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Figure 1: Examples of image generation. Our single model is able to generate images with various
expert styles (realistic style, Asian portrait, anime style, etc.) under the control of style prompts.

ABSTRACT

The success of text-to-image (T2I) generation models has spurred a proliferation
of numerous model checkpoints fine-tuned from the same base model on vari-
ous specialized datasets. This overwhelming specialized model production in-
troduces new challenges for high parameter redundancy and huge storage cost,
thereby necessitating the development of effective methods to consolidate and
unify the capabilities of diverse powerful models into a single one. A common
practice in model merging adopts static linear interpolation in the parameter space
to achieve the goal of style mixing. However, it neglects the features of T2I gen-
eration task that numerous distinct models cover sundry styles which may lead
to incompatibility and confusion in the merged model. To address this issue, we
introduce a style-promptable image generation pipeline which can accurately gen-
erate arbitrary-style images under the control of style vectors. Based on this de-
sign, we propose the score distillation based model merging paradigm (DMM),
compressing multiple models into a single versatile T2I model. Moreover, we re-
think and reformulate the model merging task in the context of T2I generation, by
presenting new merging goals and evaluation protocols. Our experiments demon-
strate that DMM can compactly reorganize the knowledge from multiple teacher
models and achieve controllable arbitrary-style generation.
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020b) have steadily emerged as the predominant
methods in text-to-image (T2I) generation task. Thanks to the open-source base models (Rombach
et al., 2022; Podell et al., 2023; Esser et al., 2024), tool libraries (von Platen et al., 2022; AUTO-
MATIC1111, 2022), and communities (Civitai; LibLib), this field has achieved great progress and
numerous powerful diffusion models are released. These creation platforms make it handy for de-
velopers to fine-tune the powerful base models such as Stable Diffusion V1.5 on their specialized
datasets to achieve customized generation with various styles and then upload and share the models.
In spite of this fast development and prosperity, we are facing some dilemmas. First, for the thou-
sands of personalized models, each contains billions of parameters and is saved as a large checkpoint
binary file, leading to serious parameter waste and storage overhead. Second, due to limited data
size and computational resources, these models are typically trained to achieve expertise in certain
style domains and fail to cover a wide range of scenarios in the world. It brings many inconveniences
in practical deployment when it requires different specific styles. For example, in commercial appli-
cations, each model needs to be deployed as an independent service on GPU clusters, which leads
to the high overhead of computing resources due to the large model size. For personal users, when
switching among different models, the disk and memory loading is also time-consuming, affect-
ing the efficiency and experience. These issues can be alleviated if we can unify these expertise
of different expert models into a single one. Currently, it is very challenging to build a versatile
model, which is able to cover the knowledge of different models and supports steerable inference to
accurately generate arbitrary-style images.

Model merging (Yang et al., 2024; Tang et al., 2024) is a technique that attempts to mitigate the above
problems. It has shown efficacy in many fields such as large language model (LLM), but has not
been deeply discussed in the T2I generation task. The existing prevalent practice for T2I diffusion
models is to apply static weighted merging of model parameters (Weighted-Merging), to achieve
style mixing and enhance the outputs. However, this merging method still has some critical issues.
First and foremost, this approach limits the range of source models to similar domains, because
directly merging models of various styles will cause conflict and style confusion. For example,
for a realistic-style merged model, if we continue to merge an animation-style model into it, it
will be ambiguous with different patterns and output unexpected results. Additionally, since the
merge weights are usually manually set or by brute force search to obtain the best performance and
parameters are statically fixed once the training is over, this scheme lacks flexibility in the style
control during inference.

Therefore, we should rethink model merging in the context of T2I diffusion models and design more
reasonable goals and methods. As mentioned above, one key feature we should pay attention to is
there exist numerous distinct models based on diverse user creativity for different visual styles. This
is relatively rare in other machine learning task territories, so direct parameter merging is insuffi-
cient to meet real application requirements. Instead, we need to devise innovative and specialized
solutions to address the problem. According to our analysis, we summarize the requirements of a
model merging system in the field of T2I generation: i) The merged model should preserve dis-
tinct capabilities of each source model without ambiguity, thereby truly attaining the substitution
of multiple models with a singular and minimizing parameter redundancy and inefficiency. ii) The
merged model should have a versatile and controllable inference mechanism to harness the knowl-
edge of different domains, thus facilitating diverse stylistic generation and possibly generalizing to
combination functionalities. iii) The training pipeline should be sustainable and scalable, supporting
continual learning for new models to be incrementally merged.

Based on the above analysis, we introduce a style-promptable image generation pipeline which can
generate arbitrary-style images under the control of style vectors. Based on this style-promptable
generation pipeline, we resort to knowledge distillation (Hinton, 2015) and present a distillation-
based model merging paradigm, abbreviated as DMM. As far as we know, we are the first to leverage
knowledge distillation for the T2I diffusion model merging and building a versatile style-promptable
T2I model. Additionally, we present a quantitative metric FIDt and validate our approach with the
public state-of-the-art T2I models like the family of Stable Diffusion (Rombach et al., 2022; Podell
et al., 2023). By merging eight different models, we train a versatile model that captures the capa-
bilities of various styles concurrently with FIDt 77.51, while maintaining comparable performance
of style mixing to previous merging methods.
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To sum up, our contributions can be summarized as two folders:

• We deeply analyze the model merging task in the field of text-to-image generation and re-
think a new setting of model merging task objectives with practical value. A corresponding
benchmark and quantitative metric are also proposed to measure the performance of model
merging under this new setting.

