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ABSTRACT

Large Language Models (LLMs) are increasingly applied in various real-world
scenarios due to their excellent generalization capabilities and robust generative
abilities. However, they exhibit position bias, also known as "lost in the middle", a
phenomenon that is especially pronounced in long-context scenarios, which indi-
cates the placement of the key information in different positions of a prompt can
significantly affect accuracy. This paper first explores the micro-level manifesta-
tions of position bias, concluding that attention weights are a micro-level expression
of position bias. It further identifies that, in addition to position embeddings, causal
attention mask also contributes to position bias by creating position-specific hidden
states. Based on these insights, we propose a method to mitigate position bias
by scaling this positional hidden states. Experiments on the NaturalQuestions
Multi-document QA, KV retrieval, LongBench and timeline reorder tasks, using
various models including RoPE models, context window-extended models, and
Alibi models, demonstrate the effectiveness and generalizability of our approach.
Our method can improve performance by up to 15.2% by modifying just one
dimension of hidden states.

1 INTRODUCTION

Long-context large language models (LLMs) (Gradient, 2024; Reid et al.| 2024} |Liu et al.| 2024aj;
Young et al., 2024} |Abdin et al.| [2024; DeepSeek-All [2024) have recently garnered significant
attention within the community, enabling LL.Ms to handle longer and more complex tasks such as
long-context question-answering (Caciularu et al., 2023} L1 et al.| 2024) and repository-level code
understanding (Bairi et al.,|2023)). However, recent researches (Li et al.| [2024; [Liu et al., [2024bj |Li
et al.,|2023; Shi et al., 2023} Tang et al., 2023)), indicates that these long-context LLMs struggle to
effectively and consistently utilize all the information provided in the context, exhibiting a position
bias known as "lost in the middle", which means LL.Ms tend to ignore information in the middle of
the prompt, even though they can utilize the information at the beginning and end of the prompts
well. This issue occurs in nearly all LLMs (Liu et al.} |2024b; Junqing et al.| 2023 [Zhang et al.| 2024),
whether they are decoder-only models or encoder-decoder models, powerful models or small LLMs.
For example, for the GPT-3.5-Turbo model in the NaturalQuestion multi-document QA task, the
performance difference between ground-truth information placed in the middle of the prompt versus
at the ends is 22 points with 2.3k tokens prompt (Liu et al.,|2024b). This significantly impacts the
practical application of LLMs in real-world scenarios. Studies (Kamradt, |2023} |Zhao et al.| [2024)
show that this position bias becomes more severe as the context length increases, hindering the
practical application of long-context LLMs.

Previous works have analyzed this issue from the perspectives of data distribution (Junqging et al.,
2023} Yu, [2023}|An et al.||2024) and position embeddings (Zhang et al.,2024; |Chen et al.|[2023b). For
example, FILM (An et al., 2024) addresses position bias by constructing data with key information
distributed in various positions for supervised fine-tuning (SFT). Ms-PoE (Zhang et al.| [2024)
mitigates position bias by interpolating RoPE (Su et al.| |2024) using head-wise scaling factors.
However, these methods require additional overhead for training or online estimation of scaling
coefficients and are currently applicable to only a few models, limiting their generalizability.

To fundamentally understand and alleviate position bias in LLMs, we first explored the micro-level
manifestation of position bias in LLMs and observed patterns in the attention weights consistent with
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position bias. Next, we investigated the underlying causes of attention weight-induced position bias.
By respectively modifying position embedding and causal mask, we found that, in addition to position
embedding, the causal mask also significantly affects position bias. Further analysis revealed that
the causal mask introduces "positional hidden states", which are positively correlated with absolute
positions, thereby conveying positional information to LLMs. These positional hidden states appear
regardless of what position encoding method is used, including RoPE (Su et al.| [2024])), Alibi (Press
et al.| [2022), and even NoPE (Haviv et al ., [2022).

Based on the above findings, we propose a position bias mitigation method named "'scale positional
hidden states''. Specifically, we first design a prior-based searching algorithm that quickly identifies
which dimensions of hidden states within the model are positional hidden states, using monotonicity,
smoothness, and loss on validation sets as indicators. Next, we design an attention modification
algorithm that only let the scaled hidden states influence the attention of the last token of the prompt,
efficiently implemented using FlashAttention (Dao, |2023)).

Extensive experiments on various models, including LLaMA-2 (Touvron et al.,2023)), Vicuna (Chiang
et al.| 2023), Mistral (Jiang et al.| [2023a), Gemma (Team et al., 2024), Qwen (Bai et al., [2023al),
and MPT (Team, 2023)), and across different tasks, including Multi-document QA, KV retrieval,
LongBench (Bai et al., 2023b) benchmark, and the timeline reorder task (Li et al., 2023), demonstrate
that our method effectively mitigates position bias by modifying only one dimension of the hidden
states of the model, achieving improvements of up to 15.2%. Our method is compatible with various
position embeddings, including RoPE (Su et al.| [2024) and Alibi (Press et al.,2022), and shows good
generalization.

Our main contributions are as follows:

1. We find that position bias can be reflected in attention patterns.

2. We discover that the causal mask also introduces position bias and generates positional
hidden states correlated to absolute positions in the hidden layers.

3. We propose a method for identifying and scaling the positional hidden states to mitigate
position bias.

2 BEYOND POSITION EMBEDDINGS: POSITIONAL INFORMATION CAN BE
SEEN IN HIDDEN STATES

In this section, we first identifies patterns in attention weights that closely correspond to position bias.
Then, we discover that, apart from position embeddings, position information in the LLMs can also
be generated by the causal mask, which tends to accumulate in a few specific hidden states channels
and bears significant responsibility for the emergence of position bias.

