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Abstract

When using an LLM to process text outside the training domain(s), an often
overlooked factor is vocabulary mismatch, where the general-domain tokenizer
fails to capture frequent domain-specific terms, leading to higher token fertility and
thus a decrease in processing speed due to suboptimal sub-word splits.

We address this limitation by augmenting the pretrained vocabulary with a set
of domain-specific tokens. To this end, we design an algorithm that extends an
existing tokenizer while guaranteeing it never decreases tokenization efficiency:
every input sequence is segmented into at most the same number of tokens as
before.

Evaluated on real-world e-commerce use-cases, the augmented tokenizer signi-
ficantly shortens input sequences by up to 20% and reduces inference latency
on downstream tasks while preserving predictive quality. We further analyze
secondary effects, such as the impact on forward pass speed and the rate at which
the model adopts the newly introduced tokens, to illustrate the broader benefits of
vocabulary adaptation.

1 Introduction

Large Language Models (LLMs) have been established as state-of-the-art approaches for countless
downstream applications across many domains and languages, still it is a common occurrence that
they are adapted either to underrepresented/unseen languages or to new domains, such as healthcare,
finance or e-commerce [Artetxe et al.| 2020, Peng et al., 2024} [Palen-Michel et al.}2024]. While it is
relatively common to see tokenizer adaptation for new languages (see also Section [2)), we argue that
extending the tokenizer can also show significant benefits for domain adaptation. For example, in
e-commerce we can improve the modeling of the language occurring in brand names, stock-keeping
units or multilingual descriptors, which occur with high regularity but are often not represented as
single tokens in the original vocabulary.

When we extend the vocabulary with a tailored set of additional tokens that cover frequent or
semantically critical domain terms, there are a number of tradeoffs and non-trivial questions on which
we want to shed light in this paper, specifically: (i) How and to what extent should we select candidate
tokens so that the resulting token set maximizes compression without bloating the embedding table?
(i) Can we modify an existing tokenizer incrementally and deterministically, such that the new
segmentation is never worse than the original, thus preserving backward compatibility with legacy
inputs? (iii) What are the measurable gains, not only in static token counts but also in end-to-end
inference time and prediction quality, when the augmented tokenizer is paired with a domain-specific
model?
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We answer these questions through three main con-
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degrading model quality.
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LLM deployment. The proposed method is orthog-
onal to ongoing efforts in model quantization, spec-

ulative decoding, and optimized kernels, and can  Fjgure 1: We extend the Llama 3.1 tokenizer

be combined with them to yield multiplicative ef-
ficiency gains, all while maintaining, or even enhanc-
ing, application-level performance.

2 Related Work

with new vocabulary entries and merge oper-
ations, which are specific to the e-commerce
domain. The result is a much more efficient
tokenization for e-commerce specific phrases,
which significantly reduces the cost of run-

ning such models in production.

Vocabulary Extensions

Before the rise of autoregressive LLMs, several

works have shown that the vocabulary of BERT-style

non-autoregressive (encoder-only) models can be ex-

tended to adapt the model to a new domain like

biomedicine [Tai et al., 2020, [Porner et al., 2020,

Sachidananda et al.,[2021]], news [Mosin et al., [2023]], legal |Gee et al.| [2022], and IT [Zhang et al.
2020, |Yao et al.,|2021]]. In contrast to the present work, the main motivation to adapt the vocabulary
of encoder-only models was to improve the model quality in the new domain, while here we are
primarily focused on improving the inference efficiency. For encoder-only models, the task is also
easier because we do not have to worry about if and how well the model decides to produce the new
tokens, because these models are not used for text generation, but for classification etc.

In the realm of autoregressive LLMs, previous work is mostly limited to vocabulary extensions for
the sake of expanding to new languages.