• We propose a new style-promptable T2I generation pipeline, which is simple to imple-
ment, steerable to different styles, and extensible to new expert models. We design the
first distillation-based model merging paradigm to unify the multiple expertise into a single
versatile model, supporting flexible style control mechanisms during inference.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Balaji et al., 2022; Song et al., 2020b; Nichol & Dhariwal, 2021;
Sohl-Dickstein et al., 2015; Karras et al., 2022) have gradually become a fundamental approach
in the field of generative modeling, surpassing preceding methods in the generation of diverse and
high-fidelity images. Song et al. (2020b) describes the generation process from the continuous-time
perspective with stochastic differential equations (SDE), which iteratively denoise an initial noise
leveraging the learned score of the data distribution to steer the process toward real data points. In-
jecting text conditions into the denoising procedure provides a more natural and user-friendly way
to control image generation (Rombach et al., 2022; Balaji et al., 2022; Nichol et al., 2021; Ramesh
et al., 2022). LDM (Rombach et al., 2022) performs the generation process in latent space to reduce
computational costs and become the prototype of the most widespread application model Stable
Diffusion (SD), which facilitates the nature of open-source AI generative models and spawned hun-
dreds of other models and innovations worldwide. These powerful community models are typically
fine-tuned on specialized datasets, thus yielding distinct experts of different style domains.

2.2 MODEL MERGING

Model merging is an effective technique that merges the parameters of multiple separate models
with different capabilities to facilitate knowledge fusion and build a universal model. Despite its
relative novelty, the field of model merging is experiencing rapid advancement and has been suc-
cessfully applied across various domains (Tang et al., 2024; Yang et al., 2024). From the perspec-
tive of methodology, model merging can be implemented through linear interpolation in parameter
space (Wortsman et al., 2022; Ilharco et al., 2022; Yadav et al., 2023), leveraging mode connec-
tivity (Frankle et al., 2020), aligning features or parameters (Ainsworth et al., 2022) and ensemble
distillation (Wan et al., 2024). With the emergence of large foundation models including large lan-
guage models (LLM, Achiam et al. (2023); Bai et al. (2023a); Zhao et al. (2023)) and multi-modal
large language models (MLLM, Yin et al. (2023); Bai et al. (2023b)), the model merging method is
also explored to improve performance and efficiency (Goddard et al., 2024).

In the field of text-to-image (T2I) generation, the potential of model merging has not been fully
investigated. The popular practice in the community is to apply the weighted sum of parameters of
multiple models (Weighted-Merging; Chilloutmix; Majicmix), to achieve the effect of style mixing.
As Biggs et al. (2024) analyzed, linearly merged diffusion models that have been fine-tuned on
distinct stylized data fragments, can generate hybrid styles in a zero-shot learning context. Li et al.
(2024) improves the faithfulness of T2I models by merging multiple skill-specific experts trained on
synthesized datasets. Additionally, some recent works leverage ensemble learning to fuse multiple
models. Wang et al. (2024a) propose an ensemble method, Adaptive Feature Aggregation (AFA),
which dynamically adjusts the contributions of multiple models at the feature level according to
various states, to enhance the generation quality. Nair et al. (2024) also proposes a strategy of
combining aligned features of multiple models, to handle different modality conditions. However,
the ensemble approaches should involve multiple models simultaneously during inference, which
is computationally and memory expensive. Besides, the disposal and simple merging mechanism
limit the model candidates to similar style domains, since injecting completely different models will
result in mode shift and confusion. As far as we know, we are the first to leverage distillation training
to merge T2I diffusion models and support flexible handling of various styles.
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3 METHOD

3.1 PRELIMINARY

A generative model is usually used to represent a cerntain data probability distribution pdata(x).
Song (Song & Ermon, 2019; Song et al., 2020b) proposed score-based generative modeling methods,
whose key idea is to model the score function, which is defined as the gradient of the log probability
density function: ∇x log p(x). To alleviate the difficulty of accurate score estimation in regions of
low data density, we can perturb data points with noise and train score-based models on the noisy
data pt(xt) instead (Song & Ermon, 2019).

Leveraging the score function, the forward perturbation and backward sampling processes can be
described as stochastic differential equations (SDE) (Song et al., 2020b):

forward-time SDE: dxt = f(xt, t)dt+ g(t)dw, (1)

reverse-time SDE: dxt =
[
f(xt, t)− g(t)2∇xt

log pt(xt)
]
dt+ g(t)dw̄, (2)

where f(·, ·) and g(·) denote the drift and diffusion coefficients respectively, and w, w̄ are the stan-
dard Wiener process. Moreover, a good property of this system is that there exists an ordinary
differential equation (ODE), whose trajectories share the same marginal probability densities pt(xt)
as the SDE, dubbed the Probability Flow (PF) ODE:

dxt =

[
f(xt, t)−

1

2
g(t)2∇xt

log pt(xt)

]
dt. (3)

Once we have trained a time-dependent score-based model s(xt, t;θ) ≈ ∇xt
log pt(xt), this is an

instance of a neural ODE and clean images can be generated through solving it.