2.1 MICROSCOPIC MANIFESTATIONS OF POSITION BIAS IN TRANSFORMERS: ATTENTION
WEIGHT PATTERNS

The attention of auto-regressive can be represented by the following equations:
q=PW®h(n),n), k=PWER(m) m)

gk™ + Mask (1

Vi )

where h is the hidden states, and h(n) is the hidden state of the n-th token. W® WX are the

weights of the linear layers, P is the position encoding function like RoPE (Su et al., 2024)), d is the

dimensionality of query and key states, and n and m are the positional order information. Mask is
the causal mask.

ap,m = Softmax(

To explore the micro-level manifestations of position bias in Transformers, we analyzed the attention
weights for sentences containing key information, using a KV retrieval task, which requires the model
to retrieval the ground-truth value of the given key from a list containing 50 Key-Value pairs (see
Appendix [B] for details). As shown in Figures[I] in deep layers the model exhibits retrieval-like
behavior, focusing on ground-truth information, forming a diagonal pattern observed in Figure
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While in other shallow layers, it always focus most attention on the start or end of the prompt,
wherever the key information is located, exhibiting vertical lines patterns, as shown in Figure [Ta]

In these layers exhibiting retrieval-like behavior, it can be observed that the attention weights for key
information (Gold KV) exhibit patterns similar to position bias: when key information is located at
the start or end of the prompt, the attention weights focused on it are relatively higher, while in the
middle, they are significantly lower. Moreover, we extract the attention to key information (average
of layers 15~25) with different context length in Figure[Ic] where as the context length grows, the
attenuation of attention weights with respect to position becomes more pronounced, reaching almost
zero at the middle. More details about this are in Appendix [E|and [B]

Furthermore, in Appendix [4.3] we found artificially adjusting the attention weights to the key
information can directly improve the corresponding accuracy. Thus, we claim that position bias is to
a large extent caused by the attention weights patterns at the micro level.
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Figure 1: Attention distribution of the ground-truth KV pair to each KV pair across different positions
on the KV retrieval task (Liu et al.| 2024b) using Mistral-7B (Jiang et al.}2023a)). (a) and (b) show
the results averaged across all heads of the layer. (c) shows the attention of the ground-truth KV to
the ground-truth KV (i.e., diagonal lines from (b)) across different context lengths.

2.2 CAUSAL MASK ALSO CONTRIBUTES TO POSITION BIAS
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Figure 2: Performance of different methods with the ground-truth KV at different positions in the KV
retrieval task (Liu et al., 2024b) using Mistral-7B (Jiang et al., [2023a)).

Based on Equ.(T)), position embedding P allows LLMs to acquire postional information. However,
recent works (Haviv et al., |2022; [Wang et al., [2024; |Chi et al.,|2023) indicate that, besides position
embeddings, the causal mask can also introduce positional information.

In this section, we aim to determine whether these two factors affect position bias by modifying
different properties of the ground-truth KV pair. We introduce three baselines: (1) Crop Mask, which
alters the causal mask so the ground-truth KV pair sees only itself, not previous tokens; (2) PE to
Beginning, which assigns the position IDs of the ground-truth KV pair to match the first KV pair; (3)
PE to End, which assigns the position IDs to match the last KV pair. Further details are provided in

Appendix [C]
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As shown in Figure 2] the original results exhibit a lost in the middle" pattern not only in accuracy
but also in attention weight. Secondly, PE to end has a certain degree of help, but can hardly allow
the model’s performance to match the accuracy when the ground-truth KV pair is positioned at the
start or end of the prompt. Furthermore, PE to Beginning results in a noticeable performance drop as
well as attention weight reduction when the gold KV is close to the end. In contrast, modifying the
casual mask effectively enhances attention, especially to the latter KVs, and let the performance at
the middle be improved to almost on par with the beginning. Based on the above observations, we
can conclude that besides position embedding, the casual mask is also an important factor affecting
position bias as well as corresponding attention weights. Moreover, solely modifying the position
embedding hardly alleviates position bias completely.

2.3 CASUAL MASK STORES POSITION INFORMATION IN SPECIFIC HIDDEN STATES
CHANNELS

Definition 2.1 (Positional Hidden States). Let hy(p) denote the k-th dimension of the hidden states
across each token’s position p. We define positional hidden states hy as hidden states whose values
vary consistently and monotonically with the position sequence. Therefore, their derivative (after
curve fitting) should always be positive or negative:

* hi(p) > 0, Vp or hi(p) <0, Vp

Previous works (Haviv et al., 2022 Wang et al., 2024} |Chi et al.,2023)) have found that the positional
information generated by causal mask is implicitly stored in hidden states. However, in fact, we find
it can be observed explicitly, from “positional hidden states”.

To further analyze how positional information is transmitted in transformers, we define a special
type of hidden state that directly reflects absolute positional information with high correlations to
position IDs, called positional hidden states, as defined in Definition[2.1] We employ monotonicity
rather than correlation as the primary property of positional hidden states, as correlation does not
account for the sequential nature of positions. As shown in Figure [3] our experiments reveal that
causal LLMs consistently possess such hidden states across most layers (details in Appendix [F)), even
though these models do not have explicit absolute position embeddings, which means the causal
mask is a very possible factor that provides absolute positional information. To demonstrate that
these position hidden states are formed under the influence of the causal mask rather than the position
embeddings, we conduct perturbation experiments on the causal mask and position embedding, as
shown in Appendix [C|

Based on the findings from Section 2.2] we conclude that the causal mask encodes positional
information in certain hidden states, which subsequently influences attention weights and introduces
position bias.
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Figure 3: Averaged positional hidden states across all layers in different models.