There exist many approaches that change the existing vocabulary of LLMs to new languages. This is
achieved either by adding new tokens to the existing tokenizer [ Yang et al., {2022} |Cui et al.| 2023
Balachandran| [2023| |Larcher et al.,|2023| |Pipatanakul et al.,|2023| |Lin et al.| 2024} Sha et al., 2025,
Fujii et al.l 2024, [Choi et al.} 2024} [Nguyen et al., 2023 [Tejaswi et al.,|2024, Mundra et al., 2024,
Yamaguchi et al., [2024cllal [Liao et al.,[2024]] or by replacing a certain number of tokens or even the
full vocabulary [Csaki et al., [2023] |Ostendortf and Rehm\ [2023| Dalt et al.| 2024} Remy et al.| 2024,
Yamaguchi et al.,|2024b, [Dobler and de Melol 2024, |Alexandrov et al., [2024} |Gu et al.} 2024]]. From
the above, only very few share the details on how the tokenizer extension is performed. (Csaki et al.
[2023]] replace the least frequently used tokens with new ones and add the corresponding merges at
the beginning of the merge list. Nguyen et al.|[2023] add new tokens from an existing tokenizer based
on some language-specific dataset but do not mention if and how they handle new merge operations.
Yamaguchi et al.|[2024c|| extend the existing tokenizer with new, language-specific tokens by adding
the corresponding merges at the beginning of the merge list.



Compared to language-adaptation, there are only few works that investigate vocabulary customization
of autoregressive LLMs for domain-adaptation. Nakash et al.| [2025] introduce a framework called
AdaptiVocab where they replace existing tokens with domain-specific n-gram-based tokens to improve
decoding efficiency for specific domains. The downside of their approach is that inputs that do not
fall into the right distribution, it can happen that more tokens are needed than with the original
tokenization, while our approach guarantees that always equal or fewer tokens are being used. At
the time of writing, they have not yet released their code. [Liu et al.|[2024]] propose an algorithm
called VEGAD to extend the tokenizer for the legal and medical domains. However, they do not
discuss how merge operations are added and they focus on quality improvement rather then efficiency.
Dagan et al.|[2024] show that inference efficiency on code benchmarks can be improved by adding
domain-specific tokens to the model vocabulary. As above work, they also do not discuss how merge
operations are added to the existing tokenizer.

Regarding the initialization of the new embedding vectors, previous work has shown that using the
average of the existing token embeddings for the respective new tokens performs better than random
initialization [Yao et al.| 2021]].

3 Methodology

In a subword tokenizer [Sennrich et al.,2016], the list of words is split into pieces using two main
components

1. The list of merge operations tells us which tokens should be merged. A merge operation is
a tuple consisting of two strings, e.g., (‘th’, ‘e’). This example tells us that we need
to merge the tokens ‘th’ and ‘e’, forming a new token ‘the’ . The ordering of the list
of merge operations tells us in which order we need to apply these merges.

2. The model vocabulary is a dictionary that maps each token to a certain index. One entry
in the vocabulary could look like this: *th’: 873, indicating that the token ‘th’ is
mapped to the integer 873. The value of the index corresponds to the order in which the
tokens were added to the tokenizer. That means for example the tokens ‘t’ and ‘h’ will
have an index that is smaller than the index of the token ‘th’ which is the result of merging
the two.

When the tokenizer is applied to input text, it first decomposes the text at the byte level (for UTF-8
in Western languages, characters). We then consider the ordered list of merge operations: For each
merge operation, we match the corresponding pairs in the text and merge the two tokens to form a
single new token. After exhausting the full list of merge operations, the model vocabulary maps each
remaining token to an integer, which form the LLM’s input.

To extend the vocabulary of an existing tokenizer, it is necessary to modify both the model vocabulary
and the list of merge operations. In our approach to creating a domain-adapted tokenizer we have the
following steps, described in detail in Appendix [A.3}

1. Training of an in-domain tokenizer using a domain-specific dataset.

2. Extension of the existing ‘original’ tokenizer with new in-domain tokens from the tokenizer
trained in (1).

3. Initialization of the new embedding and projection vectors in the tokenizer-extended LLM.
4. Continuous training of the tokenizer-extended LLM to optimize for the new vocabulary.

