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Abstract

Modern neural networks often encode unwanted concepts alongside task-relevant
information, leading to fairness and interpretability concerns. Existing post-hoc
approaches can remove undesired concepts but often degrade useful signals. We
introduce SPLINCE—Simultaneous Projection for LINear concept removal and
Covariance prEservation—which eliminates sensitive concepts from representa-
tions while exactly preserving their covariance with a target label. SPLINCE
achieves this via an oblique projection that “splices out” the unwanted direction
yet protects important label correlations. Theoretically, it is the unique solution
that removes linear concept predictability and maintains target covariance with
minimal embedding distortion. Empirically, SPLINCE outperforms baselines on
benchmarks such as Bias in Bios and Winobias, removing protected attributes
while minimally damaging main-task information.

1 Introduction

Deep neural networks (DNNs), including Language Models (LMs), have achieved great success
in natural language processing (NLP) by learning rich representations of text, often referred to as
embeddings [Cao, 2024, Wang et al., 2024a]. These embeddings were shown to also encode undesired
information, such as markers of gender, leading to biased predictions [Bolukbasi et al., 2016]. In
response, a variety of concept-removal methods has been developed to remove undesired information
from embeddings. Examples of such methods are iterative nullspace projection (INLP, Ravfogel
et al. [2020]), Linear adversarial concept erasure (RLACE, Ravfogel et al. [2022]), Spectral Attribute
Removal (SAL, Shao et al. [2023]), and Least-squares Concept Erasure (LEACE, Belrose et al.
[2023]). The shared objective of these methods is to make a concept—such as gender—-undetectable
by any linear classifier, while preserving the original embeddings as much as possible.

Previous work has noted that a drawback of post-hoc concept-removal methods is that in addition
to removing a particular concept, they tend to also eliminate other concepts and information from
embeddings [Feder et al., 2021, Belinkov, 2022, Kumar et al., 2022, Guerner et al., 2025, Ravfogel
et al., 2025]. Consider, for instance, a scenario where we wish to remove the effect of gender markers
on a classifier that screens CVs for job applications. Naively applying concept-erasure techniques
to removes gender markers from the input representations may inadvertently harm the model’s
performance on the primary task of profession prediction, since in real-world data, certain professions
are strongly associated with gender. As a result, the erasure may distort relevant information,
undermining both interpretability and utility.

In this paper, we seek to address a key drawback of post-hoc concept-removal methods. Our
contribution is to introduce SPLINCE, a projection that (similar to LEACE or SAL) prevents any
linear classifier from predicting a concept, while also preserving the covariance with a task of
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interest. Mathematically, we construct an oblique projection that places the covariance between the
representations and a protected attribute in its kernel, while maintaining the covariance between the
representations and the main-task label in its range.

We prove that if a linear classifier is re-fitted after projection without regularization, any two pro-
jections that share the same kernel (i.e., that linearly erase the same subspace) will induce identical
loss. In that sense, SPLINCE and previous methods such as LEACE [Belrose et al., 2023] (as well
as more naive versions that do not explicitly aim to maintain the minimality of the projection) are
all equivalent. For causal model interventions aiming to interpret its behavior—a situation where
the underlying model is necessarily frozen—we argue that SPLINCE may perform a more surgical
intervention, akin to minimizing the side effects of erasure on related concepts (e.g., removing gender
bias while preserving grammatical gender). Empirically, we show that in a realistic classification
setting, SPLINCE improves fairness in a highly challenging, imbalanced scenario, and removes
stereotypes while maintaining correlated factual information.

2 Related work

Concept-removal: in response to growing concerns about DNNs relying on problematic or harmful
concepts, a range of adversarial methods were developed to remove concepts from the embeddings
of neural networks [Xie et al., 2017, Zhang et al., 2018]. However, these methods were later
deemed unsuccessful at removing concepts [Elazar and Goldberg, 2018]. Subsequently, many works
(including this) focused on preventing a linear classifier from predicting a concept as a more tractable
alternative. This line of work is supported by the linear subspace hypothesis [Bolukbasi et al., 2016],
which argues that concepts are represented in linear subspaces of embeddings (for a more elaborate
discussion, see Park et al. [2024]).

Existing linear concept-removal methods: iterative nullspace projection (INLP, Ravfogel et al.
[2020]) trains a linear classifier to predict a concept, and projects embeddings to the nullspace of the
parameters of the linear classifier. This is repeated until the concept can no longer be predicted by the
linear classifier. Relaxed Linear Adversarial Concept Erasure (RLACE, Ravfogel et al. [2022]) trains
an orthogonal projection matrix such that a concept cannot be predicted by a linear classifier. These
works were followed up by Least-squares Concept Erasure (LEACE, Belrose et al. [2023]), which
ensures that no linear classifier can predict the concept (hereafter referred to as linear guardedness)
while minimally altering the embeddings. Spectral attribute removal (SAL, Shao et al. [2023])
projects the embeddings orthogonal to the first k eigenvectors of the covariance matrix Cov(x, z).
Mean Projection (MP, [Haghighatkhah et al., 2022]) projects embeddings to the nullspace of the
mean difference between embeddings with and without concepts. It is equivalent to SAL when the
concept is binary. SAL and MP also guarantee linear guardedness (similar to LEACE), whereas other
methods may or may not satisfy this criterion.

Linear concept-removal while preserving task-relevant information: previous work suggests
that linear concept-removal methods remove task-relevant information in addition to the concept
they seek to remove [Belinkov, 2022, Kumar et al., 2022, Guerner et al., 2025]. In response, several
alternatives have been proposed to address this issue, all removing a different linear subspace [Dev
et al., 2021, Holstege et al., 2024, Bareeva et al., 2024, Shi et al., 2024]. However, each of these
approaches sacrifices linear guardedness in order to retain more task relevant information. An
alternative approach is to explicitly optimize for fairness while maintaining task performance [Shen
et al., 2021]. However, this approach is more resource-intensive, as it cannot be applied to the frozen
representations of a pretrained model. Moreover, because it modifies the original representations, it
is unsuitable for scenarios where the intervention is intended to simulate causal experiments on the
behavior of a pretrained LM, as discussed in section 4.2.

In this paper, we study how to retain task-relevant information while maintaining linear guardedness.
Recent work has also focused on applying projections to parameters of DNNs instead of embeddings
[Limisiewicz et al., 2024, 2025, Arditi et al., 2024]. This is outside of the scope of this paper.

3 Theory

We consider random vectors x ∈ Rd and z ∈ Z. Here, x can be any vector of features, but should
generally be thought of as embeddings of a deep neural network. In most cases we consider, they are
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the last-layer embeddings. The vector z represents the concept to be removed. It can be a binary or
one-hot-encoded label, or continuous in the case of a regression setting.

The general idea of linear concept removal is to apply an affine transformation r(x) = Px + b,
where P ∈ Rd×d and b ∈ Rd, that prevents classifiers from recovering the concept represented by z
from the features x. A special case of this objective aims to achieve linear guardedness [Ravfogel
et al., 2023, Belrose et al., 2023], the inability of linear classifiers to predict the concept. Concretely,
they show that linear guardedness is equivalent to zero covariance between the transformed features
and the concept to be removed, i.e., Cov(r(x), z) = PΣx,z = 0, where Σx,z = Cov(x, z) is the
cross-covariance matrix of x and z, and the symbol 0 can refer both to a zero vector and zero matrix.
This condition, to which we will refer as the kernel constraint, only requires the kernel of P to contain
the column space colsp(Σx,z) ⊆ Rd. The intuition is that P removes directions in the feature space
that are linearly correlated with z, making it impossible for linear classifiers to use the transformed
features to predict z. Importantly, this means that the requirement of linear guardedness does not
uniquely determine the affine transformation. Belrose et al. [2023] use this freedom to minimize
the impact of the transformation on the distance between the original and projected representations,
driven by the intuition that the minimal-norm projection would minimally damage other semantic
information encoded therein.

This problem turns out to have a closed-form solution: Belrose et al. [2023] show that for centered
data, i.e., E[x] = 0, the constrained optimization problem

argmin
P∈Rd×d

E
[∥∥Px− x

∥∥2
M

]
, PΣx,z = 0 (1)

has solution P⋆
LEACE = W+UUTW, where W = (Σ

1/2
x,x)+ is a whitening matrix and U is a

matrix whose orthonormal columns span the orthogonal complement of colsp(WΣx,z), which is
the column space of the covariance matrix between x and z after whitening. Here, we denote by
Σx,x ∈ Rd×d the variance-covariance matrix of x, by A+ the Moore-Penrose pseudoinverse of a
matrix A, and by A1/2 the p.s.d. square root of a p.s.d. matrix A. The resulting transformation is an
oblique projection with kernel colsp(Σx,z) and range determined by the whitening matrix W. The
intuition is that this is the smallest possible kernel that satisfies the kernel constraint in equation 1,
while the chosen range minimizes the distortion caused by a projection with this kernel.

3.1 SPLINCE: Ensuring linear guardedness while preserving task-relevant covariance

The LEACE projection ensures linear guardedness while minimizing the distortion of the features,
but is oblivious of the main task of the model. A small expected norm squared may not optimally
preserve information that is actually useful for the task at hand. Suppose now there is a random vector
y ∈ Y that represents the task-relevant information. Similar to the concept vector z, it can be binary,
one-hot encoded or continuous. We conjecture that task-relevant information in the features x is
located in the directions that linearly covariate with y. In other words, it is located in the column space
of the covariance matrix Σx,y = Cov(x,y). Indeed, removing this particular subspace completely
prevents linear classification [Belrose et al., 2023].