3 METHODOLOGY

Based on the findings in Section 2] although the causal mask profoundly influences position bias, it is
not feasible to know the positions of effective information in the prompt in advance, making methods
that modify the causal mask difficult to design. Therefore, we propose a method to mitigate position
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Figure 4: The framework of scaling positional hidden states and modifying attention.

bias by scaling the positional hidden states, as shown in Figure |4} Specifically, it consists of two
steps: identifying the positional hidden states h; and scaling them by the factor s.

3.1 PROBLEM FORMULATION

Given a pre-trained LLM 6 and a general dataset {«, y}, our objective is to find the optimal positional
hidden states h; and the corresponding scaling factor s to maximally reduce position bias, which can
be formulated as follows:

|P|

arg min E ZE (@, y,pi; F(0, he, s)) @
hi€H,s<1 i—1

where P represents the set of different positions of the ground-truth information within the prompt «,
F (8, hy, s) denotes the operation of scaling the LLM 8 on the ¢-th dimension of its hidden states by
the scaling factor s, and £ denotes the loss for general downstream tasks of the modified model.

3.2 IDENTIFYING POSITIONAL HIDDEN STATES Algorithm 1 Positional Hidden State Search
1: Input: LLM 6, hidden states H, layer

We have defined positional hidden states in Defini- number L, validation set Dy, positions

tion[2.1] However, the original values of hidden states set P, threshold ¢

may not strictly satisfy monotonicity. After curve

fitting, we can identify dozens or hundreds of dimen- 5. P

sions that exhibit various degrees of relevance to posi- 3. for ¢ < 1 to |H| do

tional information. Thus, the first step of our method  4: ¢, + 0,9, « 0

5

6

# Indentify top-K positional dimensions

is to find the dimension that best fits the properties of for ! + 1to L do
positional hidden states. if hi(p) > 0,V por hi(p) < 0,V p

then
To efficiently search for the positional hidden states 7. ¢t < ¢t +1,g; « g+ + Smooth(hl)
from the LLMs’ hidden states set, we leverage the §: end if

characteristics of positional hidden states definedin ~ 9:  end for

Section [2.3] and propose a heuristic positional hid- 10:  if ¢; > ¢ then

den search algorithm. As shown in Algorithm[I] the 11: p < pU{t}

search process consists of the following two steps: 1) 12:  endif

Identify the top-k dimensions p in the hidden states 13 endfor

that are monotonic in more than e layers and are as 1+ P ¢ are T gt

smooth as pqssible. He.re ct 18 th; number of layers # Evaluate on the validation dataset
where h;(p) is monotonic, and g, is the smooth score 5. for ¢ ¢ pdo

of h¢(p). Equ.(3) is the smoothness formula. 2) Usea 16. £, « 0

small validation dataset (or called calibration dataset) 17:  for p € P do

Dya = {x, y} to evaluate the impact of scaling these 18: Lt Li+ L(x,y,p; F(O, hy,s))
positional hidden states respectively and select the po- 19:  end for

sitional hidden states h; that can lead to the minimal 20: end for
loss L. 21: t « argming L
tep

22: return t

Smooth(hy) = / I (p) 2 3)




Under review as a conference paper at ICLR 2025

As for selecting the best scale factor, we take 0.5, 0, -0.5, and -1 to respectively experiment on the
validation set, obtain the validation loss, and then select the scaling factor with the lowest loss.

3.3 SCALING THE POSITIONAL HIDDEN STATES

To minimize the impact of this modification on the semantics of LLMs, we propose a method scaling
the positional hidden states only affecting the last token, as shown in Figure ] Specifically, for the
tokens preceding the last token, the attention calculation remains the same as the original. For the last
token’s attention computation of a sequence of length /, we obtain the modified query state g, (of the
I-th token, i.e. the last token) and key states K (of all the tokens) by scaling the positional hidden
states. That is,

q :P(WQf(h(l)>p’5)’l)7 E:P(WKf(h,p,S),[1,2,...,[]) 4

Here f(h, p, s) means the p-th dimension of h is scaled by the factor s. Therefore, the corresponding
attention calculation is as follows:

1T
Softmax(M)V, 1<
Vd
z= e )
Softmax(ql W, 1=1
Vd

where z is the attention output. We implement our method using FlashAttention (Dao} 2023)) with
minimal overhead. After calculating the combined attention weights, the remaining computations
remain the same as in the original method. As shown in Appendix our approach results in only a
slight increase in latency.

4 EXPERIMENTS

4.1 SETUP

Evaluation Tasks and Models We apply our method to a wide range of state-of-the-art open-source
LLMs, including: 1) RoPE (Chen et al.| 2023a) models: LLaMA-2 (7B, 13B) (Touvron et al., [2023)),
Mistral-7B (Jiang et al.| [2023a), Gemma-7B (Team et al., |2024), Qwen1.5-7B (Bai et al., 2023a);
2) Context window extended models: Vicuna (7B, 13B) (Chiang et al., 2023); 3) Alibi (Press et al.,
2022) models: MPT-30B (Team, 2023)). All the models we use are instruction-tuned versions.

