including the
models and datasets and the calibration setup.
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7 APPENDIX

7.1 HOW TO DETERMINE THE BEST λ

We select the regularization strength λbest for the Ridge+LS baseline as the value that minimizes the
perplexity on the same calibration data used for computing the compensation. This choice is moti-
vated by the following reasons. First, the calibration set is very small, consisting of only 128–512
samples. Partitioning this already limited set into separate train and validation subsets would render
the estimation of λ statistically unstable. Indeed, in our experiments on Llama-2-13B, even with
512 calibration samples, the perplexity varies substantially across different λ values. Introducing
an additional split would further reduce the effective sample size and increase estimation variance.
Second, RCPU itself also relies solely on the calibration samples and does not use a separate vali-
dation set. Using validation only for the Ridge baseline would therefore introduce an inconsistency
in the comparison protocol.

7.2 PPL COMPARISON IN LLAMA-2-13B
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(a) WANDA-sp score + compensation (128 samples)
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(b) Proposed score + compensation (128 samples)
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(c) WANDA-sp score + compensation (512 samples)
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Figure 4: PPL vs P.R. for different calibration sizes and compensation methods on Llama-2-13B.

7.3 OTHER BENCHMARKS AND MODELS
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Table 6: Llama-1-7B calib 512

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Llama-7B (Original) 0% 75.10 78.67 76.18 70.01 72.85 44.79 44.40 66.00

FLAP 10% 74.46 77.75 73.05 68.19 70.66 41.98 43.20 64.18
WANDA-sp 10% 75.35 76.82 74.14 68.51 71.17 44.20 38.80 64.14
Prop.Score+LS (λbest) 10% 75.02 76.77 73.33 68.59 70.75 42.49 39.00 63.71
RCPU (Rot.) 10% 76.06 76.88 74.45 68.27 70.96 42.92 41.40 64.42
RCPU(Rot.+Scale) 10% 76.18 76.77 74.50 68.43 70.83 43.00 41.80 64.50
FLAP 20% 71.07 75.24 68.46 66.93 68.06 40.27 41.00 61.58
WANDA-sp 20% 66.94 75.14 69.85 66.06 64.98 40.53 38.40 60.27
Prop.Score+LS (λbest) 20% 71.71 74.76 69.70 67.48 66.29 37.97 39.20 61.02
RCPU (Rot.) 20% 72.87 76.12 70.93 67.96 68.01 39.93 39.40 62.17
RCPU (Rot.+Scale) 20% 73.43 75.52 70.80 67.80 68.06 40.61 39.60 62.26
FLAP 30% 67.00 71.38 60.85 63.22 58.88 34.39 40.20 56.56
WANDA-sp 30% 58.44 68.28 56.69 56.35 56.14 33.70 36.00 52.23
Prop.Score+LS (λbest) 30% 64.53 71.11 62.32 61.96 59.76 33.79 37.20 55.81
RCPU (Rot.) 30% 65.47 71.65 64.47 62.19 61.95 36.18 36.60 56.93
RCPU (Rot.+Scale) 30% 65.29 71.71 64.41 63.30 63.13 36.35 37.60 57.40

Table 7: Llama-2-13B calib 128

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Llama2-13B (Original) 0% 80.55 79.05 79.37 72.14 77.44 49.06 45.20 68.97

FLAP 10% 70.98 78.13 75.72 69.53 72.85 45.22 44.80 65.32
SliceGPT 10% 68.10 76.00 71.17 71.59 75.25 48.29 43.20 64.80
WANDA-sp 10% 78.01 77.86 77.98 71.03 75.88 48.81 44.60 67.74
Prop.Score+LS (λbest) 10% 78.47 77.26 77.34 71.27 73.02 46.42 43.00 66.68
RCPU(Rot.) 10% 78.96 77.75 77.78 71.82 74.11 46.24 43.60 67.18
RCPU(Rot.+Scale) 10% 78.89 78.12 77.75 71.90 73.73 46.16 44.00 67.22

FLAP 20% 69.48 74.65 69.59 67.17 66.67 40.87 42.60 61.58
SliceGPT 20% 44.89 71.55 62.78 68.35 67.42 42.06 41.40 56.92
WANDA-sp 20% 73.21 76.99 73.06 69.14 71.17 44.54 42.80 64.42
Prop.Score+LS (λbest) 20% 71.77 74.70 72.30 69.53 69.28 42.41 41.40 63.06
RCPU(Rot.) 20% 72.93 76.06 73.03 70.32 70.03 43.08 43.20 64.09
RCPU(Rot.+Scale) 20% 72.50 75.95 72.93 70.24 69.52 43.08 42.00 63.74

FLAP 30% 64.07 71.00 63.33 63.54 62.92 39.68 40.80 57.91
SliceGPT 30% 39.08 65.13 52.29 65.43 53.45 36.69 39.20 50.18
WANDA-sp 30% 62.01 63.49 35.69 49.64 42.21 25.76 28.40 43.89
Prop.Score+LS (λbest) 30% 61.19 69.21 60.20 61.17 57.87 33.19 37.00 54.26
RCPU(Rot.) 30% 66.48 72.85 65.37 65.66 61.53 36.68 40.40 58.42
RCPU(Rot.+Scale) 30% 66.45 72.79 64.93 64.95 61.57 36.26 39.80 58.11
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Table 8: PPL comparison in Vicuna-7B under Ncalib = 128, 512.