In order to preserve this task-relevant information, we require the affine transformation r(x) = Px+b
not only to produce features that are linearly guarded for z, but also to leave the covariance between
x and y invariant. For this approach we cast the name SPLINCE (Simultaneous Projection for LINear
concept removal and Covariance prEservation), which can be seen as an extension of LEACE. It
eliminates sensitive concepts from representations while exactly preserving their covariance with
a target label. The SPLINCE optimization problem is formulated in Theorem 1 and its solution is
given by equation 4, which is the main theoretical contribution of this paper.
Theorem 1. Let x and z,y be random vectors with finite second moments, non-zero covariances
between x and z, and between x and y, and E[x] = 0. Let W = (Σ

1/2
x,x)+ be a whitening

matrix. Define linear subspaces U⊥ = colsp(WΣx,z) and V = colsp(WΣx,y) + U−, where
U− = U ∩ (colsp(WΣx,z) + colsp(WΣx,y))

⊥. Assume U⊥ ∩ colsp(WΣx,y) = {0}. Then the
optimization problem

argmin
P∈Rd×d

E
[∥∥Px− x

∥∥2
M

]
(2)

subject to the two constraints
PΣx,z = 0, and PΣx,y = Σx,y, (3)
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to be referred to as the kernel and range constraint, respectively, has the solution

P⋆
SPLINCE = W+V(UTV)−1UTW, (4)

where U and V are matrices whose orthonormal columns span U and V, respectively.

The proof of Theorem 1 is given in Appendix A.1. Compared to the LEACE optimization problem, the
only difference is the additional condition of preserving task-relevant information, PΣx,y = Σx,y,
which we refer to as the range constraint. Similar to LEACE, P⋆

SPLINCE is an oblique transformation
with kernel colsp(Σx,z). The difference lies in the range, which now contains colsp(Σx,y) in order
to fulfill the range constraint. Intuitively, the freedom that the LEACE optimization problem gives to
the choice of the range is partially used to preserve the task-relevant information, i.e., the covariance
between x and y. The remainder of the freedom is used to minimize the distortion caused by the
affine transformation, leading to whitening and unwhitening, similar to LEACE.

The main assumption of Theorem 1 is that U⊥ ∩ colsp(WΣx,y) = {0}, which is satisfied as long
as the subspaces spanned by Cov(x, z) and Cov(x,y) do not perfectly overlap. For the case where
z and y are binary variables, this assumption is equivalent to requiring that the covariance vectors
Cov(x, z) and Cov(x,y) are linearly independent (i.e., not proportional).

We note that, perhaps counter-intuitively, SPLINCE is not necessarily equivalent to LEACE if
colsp(Σx,z) and colsp(Σx,y) are orthogonal subspaces. Only if those subspaces are orthogonal after
whitening, SPLINCE and LEACE are equivalent. In that case the orthogonal projection of LEACE
then already contains the task-relevant directions colsp(WΣx,y) in its range. We also note that,
similar to LEACE [Belrose et al., 2023], in the case of non-centered data, i.e., E[x] ̸= 0, the optimal
affine transformation requires the addition of a constant b⋆SPLINCE = E[x]−P⋆

SPLINCEE[x]. Finally,
in Figure 1 we give a visual illustration of the steps of the projection matrix suggested by Theorem 1.

Figure 1: Illustration of the different steps for the projection suggested by Theorem 1 on two-
dimensional data. The data (a) is whitened (b). Then, we use V(UTV)−1UT to project parallel to
WΣx,z onto WΣx,y , and subsequently unwhiten (c). With LEACE, the Σx,y is altered (d).

3.2 Last-layer linear concept removal with re-training

The first use case of SPLINCE we consider is linear concept removal applied to the embeddings of a
DNN, after which a linear classifier is fitted on the transformed embeddings. This can be useful if it
is demanded that a predictive model does not make use of sensitive concepts, like gender or race.

If we compare SPLINCE with other concept removal methods that guarantee linear guardedness,
namely LEACE and SAL [Shao et al., 2023], we observe that they are all projections with the same
kernel colsp(Σx,z). They differ in the choice of the range. Interestingly, we find that the predictions
of a linear classifier that is trained without regularization on the transformed embeddings are not
affected by this choice of the range. In other words, all concept removal methods that ensure linear
guardedness will lead to the same predictions after re-training a linear classifier without regularization.
We verify this empirically in Appendix B.1.

This result is formalized in Theorem 2, in which we consider training a model f(x;θ) that only
depends on the embeddings x and parameters θ through their inner product. Examples of such models
are linear and logistic regression, the latter typically being used as the linear classifier re-trained
on the embeddings. Before fitting, a projection is applied to the embeddings. We consider two
projections that have the same kernel, but different ranges. Theorem 2 shows that, in the case of a
strictly convex loss function without regularization, both fitted models lead to the same predictions.
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Theorem 2 (Equivalent predictions after oblique re-training). Consider observations (x,y) ∈ Rd×Y
and a model f(x;θ) that only depends on the inputs x and parameters θ through their inner product,
i.e., f(x;θ) = f(xTθ). Suppose we have data {(xk,yk)}nk=1 , which is organized in a design matrix
X ∈ Rn×d and Y ∈ Yn. Before fitting the model, we apply an oblique transformation to the features
x. We consider two projections that have the same kernel U ∈ Rd, but different ranges A,B ∈ Rd.
We denote the corresponding transformation matrices as PA,PB, and we define xA = PAx ∈ A
and xB = PBx ∈ B. Let L(Xθ,Y) be a loss function with a unique minimizer. Then the following
two minimizers

θ∗
A = argmin

θ∈A
L(XAθ,Y), θ∗

B = argmin
θ∈B

L(XBθ,Y) (5)

lead to the exact same predictions. In other words, xT
Aθ

∗
A = xT

Bθ
∗
B for any x ∈ Rd.

The proof of Theorem 2 is given in Appendix A.2. The intuition behind this result is that there exists
an invertible linear transformation between the data after PA and the data after PB. In other words,
the choice of the range does not determine how much (linear) information about the target variable is
lost in the oblique projection. This is solely determined by the choice of the kernel.

We point out that the assumption of unique minimizers corresponds to strictly convex loss functions,
which is a common assumption for linear and logistic regression [Albert and Anderson, 1984]. In
addition, note that the constraints in equation 5 of the parameters to A,B is without loss of generality.
Because of the inner product, components perpendicular to the subspaces do not affect predictions.

3.3 When does changing the range matter?

Theorem 2 provides a case where SPLINCE will lead to the same predictions as other concept
removal methods that ensure linear guardedness (e.g., SAL and LEACE). Here, we identify two
practical cases where applying projections with the same kernel and different ranges will typically
lead to different predictions.

1. When re-training the last layer with regularization: if we include a regularization term
(such as ||θ||2 or ||θ||1) in our loss function L, then it no longer exclusively depends on the
parameters via the inner product Xθ. This will generally lead to xT

Aθ
∗
A ̸= xT

Bθ
∗
B for any

two projections with the same kernel and different ranges.
2. When not re-training the last layer: applying the same parameters to projected embeddings

that lie in two different subspaces will typically not lead to the same predictions. If we
consider projections PA and PB with ranges A and B, then the predictions can only be the
same if the parameters θ∗ lie in the orthogonal complement of both PA and PB, i.e.,

xTPT
Aθ

∗ = xTPT
Bθ

∗ ⇔ xT(PA −PB)
Tθ∗ = 0. (6)

Since the projections considered in this paper are constructed without knowledge of the
parameters, these will typically lie outside the orthogonal complements. Note that this use
case is relevant for language modeling, where re-training the parameters of the last layer is
typically not feasible in terms of computational resources and/or data availability.

For these cases we expect SPLINCE to outperform other methods that ensure linear guardedness, as it
is designed to preserve task-relevant information. We empirically investigate this in the next section.2

4 Experiments

This section is structured as follows. We start by investigating classification tasks when the last
layer of the model is re-fitted with regularization. Then, in Section 4.2, we investigate language
modeling, when the last layer of the language model (LM) is not re-trained post-projection. Finally,
in order to qualitatively assess the effect of the different projections, we apply SPLINCE to black
and white image data in Section 4.3. Across experiments, we compare SPLINCE to two other
projections: LEACE and SAL (see Section 2). We focus on these projections since, similar to
SPLINCE, they guarantee linear guardedness with regards to a concept, and only differ in choice of
range. Furthermore, LEACE and SAL have been shown to outperform other existing concept-removal
methods such as INLP and RLACE, which may or may not satisfy linear guardedness.

2See this link for our code for the experiments, as well as an implementation of SPLINCE.
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4.1 Classification where the last layer is re-trained with regularization

We focus on two classification problems. First, we use the Bias in Bios dataset on professions and
biographies from De-Arteaga et al. [2019]. We focus on the set of biographies which carry the
‘professor’ label, yprof ∈ {0, 1}, and seek to remove the concept of whether the subject was male
or not, zgender ∈ {0, 1}. Second, inspired by Huang et al. [2024], we use the Multilingual Text
Detoxification dataset from Dementieva et al. [2024]. We focus on three languages (English, German
and French), making the concept-label zlang ∈ {1, 2, 3} non-binary. This dataset consists of texts
from users that are classified as toxic or non-toxic, ytox ∈ {0, 1}.