And we evaluate the performance across three aspects: 1) Position-bias-related tests on NaturalQues-
tion multi-document QA (Liu et al.|[2024b) and KV retrieval (Liu et al., 2024b) with ground-truth at
different positions in the prompt. The NaturalQuestion task includes 20 documents with a prompt
length of about 2.3k tokens, while the KV retrieval task includes 140 KV pairs with an average length
of about 10k tokens. 2) General long-context benchmark on LongBench (Bai et al.,|2023b)), including
multi-document QA, single-document QA, summarization, few-shot learning, synthetic tasks, and
code completion, totaling 16 tasks with an average length of 37k tokens. 3) Position-sensitive tasks on
timeline reordering in LooGLE (Li et al.,2023)), with an average length of 10k tokens. For prompts
that exceed the context windows of LLMs, we follow LongBench’s approach by truncating from the
middle and retaining the head and tail of the prompt to fit within the context windows. We use the
provided metrics and scripts from the following benchmarks for evaluation.

Implementation Details In this paper, we implement our approach using PyTorch, HuggingFace
Transformers, and FlashAttention (Daol [2023)) in an A100 GPU. To ensure stable and reproducible
results, we use greedy decoding in all experiments. For the search part, we set the top-k size of
positional hidden states to 10 and € to L/4, where L is the number of layers. The validation set
is a synthetic KV retrieval dataset consisting of 100 examples, which do not overlap with the test
set. The search process takes approximately 10 minutes. For the scaling part, we only modify the
intermediate layers of the model to minimize the negative impact on performance. The details of
the scaling dimensions, layer ranges, and factors are shown in Table[5] More details are provided in

Appendix
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Methods NaturalQuestion KV Retrieval

Ist Sth 10th 15th 20th Avg.‘ 0% 25% 50% 75% 100% Avg.
LLaMA-2-7b-chat 324 23.8 30.6 31.6 38.2 31.3| 77.6 24.6 62.0 356 78.0 55.6
LLaMA-2-7b-chat w/ Ms-PoE 40.8 29.2 33.0 32.8 39.6 35.1| 95.0 29.8 21.4 51.8 89.8 57.6
LLaMA-2-7b-chat w/ Ours 33.6 34.0 40.6 43.0 51.8 40.6 | 63.6 38.0 82.2 40.6 94.6 63.8
LLaMA-2-13b-chat 452 39.6 404 442 51.0 44.1| 742 39.0 704 844 86.8 71.0
LLaMA-2-13b-chat w/ Ms-PoE 484 414 424 454 52.6 46.0| 87.8 28.0 354 49.2 83.0 56.7
LLaMA-2-13b-chat w/ Ours 50.6 43.4 45.0 494 58.2 493|412 17.0 49.6 76.8 84.8 539
Vicuna-7b-v1.5-16k 704 54.8 46.8 458 47.8 53.1|984 08 02 02 0.2 200
Vicuna-7b-v1.5-16k w/ Ms-PoE 67.0 55.2 50.6 46.8 48.2 53.6| 974 36.8 156 52 66 323
Vicuna-7b-v1.5-16k w/ Ours 63.8 57.6 53.6 51.2 55.6 56.4| 954 22.0 12.6 52 204 3I.1
Vicuna-13b-v1.5-16k 67.4 48.2 452 45.6 444 50.2| 956 742 642 588 182 622
Vicuna-13b-v1.5-16k w/ Ms-PoE 70.0 51.4 46.8 42.8 47.0 51.6|91.8 594 71.6 744 488 69.2
Vicuna-13b-v1.5-16k w/ Ours 67.4 51.4 47.6 48.8 48.0 52.7| 97.2 834 80.8 688 354 73.1
Mistral-7b-Instruct-v0.2 57.2 55.0 61.2 61.6 62.6 59.5| 99.8 93.0 89.0 95.0 942 94.2

Mistral-7b-Instruct-v0.2 w/ Ms-PoE | 58.2 60.0 62.6 58.8 62.2 60.4 | 99.8 95.6 8384 96.0 954 95.0
Mistral-7b-Instruct-v0.2 w/ Ours 61.2 56.4 63.2 59.8 64.0 60.9 | 97.6 932 90.6 95.6 93.8 942

Gemma-1.1-7b-it 29.6 252 282 29.6 274 28.0| 98.6 67.0 62.4 83.4 100.0 82.3
Gemma-1.1-7b-it w/ Ms-PoE 33.8 29.0 31.6 28.6 28.6 303| 0.0 00 00 00 0.0 0.0
Gemma-1.1-7b-it w/ Ours 354 31.4 36.0 354 35.0 34.6| 97.6 958 97.6 96.8 99.6 975
Qwenl.5-7b-chat 72.4 538 522 51.2 544 56.8|100.0 97.2 84.6 60.0 564 79.6
Qwen1.5-7b-chat w/ Ms-PoE 67.4 498 482 474 470 520| 34 14 28 26 06 22
Qwenl.5-7b-chat w/ Ours 67.4 55.2 53.6 56.0 59.4 583|972 95.6 98.8 76.6 944 925
MPT-30b-chat 75.6 49.6 39.0 334 39.6 474|714 348 31.6 416 740 507
MPT-30b-chat w/ Ms-PoE / / / / / / / / / / / /
MPT-30b-chat w/ Ours 75.0 48.8 41.6 40.6 44.0 50.0 | 99.0 65.8 48.6 46.6 69.4 659

Table 1: Performance of different methods with different models on NaturalQuestions (20 docs) (Liu
et al.,[2024b) and KV retrieval (140 KV pairs) (Liu et al.,|2024b) dataset.

Baselines We include two training-free positional bias mitigation methods as baselines: (i) Original,
the unmodified LLM results with the ground truth at different positions in the prompt. (ii) w/ Ms-
PoE (Zhang et al.,|2024), a head-aware position embedding scaling method to mitigate position bias.
Following the original settings, we apply scaling coefficients of 1.2 to 1.8 starting from the 3rd layer.