5. Evaluation of the final tokenizer-extended LLM.
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Figure 2: Impact of extending the Llama-3.1 tokenizer with e-commerce specific tokens. Shown is
the average number of tokens needed to encode a document vs the number of new tokens added to
the tokenizer. We compare our algorithm for tokenizer extension against|Yamaguchi et al.| [2024c].
Impact on tokenization of (a) Wikipedia articles; (b) downstream e-commerce tasks.

4 Experiments

4.1 Experimental setup

For tokenizer training, we utilize the Hugging Face tokenizers library [Wolf et al. 2019]]. For
tokenizer evaluation, we employ a comprehensive set of multilingual, e-commerce-specific, in-house
downstream tasks (14 tasks in total).

As the starting LLM for tokenizer extension, we use a version of the Llama-3.1 8B model that has
already been adapted towards the e-commerce domain via continuous pretraining (see Herold et al.
2025 for details). This adaptation has been done without changes to the tokenizer, so the model still
uses the original Llama 3.1 tokenizer with 128k vocabulary size Dubey et al.[[2024]].

For LLM continued training, we utilize the same data as [Herold et al.| [2025]], which consists of a
multilingual, 50-50 mixture of general domain and e-commerce-specific data. As training framework,
we use the Megatron-LM framework from NVIDIA [Shoeybi et al 2019, [Narayanan et al., |2021]].
Training was conducted using 60 nodes, each having 8 NVIDIA H100 80GB GPUs (a total of 480
GPUs). The GPUs are connected via NVIDIA NVLink (intra-node) and InfiniBand (inter-node).
Training as described in Section [4.3|takes less than 24h. The hardware is part of the eBay compute
platform.

4.2 Vocabulary-size trade-off study

In terms of the efficiency/speed gains from the tokenizer extension, there is a tradeoff determined
by two aspects: On the one hand, adding additional in-domain tokens should (hopefully) reduce the
amount of tokens needed for the desired model output, and hence less computation in the hidden layers
of the LLM overall. On the other hand, increasing the vocabulary size leads to more computation
(per token) in computing embeddings and logits, since the embedding/projection matrices are larger.
We have to consider this tradeoff and find an optimal point that maximizes the requests per second
(RPS) of the deployed model.

Fortunately, this can be done based on an input sample and the model geometry and without expensive
LLM training. We build multiple versions of the extended tokenizer with varying amount of tokens
being added, and subsequently check the average number of tokens needed to encode the text sample.
We test the encoding efficiency for a general domain dataset (English Wikipedia), as well as for our

2Most tokenizers have further components, like pre- and post-processing operations, special tokens, special
templates etc. But these remain unaffected by the tokenizer extension framework and will just be copied over
from the original tokenizer.
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set of in-house downstream tasks. We compare our algorithm outlined in Algorithm [1|against the
algorithm of [Yamaguchi et al.|[2024c], at the time of writing the only who have released their code
and exact algorithm for tokenizer extension. The results can be seen in Figure

As anticipated in the introduction, we find a more pronounced effect from extending the tokenizer
with e-commerce-specific tokens on the specialized domain (b) than on general-domain Wikipedia
texts (a). While Yamaguchi et al.’s approach prepends the merge operations to the list, our approach
is more conservative by appending the new merges. This avoids the surprising decrease in efficiency
when adding more tokens seen for general-domain texts, but leads to slower gains in efficiency
in specialized text. Considering potential yet-unseen tasks, we think that our more conservative
approach with a guarantee of an upper limit on the tokenization is preferable.