Method PR Vicuna-7B
128 512

Original 0% 16.24 16.24

Prop.Score+LS (λbest) 10% 19.10 17.58
RCPU (Rot.) 10% 17.54 17.26
RCPU (Rot.+Scale) 10% 17.52 17.22
Prop.Score+LS (λbest) 20% 20.53 18.54
RCPU (Rot.) 20% 19.62 18.99
RCPU (Rot.+Scale) 20% 19.59 18.93

Prop.Score+LS (λbest) 30% 26.54 20.52
RCPU (Rot.) 30% 23.11 21.55
RCPU (Rot.+Scale) 30% 22.91 21.52

Table 9: Vicuna-7B calib 128

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Vicuna-7B (Original) 0% 80.92 77.31 73.76 69.38 71.25 45.90 45.00 66.22

Prop.Score+LS (λbest) 10% 71.22 72.63 68.55 66.54 65.49 39.42 38.60 60.35
RCPU (Rot.) 10% 78.26 76.33 72.39 68.67 71.25 44.62 42.80 64.90
RCPU(Rot.+Scale) 10% 78.04 76.22 72.29 68.51 71.38 44.80 43.00 64.89

Prop.Score+LS (λbest) 20% 66.67 73.18 65.56 63.93 64.90 39.25 36.60 58.58
RCPU (Rot.) 20% 70.95 73.56 68.37 66.14 66.20 41.21 40.80 61.03
RCPU (Rot.+Scale) 20% 70.21 73.88 68.35 66.77 66.33 40.87 41.40 61.12
Prop.Score+LS (λbest) 30% 52.23 65.07 53.62 59.12 54.97 31.74 36.60 50.48
RCPU (Rot.) 30% 62.66 69.91 60.34 62.59 61.28 35.84 40.00 56.09
RCPU (Rot.+Scale) 30% 63.70 69.70 60.79 62.67 61.87 37.20 40.60 56.65

Table 10: Vicuna-7B calib 512

Method P.R. BoolQ PIQA Hella Wino ARC-e ARC-c OBQA Mean
Vicuna-7B (Original) 0% 80.92 77.31 73.76 69.38 71.25 45.90 45.00 66.22

Prop.Score+LS (λbest) 10% 78.10 76.66 71.62 67.88 70.92 43.94 41.60 64.39
RCPU (Rot.) 10% 78.35 76.44 72.60 68.43 71.93 44.80 43.00 65.08
RCPU(Rot.+Scale) 10% 78.44 76.61 72.54 67.88 72.01 45.48 42.80 65.11
Prop.Score+LS (λbest) 20% 71.90 74.32 68.19 64.01 67.76 41.89 40.40 61.21
RCPU (Rot.) 20% 70.55 74.86 69.01 65.90 67.93 41.89 41.40 61.65
RCPU (Rot.+Scale) 20% 71.22 74.21 69.35 65.98 67.42 41.55 40.80 61.50

Prop.Score+LS (λbest) 30% 65.75 70.89 61.43 63.06 62.33 37.80 40.00 57.32
RCPU (Rot.) 30% 64.89 70.67 62.55 63.61 63.01 38.40 39.80 57.56
RCPU (Rot.+Scale) 30% 65.29 70.67 62.38 63.69 63.34 37.63 39.20 57.46
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7.4 PPL VS λ IN LEAST SQUARE WITH RIDGE
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Figure 5: Llama-7B: PPL vs λ in LS+Ridge (Pruned by proposed score)
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Figure 6: Llama-2-13B: PPL vs λ in LS+Ridge (Pruned by proposed score)

Figure 5 and Figure 6 show the PPL versus λ in Llama-7B and Llama-2-13B models. Overall, the
best λ varies widely depending on the model type, pruning ratio, and the number of calibration
samples. This suggests that finding an optimal λ in a reliable manner is inherently difficult. For
Llama-7B, the best λ chosen on the calibration set does not yield the best test-set performance,
indicating insufficient generalization. For Llama-2-13B, the PPL becomes unstable for certain λ
values (especially near zero). This instability is particularly pronounced when the calibration size is
128, which likely reflects the severe mismatch between the number of parameters and the amount of
available calibration data. The best λ achieves performance comparable to RCPU when using 128
samples, and slightly better than RCPU when using 512 samples.

However, across models and calibration sizes, RCPU consistently outperforms LS+Ridge on down-
stream tasks (Table 2, Table 3, Table 6, Table 7). This indicates that LS+Ridge compensation
achieves some degree of in-domain generalization but fails to generalize out-of-domain. From the
perspective of preserving the pretrained knowledge of the LLM, RCPU provides a more robust form
of compensation.
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