Set-up of the experiment: we seek to investigate the impact of each projection as the correlation
between the task of interest (yprof , ytox) and the concept to remove (zgender, zlang) becomes stronger.
We expect that as the relationship becomes stronger, the difference between SPLINCE and other
projections becomes greater. The reason is that stronger correlated labels have covariances with the
embeddings that are typically more aligned. Removing the concept is then more likely to also remove
information about the task of interest.

To alter the relationship between the task of interest and concept, we create smaller versions of
the original datasets, where we vary the extent to which yprof , ytox co-occur with respectively
zgender, ylang. For the Bias in Bios dataset, we vary p(yprof = a | zgender = a) with a ∈ {0, 1},
i.e., the conditional probability that the biography is of a professor and male or not a professor and
female. For the Multilingual Text Detoxification dataset we vary p(ytox = 1 | zlang = 1), e.g., the
conditional probability that a toxic comment appears in the English language. We balance with
respect to respectively yprof , ytox. In order to measure how much of the task-relevant information is
retained after the projection, we create a test set where there is no correlation between yprof , ytox and
the respective concepts zgender, zlang. Additional details on the datasets are given in Appendix C.1.

Models and training procedure: for the Bias in Bios dataset, we finetune a BERT model [Devlin
et al., 2019] to classify the profession. For the Multilingual Text Detoxification dataset we finetune
multilingual E5 (ME5) embeddings Wang et al. [2024b] to classify the sentiment. For the BERT
model, we add a linear layer on top of the embeddings of the [CLS] tokens for classification. For the
ME5 embeddings, we add a linear layer on top of the average over all tokens. We apply projections to
the last-layer embeddings - the [CLS] token for the BERT model, and the average over all tokens for
the ME5 model. Afterwards we re-fit a logistic regression with l2 regularization. We tune the strength
of the l2 regularization based on a validation set. This entire procedure (finetuning, projection,
re-fitting, l2 penalty selection) is repeated per seed. Additional details are given in Appendix C.2.

Figure 2: Performance of different projections on the Bias in Bios and Multilingual Text Detoxification
dataset. We re-train the last-layer after applying each projection. Points are based on the average over
3 seeds, 5 seeds respectively for the two datasets. The error bars reflect the 95% confidence interval.
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Results: the results of the experiments for both datasets are given in Figure 2. We focus on overall
accuracy as well as worst-group accuracy. Worst-group accuracy is defined as the lowest accuracy for
all combinations of the task and concept. A low worst-group accuracy reflects that a model relies
on the correlation between the task and concept in the training data [Sagawa et al., 2020]. For both
datasets, as the relationship between task and concept becomes stronger, SPLINCE outperforms the
other projections in both accuracy and worst-group accuracy. As the correlation between the task and
concept becomes stronger, SAL and LEACE remove a significant part of Σx,y, contrary to SPLINCE.
This is illustrated for the Bias in Bios dataset in Figure 7 in Appendix B.2

4.2 Language modeling

We focus on two language modelling tasks using the Llama series of models [Touvron et al., 2023,
Grattafiori et al., 2024]. First, we use a dataset from Limisiewicz et al. [2024], which we refer to as
the profession dataset. Inspired by Bolukbasi et al. [2016], this dataset contains prompt templates
containing professions, which need to be finished by the LM (e.g.,‘the plumber wanted that’). Each
profession has a stereotype score zstereo. This indicates how strongly a profession is connected with
the male gender through stereotypical cues (e.g., plumber has a high stereotype score, while nurse has
a low one). Each profession also has a factual score yfact, which indicates how strong a profession is
connected to the male gender through factual information (e.g., waiter has a high factual score, but
waitress has a low one).

Second, we use the Winobias dataset from Zhao et al. [2018]. Each prompt contains two professions
and pronouns. Prompts are marked pro-stereotypical or anti-stereotypical, denoted zpro−stereo ∈
{0, 1}. In pro-stereotypical prompts, the coreference links to a profession with the stereotypical
gender matching the gender of the pronoun. An example is ‘The mechanic gave the clerk a present
because he won the lottery. He refers to’. In anti-stereotypical cases, the profession’s stereotypically
assumed gender is different from the gender of the pronouns. The task is to finish the prompt with one
of the 40 professions, with the correct profession denoted yprofession ∈ {1, 2, . . . 40}. For additional
details on both datasets, see Appendix C.1.

Set-up of the experiments: for the profession dataset, our goal is to create an LM that does not rely
on stereotypical cues, but on factual information. We estimate the extent to which the LM M relies
on stereotypical cues or factual information as follows. Let the/tshe be the tokens for "he"/"she". Let
ti denote tokens for a prompt i, and pM(the|ti) the probability assigned by a model of the "he" token
conditional on the prompt ti. We measure the log-odds ratio between the probability of the next
token being ‘he’ or ‘she’ as

oddshe/she,i = log

(
pM(the|ti)
pM(tshe|ti)

)
, (7)

and estimate the linear regression

oddshe/she,i = zstereo,iβ̂stereo + yfact,iβ̂fact + α̂. (8)

Intuitively, the coefficients indicate to what extent the difference in the probability of assigning "he"
or "she" can be explained by stereotypical cues or factual information [Limisiewicz et al., 2024].

For the Winobias dataset, we seek to create an LM that is able to provide the correct profession,
regardless of whether or not the coreference link is pro-stereotypical. We seek to remove zpro−stereo

while preserving the covariance between the embeddings and yprofession.

Results: for the experiment on the profession dataset, the results are shown in Table 1. We report the
exponent of the coefficients in Equation 7, as this tells us how more likely the ‘he’ token becomes
relative to the ‘she’ token after a one-unit increase in either the stereotypical or factual score. After
applying any of the three projections, the extent to which the model relies on stereotypical information
is greatly reduced, per the reduction in exp(β̂stereo). The extent to which the model relies on factual
information after a projection is greatly reduced when applying SAL or LEACE, whereas it is
increased or preserved after applying SPLINCE.
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Table 1: Results of applying different projections to the last layer of various Llama models for the
profession dataset.

Model Projection exp(β̂stereo) exp(β̂fact)

Llama 2 7B

Original 3,59 15,71
+SAL 0,80 5,90
+LEACE 0,85 12,14
+SPLINCE 0,79 24,27∗

Llama 2 13B

Original 3,84 20,2
+SAL 0,84 4,81
+LEACE 0,88 16,32
+SPLINCE 0,81 33,24∗

Llama 3 8B

Original 3,98 19,02
+SAL 0,87 3,50
+LEACE 0,88 7,68
+SPLINCE 0,82 13,43∗

Note: the ∗ indicates that difference between the factual coefficient of our projection and the factual coefficient
of LEACE is statistically significant at the 1% level according to a one-tailed t−test. The exponent of the
coefficients estimates how the odds ratio changes with a one-unit change in zstereo and yfact, respectively.

For the experiment on the Winobias dataset, the results are shown in Figure 3. For two out of
three Llama models, SPLINCE improves coreference accuracy more than the other projections. In
particular, it strongly increases the accuracy for anti-stereotypical prompts. In Appendix B.6 report
results for additional LM’s outside of the Llama series.

Figure 3: Results of applying different projections to the last layer of various Llama models for the
Winobias dataset. The left plot shows the accuracy on a test set consisting of half pro-stereotypical
and half anti-stereotypical prompts. The right plot shows the accuracy on the anti-stereotypical
prompts in this test set.

4.3 Application to image data

We conduct an experiment for the CelebA dataset [Liu et al., 2015] that is similar to one from
Ravfogel et al. [2022], Kleindessner et al. [2023], Holstege et al. [2024]. The goal of the experiment
is to qualitatively show what features are removed by each projection. The concept to remove is
whether or not someone is smiling, denoted zsmiling ∈ {0, 1}, and we seek to preserve whether or not
someone wears glasses, yglasses ∈ {0, 1}. We subsample 10,000 images from the original CelebA
dataset such that p(yglasses = a | zsmiling = a) = 0.9.

In Figure 4 we illustrate the effect of each projection on the raw pixels, for several images. SPLINCE
accentuates parts of the image that are useful for distinguishing images with and without glasses. For
instance, it tends to make the areas around the eyes lighter when someone does not wear glasses,
and darken when they do. This shows that SPLINCE mitigates the damage to the “glasses” features
exposed to a linear classifier, despite of the high correlation. We illustrate that this holds on average
across the whole dataset in Appendix B.3.

In Appendix B.5 we include additional results CelebA dataset as introduced here, as well as the
Waterbirds dataset Sagawa et al. [2020]. SPLINCE performs relatively worse for these vision
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classification tasks than the NLP classification tasks in 4.1. This gap in performance between the
vision and NLP classification tasks is an interesting direction for future research.

Figure 4: Application of different projections to raw pixel data of CelebA. The first columns shows
the original image. The next four columns show the image, after the respective projection. The final
three columns indicate the difference between the original image and the image after the projection.