For training the score-based models, we can minimize the Fisher divergence between the model and
the data distributions, which yields the score matching objective:

θ∗ = argmin
θ

EtExt∼pt(xt)||s(xt, t;θ)−∇xt log pt(xt)||. (4)

Since the regression target ∇xt
log pt(xt) is not tractable directly, many techniques (Hyvärinen &

Dayan, 2005; Vincent, 2011; Song et al., 2020a) have been explored for optimizing score match-
ing objectives. For example, denoising score matching (Vincent, 2011) provides an equivalent but
tractable optimization objectives:

θ∗ = argmin
θ

EtEx0∼p0(x0)Ext∼pt(xt|x0)||s(xt, t;θ)−∇xt
log pt(xt|x0)||. (5)

This objective is consistent with Denoising Diffusion Probabilistic Model (DDPM, Ho et al. (2020)).
Specifically, under the formulation of DDPM with noise schedule give by ᾱt:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (6)

where a denoising model ϵ(xt, t;θ) is trained to predict the added noise of a noisy image xt with
the following objective:

θ∗ = argmin
θ

EtEx0∼p0(x0)Eϵ∼N (0,I) [∥ϵ(xt, t;θ)− ϵ∥] . (7)

3.2 TASK FORMULATION

Given a set of N pre-trained isomorphic models {s(·;θi)}Ni=1, each parameterized with θi, and
each model is trained on different datasets (such as realistic style, anime style, etc.), thus model-
ing different data distributions. We use {p(i)0 (x0)}Ni=1 to represent the distributions corresponding
to each model. Accordingly, each model predicts the corresponding score function: s(xt, t;θi) ≈
∇x log p

(i)
t (xt). Our target is to merge them into one single model with parameter θ∗ while preserv-

ing the knowledge and capabilities of each individual model. Specifically, with the merged model
θ∗, given an style index i, s(·, i;θ∗) should represent the corresponding data distribution p

(i)
0 (x0).

4
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Figure 2: Distributed Training Framework for DMM. (a) The main model layout on a GPU cluster
during training. Each node is assigned a specific teacher model to jointly supervise a student model
with shared parameters. A set of learnable embeddings (style prompts) are maintained to provide
hints and differentiate from each other. (b) Continual Learning. New teacher models are involved
through initializing and adding new embeddings. The frozen pretrained student model serves as
regularization with style prompts randomly selected.

One solution is to train a versatile score-based model by distilling knowledge from multiple pre-
trained experts. Consequently, this gives a natural score-distillation objective:

θ∗ = argmin
θ

N∑
i=1

EtExt∼p
(i)
t (xt)

[
||s(xt, t, i;θ)−∇xt

log p
(i)
t (xt)||

]
,

≈ argmin
θ

N∑
i=1

EtExt∼p
(i)
t (xt)

[||s(xt, t, i;θ)− s(xt, t;θi)||] .

(8)

Our score distillation objective resorts to the original explicit score matching objective in Eq. (4),
since now we have direct access to the target score term.

3.3 DISTILLATION-BASED MODEL MERGING FRAMEWORK

Distillation-based model merging. We present a simple yet efficient distributed training framework
of DMM to implement the score-distillation objective for model merging, as depicted in Fig. 2a. Our
task is essentially a knowledge distillation task from multiple teacher models (Jiang et al., 2024; Gu
et al., 2021; Meng et al., 2021) to a single steerable student one. Besides, we propose three types of
loss functions and a data sampling strategy to boost the performance. Since it is almost impossible
to load all teacher models into a single GPU’s memory, we design to assign a specific teacher model
to each GPU uniformly to efficiently utilize GPU memory.

Style-promptable generation. The student model shares the same UNet architecture as the base
models, except for a few additional trainable parameters for handling the style index hint i suggesting
which model’s style to trigger. Specifically, as shown in Fig. 2a and Fig. 3, we represent different
model priors as a codebook of N learnable embeddings, named style prompts. The implementation
details of injecting style prompts are stated in Appendix A.1. These prompts are used to specify the
image style and modulate the student UNet to mimic the corresponding teacher model. Once the
training is finished, the style prompts provide a flexible way to control the styles at test time, which
will be discussed in Sec. 4.5.

3.4 LOSS FUNCTION AND DATA SAMPLING

Score distillation. As analyzed in Sec. 3.2, we apply score distillation loss to learn different target
probability distributions. Drawing the connection between DDPM and Score Matching, we can
directly perform mean square error (MSE) loss on the outputs, of the ϵ-Prediction parameterized
models (such as Stable Diffusion (Rombach et al., 2022)).