Figure 3] shows the effect that the increased size of embedding and projection matrices have on the
forward pass timing (8B parameters, in vLLM framework, 300 tok/sequence at a batch size of 128 on
H100). For our 8B model, we find 30k additional tokens to be a good tradeoff between encoding
and forward pass efficiency. With 30k additional tokens, the forward pass duration increases by
1%. Taking into account the token efficiency however, we can expect an average speedup of 8% on
e-commerce-specific downstream tasks (see Figure b)), with up to 20% speedup on specific tasks

For a more direct comparison, we measure the inference RPS of base and tokenizer-extended LLM
for different input/output sequence lengths in Table[T} A 20% reduction of tokens with the extended
tokenizer, as we have seen for some of our downstream tasks, then shows an expected efficiency gain
of around 20% for the shorter 300 words sequences, while for 3000 word sequences, this gain reaches
almost 30% due to attention calculation having a larger impact. This demonstrates that tokenizer
extension is even more beneficial when dealing with longer sequences.

4.3 Impact on model quality

Besides the efficiency tradeoff discussed above, we need to consider model quality, which may
be affected by the continuous training necessary for new embeddings. Using the findings from
the previous section, we extend the Llama-3 tokenizer with 30k new in-domain tokens. Following
Yao et al.|[2021]], we initialize the new embedding and projection vectors with the average of the
corresponding vectors from the existing tokens (see Algorithm [2). We continue to train the LLM for
10,000 iterations After training, we evaluate the LLM on the same tasks as in Herold et al.| [2025]].
The results can be seen in Table 2] We find that the tokenizer-extended LLM exhibits the same quality
both on general domain and in-domain tasks as the domain adapted e-Llama model we started with.

3We note here that the tradeoff is model size dependent, as|Dagan et al.| [2024] also point out: for larger
models, the impact will be smaller and vice versa.

*Learning rate is reduced in a cosine schedule from 1.0e-5 to 5.0e-7, all other hyperparameters are identical
toHerold et al.| [2025]].
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Model

En non-En En non-En
NLU Lead. MMLU | NLU Lead. | avg. avg.
8B LLM 71.6 12.6 63.5 540 424 60.5 479
+ extend vocab  71.8 12.1 63.4 537 429 60.1 47.6

Table 2: Impact of extending the Llama-3.1 model vocabulary with additional e-commerce specific
tokens on the model quality.

sequence length o .
d & New tokenization being used

[# words]
<15 95.3%
15-49 98.0%
>= 50 97.8%

Table 3: How frequently is the new tokenization used vs the old tokenization. For sequences larger
than 15 words, the adapted model prefers the new tokenization in roughly 98% of cases.

4.4 Behavior of Tokenizer-Extended LLM

In this section we discuss how well the tokenizer-extended LLM actually utilizes the newly added
in-domain tokens. In theory, the model could simply ignore all new tokens during generation, and we
do not get any benefit of the tokenizer extension. We note that this only applies to the text generation.
The input that the model receives at the beginning will of course always be tokenized using the new
tokens, so here we are guaranteed to get the benefit of more efficient encoding. To the best of our
knowledge, we are the first to analyze this crucial part of LLM tokenizer extension.

We take again our set of in-house downstream tasks. For each example, we go through the text
word-by-word. For each word, we look at the probability distribution of the tokenizer-extended LLM
model, given all previous words as context. Going through the words, we count, how often the model
wants to predict the ‘old’ tokenized version of the word, and how often it wants to predict the ‘new’
tokenized version. The results are shown in Table[3

We find, that in almost all cases, the model prefers the new tokenization vs the old one. For short
sequences <15 words, there is still around 5% chance that the model produces the old tokenization,
but for longer sequences, the adapted model prefers the new tokenization in almost 100% of cases.

5 Conclusion

In this work we identify vocabulary mismatch as an often-overlooked, yet decisive, bottleneck when
autoregressive LLMs are moved from broad-domain pretraining to the specialized distribution of
a specific target domain. We present a tokenizer-extension algorithm that adds the most frequent
in-domain tokens without ever increasing the number of tokens required to encode any sequence,
thus guaranteeing backward compatibility.