5 Discussion and Limitations

Theoretically, we show that the range of the projection—particularly, whether or not it includes
Σx,y—can matter only if one does not re-fit the last linear layer, or refit it with a regularization
term. However, we lack a theoretical understanding that would explain under which conditions it
does matter, and when it is expected to outperform LEACE. In Appendix A.3 we provide an initial
investigation into this question, showing SPLINCE is guaranteed to outperform LEACE when we
freeze the last layer and the embeddings are whitened. Future work should study whether preserving
main-task covariance is optimal under more general settings. In this paper, we focus on preserving
that quantity as it is intuitively related to main-task performance; however, we note that the SPLINCE
objective can be modified to preserve any direction that is not identical to the covariance with the
protected attribute.

In addition, a limitation of the SPLINCE objective is that it prioritizes preserving Σx,y over min-

imizing E
[∥∥Px− x

∥∥2
M

]
. This can potentially lead to distortive changes to the embeddings. We

investigate this limitation in Appendix B.4. As the SPLINCE objective sometimes fails when inter-
vening in middle layers, we aim to study the adaption of the SPLINCE objective for preserving the
directions in the representation space that are being used by an LM in some middle layer.

While we did not investigate a multi-modal setting (e.g. CLIP, Radford et al. [2021]), one potential
limitation of SPLINCE is that covariance subspaces might not be aligned across modalities.

Finally, see Appendix D for a discussion on ethical considerations when applying SPLINCE.

6 Conclusion

We introduce SPLINCE, a method that generalizes previous concept-erasure methods by provably
removing the ability to linearly predict sensitive information, while maintaining the covariance
between the representations and another main-task label. Our analysis pins the problem down to
a pair of geometric constraints—placing colsp(Σx,z) in the kernel of the projection while forcing
colsp(Σx,y) to lie in its range—and proves that the oblique projector of Theorem 1 is the unique
minimum-distortion solution under these constraints. Experimentally, SPLINCE tends to better
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preserve average and worst-group accuracy on the Bias in Bios and Multilingual Text Detoxification
tasks when the task–concept correlation is high. In a language-modeling setting, we are able to
influence stereotypical bias while preserving factual gender information; and in most models, it is
better in preserving LM’s ability to perform co-reference after debiasing in the Winobias dataset.
Future work should formalize whether maintaining the covariance with the main-task translates into
main-task loss guarantees and develop variants over the SPLINCE objective that impose weaker
distortion when applied to earlier hidden layer, or performs better for vision datasets.
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A Proofs of theorems

A.1 Proof of theorem 1

We will prove Theorem 1 by making use of a basis tailored to the problem. In the end we will
transform the resulting formula back to the basis-independent formulation of equation 4.

Let m = rank(Σx,x), with 1 ≤ m ≤ d. Let W = colsp(W) be the subspace in Rd in which x
has non-zero variance. Without loss of generality, we will define a basis for x where the first m
coordinates of x lie in W . The last l = d −m coordinates lie in its orthogonal complement W⊥.
Our x can now be written as

x =

(
x̃
x̌

)
, x̃ ∈ Rm, x̌ ∈ Rl. (9)

We will use x̃i ∈ R to denote elements from the first m coordinates, and x̌i ∈ R to denote elements
from the final l coordinates.

We also assume that this basis is orthonormal with respect to the inner product M, such that:
xTMx =

∑d
i=1 αix

2
i for fixed α1, ..., αd > 0. Creating such a basis is always possible by standard

orthogonalization procedures, now restricted to the coordinates of the respective subspaces W and
W⊥. As a consequence of this, the optimization problem defined in Theorem 1 can be decomposed
in d independent optimization problems, one for each term in the sum that corresponds to the norm
(squared), i.e., one for each coordinate of x. To be more concrete, the optimization problem becomes
for i ∈ {1, ..., d}

argmin
P∈Rd×d

E
[
((Px)i − xi)

2
]

subject to Cov((Px)i, z) = 0,

subject to Cov((Px)i,y) = Cov(xi,y), (10)

where xi ∈ R denotes the ith component of x and (Px)i ∈ R the ith component of Px. The weights
α1, ..., αd are left out, as they become irrelevant if we manage to find the minimum for each xi.

Lemma 1. Let

P =

(
P̃ 0m,l

0l,m 0l,l

)
, (11)

where P̃ ∈ Rm×m and where 0m,l is an (m × l)-matrix of zeros and the other zero-matrices are
defined similarly. A solution to the optimization problem, for i ∈ {1, ...,m},

argmin
P̃∈Rd×d

E
[
((P̃x̃)i − x̃i)

2
]

subject to Cov((P̃x̃)i, z) = 0,

subject to Cov((P̃x̃)i,y) = Cov(x̃i,y), (12)

corresponds then via equation 11 to a solution of the original optimization problem of Theorem 1.

Proof. We start by dividing P in four block matrices,

P =

(
P̃ B
C D

)
, (13)

where P̃ ∈ Rm×m,B ∈ Rm×l,C ∈ Rl×m,D ∈ Rl×l. We now proceed to determine these
matrices, starting with a solution for C and D. We do this by solving the optimization problem
defined in equation 10 for the final l rows. For i ∈ {l, ..., d}, we can write

(Px)i =

m∑
j=1

Cp,j x̃j +

d∑
j=m+1

Dp,j x̌j , (14)

where p = i − l + 1. We use the indexation via p because we use the rows p ∈ {1, ..., l} of the
matrices C and D respectively to represent (Px)i. The objective in equation 10 for i ∈ {l, ..., d}
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and corresponding p can be written as

E
[
((Px)i − x̌i)

2
]
= E


 m∑

j=1

Cp,j x̃j +

d∑
j=m+1

Dp,j x̌j − x̌i

2
 (15)

= E

 m∑
j=1

Cp,j x̃j

2

(16)

=
(
CCov(x̃, x̃)CT

)
pp
, (17)

where in the second equality we used that x̌i = 0 almost surely and in the final equality we used
that E[x̃i] = 0. We note that the values for Dp,j do not matter for the objective. Furthere, because
Cov(x̃, x̃) is p.s.d., we can achieve the minimum of equation 17 by setting C = 0. For simplicity, we
also set D = 0. This then also trivially satisfies the kernel and range constraints for the components
i ∈ {l, ..., d}.

For i ∈ {1, ...,m}, we can write

(Px)i =

m∑
j=1

Ai,j x̃j +

d∑
j=m+1

Bi,j x̌j . (18)

We can set B = 0 for the same reason as we chose D = 0. The objective and constraints for P̃ are
then as in equation 12. This concludes the proof of Lemma 1.

In order to simplify the remaining objective for P̃ in Lemma 1, we write P̃ = ÃW̃, where
W̃ = Σx̃,x̃ ∈ Rm×m is full-rank, symmetric and p.s.d., and thus invertible. Because of this,
optimizing for P̃ is equivalent to optimizing for Ã. Note that in this notation,

Σx,x =

(
Σx̃,x̃ 0m,l

0l,m 0l,l

)
, (19)

an we can write the whitening matrix W, and its Moore-Penrose inverse as

W =

(
W̃ 0m,l

0l,m 0l,l

)
, W+ =

(
W̃−1 0m,l

0l,m 0l,l

)
. (20)

Using that we can write x̃i as

x̃i = (W̃−1W̃x̃)i =

m∑
j=1

W̃−1
i,j (W̃x̃)j), (21)
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the remaining objective becomes, for i ∈ {1, ...,m},

E
[
((Px)i − x̃i)

2
]
= E

[
((P̃x̃)i − x̃i)

2
]

= E


 m∑

j=1

(Ãi,j − W̃−1
i,j )(W̃x̃)j

2


= Var

 m∑
j=1

(Ãi,j − W̃−1
i,j )(W̃x̃)j

+ E

 m∑
j=1

(Ãi,j − W̃−1
i,j )(W̃x̃)j

2

= Var

 m∑
j=1

(Ãi,j − W̃−1
i,j )(W̃x̃)j


=

m∑
h=1

m∑
k=1

(Ãi,h − W̃−1
i,h)(Ãi,k − W̃−1

i,k )Cov((W̃x̃)h, (W̃x̃)k)

=

[(
Ã− W̃−1

)(
Ã− W̃−1

)T
]
i,i

, (22)

where we used that E[(W̃x̃)j ] = 0 and Cov(W̃x̃,W̃x̃) = Im by definition of the whitening matrix.

The constraints on P̃ in the optimization problem in equation 12 translate into constraints on Ã and
the optimization problem can be recast as

Ã∗ = argmin
Ã∈C1∩C2


m∑
j=1

(
Ã− W̃−1

)2

i,j


m

i=1

, (23a)

where

C1 =
{
M ∈ Rm×m | W̃MW̃Σx̃,z = 0m

}
, (23b)

C2 =
{
M ∈ Rm×m | W̃MW̃Σx̃,y = W̃Σx̃,y

}
. (23c)

With more than one objective and two constraints, this is a constrained multiple optimization problem.
We have seen before that it can be decomposed in m separate constrained optimization problems.
Each of these problems has a convex objective function and linear constraints, making the optimum
Ã∗ uniquely defined.