4.2 MAIN RESULTS

Tables [I] and [2] present the performance of various methods in different benchmarks. Several
observations and conclusions can be drawn: 1) Our method consistently improves overall performance
at different positions, with increases of up to 9.3%, 15.2%, and 4.7% in NQ, KV retrieval, and
LongBench, respectively, except for LLaMA-2-13B in KV retrieval. Additionally, compared to the
SoTA method Ms-PoE, our method shows significant improvements of up to 6.3%, 97.5%, and 14%
in NQ, KV retrieval, and LongBench. The poor performance of Ms-PoE in KV retrieval can be
attributed to the interpolation causing information loss. 2) Our method effectively enhances LLMs’
understanding of information located in the middle and latter parts of the prompt. For key information
at the beginning of the prompt, performance is comparable to baselines. Considering only the average
performance of the last four positions, our method’s improvements over the original increase to 11.3%
and 16.8% in NQ and KV retrieval, respectively, and over Ms-PoE increase to 8.7% and 97.5% in NQ
and KV retrieval, respectively. 3) Our approach is effective not only for RoPE models but also for
context window extended models like Vicuna-16K, which already readjust RoPE (Chen et al.,[2023a)).
Additionally, our method can be adapted to different position embeddings, such as Alibi (Press et al.}
2022)) models like MPT, resulting in improvements of 2.6%, 15.2%, and 1.2% in NQ, KV retrieval,
and LongBench, respectively. 4) Our method demonstrated varying degrees of improvement across
different tasks, with the most significant increases being 1.5% in few-shot learning tasks, 3.4% in
code tasks, 4% in synthetic tasks, 9.2% in single document QA tasks, and 1.9% in multi-document
QA tasks. In summarization tasks, performance was nearly on par with the original results. While our
method did not significantly improve the average scores overall, it at least demonstrates that it can
mitigate position bias without impairing the model’s original capability to handle long context tasks.
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Models \ SingleDoc MultiDoc Synth. Summ. FewShot Code AVG
LLaMA-2-7b-chat 28.9 29.7 6.6 26.3 612 47.1 333
LLaMA-2-7b-chat w/ Ms-PoE 29.8 31.7 10.5  26.7 61.0 48.1 34.6
LLaMA-2-7b-chat w/ Ours 29.2 29.3 9.7 25.0 61.6 469 33.6
LLaMA-2-13b-chat 21.4 14.6 112 26.1 61.5 398 29.1
LLaMA-2-13b-chat w/ Ms-PoE 20.8 154 127 273 62.8 363 292
LLaMA-2-13b-chat w/ Ours 30.6 9.6 10.8 257 62.6 432 304
Vicuna-7b-v1.5-16k 30.2 21.6 7.2 26.7 539 405 30.0
Vicuna-7b-v1.5-16k w/ Ms-PoE 32.3 24.2 8.3 28.0 552 431 318
Vicuna-7b-v1.5-16k w/ Ours 27.1 22.1 11.2  26.1 55.0 402 303
Vicuna-13b-v1.5-16k 31.1 33.8 212 262 62.0 398 35.7
Vicuna-13b-v1.5-16k w/ Ms-PoE 34.5 33.1 16.0 275 645 376 355
Vicuna-13b-v1.5-16k w/ Ours 30.1 35.1 25,0 258 63.5 417 369
Mistral-7b-Instruct-v0.2 37.8 28.5 49.7  28.8 653 529 438
Mistral-7b-Instruct-v0.2 w/ Ms-PoE 41.7 222 384 2.8 23.8 19.5 247
Mistral-7b-Instruct-v0.2 w/ Ours 38.4 304 49.8 294 64.8 529 443
Gemma-1.1-7b-it 394 23.2 322 242 144 198 255
Gemma-1.1-7b-it w/ Ms-PoE 41.7 222 384 249 140 195 268
Gemma-1.1-7b-it w/ Ours 39.0 23.0 355 245 149 193 257
Qwenl.5-7b-chat 46.4 39.5 384 223 564 502 422
Qwenl1.5-7b-chat w/ Ms-PoE 42.0 41.5 303 257 46.5 38.0 373
Qwenl1.5-7b-chat w/ Ours 45.8 38.8 385 221 57.6 49.6 42.2
MPT-30b-chat 27.9 21.9 7.5 25.7 573 393 299
MPT-30b-chat w/ Ms-PoE / / / / / / /

MPT-30b-chat w/ Ours 294 19.5 6.7 25.8 57.6 40.1 299

Table 2: Performance of different methods with different models on LongBench (Bai et al., 2023b).

4.3  ANALYSIS

From Bias to Balance As shown in Table [I] there is an phenomenon that our method mainly
benefits when the key information is not at the beginning, but can often decrease performance if the
model performs significantly better when the key information is at the beginning. It reveals a possible
fact that the positional hidden may be an important factor causing the model to miss the rear parts of
the context while focus too much to the beginning parts. Therefore, scaling such dimension can shift
the model’s attention from being too focused at the beginning to a more balanced distribution. We
validated the above points by testing different scale factors, as shown in Figure 5]
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Figure 5: Attention distribution and performance when scaling dimension 2393 of Vicuna-7b-v1.5-

16k with different scale factors on KV retrieval 2024b)) of 100 KV pairs.