Experiments on a multilingual, production-grade e-commerce set of in-house downstream tasks show
that the extended tokenizer shortens input sequences by up to 20%. When deployed, this translates
into 20%-30% higher throughput, depending on prompt length. Importantly, this is achieved without
compromising model quality on general or in-domain tasks. In additional studies, we find that the
model learns to emit the new tokens in ~98% of cases for sequences longer than 15 words, confirming
that the additional vocabulary is effectively embraced rather than ignored.
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A Technical Appendices and Supplementary Material

A.1 Limitations

In this study we focus on a single domain, namely e-commerce, since this is the domain of our
in-house downstream tasks. Potentially, the behavior of our approach might be different for different
domains. Furthermore, we focus on a single model family, namely the Llama-3 models, since they
are the most relevant for us at this time. The behavior of other model families might be different in
terms of potential savings or the change in model quality after the tokenizer extension.
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A.2 Related Work - Continuation

LLM Efficiency

Efficient LLM inference can leverage a spectrum of model compression and system-level optimiza-
tions. Model quantization reduces weight/activation precision (e.g., 8-bit or 4-bit) to shrink memory
and computation, achieving significant throughput gains with negligible accuracy loss Xiao et al.
[2023]. Similarly, model pruning eliminates redundant parameters or entire sub-modules (e.g., at-
tention heads or layers), yielding substantially smaller and faster models with minimal performance
drop|Lagunas et al.|[2021]]. Knowledge distillation trains compact student models to mimic large
teacher models, retaining most of the original accuracy with far fewer parameters and faster runtime
Sanh et al.|[2019]. Beyond model-centric methods, compilation frameworks (e.g., NVIDIA TensorRT
and Apache TVM) convert neural network graphs into optimized executables via kernel fusion,
mixed-precision and other low-level optimizations, greatly improving throughput on target hardware
Ratul et al.|[2025]]. Finally, edge deployment of LLMs has emerged, using aggressive compression
and efficient runtimes to run models on resource-constrained devices [Husom et al.|[2025].

Our approach of vocabulary extension is fully orthogonal to existing efficiency-related optimizations.
It can be used on top of any highly efficient deployment to further reduce cost and latency.

Domain Adaptation

Large pretrained LLLMs often struggle with domain-specific tasks, motivating targeted domain
adaptation Lewkowycz et al.|[2022], Chen et al.| [2023]], Roziere et al.|[2023]]. Continuing pretraining
on in-domain text or fine-tuning the entire model can substantially boost performance on domain-
specific tasks|Azerbayev et al.|[2024], Shao et al.|[2024], Thulke et al.[[2024], but performing these
is quite expensive. To improve efficiency, parameter-efficient methods have emerged: adapter-based
fine-tuning inserts small trainable modules into the network while keeping most weights frozen
Houlsby et al.|[2019]], and prompt tuning optimizes a few soft prompt vectors with the model fixed
Lester et al.|[2021]]. Retrieval-based approaches further inject relevant domain knowledge at inference
time, enabling LLMs to leverage external in-domain data on the fly instead of exhaustive retraining
Xu et al.|[2023]].

A.3 Detailed Methodology
A.3.1 Training a Domain-Specific Tokenizer

The first step involves the training of a new in-domain tokenizer model on some domain-specific
dataset. It is important that we choose sufficient training data representative of the target domain,
ideally encompassing all potential downstream tasks. For the tokenizer, we only care about the
vocabulary, we can discard the list of merge operations. Since we expect a significant vocabulary
overlap between the original tokenizer and the in-domain one, we should set the target token size for
training to a higher number than the number of tokens we want to add to the original tokenizer.