The constraints C1 and C2 can be interpreted as follows: Ã must be such that the columns of W̃Σx̃,z

are in the kernel of W̃Ã and that the columns of W̃Σx̃,y are eigenvectors of W̃Ã. This can be
achieved by means of an oblique projection. If we define the following linear subspaces,

Ũ⊥ = colsp
(
W̃Σx̃,z

)
, (24)

Ũ− = Ũ ∩
(
colsp

(
W̃Σx̃,z

)
+ colsp

(
W̃Σx̃,y

))⊥
, (25)

Ṽ = colsp
(
W̃Σx̃,y

)
+ Ũ−, (26)

and we define Ũ and Ṽ as the matrices whose columns are an orthonormal basis of Ũ and Ṽ,
respectively, then

P̃obl = Ṽ
(
ŨT Ṽ

)−1

ŨT (27)

is the transformation matrix of an oblique projection whose kernel is formed by the columns of
W̃Σx̃,z and whose range include the columns of W̃Σx̃,y. The latter means that the columns of
W̃Σx̃,y are eigenvectors of P̃obl.

We claim that any Ã ∈ C1 ∩ C2 can be written as B̃P̃obl, where B̃ obeys the second constraint, i.e.,
B̃ ∈ C2. This identification is not unique, as multiple B̃ lead to the same Ã. We formalize this claim
in the following lemma.

18



Lemma 2. Let us define
BP̃obl

:=
{
B̃P̃obl | B̃ ∈ C2

}
. (28)

Then BP̃obl
= C1 ∩ C2.

Proof. It is obvious that BP̃obl
⊆ C1 ∩ C2, so we focus on proving that C1 ∩ C2 ⊆ BP̃obl

. For this,
take an arbitrary M ∈ C1 ∩ C2. Let{

colsp(W̃Σx̃,z), colsp(W̃Σx̃,y), w1, w2, . . . , wk

}
be a basis of Rm, where the wj ∈ Rm are mutually orthonormal and orthogonal to W̃Σx̃,z and
W̃Σx̃,y. We then define a matrix B̃ ∈ Rm×m in terms of its action on this basis, i.e., B̃W̃Σx̃,z = 0,

B̃W̃Σx̃,y = W̃−1W̃Σx̃,y,

B̃wj = Mwj , j = 1, 2, . . . , k.

This implies that M = B̃P̃obl and that B̃ ∈ C2. This concludes the proof of the lemma.

Lemma 2 enables us to reformulate the optimization problem of equation 23 as follows. Define the
set

B∗ = argmin
B̃∈C2

{[(
B̃P̃obl − W̃−1

)(
B̃P̃obl − W̃−1

)T
]
i,i

}m

i=1

. (29)

This is a set of solutions to a different constrained optimization problem than equation 23. All
solutions are equivalent in the sense that for any B̃∗

1, B̃
∗
2 ∈ B∗ we have that B̃∗

1P̃obl = B̃∗
2P̃obl.

Seen as an optimization for B̃P̃obl, the objective is convex and the constraints are linear, making the
optimum unique. Hence, Ã∗ = B̃∗P̃obl for any B̃∗ ∈ B∗.

Now, we claim that W̃−1 ∈ B∗. The argument is that W̃−1 is a solution to the unconstrained
equivalent of the optimization problem of equation 29 and, conveniently, also obeys the constraint
C2. To see this, define

Li =

[(
B̃P̃obl − W̃−1

)(
B̃P̃obl − W̃−1

)T
]
i,i

, (30)

for i ∈ {1, ...,m}, and take the derivative of the loss function with respect to elements of B̃,

∂Li

∂B̃i,k

= 2
((

B̃− W̃−1
)
P̃obl

)
i,k

, (31)

where we used that P̃obl is idempotent. One solution to these first order conditions is B̃ = W̃−1. It
is also obvious that W̃−1 ∈ C2. Tracing the proof backwards, we conclude that

P∗ =

(
W̃−1P̃oblW̃ 0m,l

0l,m 0l,l

)
, (32)

solves the original constrained optimization problem of Theorem 1.

This expression is specific for the basis we chose at the beginning of the proof. If we let S be the
matrix whose columns are the (orthonormal) vectors of the basis and we define

V = S

(
Ṽ
0

)
, U = S

(
Ũ
0

)
, (33)

then we can write this result in a basis-independent way as

P∗ = W+

(
P̃obl 0m,l

0l,m 0l,l

)
W = W+PoblW, with Pobl = V

(
UTV

)−1
UT. (34)

This corresponds to P⋆
SPLINCE in equation 4 and concludes the proof of Theorem 1.
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A.2 Proof of theorem 2

In order to prove theorem 2, we first prove the following Lemma.
Lemma 3. Let PA,PB ∈ Rd×d be (not necessarily orthogonal) projection matrices P2

A = PA
and P2

B = PB with the same kernel Ker(PA) = Ker(PB) = U . Set A := Range(PA), B :=
Range(PB).

Define
F : A −→ B, F

(
PAx

)
:= PBx, ∀x ∈ Rd.

Then F is a linear isomorphism: it is well defined, linear, bijective, hence invertible.

Proof. We prove the Lemma by showing F is well defined, linear and bijective.
Well defined. If PAx = PAy, then PA(x − y) = 0, so x − y ∈ U = Ker(PB) and therefore
PB(x− y) = 0, i.e. F (PAx) = F (PAy).

Linearity. For z1 = PAx1, z2 = PAx2 and α ∈ R:

F (z1 + z2) = PB(x1 + x2) = PBx1 +PBx2 = F (z1) + F (z2),

F (αz1) = PB(αx1) = αPBx1 = αF (z1).

Injectivity. If F (z1) = F (z2), then PBx1 = PBx2 and (x1 − x2) ∈ U = Ker(PA), so z1 = z2.

Surjectivity. Both A and B have dimension d − dimU ; a linear, injective map between finite
dimensional spaces of equal dimension is automatically surjective.

Thus F is a linear isomorphism.

Proof of Theorem 2. Because Ker(PA) = Ker(PB) = U , Lemma 3 provides an invertible linear
map

F : A −→ B, F
(
PAx

)
= PBx.

Step 1 — Transferring parameters. For any θA ∈ A define

θB := F−TθA,

where F−T denotes the transpose of the inverse map F−1. Then, for every x ∈ Rd,

xT
BθB︸ ︷︷ ︸

=(FxA)TF−TθA

= xT
AθA,

so the two parameter vectors yield identical predictions.

Step 2 — Empirical minimizers. Let θ∗
A := argminθ∈A L(XAθ,Y) be the (unique) minimizer

over A, and set θ∗
B := F−Tθ∗

A. Because XB = FXA, the fitted predictions match:

XBθ
∗
B = FXAθ

∗
A = XAθ

∗
A.

Hence both parameter choices achieve the same empirical loss value.

Step 3 — Uniqueness over B. Since L has a unique minimizer on B and θ∗
B attains the minimal

loss, it must coincide with the optimizer in equation 5. Therefore, for every input x ∈ Rd,

xT
Aθ

∗
A = xT

Bθ
∗
B,

which proves the theorem.

A.3 Excess risk of SPLINCE vs. LEACE without re-training the last layer

In this section, we provide two theorems that show conditions under which SPLINCE is guaranteed
to outperform LEACE when the last layer is frozen (e.g. not re-trained, contrasting the set-up
of Theorem 2). In Theorem 3 we prove that for a linear regression with whitened data from any
distribution, SPLINCE does not degrade the performance of a frozen last layer. In contrast, applying
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LEACE may lead to an increase in the loss. In Theorem 4 we prove a similar statement, but for the
case where the embeddings x follow a standard multivariate Gaussian distribution.

We emphasize that both theorems are limited in their applicability, as we generally would not expect
last-layer embeddings to be whitened or follow a standard multivariate Gaussian distribution. Further
work is required to understand more general conditions when SPLINCE might outperform LEACE.
Theorem 3 (Excess-risk of LEACE and SPLINCE in a regression setting). Let X ∈ Rn×d be whitened
data with Σx,x = Id and E[x] = 0d. Assume the response model Y = Xβ + ϵ, where E[ϵ] = 0n,
Var(ϵ) = σ2In and E[ϵ⊤X] = 0T

d .

Let Q⊤
LEACE := Id −Pz , where Pz projects onto the subspace spanned by a concept variable z; let

Q⊤
SPLINCE := P be a projection satisfying Σx,y ∈ Range(P). Then:

1. The excess risk of LEACE is greater than or equal to zero, ∆R(QLEACE) ≥ 0.

2. The excess risk of SPLINCE is zero, ∆R(QSPLINCE) = 0.

Proof. For any square matrix Q define the risk

R(Q) := E
[
(Y −XQ⊤β)2

]
,

and the excess risk
∆R(Q) := R(Q)−R(Id).

Using Y = Xβ + ϵ we have

Y −XQ⊤β = Xβ + ϵ−XQ⊤β

= ϵ+X(Id −Q⊤)β. (1)

Hence

R(Q) = E
[
(ϵ+X(Id −Q⊤)β)⊤(ϵ+X(Id −Q⊤)β)

]
= E[ϵ⊤ϵ]︸ ︷︷ ︸

σ2

+2 E
[
ϵ⊤X(Id −Q⊤)β

]︸ ︷︷ ︸
0

+E
[
β⊤(Id −Q)X⊤X(Id −Q⊤)β

]
= σ2 + β⊤(Id −Q)Σx,x(Id −Q⊤)β

= σ2 + ∥(Id −Q⊤)β∥22, (2)

because Σx,x = Id.