Scale Factor The scaling factor directly controls the degree and direction of the impact of positional
hidden states on position bias. As shown in Figure 5] a positive scaling factor causes the model
to focus more on the beginning, while a negative factor shifts the focus towards the end. A factor
between 0.5 and -1 leads to the most balanced attention distribution, where accuracy also peaks.
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These results demonstrate that scaling positional hidden states can influence LLMs’ tendency to focus
on the beginning, and by adjusting the coefficients, this bias can be effectively mitigated.

Method ‘ LLaMA-2-7b  Vicuna-13b Gemma-7b  Mistral-7b  Qwnl.5-7b
Original | 31.3 50.2 28.0 59.5 56.8
Ours 40.6 52.7 34.6 60.9 58.3
w/0 monotonicity 40.6 51.8 34.6 60.9 58.3
w/o smoothness 40.6 52.7 27.8 60.9 58.3
w/o validation set 30.1 51.8 26.5 60.9 58.3
w/ scale 2 dimensions 37.2 50.8 31.7 60.1 57.2
w/ modify last 16 tokens 41.6 51.5 34.6 59.7 58.1
w/ modify all tokens 44.0 50.8 31.7 59.5 57.4

Table 3: Average performance of different ground-truth positions using different methods on Natu-
ralQuestions multi-document QA dataset (20 docs) |Liu et al.| (2024b).

Ablation Study To evaluate the contributions of different components in our method, we introduce
the following sets for the ablation study: (1) Ours w/o monotonicity, w/o smoothness, and w/o
validation set, which adjust the search algorithm by not considering these three indicators, respectively
(details in Appendix[A.Z)). (2) Ours w/ scale 2 dimensions, which modifies the top-2 positional hidden
states simultaneously. (3) Ours w/ modify last 16 tokens and w/ modify all tokens, which adjust the
range of tokens affected by the scaling operation in Equ. ().

Table 3] shows the ablation results. It can be seen that without filtering by monotonicity or smooth-
ness, performance may decline, and removing the validation set results in more decline in model
performance. When the range of tokens or dimensions affected by scaling is expanded, most models
experience varying degrees of performance loss. Considering these factors, we choose to modify only
the last token and the top-1 positional dimension to achieve the best performance.

Side Effects We utilized the MMLU dataset (Hendrycks et al.), which assesses general capabilities,
and the timeline-reorder dataset (L1 et al.,2023)), which is a task sensitive to positional information,
to evaluate whether our approach adversely affects the original abilities of the LLM.
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Figure 6: Distribution of attention weight and accuracy as the ground-truth KV is placed at different
positions in the prompt. (b) and (d) are situations when the attention on the 25th KV pair is modified.

Attention v.s. Performance As shown in Figure[6] when we manually double the attention weights
of the key information (in this case, the 25th KV pair, as illustrated in Figure[6b) during the model’s
forward pass on the KV retrieval task, the retrieval accuracy for the 25th KV improves, while the
accuracy for other parts remains largely unchanged (Figure [6d). This demonstrates that the attention
weights for key information are positively correlated with retrieval accuracy.

Does this Method Compromise the Ability to Perceive Positional Information? To demonstrate
that our method does not harm the model’s performance on general or position-sensitive tasks,
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Model | MMLU  Reorder
Vicuna-7b-v1.5-16k 48.22 20.83
Vicuna-7b-v1.5-16k w/ Ours 48.38 20.83
Qwenl.5-7b-chat 60.84 28.13
Qwen1.5-7b-chat w/ Ours 61.43 28.13
Mistral-7B-Instruct-v(.2 60.31 18.75
Mistral-7B-Instruct-v0.2 w/ Ours 60.38 19.79

Table 4: Performance of difference models on MMLU and the timeline reorder task.

despite eliminating some positional information, we tested it on two datasets: the MMLU benchmark
(Hendrycks et al.) and the timeline reorder task from LooGLE (Li et al.| [2023)), which involves
arranging events chronologically across extensive text. As shown in Tabled}, our method does not
impair performance on position-sensitive tasks, indicating that the positional information we remove
may not be essential for the model’s functioning.

5 RELATED WORKS

Long-Context LLMs Recent research has focused on expanding the context window size of LLMs
through four main approaches: 1) Staged pre-training (Nijkamp et al.| [2023; [Fu et al.| [2024), which
gradually increases the context window size during training; 2) Modifying or interpolating position
embeddings (Press et al.,|2022; |Chen et al.,[2023a; [Peng et al., |2023; Ding et al., [2024)); 3) Using
external memory modules for context storage (Bertsch et al., 2023}, [Tworkowski et al., 2023); 4)
Distributed computation across devices (Liu et al., [2023). While these methods address context
expansion, their impact on positional bias in downstream tasks has not been thoroughly explored.

Addressing Position Bias Despite explicit positional encoding methods like RoPE (Su et al.|, [2024)
and Alibi (Press et al., [2022), LLMs often exhibit position bias, such as the "lost in the middle"
phenomenon (Liu et al., 2024b} [Kamradt, |2023)). Recent efforts to mitigate this bias fall into several
categories: 1) RoPE-based methods: These approaches modify the RoPE computation process to
alleviate long-distance information decay, including Attention Bucket (Chen et al.,|2023b), which
uses an ensemble of multiple RoPE bases to mitigate position bias, and Ms-PoE (Zhang et al.,
2024)), which dynamically interpolates with a small coefficient for different heads. 2) SFT-based
methods (Junqing et al., [2023; [Yu, [2023; |An et al.| 2024): These methods construct data with more
diverse key information distributions or employ system2think SFT tasks to mitigate position bias.
They require further training of the model. 3) Attention mask-based methods (He et al., 2024):
These methods modify attention mechanisms, including Attention Transition (Gao et al., [2023),
which redirects attention to significant parts of the context and Stable Mask (Yin et al.| 2024), which
introduces pseudo attention into the causal mask, ensuring stable attention distribution when facing
lengthy texts. 4) Prompt-based methods (Jiang et al., 2023bj |Peysakhovich & Lerer, [2023): These
methods introduce an external module to reorder or compress information in the prompt, thereby
mitigating position bias.