Lscore(xt, t) =

N∑
i=1

||ϵ(xt, t, i;θ)− ϵ(xt, t;θi)||22. (9)

Feature imitation. According to the observation that many previous works (Wang et al., 2024b;
Ye et al., 2023) have explored, the intermediate features of the model contain rich style informa-
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Direct
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Style Prompt
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Figure 3: Style-promptable generation pipeline for disitllation-based model merging. Our pro-
posed distillation objective incorporates three loss terms: Score Distillation, Feature Imitation, and
Multi-Class Adversarial Loss.

tion. Therefore, we leverage feature supervision to facilitate knowledge transfer and style learning.
Formally, let FS

j ,F
T
j ∈ Rh×w×c denote the feature map from student and teacher models, and the

subscript represents the index of model layers. For feature imitation, we apply MSE loss:

Lfeat(xt, t) =

N∑
i=1

∑
j∈M

∥∥FS
j(xt, t, i;θ)− FT

j (xt, t;θi)
∥∥2
2
, (10)

whereM is the set of layer indices that need to be supervised. Our experiment results demonstrate
that naively supervising all the layers’ features can significantly boost performance.

Multi-class adversarial loss. To further enhance the model’s ability to discriminate and fit dif-
ferent data distributions, we incorporate an additional GAN objective into our training framework.
Generative Adversarial Networks (GAN, Song & Ermon (2019)) implicitly model the real data
distribution by training a generator and a discriminator competitively. Essentially, it is optimizing
Jensen–Shannon divergence (Endres & Schindelin, 2003) for matching two probability distributions.
Considering we aim to learn multiple target data distributions simultaneously, we can naturally tailor
a multi-class GAN to substitute the vanilla binary GAN. Specifically, given N teacher models, the
total number of classification heads is 2N , where the first N classes represent N target styles and
the last N classes represent fake ones. The discriminator is trained to not only distinguish between
real and fake images but also to distinguish different style distributions. This yields our multi-class
adversarial loss as below:

Ladv(xt, t) = −
N∑
i=1

[logDi(g(xt, t, i;θ)) + logDN+i(g(xt, t;θi))] , (11)

where Di(·) is the discriminator predicted probabilities for the i-th class, and g is the generation
function for sampling clean images from model outputs. To sample efficiently, we leverage the
formulation of predicting x0 directly from xt and ϵ(xt, t;θ) according to the noise scheduler as
Eq. (6) (Xu et al., 2024b; Lu et al., 2023):

g(xt, t;θ) =
1√
ᾱt

(
xt −

√
1− ᾱtϵ(xt, t;θ)

)
. (12)

Training data sampling. Herein, there is still a challenge in that we do not have direct access to the
original training data of each teacher model, thus unable to sample training data points x ∼ p

(i)
t (xt).

Fortunately, due to the good property of direct access to the score target under distillation, this
optimization process can be considered a conventional regression task, and the training data can
be generalized to a common dataset. As depicted in Fig. 3, the final optimization objective is the
weighted combination of the three loss terms as below:

Ltotal = EtExt∼pt(xt) [Lscore + λfeatLfeat + λadvLadv] . (13)

6
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Our experimental results show that sampling from a general common training dataset is enough
to effectively distill knowledge from different teacher models. The intuition behind this is since
we train the model on noise-perturbed data, the different noisy data distributions overlap with each
other, especially at large timesteps. To compensate for regions of low data density at small timesteps,
we use teacher models to synthesize a small number (hundreds) of images and fine-tune the model
with a few thousand iterations. This stage can further refine the generation quality and is highly
efficient, consuming only a few GPU hours.

3.5 INCREMENTAL LEARNING WITH REGULARIZATION

Our proposed distillation framework supports flexible incremental learning to merge new models
into the current checkpoint. In practice, we only need to extend the set of style prompts by adding
new ones (randomly initialized), then fine-tune the model with supervision as discussed in Sec. 3.4
for them. However, only optimizing for new targets can lead to the problem of catastrophically
forgetting existing knowledge. To alleviate this issue, we propose an efficient incremental learn-
ing approach with regularization as illustrated in Fig. 2b. We adopt a self-supervised approach to
preserve the knowledge of the learned models to achieve regularization. Specifically, we treat the
pretrained merged model as the teacher with its parameters frozen, to supervise the student model
with corresponding style prompt inputs. The style prompt indices are randomly selected in each
training iteration. This method allows for efficient device resource consumption that assigning one
GPU is enough for regularization, instead of deploying N GPUs for all old teachers.

4 EXPERIMENTS

4.1 EVALUATION

Before presenting the experiments, we first introduce the evaluation protocol under our task setting.
To quantitatively measure the performance of the model for learning different target model distribu-
tions, we propose an evaluation metric based on Fréchet inception distance (FID). The FID (Heusel
et al., 2017) metric measures the distance between two probability distributions, the distributions
of model predictions and reference images. Consequently, we sample images through the student
model with different N style prompts and N different teacher models and calculate the FID score
pairwisely, which gives an FID matrix M ∈ RN×N satisfying:

M(i, j) = FID
(
P̂

(i)
S , P

(j)
T

)
, (14)

where P
(i)
S/T represents the distribution of generated images of student/teacher models with the i-th

style. Ideally, we hope the FID scores on the diagonal to be as small as possible, which indicates
how well the model matches different target distributions. Therefore, we define the metrics FIDt as
the trace of M and use it to observe the performance of model merging:

FIDt := Tr(M) =

N∑
i=1

M(i, i). (15)

Besides, we leverage the teacher models to sample two batches of images with different random
seeds and calculate their FID matrix Mref as above. We consider the Mref as a reference since it
suggests the upper bound of model performance. In this paper, we sample 5k images per batch using
text prompts from MS-COCO (Lin et al., 2014) validation set for FID calculation.