Subtracting R(Id) = σ2 from (2) yields the expression

∆R(Q) = ∥(I −Q⊤)β∥22 .

Take Q = QLEACE = Id −Pz . Since Pz is a projector, (Id −Pz)
⊤ = Id −Pz; thus

∆R(QLEACE) = ∥Pzβ∥22.

Unless Pzβ = 0d (the degenerate case where β lies fully outside the concept subspace), this quantity
is strictly positive.

Let Q = QSPLINCE = P⊤. By assumption Σx,y ∈ Range(P), and under whitening β = Σxy . Hence
Pβ = β and (Id−P⊤)β = (Id−P)β = 0d. Applying the boxed identity, ∆R(QSPLINCE) = 0.

Theorem 4 (Excess-risk bound of LEACE and SPLINCE in a logistic-regression setting). Let X ∈
Rn×d contain i.i.d. rows x ∼ N

(
0d,Σx,x

)
. Assume the conditional model

P(y = 1 | x) = g
(
x⊤β

)
, g(s) = 1

1+e−s ,

with true parameter β ∈ Rd.
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Define Q⊤
LEACE := Id −Pz , where Pz projects onto the subspace spanned by a concept variable z;

define Q⊤
SPLINCE := P, where P is an orthogonal projector satisfying Σx,y ∈ Range(P).

Let ∆ℓ(Q) := E[ℓ(x⊤Q⊤β, y) − ℓ(x⊤β, y)] denote the (population) excess logistic risk, with
ℓ(s, y) = log(1 + es)− ys.

Then:

1. (LEACE)

0 < ∆ℓ

(
QLEACE

)
≤ 1

8
β⊤Pz Σx,x Pzβ.

In the whitened case Σx,x = Id this reduces to ∆ℓ(QLEACE) ≤ 1
8∥Pzβ∥22.

2. (SPLINCE) ∆ℓ

(
QSPLINCE

)
= 0.

Proof. Define

s := x⊤β, ŝ := x⊤Q⊤β, δ(x) := ŝ− s = x⊤(Q⊤ − Id)β = x⊤(Id −Q⊤)(−β).

Three facts about the logistic loss.

Fact 1. ℓ′(s, y) = σ(s)− y.

Fact 2. ℓ′′(s, y) = σ(s)
(
1− σ(s)

)
≤ 1

4 .

Fact 3. By the mean–value theorem, for some θ = θ(x, y) ∈ (0, 1),

ℓ(ŝ, y) = ℓ(s, y) + δ ℓ′(s, y) +
δ2

2
ℓ′′
(
s− θδ, y

)
.

Taking expectations and using Fact 3,

∆ℓ(Q) = E
[
ℓ(ŝ, y)− ℓ(s, y)

]
(35)

= E
[
δ ℓ′(s, y)

]
+

1

2
E
[
δ2ℓ′′

(
s− θδ, y

)]
. (36)

Using E[y | x] = σ(s) (by model assumption),

E
[
δ ℓ′(s, y)

]
= Ex

[
δ(x) E[σ(s)− y | x]︸ ︷︷ ︸

=0

]
= 0. (37)

Fact 2 says ℓ′′ ≤ 1
4 ; hence

1

2
E
[
δ2ℓ′′(·)

]
≤ 1

8
E
[
δ2
]
. (38)

Because x ∼ N (0d,Σx,x),

E
[
δ2
]
= β⊤(Id −Q)Σx,x (Id −Q⊤)β. (39)

Thus

0 ≤ ∆ℓ(Q) ≤ 1

8
β⊤(Id −Q)Σx,x(Id −Q⊤)β . (40)

For Gaussian x and differentiable g, Stein’s lemma states E[g(x)x] = Σx,x E[∇g(x)]. Taking
g(x) = σ(x⊤β) (a scalar function) gives

Σx,y = E[xy] = E[xσ(s)] = Σx,x E
[
σ′(s)β

]
(41)

= Σx,x β E
[
σ(s)(1− σ(s))

]︸ ︷︷ ︸
=:C

. (42)
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Because C > 0, we can solve for the true parameter:

β =
1

C
Σ−1

x,xΣx,y. (43)

Substituting yields for any Q,

∆ℓ(Q) ≤ 1

8C2
Σ⊤

x,yΣ
−1
x,x(Id −Q)Σx,x(Id −Q⊤)Σ−1

x,xΣx,y. (44)

Take Q = QLEACE = Id −Pz . Since (Id −Q) = Pz is a projector,

∆ℓ(QLEACE) ≤
1

8C2

∥∥PzΣx,y

∥∥2.
Unless PzΣx,y = 0d (degenerate), the RHS is strictly positive, proving the first half of the theorem.

Let Q = QSPLINCE = P⊤ where PΣx,y = Σx,y. Then (Id −Q⊤)Σx,y = (Id −P)Σx,y = 0, so
the right-hand side of equation 44 is zero. Because ∆ℓ(Q) ≥ 0 by definition, ∆ℓ(QSPLINCE) = 0.

B Additional results

In this section, we report several results in addition to the experiments described in Section 4.

B.1 Comparing the projections for different levels of regularization

In this subsection, we investigate how the difference in performance between SPLINCE, LEACE
and SAL changes as a function of regularization. We use the Bias in Bios dataset and conduct
the experiment as outlined in Section 4.1, but instead of selecting the l2 regularization based on a
validation set we fix the level or regularization. The results of this procedure are shown in Figure
5 and 6. As we lower the level of l2 regularization (e.g. λ = 0.0001) the difference between the
methods becomes indistinghuishable from zero.

Figure 5: The difference between the SPLINCE and LEACE projections on the Bias in Bios dataset
for different levels of l2 regularization. We show the difference (worst-group) accuracy of SPLINCE
minus the (worst-group) accuracy of LEACE. We re-train the last-layer after applying each projection.
Points are based on the average over 3 seeds. The error bars reflect the 95% confidence interval.
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Figure 6: The difference between the SPLINCE and SAL projections on the Bias in Bios dataset for
different levels of l2 regularization. We show the difference (worst-group) accuracy of SPLINCE
minus the (worst-group) accuracy of SAL. We re-train the last-layer after applying each projection.
Points are based on the average over 3 seeds. The error bars reflect the 95% confidence interval.

B.2 Removal of covariance for the Bias in Bios dataset for different projections

In this subsection, we briefly investigate the effect of different projections on the extent to which
Σx,yprof

is preserved for the Bias in Bios dataset.

To quantify the extent to which Σx,yprof
is preserved, we measure the ratio of the squared l2 norm of

the transformed covariance PΣx,yprof
after the projection P and original covariance Σx,yprof

. Figure
7 shows the effect of changing the conditional probability p(yprof = a | zgender = a) on this ratio.
For SPLINCE, by design, Σx,yprof

is preserved regardless of p(yprof = a | zgender = a), and the
ratio remains 1. As p(yprof = a | zgender = a) increases, SAL and LEACE lead to a removal of
Σx,yprof

. For instance, at p(yprof = a | zgender = a) = 0.9, after LEACE and SAL the ratio between
the transformed and original covariances become respectively 0.07 and 0.001.

Figure 7: The ratio
||PΣx,yprof

||22
||Σx,yprof

||22
as a function of the relationship between yprof , zgender

B.3 The mean difference between the original and transformed images for the CelebA dataset

To verify that the dynamics illustrated in Figure 4 hold across images, we measure the average
difference between the original image before and after a projection. This is shown in Figure 8 for all
combinations of zsmiling and yglasses. For individuals with glasses & not smiling, SPLINCE heavily
accentuates the glasses by (on average) making them darker. For individuals without glasses &
smiling, SPLINCE makes the area around the eyes lighter.
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Figure 8: The mean difference between the original image and after a projection for every combination
of zsmiling, yglasses.

B.4 Applying the projection to multiple layers

Previous work suggests to transform embeddings in multiple, earlier layers in order to amplify the
effect of a projection (see, for instance Belrose et al. [2023], or Limisiewicz et al. [2024] for an
example where parameters are adapted via projection). In this subsection, we repeat several of the
experiments in Section 4 for different layers.

Bias in Bios: we apply the projections (SAL, LEACE, SPLINCE) to one of the 5 last layers of a BERT
model. In this case, we do not re-train the subsequent layers. The accuracy after this procedure, per
layer, is provided in Figure 9, and for worst-group accuracy in Figure 10. For later layers, similar to
the results reported in Section 4.1, SPLINCE outperforms the other projections when the conditional
probability p(yprof = a | zgender = a) increases.

Per layer, we report the ||Σx,zgender
||2 and ||Σx,yprof

||2 in respectively Table 2 and 3. In the earlier
layers (7-10), both ||Σx,zgender

||2 and ||Σx,yprof
||2 are relatively low, indicating relatively little

covariance between the embeddings and zgender, yprof . As ||Σx,zgender ||2 and ||Σx,yprof
||2 increase

in later layers (11-12), the difference between the projections also becomes clearer.