A.3.2 Extending the Original Tokenizer

We initialize the extended tokenizer with the original tokenizer. We then traverse the vocabulary of
the in-domain tokenizer in the default order. For each token, we tokenize it using the current extended
tokenizer. If the result is a single token, this means this token is already in the vocabulary of the
extended tokenizer and we can continue without doing anything. However, if the token is split into
two tokens, we append the tuple of the two tokens at the end of the list of merge operations of the
extended tokenizer and also add the token into the model vocabulary. We want to point out, that
following this approach, we will never encounter the case where the token is split into three or more
tokens, because all except one of the corresponding merge operations will already have been added to
the extended tokenizer in an earlier step. We repeat the above until we have added a fixed amount of
new tokens to the tokenizer. The detailed algorithm is outlined in Algorithm [I]

Since we append the new merge operations always to the end of the list, the first part of the final list
of merge operations will be identical to that of the original tokenizer. The merges that are appended
to the list (see Algorithmline 14) can only reduce (or leave unchanged) token counts because earlier
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merges are unaffected by later ones. That means, contrary to existing approaches, we will never have
the situation where our extended tokenizer results in a worse tokenization than the original one.

A.3.3 Embedding Initialization

Since we are extending the LLM vocabulary, we also need to initialize the newly added embedding
and projection vectors in the LLM. The baseline method comprises of using random initialization,
but previous work has shown that better performance can be achieved when initializing the new
token-embedding as the average of the embeddings of the existing tokens that the new token is
composed of |Yao et al.|[2021]]. Therefore we follow this approach of average initialization. The
detailed algorithm for embedding initialization is outlined in Algorithm[2]

A.3.4 Continuous Training

To adapt the tokenizer-extended LLM to the new extended vocabulary, we need to continuously train
the model on some data. In our setting, we start with a model that is already adapted towards the
e-commerce domain, so we just sample training data from the same distribution that was used to
adapt the model to the domain in the first place. We perform full training of all model parameters, not
freezing any part of the network.

A.3.5 Final Evaluation

We need to evaluate the final tokenizer-extended LLM in several aspects:

* What is the inference speedup on in-domain downstream tasks?

* How has the model quality changed?

* To what extent is the model utilizing the new tokenizations vs the old one?
To measure the model quality, we utilize the same set of public and e-commerce specific benchmarks
as in|Herold et al.|[2025]]. To measure the inference speed and utilization of new tokens, we design a

set of experiments utilizing a comprehensive set of in-house downstream tasks and LLM deployment
via vLLM [Kwon et al.|[2023]].
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Algorithm 1: Extend base BPE Tokenizer with in-domain tokens

Data: T}: base tokenizer, T,;: in-domain tokenizer, N: number of tokens to add
Result: Ti,: extended tokenizer

1 V}, < vocab of Tj;

2 My < merges of Ty;

3 V4 < vocab of Ty, sorted by descending frequency;

4 10

5 foreacht € V; do

6 if t € V}, or T},’s pre-tokenizer splits t then

7 L continue;

8 enc < Ty.encode(t);
9 if len(enc) # 2 then

10 | continue;
1 [I,7] + Tp.encode(t);
12 m <— merge of [ and r;

13 if m ¢ M, then
14 | append m to My;

15 add t to V}, with new ID;
16 i1+ 1;

17 if 2 > N then

18 L break;

19 Tepy < Tp;
20 return updated tokenizer 7Ty;

Algorithm 2: Initialize the in-domain token embeddings.

Data: T}: base tokenizer, Ty: in-domain tokenizer, E}: base token embeddings
Result: E;: in-domain token embeddings
Vy < vocab of Ty;
Vg < vocab of T};
Eq < {};
foreach t € V; do
if t € V, then
L continue;

e <+ 0;

8 ty < Tp.encode(t);

9 foreach ¢, € ¢, do
10 L e<— e+ Eb[told];

u e < e/len(tp);
12 add e to Ey;

A U A W N

~

13 return E;
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