4.2 IMPLEMENTATION DETAILS

Our main experiments are based on SDv1.5 architecture and the student model is initialized from
SDv1.5 weights. For base models to be merged, we select eight popular models with different styles
from open-source model communities. We leverage JourneyDB (Sun et al., 2024) as our training
dataset. The distillation training is conducted on 16 A100 GPUs, and the batch size is 320 with each
GPU holding 20 samples. We train the model for 100k iterations, which takes about 32 GPU days.
More implementation details are provided in the Appendices. We also conduct SDXL architecture
experiments, and report results in the Appendices.
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Figure 4: Heatmap of the FID matrix. The left
one is the result M of our model, and the right
one is the reference matrix Mref.

Methods FIDt↓
+ Score Distillation 80.69
+ Feature Imitation 79.27
+ Multi-Class Adversarial 78.38
+ Synthesized Finetune 77.51
Teacher Reference 74.91

Table 1: Ablation Results. The first three lines
are our proposed three types of losses. The fourth
line is the fine-tuning stage with synthesized data.

# Stage #Model Regular. 1 2 3 4 5 6 7 8
0 Teacher 8 - 9.5 9.5 9.2 9.5 9.5 8.2 9.7 9.7
1 Train 4 - 9.5 9.8 9.5 9.7 - - - -
2 Train 8 - 9.6 9.8 9.6 9.9 9.8 9.0 9.8 10.0
3 Fine-tune 4 + 4 ✗ 21.0 23.9 26.7 18.5 9.7 9.6 9.7 10.0
4 Fine-tune 4 + 4 ✓ 9.7 9.8 9.6 9.8 9.9 9.0 9.8 10.0

Table 2: Incremental Learning. Each column is Experiment Number, Training Stage, Number of
Merged Models, Regularization, and FID scores on the diagonal of M. ‘Teacher’ represents the
reference upper-bound results of teacher models. ‘Train’ denotes the model is trained from the start,
‘Fine-tune’ denotes the model is fine-tuned from the checkpoint of #1.

4.3 MAIN RESULTS

The FID score matrix M and reference matrix Mref are illustrated in Fig. 4, and the corresponding
FIDt metric is presented in Tab. 1, where the default final result is highlighted in gray . Com-
pared to the reference FIDt of 74.91, our approach achieves 77.51 FIDt which is quite close to the
upper bound. Besides, we can observe that our result matrix M shows similar patterns to Mref.
This demonstrates our method’s effectiveness in matching all different target model distributions,
achieving all-in-one functionality, and contributing to a versatile model.

For visual qualitative results, we show generated images from our model with different style prompts
in Fig. 6. We can see that our model can synthesize images that are highly consistent with the teacher
models. This further illustrates that the domain knowledge and capabilities of different models have
been compactly merged into one single model, thus significantly reducing parameter redundancy.

4.4 ABLATION STUDY

Loss functions and synthesized data. Tab. 1 ablates the design of our loss functions: score dis-
tillation, feature imitation, and multi-class adversarial loss. It can be seen that feature imitation
can increase the baseline performance by 1.5 FIDt, and adding multi-class adversarial loss further
improves by 1.42 FIDt, which indicates the effectiveness of both feature imitation and adversarial
learning for distribution matching in the model merging task. Furthermore, the fine-tuning stage
utilizing synthesized data can enhance the FIDt by 0.87 at a minimal cost.

Incremental learning with regularization. To ascertain the efficacy of our proposed incremental
learning mechanism, we conduct experiments in Tab. 2. #1 and #2 are two experiments with our
method to merge four and eight models respectively, and #3,4 are experiments to fine-tune from
#1 checkpoint with and without regularization to add the remaining four models. Experiment #3
shows that the first four FID scores have diverged without any regularization, revealing that the
model severely suffers from catastrophic forgetting during continual learning. Experiment #4 cru-
cially demonstrates that our regularization strategy can alleviate this phenomenon and reach parallel
performance with full training, thus guaranteeing stable incremental learning.

4.5 EXTENSION APPLICATIONS

Apart from triggering different generation styles, our framework’s significant advantage is its flexi-
bility and scalability, which support many extension applications with excellent style control ability.
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Ours

Weighted
Merging

Figure 5: Visualization comparison
with Weighted Merging.

Method CLIP-Score Aes-Score Pick-Score
WM 32.47 5.58 22.36

DMM 32.51 5.58 22.35

Table 3: Quantitative comparison with Weighted Merg-
ing on metrics of CLIP-Score (Radford et al., 2021),
Aesthetic-Score (LAION-AESTHETICS), and Pick-
Score (Kirstain et al., 2023). ‘WM’ denotes the
Weighted Merging method.