Table 2: The ||Σx,zgender
||2 for the biography

dataset per layer

p(yprof = a | zgender = a)
Layer 0,5 0,6 0,7 0,8 0,9

7 0,30 0,33 0,33 0,33 0,32
8 0,42 0,44 0,44 0,43 0,43
9 0,33 0,34 0,35 0,35 0,36
10 0,34 0,37 0,36 0,33 0,34
11 1,07 1,14 1,10 1,09 1,02
12 1,37 1,45 1,47 1,52 1,81

Table 3: The ||Σx,yprof
||2 for the biography

dataset per layer

p(yprof = a | zgender = a)
Layer 0,5 0,6 0,7 0,8 0,9

7 0,12 0,14 0,18 0,23 0,28
8 0,11 0,14 0,21 0,28 0,36
9 0,09 0,12 0,18 0,24 0,31

10 0,19 0,25 0,27 0,26 0,31
11 0,45 0,60 0,71 0,89 0,94
12 0,57 0,72 1,02 1,36 1,85
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Figure 9: Average accuracy for different projections on the Bias in Bios dataset, for each of the 5
layers preceding the last layer. We do not re-train the subsequent layers after applying the projection.
The points are the the average over 3 seeds. The error bars reflect with the 95% confidence interval.
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Figure 10: Worst-group accuracy for different projections on the Biography dataset, for the 5 layers
preceding the last layer. We do not re-train the last-layer after applying the projection. The points are
the the average over 3 seeds. The error bars reflect with the 95% confidence interval.
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Profession dataset: When applying the projections, we start by the first layer in the sequence of layers
where we alter the embeddings. After determining the projection for the embeddings at this layer, we
subsequently determine it for the next, taking into account the projection of the previous layer. Table
4 shows the result of this procedure on Llama 2 7B. It remains the case that after SPLINCE applying
SPLINCE to multiple layers, the model relies to a greater extent on factual information than when
using SAL or LEACE.

Table 4: Results of applying different projections to different layers for the profession dataset on
Llama 2 7B.

Model Layers Method exp(β̂stereo) exp(β̂fact)

Llama 2 7B

Last 3

Original 3,59 15,71
SAL 1,14 4,07

LEACE 1,04 14,30
SPLINCE 1,00 37,94∗

Last 5

Original 3,59 15,71
SAL 0,86 5,29

LEACE 0,63 14,35
SPLINCE 0,64 15,09∗

Last 9

Original 3,59 15,71
SAL 1,18 6,48

LEACE 0,90 26,12
SPLINCE 0,87 78,17∗

Note: the ∗ indicates that difference between the factual coefficient of our projection and the factual coefficient
of LEACE is statistically significant at the 1% level according to a one-tailed t−test. The exponent of the
coefficients estimates how the odds ratio changes with a one-unit change in zstereo and yfact, respectively.

Winobias dataset: Similar to the Profession dataset, we apply the projections to embeddings of
subsequent layers, taking into account the projection at the previous layer. As illustrated per Figure
11, we observe that the performance of SPLINCE decreases as we apply it to more layers. Potentially,
this is because of the (large) dimensionality of Σx,yprofession

∈ Rd×40. This result highlights a
potential limitation of our projection.

Figure 11: Results of applying different projections to multiple layers on the overall accuracy for the
Winobias dataset for the Llama 2 7B model.

B.5 Additional results for vision datasets

In this section, we briefly investigate the performance of SPLINCE and other projections on two
vision datasets: Waterbirds Sagawa et al. [2020] and the CelebA dataset described in Section 4.3.
Similar to the experiments in Section 4.1, we alter the extent to which the main-task co-occurs
with the concept. For the Waterbirds, we seek to predict whether or not a land or waterbird is
present (ybird ∈ {0, 1}), while removing the concept of the land or water background, denoted
zback ∈ {0, 1}. For the CelebA dataset, we alter the extent to which an image with glasses yglasses
co-occurs with zsmiling. Details on the datasets and training procedure can be found in Appendix C.
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We also compare SPLINCE to two benchmark out-of-distribution (OOD) generalization methods.
First, deep feature reweighting (DFR, Kirichenko et al. [2022]), where a model is trained on a
subsampled dataset, where each combination of the main-task and concept occurs with equal
probability. We implement the version of DFR where the subsampled dataset comes from the training
data, referred to as DFRTR in Kirichenko et al. [2022]. Second, we apply group distributional robust
optimization (GDRO, Sagawa et al. [2020]) to the last layer. Details on the implementation of both
methods can be found in Appendix C.2. We compare SPLINCE to these two methods for the vision
datasets, as well as the NLP classification tasks outlined in 4.1.

Figure 12 compares each projection for the Waterbirds and CelebA dataset. For the Waterbirds
dataset, the performance of each projection ( SAL, LEACE, SPLINCE) strongly deteriotates as the
correlation between the main-task and the concept increases. For the CelebA dataset, ERM gives
a superior performance compared to the projections. These results indicate that concept-removal
methods such as SPLINCE, as well as SAL and LEACE, perform relatively worse on the last-layer
embeddings of vision datasets rather than those generated for NLP tasks. This is in line with previous
work [Holstege et al., 2024] and an interesting direction for future research.

Figure 12: Performance of different projections on the Waterbirds and CelebA dataset. We re-train
the last-layer after applying each projection. Points are based on the average over 5 seeds for each of
the two datasets. The error bards reflect the 95% confidence interval.

In Figure 13 we present the comparison of SPLINCE to DFRTR and GDRO for the Waterbirds
and CelebA dataset. Both methods strongly outperform SPLINCE. It is worth emphasizing that
SPLINCE is not explicitly designed to achieve strong out-of-distribution (OOD) generalization -
rather to achieve certain fairness guarantees (e.g. linear guardedness) while maintaining main-task
performance. In Figure 13 we present the comparison of SPLINCE to DFRTR and GDRO for the
Bias in Bios and Multilingual Text Detoxification dataset. SPLINCE performs similar to both methods
for the Bias in Bios dataset, and outperforms both (at a high correlation) for the Multilingual Text
Detoxification dataset. This result is further empirical evidence that SPLINCE performs better for
NLP tasks than vision datasets - as it is able to perform similar or better than methods designed
for OOD generalization ( DFRTR and GDRO) for these two datasets. One potential reason that
SPLINCE strongly outperforms DFRTR and GDRO for the Multilingual Text Detoxification dataset
is that there is a greater number of possible combinations of the main-task and concept, as well as a
smaller sample size, causing DFRTR and GDRO to overfit on the training data.

29



Figure 13: Performance of SPLINCE compared to deep feature reweighting (DFRTR) and Group
Distributional Robust Optimization (GDRO) on the Waterbirds and CelebA dataset. Each method is
applied to the last layer embeddings. Points are based on the average over 5 seeds for each of the two
datasets. The error bards reflect the 95% confidence interval.

Figure 14: Performance of SPLINCE compared to deep feature reweighting (DFRTR) and Group
Distributional Robust Optimization (GDRO) on the Bias in Bios and Multilingual Text Detoxification
dataset. Each method is applied to the last layer embeddings. Points are based on the average over 5
seeds for each of the two datasets. The error bards reflect the 95% confidence interval.

B.6 Additional results for Large Language Models

In this section, we investigate SPLINCE and other projections on the same language tasks as outlined
in 4.2, but for two additional LLMs: the Mistral v0.3 7B model [Jiang et al., 2023], and the Phi-2
model [Javaheripi et al., 2023] from Microsoft. In both cases, we use the base models as available on
Huggingface, and we apply each projection to the last layer embeddings.
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The results for the profession dataset are presented in Table 5, and for the Winobias dataset in Figure
15. For the profession dataset, the results are in line with the results for the Llama models as presented
in Table 1. After applying each projection, the extent to which the models rely on factual information
is greatly reduced, but this reduction is smallest for SPLINCE. For the Winobias dataset, we observe
little to no change for the Phi-2 model after any of the projections. Most likely this is related to the
overall poor performance of the Phi-2 model on this task, potentially due to its relatively smaller
size compared to the other models (2.7B parameters). For the Mistral 7B v0.3 model, we observe an
increase in the accuracy on anti-stereotypical prompts after applying SPLINCE.

Table 5: Results of applying different projections to the last layer of the Mistral 7B v0.3 and Phi-2
models for the profession dataset.

Model Projection exp(β̂stereo) exp(β̂fact)

Mistral 7B v.03

Original 3,70 24,62
+SAL 0,95 4,86
+LEACE 1,34 10,0
+SPLINCE 1,37 14,76∗

Phi-2 (2.7B)

Original 1,77 15,72
+SAL 0,77 5,44
+LEACE 0,77 7,58
+SPLINCE 0,74 11,23∗

Note: the ∗ indicates that difference between the factual coefficient of our projection and the factual coefficient
of LEACE is statistically significant at the 1% level according to a one-tailed t−test. The exponent of the
coefficients estimates how the odds ratio changes with a one-unit change in zstereo and yfact, respectively.

Figure 15: Results of applying different projections to the last layer of the Mistral 7B v0.3 and Phi-2
models for the Winobias dataset. The left plot shows The left plot shows the accuracy on a test set
consisting of half pro-stereotypical and half anti-stereotypical prompts. The right plot shows the
accuracy on the anti-stereotypical prompts in this test set.