6 CONCLUSION

This paper proposes a method for scaling positional hidden states to mitigate position bias issue
in LLMs. Specifically, the study first confirms that attention weights manifest position bias within
transformers. Additionally, experiments demonstrate that, besides position embeddings, the causal
mask also contributes to position bias, which is transmitted to other modules through the hidden
states containing absolute positional information, termed as positional hidden states. Based on this,
we introduce a prior-based positional hidden search algorithm and mitigate the model’s position bias
by scaling the positional hidden states searched. Testing eight open-source models with different
position embeddings on tasks such as NaturalQuestions Multi-document QA, KV Retrieval, and
LongBench, the results show that our method effectively reduces position bias and improves model
performance.
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A EXPERIMENT DETAILS

A.1 DATASETS DETAILS

We choose NaturalQuestion Multi-document QA and Key-Value Retrieval datasets used in "lost in the
middle" paper (Liu et al.,|2024b) to evaluate the degree to which our method alleviates position bias.
NaturalQuestion Multi-document QA require the model to answer the question based on one key
information document which is inserted in a long context consisting of many irrelevant documents.
And Key-Value Retrieval needs the model to retrieve the value corresponding to the given key from a
list consisting of hundreds of Key-Value pairs. These two datasets are both classic in-context tasks
which aim to evaluate the differences of model performance when key information is located at
different positions in the context. The evaluation metric is accuracy, based on whether the model’s
response contains a string of the correct answer. In addition, we evaluate our method’s improvements
across multi task types, using LongBench (Bai et al.,[2023b)), a benchmark for bilingual, multitask,
and comprehensive assessment of long context understanding capabilities of LLMs. It contains
six major categories, covering single-document QA, multi-document QA, summarization, few-shot
learning, synthetic tasks and code completion. The evaluation metrics are: F1 for single-document
QA and multi-document QA, Rouge-L for summarization, accuracy (exact match) for few-shot
learning and synthetic tasks, and edit similarity for code completion. During inference, since the
original context may sometimes be too long, the input sequences will be truncated in the middle part
to avoid exceeding the context window of the model.

A.2 ADDITIONAL IMPLEMENTION DETAILS

Curve Fitting When we perform curve fitting on h(p), we use least-squares cubic polynomial fit.
And when judging its monotonicity, we skip the first 100 positions because the first a few values are
often outliers. Since h(p) is originally a discrete function, in practice, we employ the second-order
difference to approximate the second-order derivative when computing smoothness.

Ms-PoE on Mistral When applying Ms-PoE (Zhang et al., 2024)) to mistral-7b (Jiang et al.| [2023a)
with its default parameters (minimal scale factor is 1.2 and maximal is 1.8), we found the model fail
to generate normal responses, so we set the maximal scale factor to 1.2, under which Ms-PoE (Zhang
et al.,[2024)) is equal to PI (Chen et al., 2023a) with scale factor 1.2.

Ablation of the Searching Algorithm We conducted ablation experiments to demonstrate the
necessity of using the three indicators (monotonicity, smoothness, validation loss) in our searching
algorithm. Ours w/o monotonicity means we just select top-10 smoothest dimensions and then use
the validation loss to determine. Ours w/o smoothness means we select top-10 dimensions with the
highest number of monotonic layers and then use validation loss. Ours w/o validation loss means we
first select top-10 dimensions with the highest number of monotonic layers and then just choose the
smoothest one among them.

A.3 SCALED DIMENSIONS DETAILS

Table 5: The scaled dimensions, scale factors and applied layers of models.

Model \ Dimension Scale factor  Applied layers
LLaMA-2-7b-chat 2,393 -1 10~25
LLaMA-2-13b-chat 4,283 -1 10~34
Vicuna-7b-v1.5-16k 2,393 0 10~25
Vicuna-13b-v1.5-16k 4,923 0 10~34
Mistral-7B-Instruct-v0.2 213 0 10~25
Gemma-1.1-7b-it 1,665 0 10~22
Qwenl.5-7b-chat 1,081 0.2 10~25
MPT-30b-chat 6,926 0 10~42

The scaled dimensions, scale factors and applied layers of each model we use in out experiments are
shown in Table
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A.4 INFERENCE LATENCY

Table 6: Time consumed (minutes) of LLaMA-2-7b-chat in a single A100.

Method \ KV Retrieval NaturalQuestion
FlashAttention-2 22 14
Ours 32 15
Ms-PoE 61 26

Table [6] shows the running time of LLaMA-2-7b-chat with different methods in the KV retrieval
dataset consisting of 500 samples with average length of about 10,000, and the multi-document QA
dataset consisting of 500 samples with average length of about 3,300. Our method requires recompute
the query and key states, thus inevitably requires more time compared to baseline, but the cost is
within an acceptable range. In contrast, Ms-PoE (Zhang et al.| 2024) need to compute the attention
weights twice, resulting in a doubling of time consumption.