Style mixing. Benefiting from our proposed embedding-based style prompts, our DMM is easy to
tailor for style combinations during inference. Compared to the common practice of weight merg-
ing (Weighted-Merging), which manually pre-determines the weights to merge parameters of mul-
tiple SD models for mixed effects, our DMM can achieve the purpose more efficiently. Specifically,
given the N prior embeddings {ei}Ni=1, we can represent the mixture of different model distribu-
tions through interpolation of them: ẽ =

∑N
i=1 wiei, s.t.

∑N
i=1 wi = 1, and feed it into the model.

To verify the effectiveness of our proposed embedding interpolation approach for style mixing, we
conduct experiments on the first four realistic-style merged models. Specifically, for DMM we di-
rectly average the first four style prompts during inference, and for the baseline method, we merge
the parameters of the four models. We compare the results on the test set of COCO30K (Lin et al.,
2014), as shown in Fig 5 and Tab. 3. We can see that DMM can achieve semantically and aesthet-
ically comparable performance of style mixing to Weighted Merging (WM), while our approach is
more flexible and can afford many style generation simultaneously. Additionally, to further illus-
trates that our mixing strategy really take effects, we perform interpolation on two styles and adjust
the weights, which delivers a smooth and stable transition between them as shown in Fig. 7. More
results are provided in the Appendices.

Compatibility with plugins. Due to the model being trained based on Stable Diffusion, and the
feature imitation module enabling the intermediate representation of hidden layers to be aligned
with the base model, our DMM is seamlessly compatible with various downstream plugins such as
ControlNet (Zhang et al., 2023), LoRA (Hu et al., 2021), and IP-Adapter Ye et al., 2023, without
extra training. Besides, our approach can be easily adapted to techniques of integrating multiple
diffusion processes and spatial control, such as Mixture-of-Diffusers (Jiménez, 2023) and MultiDif-
fusion (Meng et al., 2021). Since DMM can leverage different styles flexibly through our proposed
style prompts, it can further boost the diversity and versatility of integrated generation. We display
some results with ControlNet and IP-Adapter in Fig. 8, from which we can see that these plug-and-
play modules work on different styles with only a single versatile model. For integrated generation
pipelines, we show the results of DMM combined with Mixture-of-Diffusers in Fig 9, the panora-
mas that harmonize different styles. These extensions greatly boost the efficiency of creativity and
application. More results are in the Appendices. These results show the general application potential
of our DMM method.

Transferring to distillation-based acceleration method. Because our approach is based on distil-
lation and the style prompt is lightweight to embed into the model, our merging mechanism can be
naturally combined with many distillation-based acceleration methods (Luo et al., 2023; Xu et al.,
2024a). We will illustrate the implementation and results in the Appendices.

5 CONCLUSION

In this paper, we have rethinked the model merging task in the realm of T2I diffusion models and
built a versatile style-promptable diffusion models for steerable image generation. Specifically, we
present DMM, a simple yet effective merging paradigm based on score distillation. DMM leverages
three types of loss functions to boost the merging performance and perform regularization to support
stable continual learning. With our designed embedding-based style control mechanism, users can
operate the style prompts to execute various style combinations flexibly during inference. We design
an evaluation benchmark with the new metric and the results demonstrate our merged model is able
to well mimic the expert teacher model in image generation quality. We hope our DMM can facilitate
the development of model merging in image generative models.
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portrait photo of a girl, long golden hair, flowers, best quality

handsome boy, blue suit, upper body portrait

A white plate containing salmon, rice, and broccoli.

Figure 6: Visual results with different style selections. In each group, the first line is our model’s
results, the second is the teacher models’ results. More examples are provided in the Appendices.

6 2

Figure 7: The results of interpolation between two styles. The number on the side is the model
index. The weight list of one ingredient is [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

a girl, red and yellow hairscarf
wearing sunglasses 

Figure 8: Visual results of DMM integrated with ControlNet-Canny and IP-Adapter.

Figure 9: Visual results of DMM combined with Mixture-of-Diffusers.
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A IMPLEMENTATION DETAILS

This section provides a brief overview of the implementation details.

A.1 STYLE PROMPTS DESIGN

As proposed in Sec. 3.3, we represent the different style prompts as a set of trainable embeddings,
forming a codebook. The dimension of embeddings is the same as that of timestep embedding
in SDv1.5, which is 1280. These embeddings are randomly initialized before training and can be
indexed to imply the mode. We adopt a simple strategy to inject the style prompts into the UNet
model. Specifically, we first align the embeddings with an MLP and then add it to the timestep
embedding, which is lightweight enough for plug-and-play purpose. The codebook and the MLP
which contain two Rd×d linear projections are all additional parameters.

A.2 MULTI-CLASS GAN CLASSIFIER DESIGN

The architecture design of our multi-class GAN classifier is inspired by DMD2 (Yin et al., 2024)
and SDXL-Lightning (Lin et al., 2024). Specifically, we attach a sequence of convolutions, group
normalization, and SiLU activations on top of the middle block of the backbone UNet. The only
difference is that the final classification projection dimension is 2N instead of a single scalar. More-
over, we diffuse the discriminator input images with random noise to improve the robustness.