B.7 Applying the projections to the full Bias in Bios dataset

For completeness, we also show results for applying each projection to the complete Bias in Bios
dataset, with all 28 professions, in Table 6. Here, we observe that when not re-training the last
layer, both SPLINCE and LEACE outperform SAL. This is presumably because both SPLINCE and
LEACE are better able to preserve the original embeddings compared to SAL. When re-training,
all methods become statistically indistinghuishable in terms of performance, despite being trained
with regularization (in contrast to the set-up discussed in Theorem 2). Potentially this is because the
relationship between the 28 professions and gender is not as strong as in the setting considered in
Section 4.1.
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Table 6: Results for the complete Bias in Bios dataset

Last layer not re-trained Re-trained
Method Acc. Acc. per class TPR Gap Acc. Acc. per class TPR Gap
Original 81.31 (0.13) 65.52 (0.17) 14.20 (0.09) 81.55 (1.15) 72.94 (0.78) 14.24 (0.08)
SAL 78.35 (0.19) 62.17 (0.20) 13.26 (0.10) 81.47 (1.12) 72.30 (0.85) 12.90 (0.17)
LEACE 81.07 (0.13) 65.09 (0.17) 12.12 (0.05) 81.62 (1.20) 72.74 (1.26) 13.13 (0.26)
SPLINCE 81.11 (0.13) 65.22 (0.16) 12.36 (0.07) 81.64 (1.07) 73.08 (1.14) 13.27 (0.01)

Note: the average is based on three random seeds. The standard error is reported between brackets. The ‘Acc.
per class’ refers to the average accuracy over all 28 professions. The ‘TPR Gap’ refers to the difference in the
True Positive Rate for biographies of males and females.

C Additional information on experiments

C.1 Datasets

Below, we provide additional details on each dataset used in Section 4.

Bias in bios dataset: the original dataset consists of 28 professions, with 255,710 samples in the
training set and 98,344 samples in the test set. We subsample 75,000 observations for the training set,
10,000 for the validation set, and 25,000 for the test set. For all three sets, we subsample such that
p(yprof = 1) = 0.5. For the test set, we break the relationship between the professor profession and
gender by setting p(yprof = a | zgender = a) = 0.5 for a ∈ {0, 1}. For the training and validation
set, we vary p(yprof = a | zgender = a) to study how different projections perform as a function of
the relationship between the profession and gender.

Multilingual dataset: we use the dataset from Dementieva et al. [2024], as hosted on Huggingface
here. After filtering the dataset for our selected languages (English, French, German), we subsample
3334 observations from the training set, 446 for the validation set, and 800 for the test set. For
the test set, we break the relationship between the English language and sentiment by setting
p(ytox = 1 | zlang = 1) = 0.5. Below, we give an example of the division of samples of the dataset
when p(ytox = 1 | zlang = 1) = 0.9.

Table 7: Example of the division of samples in the Multilingual Text Detoxification dataset for
p(ytox = 1 | zlang = 1) = 0.9

English German French

y = 1 (toxic) 1500 83 83
y = 0 (not toxic) 166 750 750

Profession dataset: consists of a total of 320 professions. We randomly select 219 professions for
the training set, and use the remaining 101 for the test set. This is different from Limisiewicz et al.
[2024], since we select a random set of professions for training, and use the remaining professions for
testing. Each profession has an associated zstereo and yfact score, based on Bolukbasi et al. [2016].
Per profession, we create 11 prompts, based on the prompt templates in Table 8. This leads to a
training set that consists of 2409 samples. For the test set, we subsample 950 prompts (from a total of
1111) such that the correlation between the zstereo and yfact score is 0. This is in order to disentangle
the relationship between each score and our variable of interest oddshe/she,i as defined in equation 7.
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Table 8: The 11 prompt templates used for the Profession dataset

Prompt
The <profession>wanted that
The <profession>laughed because
The <profession>went home because
The <profession>desired that
The <profession>wished that
The <profession>cried because
The <profession>ate because
The <profession>said that
The <profession>ran because
The <profession>stayed up because
The <profession>whispered that

Winobias dataset: the original dataset from Zhao et al. [2018] consists of sentences that were created
to follow two prototypical templates. We focus on the first prototypical format, which is

[entity1] [interacts with] [entity2] [conjunction] [pronoun] [circumstances]

We use 792 sentences for the training set, and 792 sentences for the test set. Both the training and
test set contain 396 sentences that are ‘anti-stereotypical’, and 396 that are ‘pro-stereotypical’. Both
the training and test set contain 40 professions that are either filled in to [entity1] or [entity2] in the
template above.

CelebA dataset: We downscale the images to 50 by 50 grey-scale images, flatten them to 2,500-
dimensional vectors, and apply each projection to the raw pixels. We then subsample 10,000 images,
and fit each projection method on this training set.

Waterbirds dataset: introduced by Sagawa et al. [2020], it is a combination of the Places dataset
[Zhou et al., 2016] and the CUB dataset [Welinder et al., 2010]. A ‘water background’ is set by
selecting an image from the lake and ocean categories in the places dataset, and the ‘land background’
is set based on the broadleaf and bamboo forest categories. A waterbird/land is then pasted in front of
the background. When creating new versions of the dataset, we change the p(ybird = a | zback = a)
for a ∈ 0, 1 and keep the size of the training set at 4,775/1,199 for the training and validation set
respectively. For the test set, we select 5,796 samples where p(ybird = a | zback = a) = 0.5.

C.2 Details on models and training procedure

BERT: we use a pre-trained BERT model implemented in the transformers package [Wolf et al.,
2019]: BertForSequenceClassification.from_pretrained("bert-base-uncased").
When finetuning on the Bias in bios dataset, we use the same hyper-parameters as Belrose et al.
[2023], training with a batch size of 16, learning rate of 10−5 and a weight decay of 10−6, using an
SGD optimizer, for 2 epochs.

Multilingual E5: we use the multilingual E5 model as implemented in the transformers package
[Wolf et al., 2019]: AutoModel.from_pretrained("multilingual-e5-base"). When fine-
tuning on the Multilingual text detoxification dataset, we use a batch size of 16, a learning rate of
5 ∗ (10−5), and a weight decay of 10−2, using the AdamW optimizer [Loshchilov and Hutter, 2019],
for 5 epochs.

Llama models: we use the base model of Llama 2 7B, Llama 2 13B and Llama 3.1 8B as available
on Huggingface. We determine each projection using the embeddings of the last token of a prompt.
During test time, we apply the projection to each token, after the embeddings are normalized via the
RMSNorm operation. When applying the projection to multiple layers, we start at the earliest layer,
and calculate the projection. Then, when calculating the projection for the next layer, we apply the
projection from the earlier layer, and so forth.

Last layer re-training: When re-training the last layer. In this case, we run gradient descent (GD)
using the standard implementation of SGDClassifier from scikit-learn. We select the strength
of the l2 from {1, 0.1, 0.01, 0.001, 0.0001} and select the best value based on the worst-group
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accuracy on the validation set. We use the original parameters of the last layer as a starting value. We
fit the SGDClassifier using a tolerance of 0.0001 and run it for a maximum of 1000 epochs.

When implementing DFRTR, we use a subsampled set from the training dataset where each group
has an equal size. Groups are defined as possible combinations of the main-task and the concept
(e.g. in the Waterbirds dataset, there are four groups, as ybird ∈ {0, 1} and zback ∈ {0, 1}). For
GDRO, we use a learning rate η = 0.1 to update the weights per group after each gradient descent
step, similar to Sagawa et al. [2020].

Vision datasets: For the Waterbirds dataset, we use the ResNet50 architecture implemented in the
torchvision package: torchvision.models.ResNet50(pretrained=True). We finetune the
model using the parameters of Kirichenko et al. [2022]: a learning rate of 10−3, a weight decay of
10−3, a batch size of 32, and for 100 epochs without early stopping. We use stochastic gradient
descent (SGD) with a momentum parameter of 0.9. For CelebA, we simply run a logistic regression,
akin to last-layer retraining, on the downscaled grey-scale images.

D Ethical considerations

As with any technique that aims to ensure that the predictions of a machine learning (ML) model are
fair, practitioners should exercise caution when deploying SPLINCE in real-world settings where
decisions can affect people’s lives. Naturally, our work considers specific technical notions of fairness,
and is evaluated on a limited number of datasets, that do not reflect all the considerations one should
take into account in deployment. “Fairness" is a multifaceted construct, and our approach addresses
only certain dimensions. Consequently, practitioners must evaluate the performance of SPLINCE
within their specific context, align it with the fairness notion(s) they prioritize, and remain alert
to potential unintended consequences. Importantly, SPLINCE targets a very specific definition of
bias, quantified by the ability of a linear model to predict a protected attribute. The method is not
necessarily expected to work for non-linear models, or for other definitions of fairness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are substantiated by theoretical arguments (Section 3) and empirical
evidence (Section 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5 and references therein.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are stated in the theorems. The proofs can be found in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 and references therein.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide a repository (https://github.com/fholstege/SPLINCE)
which contains an implementation of SPLINCE, as well as code for reproducing our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 and references therein.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and references therein.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The computer resources used for this paper were very modest compared to
nowadays standards and therefore not mentioned explicitly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There were no pressing ethical issues related to the research conducted for this
paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper mentions potential positive societal impacts: fairness, interpretability.
See D for a discussion of broader ethical considerations when using our method.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not include/use data or models with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets were used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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