B OBTAIN ATTENTION TO KEY INFORMATION

To avoid the influence of internal knowledge in the model and make attention calculation simpler, we
conduct a KV retrieval task, whose prompt format is as follows:

Json data: {"os08jbkl1limftowgxeda": "imx6lyp4b8ogjaq7retl”, ...... (n key-value pairs)} The
value of key "0s08jbk1limftowgxeda" is "

The last token of the prompt will directly take on the task of predicting the answer, i.e., the value
which need to be retrieved. Hence, the last token’s attention weights to the previous text can reflect
whether it accurately retrieves the key information. We define the model’s attention (in some layer)
to the key information as A¢ in Eq[6] where G represents the set of token positions corresponding to
where the key information is at, [ is the position of the last token of the prompt, and a; ; represents
the attention weight of the [-th token to the j-th token. By shifting GG, we use the same method to
calculate its attention to each other KV pairs.

1
A > (6)

Gl =2

C How WE MODIFY CAUSAL MASK AND POSITION EMBEDDING IN KV
RETRIEVAL

In the method 1 in section[2.2] we crop the causal mask to let the "key tokens" unable to attend the
previous tokens. As shown in Figure[7] the white part represents the cropped part, which means
attention weights are 0, and the orange part represents the attention between tokens within key tokens.
In addition, we have retained the attention of key tokens to the first token to maintain the stability of
attention distribution. What is more, we only modify the causal mask in layers 1~8, but as the results,
the attention to the key information is still significantly improved in layers 15~31, which indicates the
positional information generated by causal mask in former layers can be transmitted to latter layers
using posisional hidden states as the medium, thus modifying the causal mask solely in the former
layers can induce a profound shift in the model’s comprehension of positional information.

In the method 2 and 3 in section[2.2] we modify the position embeddings through altering the position
ids. The specific operation is shown in the Figure |8} in which we directly replace the position ids
corresponding to the key tokens with the position ids of the starting tokens (or the ending tokens) ,
and actually only the attention weights of the last token to previous tokens are modified. We apply
this modification in all the layers. Compared to modifying the causal mask, if only modify position
embedding in former layers, the attention in the latter layers remains almost unchanged, which
indicates the positional information generated by position embedding may be temporary and can
hardly be transmitted across layers.
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\ )
Key Tokens

Figure 7: Cropping the causal mask to let key tokens unable to see previous tokens, except the first
token.

Position Ids (Normal) : | 0 | 1 | | 199 | 200 | 201 | 202 | 203 | | 498 | 499 |

=

\ 4
£
0 K ) =
&

Fim ]

Fa-ba 1
Ld-bdo, 11
Ll

\

ra-kd-rde, Attention Weights

Positionlds(Modiﬁed):| 0 | 1 | |199| 0 | 1 | 2 |203| |498|499|

%{_)

Key Tokens

Figure 8: Shifting position ids to the start (PE to beginning).

D PERTURBATION ON CAUSAL MASK AND POSITION EMBEDDING
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Figure 9: We performed perturbation experiments on the causal mask and position embedding (PE),
showing the dimension 213 of hidden states of Mistral-7b (Jiang et al.| [20234) using randomly
synthesized corpus as input.

To further explore the origin of these position hidden states, we performed perturbation experiments.
As depicted in Figure[9¢] subtracting 200 from the position ids corresponding to the 400th to 600th
tokens (reducing PE) had only a minor effect on the position hidden states, whereas, in Figure
crop the causal mask to make the 400th to 600th tokens unable to attend the 1st to 400th tokens
(cropping causal mask) led to significant fluctuations in positional hidden states of the 400th to 600th
tokens. This result proves the causal mask is the main factor causing this kind of positional hidden
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states, and it is the token’s position in the causal mask that determines its value in the positional
hidden states, but not position ids of position embedding.

E ATTENTION DISTRIBUTION LAYER-WISE AND HEAD-WISE

Figure [T0]shows Mistral-7b’s attention to each KV pair of each layer (average across all attention
heads) in the context in a KV retrieval task when the gold KV is put at different positions. The
y-axis is the gold KV’s position, x-axis is each KV’s position, and the scale of the colorbar represents
attention (10~3). We can observe that diagonal patterns, which indicates the attention is concentrated
on the "key tokens", appear only in the latter layers (start from layer 14), and may be a manifestation
of retrieval behavior. In contrast, the former layers only focus on the beginning or end, regardless of
where the key information is located.

Figure [IT] shows the head-wise situation of layer 15. We can see actually only a portion of attention
heads exhibit diagonal patterns, which may correspond to retrieval heads (Wu et al., [2024). The
attention distribution in these heads also shows a pattern corresponding "loss in the middle", being
larger at the beginning or end while significantly smaller at the middle.
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Figure 10: The average attention weight distributed on each KV, of all the 32 layers of Mistral-7b, on
a 50 KV pairs retrieval task, when the gold KV is put at each different position.

F POSITIONAL HIDDEN STATES VISUALIZATION

We shown various models’ positional hidden states of each layer in Figure[T2] When visualizing, we
discarded the first 30 tokens because the hidden states values of these tokens are often huge (usually
hundreds of times larger than the normal value (Sun et al.,[2024)), which can disrupt monotonicity.
We observed its monotonic trend first appears just in the first layer (actually just after the first attention
mechanism), and continue to be more marked.
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Figure 11: The average attention weight distributed on each KV, of all the 32 attention heads of layer
15 of Mistral-7b, on a 50 KV pairs retrieval task, when the gold KV is put at each different position.
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Figure 12: Positional hidden states output by each layer of LLaMA-2-7b-chat, Mistral-7b-Instruct-
v0.2, MPT-30b-chat and TinyLlama-NoPE-1.1B. The x-axis represents the position, and the y-axis
represents the value of the states.
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