A.3 TRAINING SETTING

SDv1.5 For the main experiment on SDv1.5 architecture, we merge a group of eight popular mod-
els from the open-source platform and list them below:

No. Model Name Style Source
1 JuggernautReborn Realistic https://civitai.com/models/46422
2 MajicmixRealisticV7 Realistic, Asian https://civitai.com/models/43331
3 EpicRealismV5 Realistic https://civitai.com/models/25694
4 RealisticVisionV5 Realistic https://civitai.com/models/4201
5 MajicmixFantasyV3 Anime https://civitai.com/models/41865
6 MinimalismV2 Illustration https://www.liblib.art/modelinfo
7 RealCartoon3dV17 3D Cartoon https://civitai.com/models/94809
8 AWPaintingV1.4 Anime https://civitai.com/models/84476

Table 4: The information of all models to be merged on SDv1.5.

We leverage JourneyDB (Sun et al., 2024) as our training dataset. The distillation training is con-
ducted on 16 NVIDIA A100 GPUs, and the batch size is 320 with each GPU holding 20 samples.
We use AdamW optimizer and the learning rate is 10−5, for both the diffusion model and the dis-
criminator. We train the model for 100k iterations, which costs about 32 GPU days. The loss weights
in Eq. 13 are set as λfeat = 0.001, λadv = 0.01. To support widely used Classifier-Free Guidance
(CFG, Ho & Salimans (2022)), we replace 10% text embeddings with null embeddings for train-
ing the unconditional model. For the synthesized fine-tuning stage, we synthesize 1.5k images per
teacher and fine-tune the model with batch size 10 and 10k iterations, costing about 16 GPU hours.

SDXL We additionally conduct experiments on SDXL architecture and display the results in
Sec. B. The teacher models are:

The training hyper-parameter settings are the same as SDv1.5 experiments, except that the batch
size is 10 per GPU to accommodate GPU memory usage.

SDv1.5-SPLAM As claimed in Sec. 4.5, our approach can be transferred to distillation-based
acceleration methods and obtain a fast version of the merged model. To train an DMM-SPLAM,
we initialize the model with the checkpoint of vanilla DMM and replace the loss with SPLAM loss.
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No. Model Name Style Source
1 JuggernautXLV10 Realistic https://civitai.com/models/133005
2 LEOSAMXLV7 Realistic https://www.liblib.art/modelinfo
3 GhostXLV1 Anime https://civitai.com/models/312431
4 AnimagineV3.1 Anime https://civitai.com/models/260267

Table 5: The information of all models to be merged on SDXL.

The batch size is 50 per GPU, and since rapid convergence, we have trained DMM-SPLAM with 8
GPUs for 6k iterations.

A.4 DMM TRAINING ALGORITHM

We present the overall training process in Algorithm 1. We omit some insignificant parts such as
operations of VAE and text condition for simplicity.

Algorithm 1 DMM Training Algorithm

Require: Number of teacher models N . Number of GPU nodes M . Current GPU node index j.
Student model ϵ(·;θ). Teacher models {ϵ(·;θi)}Ni=1. Discriminator D(·;η).

Get the teacher index of the current node i← j%N + 1
repeat

Sample x0 from data distribution, ϵ ∼ N (0, I), t ∈ [0, T ]
xt ← add noise(x0, ϵ, t)
ϵstu,Fstu ← ϵ(xt, t, i;θ) ▷ Get model outputs and intermediate features.
ϵtea,Ftea ← ϵ(xt, t;θi)
x̂0,stu ← g(xt, t, ϵstu) ▷ Predict the clean image directly.
x̂0,tea ← g(xt, t, ϵtea)
lstu ← D(x̂0,stu) ▷ Predict the logits l ∈ R2N .
Ladv ← cross entrophy(lstu, i)
Lscore ← ∥ϵstu − ϵstu∥22
Lfeat ← ∥Fstu − Fstu∥22
Lgen ← Lscore + λfeatLfeat + λadvLadv

Update θ ← θ − ∂
∂θLgen ▷ Generator backward.

lstu ← D(x̂0,stu), ltea ← D(x̂0,tea)
Ldis ← cross entrophy(lstu, N + i) + cross entrophy(ltea, i)
Update η ← η − ∂

∂ηLdis ▷ Discriminator backward.
until converged

A.5 INFERENCE SETTING

The prompts of generated samples are mainly drawn from MSCOCO (Lin et al., 2014), Par-
tiPrompts (Esser et al., 2024), and open-source platforms. For SDv1.5 architecture, the gener-
ation resolutions contain 512x512, 512x768, and 768x512. For SDXL architecture, the genera-
tion resolutions contain 1024x1024, 1536x1024, and 1024x1536. The guidance (CFG) scale is set
to 7 constantly, and we adopt a simple negative prompt ‘worst quality,low quality,normal qual-
ity,lowres,watermark,nsfw’. We use DPM-Solver++ (Lu et al., 2022a;b) scheduler, the number of
inference steps is 25.

B ADDITIONAL RESULTS

This section provides more results of generated samples under different tasks to demonstrate our
approach’s performance and flexibility.
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B.1 MAIN RESULTS

We display more results of our DMM for text-to-image generation with different styles in Fig. 10
and Fig. 11. It is worth noting that since some teacher models can generate images at multiple
scales, our DMM can well inherit this ability even though it does not access the multi-scale data
during training, as shown in Fig. 12. The results on SDXL are provided in Fig. 13. The results on
SPLAM are provided in Fig. 16.

B.2 RESULTS WITH PLUGINS

We display more results of our DMM equipped with various downstream plugins: ControlNet in
Fig. 14 and LoRA in Fig. 15. It can be seen that our model maintains the power of these plugins
while presenting different styles.

We show more results of DMM combined with Mixture-of-Diffusers in Fig 17, the panoramas that
harmonize different styles.

B.3 RESULTS OF STYLE MIXING

In this part, we illustrate the effectiveness of our proposed approach to style mixing. In Fig. 18, we
interpolate the eight styles pairwisely with equal weights and show the grid of results. In Fig. 19, we
perform interpolation on two styles and adjust the weights, delivering a smooth and natural transition
between them.

C LIMITATION AND FUTURE WORKS

As far as we know, we are the first to comprehensively analyze and reorganize the model merging
task in the context of diffusion generative models. We are also the first to propose a baseline training
method for diffusion model merging based on knowledge distillation. While training brings the
advantage of performance improvements, it also requires more computing resources. Our DMM
currently consumes about 32 GPU days for 100k training iterations to reach optimal convergence,
which is relatively high. We hope for more observation and investigation in the scenario of diffusion
model merging, and more efficient approaches can be explored.
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A kangaroo wearing an orange hoodie and blue sunglasses standing on the grassin front of the Sydney Opera House

A brown teddy bear holding flowers in front of a grave

Figure 10: More text-to-image results of DMM compared with the teacher models. In each group,
the first line is the results of DMM, and the second line is the results of teacher models.

1boy,handsome male,face,beard, beige shirt, white background

masterpiece,bestquality, 1girl, close up, colorful, cinematiclighting, bustshot, extremelydetailedCGunity8kwallpaper, redhair, 
solo,smile,intricateskirt,flyingpetal,Flowerymeadow sky, cloudy_sky, building, moonlight, moon, night, darktheme, light, fantasy,

World of ice and snow, Epic level scenery

a squirrel in a field

a boy and a penguin sitting on the moon

Figure 11: More text-to-image results of DMM.
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masterpiece,best quality,igirl,solo,pinkeyes,stuffed bunny,white thighhighs,pinkhair,bangs,smile,looking at viewerlonghair,hair 
intakes,holding,dress,bareshoulders,closed mouth,virtual youtuber,offshoulder,holding stuffed toy,shoes,cowboyshot,ribbon,long 
sleeves,multicoloredhair,white jacket,pink ribbon,whitehair,bow,braid,white dress,hair betweeneyes, gradient background, 
absurdres,veryaesthetic,multicolored hair,amazingquality,detached sleeves

elf portrait,enchanting beauty,fantasy,ethereal glow,pointed ears,delicate facial features,long elegant hair,nature-themed 
attire,mystical ambiance,soft lighting,tranquil expression,harmonious with nature,subtle magical elements,serene,intricate
jewelry,dreamlike quality,pastel colors,

1girl, black hair with bangs, white sweater, orange background

A truck that is sitting in the grass.

A young child using an electric sander on a long piece of wood.

Figure 12: More multi-scale text-to-image results of DMM.
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mysterious silhouette woman with hat,by Minjae Lee,Carne Griffiths,Emily Kell,Steve McCurry,Geoffroy Thoorens,Aaron
Horkey,Jordan Grimmer,Greg Rutkowski,amazing depth,double exposure,surreal,geometric patterns,intricately detailed, 
bokeh,perfect balanced,deep fine borders,artistic photorealism,smooth

a beautiful female model, In the studio, beautiful flowers, depth of field, brightly

masterpiece,best quality,1girl,fractal art,ink wash painting art style,realistic art style

1boy, young man black hair putting hair, male k-pop idol, lovingly looking camera, levi ackerman, medium portrait soft 
light, chop, beautiful model, oval face, vivid

backlit portrait of a girl, soft sunlight halo around her head, wearing a thick blue scarf and a black coat, straight face, 
light leaking from an overexposed window, neutral, relaxed expression, 25 years old, masterpiece

Figure 13: Text-to-image results of DMM on SDXL architecture.
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a boy on the country road, best quality

room

1girl in the kitchen

Figure 14: More results of DMM combined with ControlNet. We leverage the control conditions of
OpenPose, MLSD, and Depth.

Figure 15: Results of DMM combined with different LoRAs. We use three open-source LoRAs
respectively: Genshin Impact Furina, Pikachu, and Black Myth Wukong.
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1girl, pink hair

a handsome boy, yellow background, blue eyes

Figure 16: Results of DMM combined with SPLAM with only 4 inference steps.

Figure 17: More results of DMM combined with Mixture-of-Diffusers.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 18: The result gird of pairwise interpolation. The interpolation weights are 0.5 and 0.5.
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6 2

56

3 2

4 8

7 1

Figure 19: More results of interpolation between two styles. The number on the side is the model
index. The weight list of one ingredient is [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].
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